""" 特征预测器模块 该模块使用钩子机制从模型的中间层特征向量预测分类结果 """ import torch import torch.nn as nn import json import os import torch.nn.functional as F import numpy as np from typing import Type, Union, Optional class FeaturePredictor: def __init__(self, model_class, model_weights_path, layer_info_path, device='cuda' if torch.cuda.is_available() else 'cpu'): """ 初始化特征预测器 Args: model_class: 模型类 model_weights_path: 模型权重文件路径 layer_info_path: 层信息文件路径 device: 运行设备 """ self.device = device self.model = model_class().to(device) self.model.load_state_dict(torch.load(model_weights_path, map_location=device, weights_only=True)) self.model.eval() # 加载层信息 with open(layer_info_path, 'r') as f: layer_info = json.load(f) self.target_layer = layer_info['layer_id'] self.feature_dim = layer_info['dim'] # 初始化变量 self.output_shape = None self.inject_feature = None self.handles = [] self.layer_name_map = {} # 用于调试的变量 self.last_normalized_feature = None self.last_reshaped_feature = None self.last_layer_outputs = {} # 注册钩子 self.register_hooks() # 运行一次前向传播来获取形状 self._get_output_shape() def _get_output_shape(self): """运行一次前向传播来获取目标层的输出形状""" def shape_hook(module, input, output): self.output_shape = output.shape[1:] # 不包括batch维度 print(f"[Init] 获取到目标层输出形状: {self.output_shape}") return output # 找到目标层并注册临时钩子 def find_layer(module, name=''): for n, child in module.named_children(): current_name = f"{name}.{n}" if name else n if current_name == self.target_layer: handle = child.register_forward_hook(shape_hook) return handle, True else: handle, found = find_layer(child, current_name) if found: return handle, True return None, False # 注册临时钩子 handle, found = find_layer(self.model) if not found: raise ValueError(f"未找到目标层: {self.target_layer}") # 运行一次前向传播 with torch.no_grad(): dummy_input = torch.zeros(1, 3, 32, 32).to(self.device) self.model(dummy_input) # 移除临时钩子 handle.remove() if self.output_shape is None: raise RuntimeError("无法获取目标层的输出形状") def register_hooks(self): """注册钩子函数,在目标层注入特征向量和监控每层输出""" def print_tensor_info(name, tensor): """打印张量的统计信息""" print(f"\n[Hook Debug] {name}:") print(f"- 形状: {tensor.shape}") print(f"- 数值范围: [{tensor.min().item():.4f}, {tensor.max().item():.4f}]") print(f"- 均值: {tensor.mean().item():.4f}") print(f"- 标准差: {tensor.std().item():.4f}") def hook_fn(module, input, output): """钩子函数:输出层信息并在目标层注入特征""" layer_name = self.layer_name_map.get(module, "未知层") print(f"\n[Hook Debug] 层: {layer_name}") print(f"- 类型: {type(module).__name__}") # 输出输入信息 if input and len(input) > 0: print_tensor_info("输入张量", input[0]) # 输出原始输出信息 print_tensor_info("输出张量", output) # 如果是目标层且有注入特征,则替换输出 if layer_name == self.target_layer and self.inject_feature is not None: print("\n[Hook Debug] 正在注入特征...") print_tensor_info("注入特征", self.inject_feature) print(f"[Hook Debug] 将层 {layer_name} 的输出从 {output.shape} 替换为注入特征 {self.inject_feature.shape}") # 替换输出 output = self.inject_feature print("[Hook Debug] 特征注入完成,将作为下一层的输入") return output return output def hook_layer(module, name=''): """为每一层注册钩子""" for n, child in module.named_children(): current_name = f"{name}.{n}" if name else n # 保存层名到模块的映射 self.layer_name_map[child] = current_name # 注册钩子 handle = child.register_forward_hook(hook_fn) self.handles.append(handle) # 递归处理子模块 hook_layer(child, current_name) # 注册所有层的钩子 hook_layer(self.model) print(f"[Debug] 钩子注册完成,共注册了 {len(self.handles)} 个钩子") def reshape_feature(self, feature): """调整特征向量的形状""" if self.output_shape is None: raise RuntimeError("目标层的输出形状未初始化") batch_size = feature.shape[0] expected_dim = np.prod(self.output_shape) # 检查输入特征维度是否正确 if feature.shape[1] != expected_dim: raise ValueError(f"特征维度不匹配:预期 {expected_dim},实际 {feature.shape[1]}") # 使用自动获取的形状重塑特征 new_shape = (batch_size,) + self.output_shape print(f"[Debug] 调整特征形状: {feature.shape} -> {new_shape}") return feature.view(new_shape) def predict(self, feature): """使用给定的特征向量进行预测""" print(f"\n[Debug] 开始预测,输入特征形状: {feature.shape}") # 检查输入维度 if feature.shape[1] != self.feature_dim: raise ValueError(f"特征维度不匹配:预期 {self.feature_dim},实际 {feature.shape[1]}") # 将特征转移到正确的设备并重塑 feature = feature.to(self.device) self.inject_feature = self.reshape_feature(feature) # 使用虚拟输入进行预测 dummy_input = torch.zeros(feature.shape[0], 3, 32, 32).to(self.device) # 进行前向传播(钩子会自动在目标层注入特征) with torch.no_grad(): output = self.model(dummy_input) # 清除注入的特征 self.inject_feature = None return output def predict_feature( model: Type[nn.Module], weight_path: str, layer_info_path: str, feature: Union[torch.Tensor, np.ndarray], device: Optional[str] = None ) -> torch.Tensor: """ 使用预训练模型预测特征向量的类别。 Args: model: PyTorch模型类(不是实例) weight_path: 模型权重文件路径 layer_info_path: 层信息配置文件路径 feature: 输入特征向量,可以是torch.Tensor或numpy.ndarray device: 运行设备,可选 'cuda' 或 'cpu'。如果为None,将自动选择。 Returns: torch.Tensor: 模型输出的预测结果 Raises: ValueError: 如果输入特征维度不正确 FileNotFoundError: 如果权重文件或层信息文件不存在 RuntimeError: 如果模型加载或预测过程出错 """ try: # 检查文件是否存在 if not os.path.exists(weight_path): raise FileNotFoundError(f"权重文件不存在: {weight_path}") if not os.path.exists(layer_info_path): raise FileNotFoundError(f"层信息文件不存在: {layer_info_path}") # 确定设备 if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' # 转换输入特征为torch.Tensor if isinstance(feature, np.ndarray): feature = torch.from_numpy(feature).float() elif not isinstance(feature, torch.Tensor): raise ValueError("输入特征必须是numpy数组或torch张量") # 创建预测器实例 predictor = FeaturePredictor( model_class=model, model_weights_path=weight_path, layer_info_path=layer_info_path, device=device ) # 进行预测 with torch.no_grad(): output = predictor.predict(feature) return output except Exception as e: raise RuntimeError(f"预测过程出错: {str(e)}") def test_predictor(): """测试特征预测器的功能""" from AlexNet.code.model import AlexNet import os import numpy as np # 创建预测器实例 predictor = FeaturePredictor( model_class=AlexNet, model_weights_path='AlexNet/model/0/epoch_195/subject_model.pth', layer_info_path='AlexNet/code/layer_info.json' ) print("\n开始单点测试...") # 生成一个测试点,使用较大的尺度以增加特征的差异性 feature = torch.randn(1, predictor.feature_dim) * 10.0 output = predictor.predict(feature) probs = output.softmax(dim=1) print("\n结果:",output) # 显示最终预测结果 print("\n最终预测结果:") top_k = torch.topk(probs[0], k=3) for idx, (class_idx, prob) in enumerate(zip(top_k.indices.tolist(), top_k.values.tolist())): print(f"Top-{idx+1}: 类别 {class_idx}, 概率 {prob:.4f}") def test_predictor_from_train_data(): """测试特征预测器的批量预测功能""" from AlexNet.code.model import AlexNet import numpy as np import torch print("\n开始处理训练数据集...") # 创建预测器实例 predictor = FeaturePredictor( model_class=AlexNet, model_weights_path='AlexNet/model/0/epoch_195/subject_model.pth', layer_info_path='AlexNet/code/layer_info.json' ) # 加载训练数据 print("\n加载训练数据...") features = np.load('AlexNet/model/0/epoch_195/train_data.npy') print(f"数据形状: {features.shape}") # 转换为tensor features = torch.from_numpy(features).float() # 批量处理 batch_size = 100 num_samples = len(features) num_batches = (num_samples + batch_size - 1) // batch_size # 用于统计结果 all_predictions = [] class_counts = {} print("\n开始批量预测...") with torch.no_grad(): for i in range(num_batches): start_idx = i * batch_size end_idx = min((i + 1) * batch_size, num_samples) batch_features = features[start_idx:end_idx] # 使用预测器进行预测 outputs = predictor.predict(batch_features) predictions = outputs.argmax(dim=1).cpu().numpy() # 更新统计信息 for pred in predictions: class_counts[int(pred)] = class_counts.get(int(pred), 0) + 1 all_predictions.extend(predictions) # 打印进度和当前批次的预测分布 if (i + 1) % 10 == 0: print(f"\n已处理: {end_idx}/{num_samples} 个样本") batch_unique, batch_counts = np.unique(predictions, return_counts=True) print("当前批次预测分布:") for class_idx, count in zip(batch_unique, batch_counts): print(f"类别 {class_idx}: {count} 个样本 ({count/len(predictions)*100:.2f}%)") # 打印总体统计结果 print("\n最终预测结果统计:") total_samples = len(all_predictions) for class_idx in sorted(class_counts.keys()): count = class_counts[class_idx] percentage = (count / total_samples) * 100 print(f"类别 {class_idx}: {count} 个样本 ({percentage:.2f}%)") def test_train_data(): """测试训练数据集的预测结果分布""" from AlexNet.code.model import AlexNet import numpy as np import torch import torch.nn.functional as F print("\n开始处理训练数据集...") # 初始化模型 device = 'cuda' if torch.cuda.is_available() else 'cpu' model = AlexNet().to(device) model.load_state_dict(torch.load('AlexNet/model/0/epoch_195/subject_model.pth', map_location=device, weights_only=True)) model.eval() # 加载训练数据 print("加载训练数据...") features = np.load('AlexNet/model/0/epoch_195/train_data.npy') print(f"数据形状: {features.shape}") # 转换为tensor features = torch.from_numpy(features).float().to(device) # 批量处理 batch_size = 100 num_samples = len(features) num_batches = (num_samples + batch_size - 1) // batch_size # 用于统计结果 all_predictions = [] class_counts = {} print("\n开始批量预测...") with torch.no_grad(): for i in range(num_batches): start_idx = i * batch_size end_idx = min((i + 1) * batch_size, num_samples) batch_features = features[start_idx:end_idx] # 将特征重塑为[batch_size, 16, 8, 8] reshaped_features = batch_features.view(-1, 16, 8, 8) # 使用模型的predict函数 outputs = model.predict(reshaped_features) predictions = outputs.argmax(dim=1).cpu().numpy() # 更新统计信息 for pred in predictions: class_counts[int(pred)] = class_counts.get(int(pred), 0) + 1 all_predictions.extend(predictions) # 打印进度 if (i + 1) % 10 == 0: print(f"已处理: {end_idx}/{num_samples} 个样本") # 打印统计结果 print("\n预测结果统计:") total_samples = len(all_predictions) for class_idx in sorted(class_counts.keys()): count = class_counts[class_idx] percentage = (count / total_samples) * 100 print(f"类别 {class_idx}: {count} 个样本 ({percentage:.2f}%)") # 保存详细结果 print("\n保存详细结果...") results = { 'predictions': all_predictions, 'class_counts': class_counts } # np.save('prediction_results.npy', results) # print("结果已保存到 prediction_results.npy") if __name__ == "__main__": test_predictor() # test_predictor_from_train_data() # test_train_data()