import numpy as np import scipy.sparse import sklearn.metrics def laplacian(W, normalized=True): """Return graph Laplacian""" # Degree matrix. d = W.sum(axis=0) # Laplacian matrix. if not normalized: D = scipy.sparse.diags(d.A.squeeze(), 0) L = D - W else: d += np.spacing(np.array(0, W.dtype)) d = 1 / np.sqrt(d) D = scipy.sparse.diags(d.A.squeeze(), 0) I = scipy.sparse.identity(d.size, dtype=W.dtype) L = I - D * W * D assert np.abs(L - L.T).mean() < 1e-9 assert type(L) is scipy.sparse.csr.csr_matrix return L def rescale_L(L, lmax=2): """Rescale Laplacian eigenvalues to [-1,1]""" M, M = L.shape I = scipy.sparse.identity(M, format='csr', dtype=L.dtype) L /= lmax * 2 L -= I return L def lmax_L(L): """Compute largest Laplacian eigenvalue""" return scipy.sparse.linalg.eigsh(L, k=1, which='LM', return_eigenvectors=False)[0] # graph coarsening with Heavy Edge Matching def coarsen(A, levels): graphs, parents = HEM(A, levels) perms = compute_perm(parents) laplacians = [] for i,A in enumerate(graphs): M, M = A.shape if i < levels: A = perm_adjacency(A, perms[i]) A = A.tocsr() A.eliminate_zeros() Mnew, Mnew = A.shape print('Layer {0}: M_{0} = |V| = {1} nodes ({2} added), |E| = {3} edges'.format(i, Mnew, Mnew-M, A.nnz//2)) L = laplacian(A, normalized=True) laplacians.append(L) return laplacians, perms[0] if len(perms) > 0 else None def HEM(W, levels, rid=None): """ Coarsen a graph multiple times using the Heavy Edge Matching (HEM). Input W: symmetric sparse weight (adjacency) matrix levels: the number of coarsened graphs Output graph[0]: original graph of size N_1 graph[2]: coarser graph of size N_2 < N_1 graph[levels]: coarsest graph of Size N_levels < ... < N_2 < N_1 parents[i] is a vector of size N_i with entries ranging from 1 to N_{i+1} which indicate the parents in the coarser graph[i+1] nd_sz{i} is a vector of size N_i that contains the size of the supernode in the graph{i} Note if "graph" is a list of length k, then "parents" will be a list of length k-1 """ N, N = W.shape if rid is None: rid = np.random.permutation(range(N)) ss = np.array(W.sum(axis=0)).squeeze() rid = np.argsort(ss) parents = [] degree = W.sum(axis=0) - W.diagonal() graphs = [] graphs.append(W) print('Heavy Edge Matching coarsening with Xavier version') for _ in range(levels): weights = degree # graclus weights weights = np.array(weights).squeeze() # PAIR THE VERTICES AND CONSTRUCT THE ROOT VECTOR idx_row, idx_col, val = scipy.sparse.find(W) cc = idx_row rr = idx_col vv = val if not (list(cc)==list(np.sort(cc))): tmp=cc cc=rr rr=tmp cluster_id = HEM_one_level(cc,rr,vv,rid,weights) parents.append(cluster_id) # COMPUTE THE EDGES WEIGHTS FOR THE NEW GRAPH nrr = cluster_id[rr] ncc = cluster_id[cc] nvv = vv Nnew = cluster_id.max() + 1 # CSR is more appropriate: row,val pairs appear multiple times W = scipy.sparse.csr_matrix((nvv,(nrr,ncc)), shape=(Nnew,Nnew)) W.eliminate_zeros() # Add new graph to the list of all coarsened graphs graphs.append(W) N, N = W.shape # COMPUTE THE DEGREE (OMIT OR NOT SELF LOOPS) degree = W.sum(axis=0) # CHOOSE THE ORDER IN WHICH VERTICES WILL BE VISTED AT THE NEXT PASS ss = np.array(W.sum(axis=0)).squeeze() rid = np.argsort(ss) return graphs, parents # Coarsen a graph given by rr,cc,vv. rr is assumed to be ordered def HEM_one_level(rr,cc,vv,rid,weights): nnz = rr.shape[0] N = rr[nnz-1] + 1 marked = np.zeros(N, np.bool) rowstart = np.zeros(N, np.int32) rowlength = np.zeros(N, np.int32) cluster_id = np.zeros(N, np.int32) oldval = rr[0] count = 0 clustercount = 0 for ii in range(nnz): rowlength[count] = rowlength[count] + 1 if rr[ii] > oldval: oldval = rr[ii] rowstart[count+1] = ii count = count + 1 for ii in range(N): tid = rid[ii] if not marked[tid]: wmax = 0.0 rs = rowstart[tid] marked[tid] = True bestneighbor = -1 for jj in range(rowlength[tid]): nid = cc[rs+jj] if marked[nid]: tval = 0.0 else: # First approach if 2==1: tval = vv[rs+jj] * (1.0/weights[tid] + 1.0/weights[nid]) # Second approach if 1==1: Wij = vv[rs+jj] Wii = vv[rowstart[tid]] Wjj = vv[rowstart[nid]] di = weights[tid] dj = weights[nid] tval = (2.*Wij + Wii + Wjj) * 1./(di+dj+1e-9) if tval > wmax: wmax = tval bestneighbor = nid cluster_id[tid] = clustercount if bestneighbor > -1: cluster_id[bestneighbor] = clustercount marked[bestneighbor] = True clustercount += 1 return cluster_id def compute_perm(parents): """ Return a list of indices to reorder the adjacency and data matrices so that the union of two neighbors from layer to layer forms a binary tree. """ # Order of last layer is random (chosen by the clustering algorithm). indices = [] if len(parents) > 0: M_last = max(parents[-1]) + 1 indices.append(list(range(M_last))) for parent in parents[::-1]: # Fake nodes go after real ones. pool_singeltons = len(parent) indices_layer = [] for i in indices[-1]: indices_node = list(np.where(parent == i)[0]) assert 0 <= len(indices_node) <= 2 # Add a node to go with a singelton. if len(indices_node) is 1: indices_node.append(pool_singeltons) pool_singeltons += 1 # Add two nodes as children of a singelton in the parent. elif len(indices_node) is 0: indices_node.append(pool_singeltons+0) indices_node.append(pool_singeltons+1) pool_singeltons += 2 indices_layer.extend(indices_node) indices.append(indices_layer) # Sanity checks. for i,indices_layer in enumerate(indices): M = M_last*2**i # Reduction by 2 at each layer (binary tree). assert len(indices[0] == M) # The new ordering does not omit an indice. assert sorted(indices_layer) == list(range(M)) return indices[::-1] assert (compute_perm([np.array([4,1,1,2,2,3,0,0,3]),np.array([2,1,0,1,0])]) == [[3,4,0,9,1,2,5,8,6,7,10,11],[2,4,1,3,0,5],[0,1,2]]) def perm_adjacency(A, indices): """ Permute adjacency matrix, i.e. exchange node ids, so that binary unions form the clustering tree. """ if indices is None: return A M, M = A.shape Mnew = len(indices) A = A.tocoo() # Add Mnew - M isolated vertices. rows = scipy.sparse.coo_matrix((Mnew-M, M), dtype=np.float32) cols = scipy.sparse.coo_matrix((Mnew, Mnew-M), dtype=np.float32) A = scipy.sparse.vstack([A, rows]) A = scipy.sparse.hstack([A, cols]) # Permute the rows and the columns. perm = np.argsort(indices) A.row = np.array(perm)[A.row] A.col = np.array(perm)[A.col] assert np.abs(A - A.T).mean() < 1e-8 # 1e-9 assert type(A) is scipy.sparse.coo.coo_matrix return A def perm_data(x, indices): """ Permute data matrix, i.e. exchange node ids, so that binary unions form the clustering tree. """ if indices is None: return x N, M = x.shape Mnew = len(indices) assert Mnew >= M xnew = np.empty((N, Mnew)) for i,j in enumerate(indices): # Existing vertex, i.e. real data. if j < M: xnew[:,i] = x[:,j] # Fake vertex because of singeltons. # They will stay 0 so that max pooling chooses the singelton. # Or -infty ? else: xnew[:,i] = np.zeros(N) return xnew