import sklearn import sklearn.metrics import scipy.sparse, scipy.sparse.linalg # scipy.spatial.distance import numpy as np def grid_graph(grid_side,number_edges,metric): """Generate graph of a grid""" z = grid(grid_side) dist, idx = distance_sklearn_metrics(z, k=number_edges, metric=metric) A = adjacency(dist, idx) print("nb edges: ",A.nnz) return A def grid(m, dtype=np.float32): """Return coordinates of grid points""" M = m**2 x = np.linspace(0,1,m, dtype=dtype) y = np.linspace(0,1,m, dtype=dtype) xx, yy = np.meshgrid(x, y) z = np.empty((M,2), dtype) z[:,0] = xx.reshape(M) z[:,1] = yy.reshape(M) return z def distance_sklearn_metrics(z, k=4, metric='euclidean'): """Compute pairwise distances""" d = sklearn.metrics.pairwise.pairwise_distances(z, metric=metric, n_jobs=1) # k-NN idx = np.argsort(d)[:,1:k+1] d.sort() d = d[:,1:k+1] return d, idx def adjacency(dist, idx): """Return adjacency matrix of a kNN graph""" M, k = dist.shape assert M, k == idx.shape assert dist.min() >= 0 assert dist.max() <= 1 # Pairwise distances sigma2 = np.mean(dist[:,-1])**2 dist = np.exp(- dist**2 / sigma2) # Weight matrix I = np.arange(0, M).repeat(k) J = idx.reshape(M*k) V = dist.reshape(M*k) W = scipy.sparse.coo_matrix((V, (I, J)), shape=(M, M)) # No self-connections W.setdiag(0) # Undirected graph bigger = W.T > W W = W - W.multiply(bigger) + W.T.multiply(bigger) assert W.nnz % 2 == 0 assert np.abs(W - W.T).mean() < 1e-10 assert type(W) is scipy.sparse.csr.csr_matrix return W