codeShare commited on
Commit
e1e2545
·
verified ·
1 Parent(s): f784759

Upload fusion_t2i_CLIP_interrogator.ipynb

Browse files
Google Colab Jupyter Notebooks/fusion_t2i_CLIP_interrogator.ipynb CHANGED
@@ -148,7 +148,10 @@
148
  " %cd /content/\n",
149
  " _ref = load_file('reference.safetensors' )\n",
150
  " num_plots = num_plots+1\n",
151
- "except: _ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
 
 
 
152
  "\n",
153
  "image_size = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
154
  "show_encoding = True # @param {type:\"boolean\"}\n",
@@ -330,7 +333,7 @@
330
  "metadata": {
331
  "id": "IqUsiQw2HU2C"
332
  },
333
- "execution_count": null,
334
  "outputs": []
335
  },
336
  {
@@ -403,7 +406,7 @@
403
  "metadata": {
404
  "id": "I_-GOwFPKkha"
405
  },
406
- "execution_count": null,
407
  "outputs": []
408
  },
409
  {
@@ -467,7 +470,7 @@
467
  {
468
  "cell_type": "code",
469
  "source": [
470
- "# @title ⚄ Evaluate saved reference similarity to select items\n",
471
  "EVAL = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
472
  "\n",
473
  "# @markdown 📝 Enhance/Penalize Similarity and skip items containing word(s)\n",
@@ -478,8 +481,8 @@
478
  "_POS = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
479
  "_NEG = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
480
  "\n",
481
- "show_local_reference = False # @param {type:\"boolean\"}\n",
482
- "show_encoding = False # @param {type:\"boolean\"}\n",
483
  "\n",
484
  "_ref = load_file('reference.safetensors' )\n",
485
  "ref = _ref['weights'].to(dot_dtype)\n",
@@ -560,7 +563,9 @@
560
  "if _START_AT.isnumeric(): START_AT = int(_START_AT)\n",
561
  "\n",
562
  "output_folder = home_directory + 'results/'\n",
 
563
  "my_mkdirs(output_folder)\n",
 
564
  "\n",
565
  "\n",
566
  "\n",
@@ -605,6 +610,13 @@
605
  "_POS2 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
606
  "_NEG = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
607
  "# @markdown -----\n",
 
 
 
 
 
 
 
608
  "for _item in POS1.split(','):\n",
609
  " item = _item.strip()\n",
610
  " if item == '':continue\n",
@@ -682,6 +694,11 @@
682
  " #------#\n",
683
  " sims = torch.matmul(text_encodings*scale, ref.t())\n",
684
  " sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
 
 
 
 
 
685
  " #-----#\n",
686
  " for index in range(LIST_SIZE + START_AT):\n",
687
  " if index<START_AT: continue\n",
@@ -696,14 +713,12 @@
696
  " #-------#\n",
697
  " continue\n",
698
  "#---------#\n",
 
 
699
  "print(f'\\nProcessed entire list of {total_items} items to find closest match.\\nSaved closest matching indices {START_AT} to {START_AT + LIST_SIZE} as the dict \"similiar_prompts\" with {LIST_SIZE} items.\\n')\n",
700
  "\n",
701
  "# Print results\n",
702
  "sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
703
- "include_similiarity = False # @param {type:\"boolean\"}\n",
704
- "print_as_list = False # @param {type:\"boolean\"}\n",
705
- "N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
706
- "\n",
707
  "if(print_as_list):\n",
708
  " for index in range(LIST_SIZE):\n",
709
  " key = indices[index].item()\n",
@@ -724,8 +739,14 @@
724
  " prompt = (prompt + '}').replace('|}', '} ')\n",
725
  " #------#\n",
726
  " print(f'Similiar prompts: \\n\\n\\n{prompt} \\n\\n\\n//----//')\n",
727
- "image\n",
728
- "#-----#\n"
 
 
 
 
 
 
729
  ],
730
  "metadata": {
731
  "id": "kOYZ8Ajn-DD8"
@@ -733,6 +754,90 @@
733
  "execution_count": null,
734
  "outputs": []
735
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736
  {
737
  "cell_type": "code",
738
  "source": [
 
148
  " %cd /content/\n",
149
  " _ref = load_file('reference.safetensors' )\n",
150
  " num_plots = num_plots+1\n",
151
+ "except: _ref = torch.zeros(dim).to(dtype = dot_dtype)'\n",
152
+ "#-----#\n",
153
+ "try: ref\n",
154
+ "except: ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
155
  "\n",
156
  "image_size = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
157
  "show_encoding = True # @param {type:\"boolean\"}\n",
 
333
  "metadata": {
334
  "id": "IqUsiQw2HU2C"
335
  },
336
+ "execution_count": 4,
337
  "outputs": []
338
  },
339
  {
 
406
  "metadata": {
407
  "id": "I_-GOwFPKkha"
408
  },
409
+ "execution_count": 5,
410
  "outputs": []
411
  },
412
  {
 
470
  {
471
  "cell_type": "code",
472
  "source": [
473
+ "# @title ⚄ Evaluate saved reference similarity to select items (optional)\n",
474
  "EVAL = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
475
  "\n",
476
  "# @markdown 📝 Enhance/Penalize Similarity and skip items containing word(s)\n",
 
481
  "_POS = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
482
  "_NEG = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
483
  "\n",
484
+ "show_local_reference = True # @param {type:\"boolean\"}\n",
485
+ "show_encoding = True # @param {type:\"boolean\"}\n",
486
  "\n",
487
  "_ref = load_file('reference.safetensors' )\n",
488
  "ref = _ref['weights'].to(dot_dtype)\n",
 
563
  "if _START_AT.isnumeric(): START_AT = int(_START_AT)\n",
564
  "\n",
565
  "output_folder = home_directory + 'results/'\n",
566
+ "output_folder_sims = home_directory + 'results/sims/'\n",
567
  "my_mkdirs(output_folder)\n",
568
+ "my_mkdirs(output_folder_sims)\n",
569
  "\n",
570
  "\n",
571
  "\n",
 
610
  "_POS2 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
611
  "_NEG = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
612
  "# @markdown -----\n",
613
+ "# @markdown Save similarity as a list for later review (this will slow down the code)\n",
614
+ "save_similiarity = True # @param {type:\"boolean\"}\n",
615
+ "# @markdown -----\n",
616
+ "include_similiarity = False # @param {type:\"boolean\"}\n",
617
+ "print_as_list = False # @param {type:\"boolean\"}\n",
618
+ "N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
619
+ "#-----#\n",
620
  "for _item in POS1.split(','):\n",
621
  " item = _item.strip()\n",
622
  " if item == '':continue\n",
 
694
  " #------#\n",
695
  " sims = torch.matmul(text_encodings*scale, ref.t())\n",
696
  " sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
697
+ " tmp = {}\n",
698
+ " tmp['weights'] = sorted\n",
699
+ " %cd {output_folder_sims}\n",
700
+ " save_file(tmp, root_filename + '_sims.safetensors')\n",
701
+ " tmp={}\n",
702
  " #-----#\n",
703
  " for index in range(LIST_SIZE + START_AT):\n",
704
  " if index<START_AT: continue\n",
 
713
  " #-------#\n",
714
  " continue\n",
715
  "#---------#\n",
716
+ "total_items = total_items + num_items+1\n",
717
+ "#-------#\n",
718
  "print(f'\\nProcessed entire list of {total_items} items to find closest match.\\nSaved closest matching indices {START_AT} to {START_AT + LIST_SIZE} as the dict \"similiar_prompts\" with {LIST_SIZE} items.\\n')\n",
719
  "\n",
720
  "# Print results\n",
721
  "sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
 
 
 
 
722
  "if(print_as_list):\n",
723
  " for index in range(LIST_SIZE):\n",
724
  " key = indices[index].item()\n",
 
739
  " prompt = (prompt + '}').replace('|}', '} ')\n",
740
  " #------#\n",
741
  " print(f'Similiar prompts: \\n\\n\\n{prompt} \\n\\n\\n//----//')\n",
742
+ "#-----#\n",
743
+ "\n",
744
+ "#Clear memory\n",
745
+ "_text_encodings = {}\n",
746
+ "prompts = {}\n",
747
+ "#-----#\n",
748
+ "\n",
749
+ "image\n"
750
  ],
751
  "metadata": {
752
  "id": "kOYZ8Ajn-DD8"
 
754
  "execution_count": null,
755
  "outputs": []
756
  },
757
+ {
758
+ "cell_type": "code",
759
+ "source": [
760
+ "# @title ⚄ Evaluate similarities\n",
761
+ "%cd {output_folder_sims}\n",
762
+ "index = 0\n",
763
+ "for filename in os.listdir(output_folder_sims):\n",
764
+ " _sims = load_file(filename)\n",
765
+ " _sims = _sims['weights']\n",
766
+ " for _sim in _sims.tolist():\n",
767
+ " index = index + 1\n",
768
+ " #-------#\n",
769
+ "total_items = index\n",
770
+ "sims = torch.zeros(total_items)\n",
771
+ "index = 0\n",
772
+ "for filename in os.listdir(output_folder_sims):\n",
773
+ " _sims = load_file(filename)\n",
774
+ " _sims = _sims['weights']\n",
775
+ " for sim in _sims.tolist():\n",
776
+ " sims[index] = sim\n",
777
+ " index = index + 1\n",
778
+ " #-------#\n",
779
+ "#---------------#\n",
780
+ "_sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
781
+ "SCALE = 0.001\n",
782
+ "sorted = torch.round(_sorted/SCALE)\n",
783
+ "ZERO_POINT = sorted[total_items-1].item()\n",
784
+ "sorted = (sorted - torch.ones(total_items)*ZERO_POINT)\n",
785
+ "densities = torch.bincount(sorted.to(dtype = torch.int64))\n",
786
+ "yy = densities.tolist()\n",
787
+ "top = (sorted[0] + ZERO_POINT).to(dtype = torch.int64).item()\n",
788
+ "num_coords = round(top - ZERO_POINT)\n",
789
+ "xx = [round((ZERO_POINT + x)*100*SCALE,2) for x in range(num_coords+1)]\n",
790
+ "index = 0\n",
791
+ "for item in xx:\n",
792
+ " if item>0:break\n",
793
+ " index = index + 1\n",
794
+ "#----#\n",
795
+ "positive_bound = index\n",
796
+ "ss =list(xx)\n",
797
+ "tmp = 0\n",
798
+ "chunk = 1\n",
799
+ "CHUNK_SIZE = 1000\n",
800
+ "index = 0\n",
801
+ "for num in reversed(yy):\n",
802
+ " tmp = tmp + num\n",
803
+ " if(tmp>CHUNK_SIZE):\n",
804
+ " _tmp = math.floor(tmp/CHUNK_SIZE)\n",
805
+ " chunk = chunk + _tmp\n",
806
+ " tmp = tmp - CHUNK_SIZE * _tmp\n",
807
+ " ss[num_coords - index] = chunk\n",
808
+ " index = index + 1\n",
809
+ "#------#\n",
810
+ "fig, ax = plt.subplots()\n",
811
+ "fig.canvas.draw()\n",
812
+ "plt.plot(ss[positive_bound:], xx[positive_bound:])\n",
813
+ "plt.xlabel ('Search depth')\n",
814
+ "plt.ylabel ('Similarity')\n",
815
+ "plt.title ('Similarity to index')\n",
816
+ "plt.grid()\n",
817
+ "indices_depth = [item.get_text() for item in ax.get_xticklabels()]\n",
818
+ "sim_pcnts = [item.get_text() for item in ax.get_yticklabels()]\n",
819
+ "\n",
820
+ "index = 0\n",
821
+ "for index_depth in indices_depth:\n",
822
+ " indices_depth[index] = index_depth + 'K'\n",
823
+ " index = index + 1\n",
824
+ "#-------#\n",
825
+ "\n",
826
+ "index = 0\n",
827
+ "for sim_pcnt in sim_pcnts:\n",
828
+ " sim_pcnts[index] = sim_pcnt + '%'\n",
829
+ " index = index + 1\n",
830
+ "#-------#\n",
831
+ "ax.set_xticklabels(indices_depth)\n",
832
+ "ax.set_yticklabels(sim_pcnts)\n",
833
+ "plt.show()"
834
+ ],
835
+ "metadata": {
836
+ "id": "ln6DsZPG99ez"
837
+ },
838
+ "execution_count": null,
839
+ "outputs": []
840
+ },
841
  {
842
  "cell_type": "code",
843
  "source": [