Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Jupyter Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
@@ -101,7 +101,8 @@
|
|
101 |
{
|
102 |
"cell_type": "markdown",
|
103 |
"source": [
|
104 |
-
"Feel free to skip these cells if you do not plan on using them
|
|
|
105 |
],
|
106 |
"metadata": {
|
107 |
"id": "Xf9zoq-Za3wi"
|
@@ -221,7 +222,7 @@
|
|
221 |
{
|
222 |
"cell_type": "markdown",
|
223 |
"source": [
|
224 |
-
"Save the reference prior to running the Interrogator"
|
225 |
],
|
226 |
"metadata": {
|
227 |
"id": "zeu6JcM-mk9z"
|
@@ -242,28 +243,20 @@
|
|
242 |
],
|
243 |
"metadata": {
|
244 |
"id": "lOQuTPfBMK82",
|
245 |
-
"
|
246 |
-
"colab": {
|
247 |
-
"base_uri": "https://localhost:8080/"
|
248 |
-
}
|
249 |
},
|
250 |
-
"execution_count":
|
251 |
-
"outputs": [
|
252 |
-
{
|
253 |
-
"output_type": "stream",
|
254 |
-
"name": "stdout",
|
255 |
-
"text": [
|
256 |
-
"/content\n"
|
257 |
-
]
|
258 |
-
}
|
259 |
-
]
|
260 |
},
|
261 |
{
|
262 |
"cell_type": "code",
|
263 |
"source": [
|
264 |
"# @title ⚄ Run the CLIP interrogator on the saved reference\n",
|
265 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
266 |
-
"
|
|
|
|
|
|
|
267 |
"# @markdown -----\n",
|
268 |
"# @markdown Select vocab\n",
|
269 |
"general = False # @param {type:\"boolean\"}\n",
|
@@ -401,7 +394,7 @@
|
|
401 |
" #-------#\n",
|
402 |
" continue\n",
|
403 |
"#---------#\n",
|
404 |
-
"print(f'\\nProcessed entire list of {total_items} items to find closest match.\\nSaved closest matching indices {START_AT} to {LIST_SIZE} as the dict \"similiar_prompts\" with {
|
405 |
"\n",
|
406 |
"# Print results\n",
|
407 |
"sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
|
@@ -428,12 +421,13 @@
|
|
428 |
" #-----#\n",
|
429 |
" prompt = (prompt + '}').replace('|}', '} ')\n",
|
430 |
" #------#\n",
|
431 |
-
" print(f'Similiar prompts: \\n\\n\\n
|
432 |
"image\n",
|
433 |
"#-----#\n"
|
434 |
],
|
435 |
"metadata": {
|
436 |
-
"id": "kOYZ8Ajn-DD8"
|
|
|
437 |
},
|
438 |
"execution_count": null,
|
439 |
"outputs": []
|
@@ -467,7 +461,8 @@
|
|
467 |
"save_file(_similiar_sims, 'similiar_sims.safetensors')\n"
|
468 |
],
|
469 |
"metadata": {
|
470 |
-
"id": "m-N553nXz9Jd"
|
|
|
471 |
},
|
472 |
"execution_count": null,
|
473 |
"outputs": []
|
@@ -497,6 +492,8 @@
|
|
497 |
"similiar_sims = _similiar_sims['weights'].to(dot_dtype)\n",
|
498 |
"\n",
|
499 |
"# @title ⚄ Run the CLIP interrogator on the saved reference\n",
|
|
|
|
|
500 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
501 |
"START_AT = 0 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
502 |
"\n",
|
@@ -526,7 +523,8 @@
|
|
526 |
"#-----#\n"
|
527 |
],
|
528 |
"metadata": {
|
529 |
-
"id": "XOMkIKc9-wZz"
|
|
|
530 |
},
|
531 |
"execution_count": null,
|
532 |
"outputs": []
|
@@ -589,7 +587,8 @@
|
|
589 |
" json.dump(_savefile, f)\n"
|
590 |
],
|
591 |
"metadata": {
|
592 |
-
"id": "Q7vpNAXQilbf"
|
|
|
593 |
},
|
594 |
"execution_count": null,
|
595 |
"outputs": []
|
@@ -831,21 +830,6 @@
|
|
831 |
},
|
832 |
"execution_count": null,
|
833 |
"outputs": []
|
834 |
-
},
|
835 |
-
{
|
836 |
-
"cell_type": "code",
|
837 |
-
"source": [
|
838 |
-
"# Check the average value for this set\n",
|
839 |
-
"sims = torch.matmul(vocab_encodings.dequantize(),average.t())\n",
|
840 |
-
"sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
841 |
-
"for index in range(10):\n",
|
842 |
-
" print(prompts[f'{indices[index].item()}'])"
|
843 |
-
],
|
844 |
-
"metadata": {
|
845 |
-
"id": "XNHz0hfhHRUu"
|
846 |
-
},
|
847 |
-
"execution_count": null,
|
848 |
-
"outputs": []
|
849 |
}
|
850 |
]
|
851 |
}
|
|
|
101 |
{
|
102 |
"cell_type": "markdown",
|
103 |
"source": [
|
104 |
+
"**Feel free to skip these cells if you do not plan on using them**\n",
|
105 |
+
"\n"
|
106 |
],
|
107 |
"metadata": {
|
108 |
"id": "Xf9zoq-Za3wi"
|
|
|
222 |
{
|
223 |
"cell_type": "markdown",
|
224 |
"source": [
|
225 |
+
"**Save the reference prior to running the Interrogator**"
|
226 |
],
|
227 |
"metadata": {
|
228 |
"id": "zeu6JcM-mk9z"
|
|
|
243 |
],
|
244 |
"metadata": {
|
245 |
"id": "lOQuTPfBMK82",
|
246 |
+
"cellView": "form"
|
|
|
|
|
|
|
247 |
},
|
248 |
+
"execution_count": null,
|
249 |
+
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
},
|
251 |
{
|
252 |
"cell_type": "code",
|
253 |
"source": [
|
254 |
"# @title ⚄ Run the CLIP interrogator on the saved reference\n",
|
255 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
256 |
+
"_START_AT = '0' # @param [\"0\", \"10000\", \"50000\"] {allow-input: true}\n",
|
257 |
+
"START_AT = 0\n",
|
258 |
+
"if _START_AT.isnumeric(): START_AT = int(_START_AT)\n",
|
259 |
+
"\n",
|
260 |
"# @markdown -----\n",
|
261 |
"# @markdown Select vocab\n",
|
262 |
"general = False # @param {type:\"boolean\"}\n",
|
|
|
394 |
" #-------#\n",
|
395 |
" continue\n",
|
396 |
"#---------#\n",
|
397 |
+
"print(f'\\nProcessed entire list of {total_items} items to find closest match.\\nSaved closest matching indices {START_AT} to {START_AT + LIST_SIZE} as the dict \"similiar_prompts\" with {LIST_SIZE} items.\\n')\n",
|
398 |
"\n",
|
399 |
"# Print results\n",
|
400 |
"sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
|
|
|
421 |
" #-----#\n",
|
422 |
" prompt = (prompt + '}').replace('|}', '} ')\n",
|
423 |
" #------#\n",
|
424 |
+
" print(f'Similiar prompts: \\n\\n\\n{prompt} \\n\\n\\n//----//')\n",
|
425 |
"image\n",
|
426 |
"#-----#\n"
|
427 |
],
|
428 |
"metadata": {
|
429 |
+
"id": "kOYZ8Ajn-DD8",
|
430 |
+
"cellView": "form"
|
431 |
},
|
432 |
"execution_count": null,
|
433 |
"outputs": []
|
|
|
461 |
"save_file(_similiar_sims, 'similiar_sims.safetensors')\n"
|
462 |
],
|
463 |
"metadata": {
|
464 |
+
"id": "m-N553nXz9Jd",
|
465 |
+
"cellView": "form"
|
466 |
},
|
467 |
"execution_count": null,
|
468 |
"outputs": []
|
|
|
492 |
"similiar_sims = _similiar_sims['weights'].to(dot_dtype)\n",
|
493 |
"\n",
|
494 |
"# @title ⚄ Run the CLIP interrogator on the saved reference\n",
|
495 |
+
"\n",
|
496 |
+
"# @markdown Select which values within the saved list to print\n",
|
497 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
498 |
"START_AT = 0 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
499 |
"\n",
|
|
|
523 |
"#-----#\n"
|
524 |
],
|
525 |
"metadata": {
|
526 |
+
"id": "XOMkIKc9-wZz",
|
527 |
+
"cellView": "form"
|
528 |
},
|
529 |
"execution_count": null,
|
530 |
"outputs": []
|
|
|
587 |
" json.dump(_savefile, f)\n"
|
588 |
],
|
589 |
"metadata": {
|
590 |
+
"id": "Q7vpNAXQilbf",
|
591 |
+
"cellView": "form"
|
592 |
},
|
593 |
"execution_count": null,
|
594 |
"outputs": []
|
|
|
830 |
},
|
831 |
"execution_count": null,
|
832 |
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
833 |
}
|
834 |
]
|
835 |
}
|