#### Imports #### import torch import torch.nn as nn import random adj_list = [[1,2,3], [0,2,3], [0, 1, 3], [0, 1, 2], [5, 6], [4,6], [4, 5], [1, 3]] size_vertex = len(adj_list) # number of vertices #### Hyperparameters #### w = 3 # window size d = 2 # embedding size y = 200 # walks per vertex t = 6 # walk length lr = 0.025 # learning rate v=[0,1,2,3,4,5,6,7] #labels of available vertices #### Random Walk #### def RandomWalk(node,t): walk = [node] # Walk starts from this node for i in range(t-1): node = adj_list[node][random.randint(0,len(adj_list[node])-1)] walk.append(node) return walk class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.phi = nn.Parameter(torch.rand((size_vertex, d), requires_grad=True)) self.phi2 = nn.Parameter(torch.rand((d, size_vertex), requires_grad=True)) def forward(self, one_hot): hidden = torch.matmul(one_hot, self.phi) out = torch.matmul(hidden, self.phi2) return out model = Model() def skip_gram(wvi, w): for j in range(len(wvi)): for k in range(max(0,j-w) , min(j+w, len(wvi))): #generate one hot vector one_hot = torch.zeros(size_vertex) one_hot[wvi[j]] = 1 out = model(one_hot) loss = torch.log(torch.sum(torch.exp(out))) - out[wvi[k]] loss.backward() for param in model.parameters(): param.data.sub_(lr*param.grad) param.grad.data.zero_() for i in range(y): random.shuffle(v) for vi in v: wvi=RandomWalk(vi,t) skip_gram(wvi, w) print(model.phi) #### Hierarchical Softmax #### def func_L(w): """ Parameters ---------- w: Leaf node. Returns ------- count: The length of path from the root node to the given vertex. """ count=1 while(w!=1): count+=1 w//=2 return count # func_n returns the nth node in the path from the root node to the given vertex def func_n(w, j): li=[w] while(w!=1): w = w//2 li.append(w) li.reverse() return li[j] def sigmoid(x): out = 1/(1+torch.exp(-x)) return out class HierarchicalModel(torch.nn.Module): def __init__(self): super(HierarchicalModel, self).__init__() self.phi = nn.Parameter(torch.rand((size_vertex, d), requires_grad=True)) self.prob_tensor = nn.Parameter(torch.rand((2*size_vertex, d), requires_grad=True)) def forward(self, wi, wo): one_hot = torch.zeros(size_vertex) one_hot[wi] = 1 w = size_vertex + wo h = torch.matmul(one_hot,self.phi) p = torch.tensor([1.0]) for j in range(1, func_L(w)-1): mult = -1 if(func_n(w, j+1)==2*func_n(w, j)): # Left child mult = 1 p = p*sigmoid(mult*torch.matmul(self.prob_tensor[func_n(w,j)], h)) return p hierarchicalModel = HierarchicalModel() def HierarchicalSkipGram(wvi, w): for j in range(len(wvi)): for k in range(max(0,j-w) , min(j+w, len(wvi))): #generate one hot vector prob = hierarchicalModel(wvi[j], wvi[k]) loss = - torch.log(prob) loss.backward() for param in hierarchicalModel.parameters(): param.data.sub_(lr*param.grad) param.grad.data.zero_() for i in range(y): random.shuffle(v) for vi in v: wvi = RandomWalk(vi,t) HierarchicalSkipGram(wvi, w) for i in range(8): for j in range(8): print((hierarchicalModel(i,j).item()*100)//1, end=' ') print(end = '\n')