File size: 13,759 Bytes
4d23f34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Dwr7gk5OwuGC"
      },
      "outputs": [],
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!apt -y install -qq aria2\n",
        "!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/camenduru/joy-caption-alpha-one/raw/main/text_model/adapter_config.json -d /content/joy/text_model -o adapter_config.json\n",
        "!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/camenduru/joy-caption-alpha-one/resolve/main/text_model/adapter_model.safetensors -d /content/joy/text_model -o adapter_model.safetensors\n",
        "!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/camenduru/joy-caption-alpha-one/resolve/main/clip_model.pt -d /content/joy -o clip_model.pt\n",
        "!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/camenduru/joy-caption-alpha-one/raw/main/config.yaml -d /content/joy -o config.yaml\n",
        "!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/camenduru/joy-caption-alpha-one/resolve/main/image_adapter.pt -d /content/joy -o image_adapter.pt\n",
        "\n",
        "!pip install peft bitsandbytes\n",
        "from huggingface_hub import InferenceClient\n",
        "from torch import nn\n",
        "from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM\n",
        "import torch\n",
        "import torch.amp.autocast_mode\n",
        "from PIL import Image\n",
        "import os\n",
        "import torchvision.transforms.functional as TVF\n",
        "\n",
        "CLIP_PATH = \"google/siglip-so400m-patch14-384\"\n",
        "MODEL_PATH = \"unsloth/Meta-Llama-3.1-8B\"\n",
        "CAPTION_TYPE_MAP = {\n",
        "    (\"descriptive\", \"formal\", False, False): [\"Describe the image in 400 words\"],\n",
        "    (\"descriptive\", \"formal\", False, True): [\"Write a descriptive caption for this image in a formal tone within {word_count} words.\"],\n",
        "    (\"descriptive\", \"formal\", True, False): [\"Write a {length} descriptive caption for this image in a formal tone.\"],\n",
        "    (\"descriptive\", \"informal\", False, False): [\"Write a descriptive caption for this image in a casual tone.\"],\n",
        "    (\"descriptive\", \"informal\", False, True): [\"Write a descriptive caption for this image in a casual tone within {word_count} words.\"],\n",
        "    (\"descriptive\", \"informal\", True, False): [\"Write a {length} descriptive caption for this image in a casual tone.\"],\n",
        "    (\"training_prompt\", \"formal\", False, False): [\"Write a stable diffusion prompt for this image.\"],\n",
        "    (\"training_prompt\", \"formal\", False, True): [\"Write a stable diffusion prompt for this image within {word_count} words.\"],\n",
        "    (\"training_prompt\", \"formal\", True, False): [\"Write a {length} stable diffusion prompt for this image.\"],\n",
        "    (\"rng-tags\", \"formal\", False, False): [\"Write a list of Booru tags for this image.\"],\n",
        "    (\"rng-tags\", \"formal\", False, True): [\"Write a list of Booru tags for this image within {word_count} words.\"],\n",
        "    (\"rng-tags\", \"formal\", True, False): [\"Write a {length} list of Booru tags for this image.\"],\n",
        "}\n",
        "\n",
        "class ImageAdapter(nn.Module):\n",
        "\tdef __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):\n",
        "\t\tsuper().__init__()\n",
        "\t\tself.deep_extract = deep_extract\n",
        "\t\tif self.deep_extract:\n",
        "\t\t\tinput_features = input_features * 5\n",
        "\t\tself.linear1 = nn.Linear(input_features, output_features)\n",
        "\t\tself.activation = nn.GELU()\n",
        "\t\tself.linear2 = nn.Linear(output_features, output_features)\n",
        "\t\tself.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)\n",
        "\t\tself.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))\n",
        "\t\tself.other_tokens = nn.Embedding(3, output_features)\n",
        "\t\tself.other_tokens.weight.data.normal_(mean=0.0, std=0.02)   # Matches HF's implementation of llama3\n",
        "\tdef forward(self, vision_outputs: torch.Tensor):\n",
        "\t\tif self.deep_extract:\n",
        "\t\t\tx = torch.concat((\n",
        "\t\t\t\tvision_outputs[-2],\n",
        "\t\t\t\tvision_outputs[3],\n",
        "\t\t\t\tvision_outputs[7],\n",
        "\t\t\t\tvision_outputs[13],\n",
        "\t\t\t\tvision_outputs[20],\n",
        "\t\t\t), dim=-1)\n",
        "\t\t\tassert len(x.shape) == 3, f\"Expected 3, got {len(x.shape)}\"  # batch, tokens, features\n",
        "\t\t\tassert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f\"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}\"\n",
        "\t\telse:\n",
        "\t\t\tx = vision_outputs[-2]\n",
        "\t\tx = self.ln1(x)\n",
        "\t\tif self.pos_emb is not None:\n",
        "\t\t\tassert x.shape[-2:] == self.pos_emb.shape, f\"Expected {self.pos_emb.shape}, got {x.shape[-2:]}\"\n",
        "\t\t\tx = x + self.pos_emb\n",
        "\t\tx = self.linear1(x)\n",
        "\t\tx = self.activation(x)\n",
        "\t\tx = self.linear2(x)\n",
        "\t\tother_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))\n",
        "\t\tassert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f\"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}\"\n",
        "\t\tx = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)\n",
        "\t\treturn x\n",
        "\tdef get_eot_embedding(self):\n",
        "\t\treturn self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)\n",
        "\n",
        "clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)\n",
        "clip_model = AutoModel.from_pretrained(CLIP_PATH)\n",
        "clip_model = clip_model.vision_model\n",
        "checkpoint = torch.load(\"/content/joy/clip_model.pt\", map_location='cpu')\n",
        "checkpoint = {k.replace(\"_orig_mod.module.\", \"\"): v for k, v in checkpoint.items()}\n",
        "clip_model.load_state_dict(checkpoint)\n",
        "# del checkpoint\n",
        "clip_model.eval()\n",
        "clip_model.requires_grad_(False)\n",
        "clip_model.to(\"cuda\")\n",
        "tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)\n",
        "assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f\"Tokenizer is of type {type(tokenizer)}\"\n",
        "text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, load_in_8bit=True, device_map=\"auto\", torch_dtype=torch.bfloat16)\n",
        "text_model.load_adapter(\"/content/joy/text_model\")\n",
        "text_model.eval()\n",
        "image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False)\n",
        "image_adapter.load_state_dict(torch.load(\"/content/joy/image_adapter.pt\", map_location=\"cpu\"))\n",
        "image_adapter.eval()\n",
        "image_adapter.to(\"cuda\")\n",
        "\n",
        "@torch.no_grad()\n",
        "def stream_chat(input_image: Image.Image, caption_type: str, caption_tone: str, caption_length: str | int) -> str:\n",
        "    torch.cuda.empty_cache()\n",
        "    length = None if caption_length == \"any\" else caption_length\n",
        "    if isinstance(length, str):\n",
        "        try:\n",
        "            length = int(length)\n",
        "        except ValueError:\n",
        "            pass\n",
        "    if caption_type == \"rng-tags\" or caption_type == \"training_prompt\":\n",
        "        caption_tone = \"formal\"\n",
        "    prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))\n",
        "    if prompt_key not in CAPTION_TYPE_MAP:\n",
        "        raise ValueError(f\"Invalid caption type: {prompt_key}\")\n",
        "    prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)\n",
        "    print(f\"Prompt: {prompt_str}\")\n",
        "    image = input_image.resize((384, 384), Image.LANCZOS)\n",
        "    pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0\n",
        "    pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])\n",
        "    pixel_values = pixel_values.to('cuda')\n",
        "    prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)\n",
        "    with torch.amp.autocast_mode.autocast('cuda', enabled=True):\n",
        "        vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)\n",
        "        image_features = vision_outputs.hidden_states\n",
        "        embedded_images = image_adapter(image_features)\n",
        "        embedded_images = embedded_images.to('cuda')\n",
        "    prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))\n",
        "    assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f\"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}\"\n",
        "    embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))\n",
        "    eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)\n",
        "    inputs_embeds = torch.cat([\n",
        "        embedded_bos.expand(embedded_images.shape[0], -1, -1),\n",
        "        embedded_images.to(dtype=embedded_bos.dtype),\n",
        "        prompt_embeds.expand(embedded_images.shape[0], -1, -1),\n",
        "        eot_embed.expand(embedded_images.shape[0], -1, -1),\n",
        "    ], dim=1)\n",
        "    input_ids = torch.cat([\n",
        "        torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),\n",
        "        torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),\n",
        "        prompt,\n",
        "        torch.tensor([[tokenizer.convert_tokens_to_ids(\"<|eot_id|>\")]], dtype=torch.long),\n",
        "    ], dim=1).to('cuda')\n",
        "    attention_mask = torch.ones_like(input_ids)\n",
        "    generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None)   # Uses the default which is temp=0.6, top_p=0.9\n",
        "    generate_ids = generate_ids[:, input_ids.shape[1]:]\n",
        "    if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids(\"<|eot_id|>\"):\n",
        "        generate_ids = generate_ids[:, :-1]\n",
        "    caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]\n",
        "    caption = f'{caption.strip()}'.replace('Prompt: Describe the image in 400 words','')\n",
        "    return caption"
      ],
      "metadata": {
        "id": "0zaheBIsw_dc"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "from PIL import Image\n",
        "home_directory = '/content/'\n",
        "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
        "if using_Kaggle : home_directory = '/kaggle/working/'\n",
        "%cd {home_directory}\n",
        "\n",
        "def my_mkdirs(folder):\n",
        "  if os.path.exists(folder)==False:\n",
        "    os.makedirs(folder)\n",
        "\n",
        "\n",
        "tgt_folder = f'/content/drive/MyDrive/tmp/'\n",
        "my_mkdirs(f'{tgt_folder}')\n",
        "\n",
        "\n",
        "src_folder = '/content/drive/MyDrive/wild party/'\n",
        "suffixes = ['.png', '.jpeg' , '.webp' , '.jpg']\n",
        "num = 1\n",
        "for filename in os.listdir(src_folder):\n",
        "  for suffix in suffixes:\n",
        "    if not filename.find(suffix)>-1: continue\n",
        "    print(filename)\n",
        "    %cd {src_folder}\n",
        "    input_image = Image.open(f\"{filename}\").convert('RGB')\n",
        "    caption = stream_chat(input_image, \"descriptive\", \"formal\", \"any\")\n",
        "    print(f\"...\\n\\n...caption for {filename}.{suffix}\\n\\n...\")\n",
        "    print(caption)\n",
        "    #---------#\n",
        "    %cd {tgt_folder}\n",
        "    f = open(f\"{num}.txt\", \"w\")\n",
        "    f.write(f'{caption}')\n",
        "    f.close()\n",
        "    input_image.save(f'{num}.png', \"PNG\")\n",
        "    num = num+1"
      ],
      "metadata": {
        "id": "J811UZU6xZEo"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from google.colab import runtime\n",
        "runtime.unassign()"
      ],
      "metadata": {
        "id": "kM4TpfdB1amt"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}