Upload folder using huggingface_hub
Browse files- README.md +202 -0
- adapter_config.json +32 -0
- adapter_model.safetensors +3 -0
- added_tokens.json +25 -0
- latest +1 -0
- merges.txt +0 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- special_tokens_map.json +52 -0
- tokenization_minicpmv_fast.py +66 -0
- tokenizer.json +0 -0
- tokenizer_config.json +235 -0
- trainer_state.json +1783 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /root/workspace/digirl/outputs/minicpmv_pt1000
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.12.0
|
adapter_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": {
|
4 |
+
"base_model_class": "MiniCPMV",
|
5 |
+
"parent_library": "transformers_modules.openbmb.MiniCPM-V-2_6.4e4be000cd81feda8b96d14b53f1791b4010b038.modeling_minicpmv"
|
6 |
+
},
|
7 |
+
"base_model_name_or_path": "/root/workspace/digirl/outputs/minicpmv_pt1000",
|
8 |
+
"bias": "none",
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 64,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": [
|
21 |
+
"embed_tokens",
|
22 |
+
"resampler"
|
23 |
+
],
|
24 |
+
"peft_type": "LORA",
|
25 |
+
"r": 64,
|
26 |
+
"rank_pattern": {},
|
27 |
+
"revision": null,
|
28 |
+
"target_modules": "llm\\..*layers\\.\\d+\\.self_attn\\.(q_proj|k_proj|v_proj|o_proj)",
|
29 |
+
"task_type": null,
|
30 |
+
"use_dora": false,
|
31 |
+
"use_rslora": false
|
32 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e113c2b54a97fff8dd57be79c22119b5a1e44265b5396009e0bc8ef4dd173ca
|
3 |
+
size 1305154312
|
added_tokens.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</box>": 151651,
|
3 |
+
"</image>": 151647,
|
4 |
+
"</image_id>": 151659,
|
5 |
+
"</point>": 151655,
|
6 |
+
"</quad>": 151653,
|
7 |
+
"</ref>": 151649,
|
8 |
+
"</slice>": 151657,
|
9 |
+
"<box>": 151650,
|
10 |
+
"<image>": 151646,
|
11 |
+
"<image_id>": 151658,
|
12 |
+
"<point>": 151654,
|
13 |
+
"<quad>": 151652,
|
14 |
+
"<ref>": 151648,
|
15 |
+
"<slice>": 151656,
|
16 |
+
"<|endoftext|>": 151643,
|
17 |
+
"<|im_end|>": 151645,
|
18 |
+
"<|im_start|>": 151644,
|
19 |
+
"<|reserved_special_token_0|>": 151660,
|
20 |
+
"<|reserved_special_token_1|>": 151661,
|
21 |
+
"<|reserved_special_token_2|>": 151662,
|
22 |
+
"<|reserved_special_token_3|>": 151663,
|
23 |
+
"<|reserved_special_token_4|>": 151664,
|
24 |
+
"<|reserved_special_token_5|>": 151665
|
25 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step250
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed6a2d05cc7a06addf1550e979e589da3472cd6b1edac74354584fabab31282d
|
3 |
+
size 15024
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de348fc647233fdc2fcb9e4379bedc7385ae9066915b91dfad1264742c86998e
|
3 |
+
size 15024
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4959a127b60a7d53e124b5e14292bc21cfb045313c23cb2516dbfdd0fdedca96
|
3 |
+
size 15024
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f27b59b3e263669823622cbe27cd950550735cfb6e20d4b32e64c97c3fdd785a
|
3 |
+
size 15024
|
special_tokens_map.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<image>",
|
4 |
+
"</image>",
|
5 |
+
"<ref>",
|
6 |
+
"</ref>",
|
7 |
+
"<box>",
|
8 |
+
"</box>",
|
9 |
+
"<quad>",
|
10 |
+
"</quad>",
|
11 |
+
"<point>",
|
12 |
+
"</point>",
|
13 |
+
"<slice>",
|
14 |
+
"</slice>",
|
15 |
+
"<image_id>",
|
16 |
+
"</image_id>",
|
17 |
+
"<|reserved_special_token_0|>",
|
18 |
+
"<|reserved_special_token_1|>",
|
19 |
+
"<|reserved_special_token_2|>",
|
20 |
+
"<|reserved_special_token_3|>",
|
21 |
+
"<|reserved_special_token_4|>",
|
22 |
+
"<|reserved_special_token_5|>"
|
23 |
+
],
|
24 |
+
"bos_token": {
|
25 |
+
"content": "<|im_start|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"eos_token": {
|
32 |
+
"content": "<|im_end|>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
},
|
38 |
+
"pad_token": {
|
39 |
+
"content": "<|endoftext|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false
|
44 |
+
},
|
45 |
+
"unk_token": {
|
46 |
+
"content": "<unk>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false
|
51 |
+
}
|
52 |
+
}
|
tokenization_minicpmv_fast.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.qwen2 import Qwen2TokenizerFast
|
2 |
+
|
3 |
+
|
4 |
+
class MiniCPMVTokenizerFast(Qwen2TokenizerFast):
|
5 |
+
def __init__(self, **kwargs):
|
6 |
+
super().__init__(**kwargs)
|
7 |
+
self.im_start = "<image>"
|
8 |
+
self.im_end = "</image>"
|
9 |
+
self.ref_start = "<ref>"
|
10 |
+
self.ref_end = "</ref>"
|
11 |
+
self.box_start = "<box>"
|
12 |
+
self.box_end = "</box>"
|
13 |
+
self.quad_start = "<quad>"
|
14 |
+
self.quad_end = "</quad>"
|
15 |
+
self.slice_start = "<slice>"
|
16 |
+
self.slice_end = "</slice>"
|
17 |
+
self.im_id_start = "<image_id>"
|
18 |
+
self.im_id_end = "</image_id>"
|
19 |
+
|
20 |
+
@property
|
21 |
+
def eos_id(self):
|
22 |
+
return self.eos_token_id
|
23 |
+
|
24 |
+
@property
|
25 |
+
def bos_id(self):
|
26 |
+
return self.bos_token_id
|
27 |
+
|
28 |
+
@property
|
29 |
+
def unk_id(self):
|
30 |
+
return self.unk_token_id
|
31 |
+
|
32 |
+
@property
|
33 |
+
def im_start_id(self):
|
34 |
+
return self.convert_tokens_to_ids(self.im_start)
|
35 |
+
|
36 |
+
@property
|
37 |
+
def im_end_id(self):
|
38 |
+
return self.convert_tokens_to_ids(self.im_end)
|
39 |
+
|
40 |
+
@property
|
41 |
+
def slice_start_id(self):
|
42 |
+
return self.convert_tokens_to_ids(self.slice_start)
|
43 |
+
|
44 |
+
@property
|
45 |
+
def slice_end_id(self):
|
46 |
+
return self.convert_tokens_to_ids(self.slice_end)
|
47 |
+
|
48 |
+
@property
|
49 |
+
def im_id_start_id(self):
|
50 |
+
return self.convert_tokens_to_ids(self.im_id_start)
|
51 |
+
|
52 |
+
@property
|
53 |
+
def im_id_end_id(self):
|
54 |
+
return self.convert_tokens_to_ids(self.im_id_end)
|
55 |
+
|
56 |
+
@property
|
57 |
+
def newline_id(self):
|
58 |
+
return self.convert_tokens_to_ids('\n')
|
59 |
+
|
60 |
+
@staticmethod
|
61 |
+
def escape(text: str) -> str:
|
62 |
+
return text
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def unescape(text: str) -> str:
|
66 |
+
return text
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"128244": {
|
5 |
+
"content": "<unk>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151643": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151644": {
|
21 |
+
"content": "<|im_start|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151645": {
|
29 |
+
"content": "<|im_end|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151646": {
|
37 |
+
"content": "<image>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151647": {
|
45 |
+
"content": "</image>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151648": {
|
53 |
+
"content": "<ref>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151649": {
|
61 |
+
"content": "</ref>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151650": {
|
69 |
+
"content": "<box>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151651": {
|
77 |
+
"content": "</box>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151652": {
|
85 |
+
"content": "<quad>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151653": {
|
93 |
+
"content": "</quad>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151654": {
|
101 |
+
"content": "<point>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151655": {
|
109 |
+
"content": "</point>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"151656": {
|
117 |
+
"content": "<slice>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"151657": {
|
125 |
+
"content": "</slice>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"151658": {
|
133 |
+
"content": "<image_id>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"151659": {
|
141 |
+
"content": "</image_id>",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"151660": {
|
149 |
+
"content": "<|reserved_special_token_0|>",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"151661": {
|
157 |
+
"content": "<|reserved_special_token_1|>",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"151662": {
|
165 |
+
"content": "<|reserved_special_token_2|>",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"151663": {
|
173 |
+
"content": "<|reserved_special_token_3|>",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"151664": {
|
181 |
+
"content": "<|reserved_special_token_4|>",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"151665": {
|
189 |
+
"content": "<|reserved_special_token_5|>",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
}
|
196 |
+
},
|
197 |
+
"additional_special_tokens": [
|
198 |
+
"<image>",
|
199 |
+
"</image>",
|
200 |
+
"<ref>",
|
201 |
+
"</ref>",
|
202 |
+
"<box>",
|
203 |
+
"</box>",
|
204 |
+
"<quad>",
|
205 |
+
"</quad>",
|
206 |
+
"<point>",
|
207 |
+
"</point>",
|
208 |
+
"<slice>",
|
209 |
+
"</slice>",
|
210 |
+
"<image_id>",
|
211 |
+
"</image_id>",
|
212 |
+
"<|reserved_special_token_0|>",
|
213 |
+
"<|reserved_special_token_1|>",
|
214 |
+
"<|reserved_special_token_2|>",
|
215 |
+
"<|reserved_special_token_3|>",
|
216 |
+
"<|reserved_special_token_4|>",
|
217 |
+
"<|reserved_special_token_5|>"
|
218 |
+
],
|
219 |
+
"auto_map": {
|
220 |
+
"AutoTokenizer": [
|
221 |
+
"tokenization_qwen2.Qwen2Tokenizer",
|
222 |
+
"tokenization_minicpmv_fast.MiniCPMVTokenizerFast"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
"bos_token": "<|im_start|>",
|
226 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
227 |
+
"clean_up_tokenization_spaces": false,
|
228 |
+
"eos_token": "<|im_end|>",
|
229 |
+
"errors": "replace",
|
230 |
+
"model_max_length": 1000000000000000019884624838656,
|
231 |
+
"pad_token": "<|endoftext|>",
|
232 |
+
"split_special_tokens": false,
|
233 |
+
"tokenizer_class": "MiniCPMVTokenizer",
|
234 |
+
"unk_token": "<unk>"
|
235 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 125.0,
|
5 |
+
"eval_steps": 1000,
|
6 |
+
"global_step": 250,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.5,
|
13 |
+
"grad_norm": 3.334595203399658,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 1.3402,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.0,
|
20 |
+
"grad_norm": 3.309346914291382,
|
21 |
+
"learning_rate": 1.5051499783199055e-07,
|
22 |
+
"loss": 1.284,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 1.5,
|
27 |
+
"grad_norm": 3.4695301055908203,
|
28 |
+
"learning_rate": 2.385606273598312e-07,
|
29 |
+
"loss": 1.3362,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 2.0,
|
34 |
+
"grad_norm": 2.9988322257995605,
|
35 |
+
"learning_rate": 3.010299956639811e-07,
|
36 |
+
"loss": 1.2535,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 2.5,
|
41 |
+
"grad_norm": 3.0436394214630127,
|
42 |
+
"learning_rate": 3.494850021680093e-07,
|
43 |
+
"loss": 1.2326,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 3.0,
|
48 |
+
"grad_norm": 3.329270601272583,
|
49 |
+
"learning_rate": 3.8907562519182173e-07,
|
50 |
+
"loss": 1.3378,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 3.5,
|
55 |
+
"grad_norm": 3.0574333667755127,
|
56 |
+
"learning_rate": 4.2254902000712834e-07,
|
57 |
+
"loss": 1.4162,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 4.0,
|
62 |
+
"grad_norm": 3.348349094390869,
|
63 |
+
"learning_rate": 4.5154499349597166e-07,
|
64 |
+
"loss": 1.3598,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 4.5,
|
69 |
+
"grad_norm": 2.9368350505828857,
|
70 |
+
"learning_rate": 4.771212547196623e-07,
|
71 |
+
"loss": 1.1551,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 5.0,
|
76 |
+
"grad_norm": 3.3986520767211914,
|
77 |
+
"learning_rate": 4.999999999999999e-07,
|
78 |
+
"loss": 1.4285,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 5.5,
|
83 |
+
"grad_norm": 3.004727363586426,
|
84 |
+
"learning_rate": 5.206963425791124e-07,
|
85 |
+
"loss": 1.2629,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 6.0,
|
90 |
+
"grad_norm": 3.090939998626709,
|
91 |
+
"learning_rate": 5.395906230238123e-07,
|
92 |
+
"loss": 1.3378,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 6.5,
|
97 |
+
"grad_norm": 2.906198740005493,
|
98 |
+
"learning_rate": 5.569716761534182e-07,
|
99 |
+
"loss": 1.3384,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 7.0,
|
104 |
+
"grad_norm": 2.9036598205566406,
|
105 |
+
"learning_rate": 5.730640178391189e-07,
|
106 |
+
"loss": 1.2693,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 7.5,
|
111 |
+
"grad_norm": 2.924349069595337,
|
112 |
+
"learning_rate": 5.880456295278405e-07,
|
113 |
+
"loss": 1.2711,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 8.0,
|
118 |
+
"grad_norm": 3.110586166381836,
|
119 |
+
"learning_rate": 6.020599913279622e-07,
|
120 |
+
"loss": 1.2708,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 8.5,
|
125 |
+
"grad_norm": 3.2055583000183105,
|
126 |
+
"learning_rate": 6.15224460689137e-07,
|
127 |
+
"loss": 1.4757,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 9.0,
|
132 |
+
"grad_norm": 2.972228527069092,
|
133 |
+
"learning_rate": 6.276362525516529e-07,
|
134 |
+
"loss": 1.3115,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 9.5,
|
139 |
+
"grad_norm": 2.447122573852539,
|
140 |
+
"learning_rate": 6.393768004764143e-07,
|
141 |
+
"loss": 1.241,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 10.0,
|
146 |
+
"grad_norm": 2.3147361278533936,
|
147 |
+
"learning_rate": 6.505149978319905e-07,
|
148 |
+
"loss": 1.2135,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 10.5,
|
153 |
+
"grad_norm": 2.9482200145721436,
|
154 |
+
"learning_rate": 6.611096473669595e-07,
|
155 |
+
"loss": 1.4155,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 11.0,
|
160 |
+
"grad_norm": 2.6261355876922607,
|
161 |
+
"learning_rate": 6.712113404111031e-07,
|
162 |
+
"loss": 1.2434,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 11.5,
|
167 |
+
"grad_norm": 2.448061943054199,
|
168 |
+
"learning_rate": 6.808639180087963e-07,
|
169 |
+
"loss": 1.2424,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 12.0,
|
174 |
+
"grad_norm": 2.22385311126709,
|
175 |
+
"learning_rate": 6.901056208558029e-07,
|
176 |
+
"loss": 1.1388,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 12.5,
|
181 |
+
"grad_norm": 2.7259082794189453,
|
182 |
+
"learning_rate": 6.989700043360186e-07,
|
183 |
+
"loss": 1.4238,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 13.0,
|
188 |
+
"grad_norm": 2.03949236869812,
|
189 |
+
"learning_rate": 7.074866739854088e-07,
|
190 |
+
"loss": 1.0655,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 13.5,
|
195 |
+
"grad_norm": 2.341221809387207,
|
196 |
+
"learning_rate": 7.156818820794935e-07,
|
197 |
+
"loss": 1.2652,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 14.0,
|
202 |
+
"grad_norm": 2.2585113048553467,
|
203 |
+
"learning_rate": 7.235790156711094e-07,
|
204 |
+
"loss": 1.1248,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 14.5,
|
209 |
+
"grad_norm": 2.2248682975769043,
|
210 |
+
"learning_rate": 7.311989989494779e-07,
|
211 |
+
"loss": 1.1755,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 15.0,
|
216 |
+
"grad_norm": 2.115250825881958,
|
217 |
+
"learning_rate": 7.38560627359831e-07,
|
218 |
+
"loss": 1.1932,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 15.5,
|
223 |
+
"grad_norm": 2.030606269836426,
|
224 |
+
"learning_rate": 7.456808469171361e-07,
|
225 |
+
"loss": 1.2845,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 16.0,
|
230 |
+
"grad_norm": 2.0579230785369873,
|
231 |
+
"learning_rate": 7.525749891599529e-07,
|
232 |
+
"loss": 1.1964,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 16.5,
|
237 |
+
"grad_norm": 2.074784517288208,
|
238 |
+
"learning_rate": 7.592569699389436e-07,
|
239 |
+
"loss": 1.1445,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 17.0,
|
244 |
+
"grad_norm": 2.064431667327881,
|
245 |
+
"learning_rate": 7.657394585211274e-07,
|
246 |
+
"loss": 1.2398,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 17.5,
|
251 |
+
"grad_norm": 1.8380582332611084,
|
252 |
+
"learning_rate": 7.720340221751376e-07,
|
253 |
+
"loss": 1.1373,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 18.0,
|
258 |
+
"grad_norm": 2.3023219108581543,
|
259 |
+
"learning_rate": 7.781512503836435e-07,
|
260 |
+
"loss": 1.0978,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 18.5,
|
265 |
+
"grad_norm": 2.0860466957092285,
|
266 |
+
"learning_rate": 7.841008620334974e-07,
|
267 |
+
"loss": 1.1017,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 19.0,
|
272 |
+
"grad_norm": 1.9423589706420898,
|
273 |
+
"learning_rate": 7.89891798308405e-07,
|
274 |
+
"loss": 1.1538,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 19.5,
|
279 |
+
"grad_norm": 2.018376350402832,
|
280 |
+
"learning_rate": 7.955323035132494e-07,
|
281 |
+
"loss": 1.1345,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 20.0,
|
286 |
+
"grad_norm": 1.9834052324295044,
|
287 |
+
"learning_rate": 8.01029995663981e-07,
|
288 |
+
"loss": 1.1596,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 20.5,
|
293 |
+
"grad_norm": 1.8433727025985718,
|
294 |
+
"learning_rate": 8.063919283598676e-07,
|
295 |
+
"loss": 0.9934,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 21.0,
|
300 |
+
"grad_norm": 2.0120983123779297,
|
301 |
+
"learning_rate": 8.116246451989502e-07,
|
302 |
+
"loss": 1.1849,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 21.5,
|
307 |
+
"grad_norm": 1.7347400188446045,
|
308 |
+
"learning_rate": 8.16734227789793e-07,
|
309 |
+
"loss": 0.9969,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 22.0,
|
314 |
+
"grad_norm": 2.1413559913635254,
|
315 |
+
"learning_rate": 8.217263382430935e-07,
|
316 |
+
"loss": 1.2613,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 22.5,
|
321 |
+
"grad_norm": 1.9589574337005615,
|
322 |
+
"learning_rate": 8.266062568876716e-07,
|
323 |
+
"loss": 1.134,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 23.0,
|
328 |
+
"grad_norm": 1.7819244861602783,
|
329 |
+
"learning_rate": 8.313789158407869e-07,
|
330 |
+
"loss": 1.0627,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 23.5,
|
335 |
+
"grad_norm": 2.12137508392334,
|
336 |
+
"learning_rate": 8.360489289678585e-07,
|
337 |
+
"loss": 1.1799,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 24.0,
|
342 |
+
"grad_norm": 1.7399541139602661,
|
343 |
+
"learning_rate": 8.406206186877934e-07,
|
344 |
+
"loss": 0.9974,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 24.5,
|
349 |
+
"grad_norm": 2.0634093284606934,
|
350 |
+
"learning_rate": 8.450980400142567e-07,
|
351 |
+
"loss": 0.9758,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 25.0,
|
356 |
+
"grad_norm": 1.8642668724060059,
|
357 |
+
"learning_rate": 8.494850021680092e-07,
|
358 |
+
"loss": 1.1103,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 25.5,
|
363 |
+
"grad_norm": 1.8973793983459473,
|
364 |
+
"learning_rate": 8.53785088048968e-07,
|
365 |
+
"loss": 1.1013,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 26.0,
|
370 |
+
"grad_norm": 1.8340080976486206,
|
371 |
+
"learning_rate": 8.580016718173995e-07,
|
372 |
+
"loss": 0.9959,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 26.5,
|
377 |
+
"grad_norm": 1.8867207765579224,
|
378 |
+
"learning_rate": 8.621379348003944e-07,
|
379 |
+
"loss": 1.1526,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 27.0,
|
384 |
+
"grad_norm": 1.7188408374786377,
|
385 |
+
"learning_rate": 8.661968799114842e-07,
|
386 |
+
"loss": 0.9184,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 27.5,
|
391 |
+
"grad_norm": 1.8246105909347534,
|
392 |
+
"learning_rate": 8.701813447471218e-07,
|
393 |
+
"loss": 1.0568,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 28.0,
|
398 |
+
"grad_norm": 1.9179924726486206,
|
399 |
+
"learning_rate": 8.740940135031001e-07,
|
400 |
+
"loss": 1.1564,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 28.5,
|
405 |
+
"grad_norm": 1.7202187776565552,
|
406 |
+
"learning_rate": 8.779374278362456e-07,
|
407 |
+
"loss": 0.9801,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 29.0,
|
412 |
+
"grad_norm": 1.891327977180481,
|
413 |
+
"learning_rate": 8.817139967814684e-07,
|
414 |
+
"loss": 1.1344,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 29.5,
|
419 |
+
"grad_norm": 1.6394891738891602,
|
420 |
+
"learning_rate": 8.854260058210719e-07,
|
421 |
+
"loss": 0.9748,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 30.0,
|
426 |
+
"grad_norm": 1.8808232545852661,
|
427 |
+
"learning_rate": 8.890756251918216e-07,
|
428 |
+
"loss": 0.9423,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 30.5,
|
433 |
+
"grad_norm": 1.8192319869995117,
|
434 |
+
"learning_rate": 8.926649175053833e-07,
|
435 |
+
"loss": 1.003,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 31.0,
|
440 |
+
"grad_norm": 1.7621928453445435,
|
441 |
+
"learning_rate": 8.961958447491268e-07,
|
442 |
+
"loss": 1.0498,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 31.5,
|
447 |
+
"grad_norm": 1.8957831859588623,
|
448 |
+
"learning_rate": 8.996702747267907e-07,
|
449 |
+
"loss": 1.1259,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 32.0,
|
454 |
+
"grad_norm": 1.6946312189102173,
|
455 |
+
"learning_rate": 9.030899869919433e-07,
|
456 |
+
"loss": 0.9092,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 32.5,
|
461 |
+
"grad_norm": 1.6719154119491577,
|
462 |
+
"learning_rate": 9.064566783214276e-07,
|
463 |
+
"loss": 0.9273,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 33.0,
|
468 |
+
"grad_norm": 1.6526826620101929,
|
469 |
+
"learning_rate": 9.097719677709341e-07,
|
470 |
+
"loss": 0.9469,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 33.5,
|
475 |
+
"grad_norm": 1.7876310348510742,
|
476 |
+
"learning_rate": 9.13037401350413e-07,
|
477 |
+
"loss": 0.8734,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 34.0,
|
482 |
+
"grad_norm": 1.517971396446228,
|
483 |
+
"learning_rate": 9.162544563531181e-07,
|
484 |
+
"loss": 0.9527,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 34.5,
|
489 |
+
"grad_norm": 1.7323296070098877,
|
490 |
+
"learning_rate": 9.194245453686276e-07,
|
491 |
+
"loss": 0.8279,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 35.0,
|
496 |
+
"grad_norm": 1.5928230285644531,
|
497 |
+
"learning_rate": 9.225490200071283e-07,
|
498 |
+
"loss": 0.9627,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 35.5,
|
503 |
+
"grad_norm": 1.6561415195465088,
|
504 |
+
"learning_rate": 9.256291743595375e-07,
|
505 |
+
"loss": 0.9138,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 36.0,
|
510 |
+
"grad_norm": 1.628674030303955,
|
511 |
+
"learning_rate": 9.28666248215634e-07,
|
512 |
+
"loss": 0.8956,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 36.5,
|
517 |
+
"grad_norm": 1.5087110996246338,
|
518 |
+
"learning_rate": 9.316614300602277e-07,
|
519 |
+
"loss": 0.8223,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 37.0,
|
524 |
+
"grad_norm": 1.6503626108169556,
|
525 |
+
"learning_rate": 9.346158598654879e-07,
|
526 |
+
"loss": 0.9776,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 37.5,
|
531 |
+
"grad_norm": 1.6680738925933838,
|
532 |
+
"learning_rate": 9.375306316958498e-07,
|
533 |
+
"loss": 0.8301,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 38.0,
|
538 |
+
"grad_norm": 1.8239458799362183,
|
539 |
+
"learning_rate": 9.404067961403955e-07,
|
540 |
+
"loss": 0.9891,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 38.5,
|
545 |
+
"grad_norm": 1.669043779373169,
|
546 |
+
"learning_rate": 9.432453625862408e-07,
|
547 |
+
"loss": 0.9085,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 39.0,
|
552 |
+
"grad_norm": 1.8124521970748901,
|
553 |
+
"learning_rate": 9.4604730134524e-07,
|
554 |
+
"loss": 0.87,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 39.5,
|
559 |
+
"grad_norm": 1.6593950986862183,
|
560 |
+
"learning_rate": 9.488135456452205e-07,
|
561 |
+
"loss": 0.8142,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 40.0,
|
566 |
+
"grad_norm": 1.6837782859802246,
|
567 |
+
"learning_rate": 9.515449934959715e-07,
|
568 |
+
"loss": 0.8246,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 40.5,
|
573 |
+
"grad_norm": 1.7322601079940796,
|
574 |
+
"learning_rate": 9.542425094393247e-07,
|
575 |
+
"loss": 0.8752,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 41.0,
|
580 |
+
"grad_norm": 1.5245649814605713,
|
581 |
+
"learning_rate": 9.569069261918583e-07,
|
582 |
+
"loss": 0.7944,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 41.5,
|
587 |
+
"grad_norm": 1.713905692100525,
|
588 |
+
"learning_rate": 9.59539046188037e-07,
|
589 |
+
"loss": 0.8122,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 42.0,
|
594 |
+
"grad_norm": 1.7115576267242432,
|
595 |
+
"learning_rate": 9.621396430309406e-07,
|
596 |
+
"loss": 0.8612,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 42.5,
|
601 |
+
"grad_norm": 1.770555019378662,
|
602 |
+
"learning_rate": 9.647094628571462e-07,
|
603 |
+
"loss": 0.9131,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 43.0,
|
608 |
+
"grad_norm": 1.8751977682113647,
|
609 |
+
"learning_rate": 9.672492256217836e-07,
|
610 |
+
"loss": 0.8756,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 43.5,
|
615 |
+
"grad_norm": 1.8345999717712402,
|
616 |
+
"learning_rate": 9.69759626309309e-07,
|
617 |
+
"loss": 0.9098,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 44.0,
|
622 |
+
"grad_norm": 1.6411185264587402,
|
623 |
+
"learning_rate": 9.722413360750842e-07,
|
624 |
+
"loss": 0.7975,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 44.5,
|
629 |
+
"grad_norm": 1.744828462600708,
|
630 |
+
"learning_rate": 9.74695003322456e-07,
|
631 |
+
"loss": 0.8444,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 45.0,
|
636 |
+
"grad_norm": 1.6588188409805298,
|
637 |
+
"learning_rate": 9.771212547196622e-07,
|
638 |
+
"loss": 0.8376,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 45.5,
|
643 |
+
"grad_norm": 1.8046928644180298,
|
644 |
+
"learning_rate": 9.795206961605466e-07,
|
645 |
+
"loss": 0.7546,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 46.0,
|
650 |
+
"grad_norm": 1.8828351497650146,
|
651 |
+
"learning_rate": 9.818939136727774e-07,
|
652 |
+
"loss": 0.8505,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 46.5,
|
657 |
+
"grad_norm": 1.841956377029419,
|
658 |
+
"learning_rate": 9.842414742769674e-07,
|
659 |
+
"loss": 0.7847,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 47.0,
|
664 |
+
"grad_norm": 1.682256817817688,
|
665 |
+
"learning_rate": 9.865639267998492e-07,
|
666 |
+
"loss": 0.7712,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 47.5,
|
671 |
+
"grad_norm": 1.8375487327575684,
|
672 |
+
"learning_rate": 9.888618026444236e-07,
|
673 |
+
"loss": 0.7228,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 48.0,
|
678 |
+
"grad_norm": 1.7198117971420288,
|
679 |
+
"learning_rate": 9.91135616519784e-07,
|
680 |
+
"loss": 0.7755,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 48.5,
|
685 |
+
"grad_norm": 1.760452389717102,
|
686 |
+
"learning_rate": 9.933858671331222e-07,
|
687 |
+
"loss": 0.7045,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 49.0,
|
692 |
+
"grad_norm": 1.735704779624939,
|
693 |
+
"learning_rate": 9.956130378462473e-07,
|
694 |
+
"loss": 0.8024,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 49.5,
|
699 |
+
"grad_norm": 1.6422948837280273,
|
700 |
+
"learning_rate": 9.978175972987748e-07,
|
701 |
+
"loss": 0.7368,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 50.0,
|
706 |
+
"grad_norm": 1.8960306644439697,
|
707 |
+
"learning_rate": 9.999999999999997e-07,
|
708 |
+
"loss": 0.7557,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 50.5,
|
713 |
+
"grad_norm": 1.6727304458618164,
|
714 |
+
"learning_rate": 1e-06,
|
715 |
+
"loss": 0.7325,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 51.0,
|
720 |
+
"grad_norm": 1.6515084505081177,
|
721 |
+
"learning_rate": 1e-06,
|
722 |
+
"loss": 0.7351,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 51.5,
|
727 |
+
"grad_norm": 1.7705847024917603,
|
728 |
+
"learning_rate": 1e-06,
|
729 |
+
"loss": 0.7907,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 52.0,
|
734 |
+
"grad_norm": 1.7057950496673584,
|
735 |
+
"learning_rate": 1e-06,
|
736 |
+
"loss": 0.6447,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 52.5,
|
741 |
+
"grad_norm": 1.6130571365356445,
|
742 |
+
"learning_rate": 1e-06,
|
743 |
+
"loss": 0.7079,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 53.0,
|
748 |
+
"grad_norm": 2.063298463821411,
|
749 |
+
"learning_rate": 1e-06,
|
750 |
+
"loss": 0.693,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 53.5,
|
755 |
+
"grad_norm": 2.0730509757995605,
|
756 |
+
"learning_rate": 1e-06,
|
757 |
+
"loss": 0.8002,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 54.0,
|
762 |
+
"grad_norm": 1.6381713151931763,
|
763 |
+
"learning_rate": 1e-06,
|
764 |
+
"loss": 0.657,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 54.5,
|
769 |
+
"grad_norm": 1.5659828186035156,
|
770 |
+
"learning_rate": 1e-06,
|
771 |
+
"loss": 0.7202,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 55.0,
|
776 |
+
"grad_norm": 1.594575047492981,
|
777 |
+
"learning_rate": 1e-06,
|
778 |
+
"loss": 0.6627,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 55.5,
|
783 |
+
"grad_norm": 1.497917652130127,
|
784 |
+
"learning_rate": 1e-06,
|
785 |
+
"loss": 0.6693,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 56.0,
|
790 |
+
"grad_norm": 2.5011086463928223,
|
791 |
+
"learning_rate": 1e-06,
|
792 |
+
"loss": 0.6946,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 56.5,
|
797 |
+
"grad_norm": 1.9602758884429932,
|
798 |
+
"learning_rate": 1e-06,
|
799 |
+
"loss": 0.6926,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 57.0,
|
804 |
+
"grad_norm": 1.4793510437011719,
|
805 |
+
"learning_rate": 1e-06,
|
806 |
+
"loss": 0.5861,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 57.5,
|
811 |
+
"grad_norm": 1.6028777360916138,
|
812 |
+
"learning_rate": 1e-06,
|
813 |
+
"loss": 0.5788,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 58.0,
|
818 |
+
"grad_norm": 1.6478813886642456,
|
819 |
+
"learning_rate": 1e-06,
|
820 |
+
"loss": 0.6395,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 58.5,
|
825 |
+
"grad_norm": 1.5423738956451416,
|
826 |
+
"learning_rate": 1e-06,
|
827 |
+
"loss": 0.5959,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 59.0,
|
832 |
+
"grad_norm": 1.8497169017791748,
|
833 |
+
"learning_rate": 1e-06,
|
834 |
+
"loss": 0.584,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 59.5,
|
839 |
+
"grad_norm": 1.6440547704696655,
|
840 |
+
"learning_rate": 1e-06,
|
841 |
+
"loss": 0.5916,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 60.0,
|
846 |
+
"grad_norm": 1.765620231628418,
|
847 |
+
"learning_rate": 1e-06,
|
848 |
+
"loss": 0.6226,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 60.5,
|
853 |
+
"grad_norm": 1.543800950050354,
|
854 |
+
"learning_rate": 1e-06,
|
855 |
+
"loss": 0.5966,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 61.0,
|
860 |
+
"grad_norm": 1.4944016933441162,
|
861 |
+
"learning_rate": 1e-06,
|
862 |
+
"loss": 0.5305,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 61.5,
|
867 |
+
"grad_norm": 1.968621850013733,
|
868 |
+
"learning_rate": 1e-06,
|
869 |
+
"loss": 0.6673,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 62.0,
|
874 |
+
"grad_norm": 1.523604393005371,
|
875 |
+
"learning_rate": 1e-06,
|
876 |
+
"loss": 0.5424,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 62.5,
|
881 |
+
"grad_norm": 1.6466797590255737,
|
882 |
+
"learning_rate": 1e-06,
|
883 |
+
"loss": 0.6007,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 63.0,
|
888 |
+
"grad_norm": 1.7836798429489136,
|
889 |
+
"learning_rate": 1e-06,
|
890 |
+
"loss": 0.6201,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 63.5,
|
895 |
+
"grad_norm": 1.6673424243927002,
|
896 |
+
"learning_rate": 1e-06,
|
897 |
+
"loss": 0.5786,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 64.0,
|
902 |
+
"grad_norm": 1.6889145374298096,
|
903 |
+
"learning_rate": 1e-06,
|
904 |
+
"loss": 0.5211,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 64.5,
|
909 |
+
"grad_norm": 1.4834386110305786,
|
910 |
+
"learning_rate": 1e-06,
|
911 |
+
"loss": 0.4521,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 65.0,
|
916 |
+
"grad_norm": 1.743851661682129,
|
917 |
+
"learning_rate": 1e-06,
|
918 |
+
"loss": 0.5363,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 65.5,
|
923 |
+
"grad_norm": 1.8134723901748657,
|
924 |
+
"learning_rate": 1e-06,
|
925 |
+
"loss": 0.554,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 66.0,
|
930 |
+
"grad_norm": 1.508358120918274,
|
931 |
+
"learning_rate": 1e-06,
|
932 |
+
"loss": 0.5104,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 66.5,
|
937 |
+
"grad_norm": 1.6829733848571777,
|
938 |
+
"learning_rate": 1e-06,
|
939 |
+
"loss": 0.4658,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 67.0,
|
944 |
+
"grad_norm": 1.526950716972351,
|
945 |
+
"learning_rate": 1e-06,
|
946 |
+
"loss": 0.4892,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 67.5,
|
951 |
+
"grad_norm": 1.8935024738311768,
|
952 |
+
"learning_rate": 1e-06,
|
953 |
+
"loss": 0.4979,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 68.0,
|
958 |
+
"grad_norm": 1.4638999700546265,
|
959 |
+
"learning_rate": 1e-06,
|
960 |
+
"loss": 0.5144,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 68.5,
|
965 |
+
"grad_norm": 1.9910645484924316,
|
966 |
+
"learning_rate": 1e-06,
|
967 |
+
"loss": 0.5521,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 69.0,
|
972 |
+
"grad_norm": 1.6257317066192627,
|
973 |
+
"learning_rate": 1e-06,
|
974 |
+
"loss": 0.4937,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 69.5,
|
979 |
+
"grad_norm": 1.4498651027679443,
|
980 |
+
"learning_rate": 1e-06,
|
981 |
+
"loss": 0.4749,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 70.0,
|
986 |
+
"grad_norm": 1.8104501962661743,
|
987 |
+
"learning_rate": 1e-06,
|
988 |
+
"loss": 0.4564,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 70.5,
|
993 |
+
"grad_norm": 2.0244479179382324,
|
994 |
+
"learning_rate": 1e-06,
|
995 |
+
"loss": 0.4228,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 71.0,
|
1000 |
+
"grad_norm": 1.5190598964691162,
|
1001 |
+
"learning_rate": 1e-06,
|
1002 |
+
"loss": 0.4735,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 71.5,
|
1007 |
+
"grad_norm": 1.7180043458938599,
|
1008 |
+
"learning_rate": 1e-06,
|
1009 |
+
"loss": 0.4776,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 72.0,
|
1014 |
+
"grad_norm": 1.5680577754974365,
|
1015 |
+
"learning_rate": 1e-06,
|
1016 |
+
"loss": 0.4343,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 72.5,
|
1021 |
+
"grad_norm": 1.6798756122589111,
|
1022 |
+
"learning_rate": 1e-06,
|
1023 |
+
"loss": 0.4074,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 73.0,
|
1028 |
+
"grad_norm": 1.4644179344177246,
|
1029 |
+
"learning_rate": 1e-06,
|
1030 |
+
"loss": 0.4982,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 73.5,
|
1035 |
+
"grad_norm": 1.5461561679840088,
|
1036 |
+
"learning_rate": 1e-06,
|
1037 |
+
"loss": 0.3539,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 74.0,
|
1042 |
+
"grad_norm": 1.7116854190826416,
|
1043 |
+
"learning_rate": 1e-06,
|
1044 |
+
"loss": 0.4267,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 74.5,
|
1049 |
+
"grad_norm": 1.6357485055923462,
|
1050 |
+
"learning_rate": 1e-06,
|
1051 |
+
"loss": 0.4563,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 75.0,
|
1056 |
+
"grad_norm": 1.3843780755996704,
|
1057 |
+
"learning_rate": 1e-06,
|
1058 |
+
"loss": 0.4072,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 75.5,
|
1063 |
+
"grad_norm": 1.6510047912597656,
|
1064 |
+
"learning_rate": 1e-06,
|
1065 |
+
"loss": 0.4619,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 76.0,
|
1070 |
+
"grad_norm": 1.5008376836776733,
|
1071 |
+
"learning_rate": 1e-06,
|
1072 |
+
"loss": 0.3768,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 76.5,
|
1077 |
+
"grad_norm": 1.4433045387268066,
|
1078 |
+
"learning_rate": 1e-06,
|
1079 |
+
"loss": 0.4502,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 77.0,
|
1084 |
+
"grad_norm": 1.4826611280441284,
|
1085 |
+
"learning_rate": 1e-06,
|
1086 |
+
"loss": 0.3686,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 77.5,
|
1091 |
+
"grad_norm": 1.5890164375305176,
|
1092 |
+
"learning_rate": 1e-06,
|
1093 |
+
"loss": 0.3642,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 78.0,
|
1098 |
+
"grad_norm": 1.5281238555908203,
|
1099 |
+
"learning_rate": 1e-06,
|
1100 |
+
"loss": 0.4034,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 78.5,
|
1105 |
+
"grad_norm": 1.3185185194015503,
|
1106 |
+
"learning_rate": 1e-06,
|
1107 |
+
"loss": 0.336,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 79.0,
|
1112 |
+
"grad_norm": 1.6037932634353638,
|
1113 |
+
"learning_rate": 1e-06,
|
1114 |
+
"loss": 0.4349,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 79.5,
|
1119 |
+
"grad_norm": 1.384059190750122,
|
1120 |
+
"learning_rate": 1e-06,
|
1121 |
+
"loss": 0.3431,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 80.0,
|
1126 |
+
"grad_norm": 1.339905858039856,
|
1127 |
+
"learning_rate": 1e-06,
|
1128 |
+
"loss": 0.3745,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 80.5,
|
1133 |
+
"grad_norm": 1.2671548128128052,
|
1134 |
+
"learning_rate": 1e-06,
|
1135 |
+
"loss": 0.3476,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 81.0,
|
1140 |
+
"grad_norm": 1.5032880306243896,
|
1141 |
+
"learning_rate": 1e-06,
|
1142 |
+
"loss": 0.3297,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 81.5,
|
1147 |
+
"grad_norm": 1.432960033416748,
|
1148 |
+
"learning_rate": 1e-06,
|
1149 |
+
"loss": 0.3829,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 82.0,
|
1154 |
+
"grad_norm": 1.785606026649475,
|
1155 |
+
"learning_rate": 1e-06,
|
1156 |
+
"loss": 0.4002,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 82.5,
|
1161 |
+
"grad_norm": 1.599700927734375,
|
1162 |
+
"learning_rate": 1e-06,
|
1163 |
+
"loss": 0.3272,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 83.0,
|
1168 |
+
"grad_norm": 1.3606281280517578,
|
1169 |
+
"learning_rate": 1e-06,
|
1170 |
+
"loss": 0.3462,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 83.5,
|
1175 |
+
"grad_norm": 1.311733603477478,
|
1176 |
+
"learning_rate": 1e-06,
|
1177 |
+
"loss": 0.3459,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 84.0,
|
1182 |
+
"grad_norm": 1.577045202255249,
|
1183 |
+
"learning_rate": 1e-06,
|
1184 |
+
"loss": 0.278,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 84.5,
|
1189 |
+
"grad_norm": 1.5641367435455322,
|
1190 |
+
"learning_rate": 1e-06,
|
1191 |
+
"loss": 0.3636,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 85.0,
|
1196 |
+
"grad_norm": 1.2674757242202759,
|
1197 |
+
"learning_rate": 1e-06,
|
1198 |
+
"loss": 0.3074,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 85.5,
|
1203 |
+
"grad_norm": 1.423398494720459,
|
1204 |
+
"learning_rate": 1e-06,
|
1205 |
+
"loss": 0.32,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 86.0,
|
1210 |
+
"grad_norm": 1.149396538734436,
|
1211 |
+
"learning_rate": 1e-06,
|
1212 |
+
"loss": 0.2577,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 86.5,
|
1217 |
+
"grad_norm": 1.687155842781067,
|
1218 |
+
"learning_rate": 1e-06,
|
1219 |
+
"loss": 0.2998,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 87.0,
|
1224 |
+
"grad_norm": 1.0938485860824585,
|
1225 |
+
"learning_rate": 1e-06,
|
1226 |
+
"loss": 0.2963,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 87.5,
|
1231 |
+
"grad_norm": 1.2464781999588013,
|
1232 |
+
"learning_rate": 1e-06,
|
1233 |
+
"loss": 0.2691,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 88.0,
|
1238 |
+
"grad_norm": 1.259631633758545,
|
1239 |
+
"learning_rate": 1e-06,
|
1240 |
+
"loss": 0.2815,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 88.5,
|
1245 |
+
"grad_norm": 1.2384026050567627,
|
1246 |
+
"learning_rate": 1e-06,
|
1247 |
+
"loss": 0.1886,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 89.0,
|
1252 |
+
"grad_norm": 1.209479808807373,
|
1253 |
+
"learning_rate": 1e-06,
|
1254 |
+
"loss": 0.3283,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 89.5,
|
1259 |
+
"grad_norm": 1.2056385278701782,
|
1260 |
+
"learning_rate": 1e-06,
|
1261 |
+
"loss": 0.2795,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 90.0,
|
1266 |
+
"grad_norm": 1.256142258644104,
|
1267 |
+
"learning_rate": 1e-06,
|
1268 |
+
"loss": 0.3071,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 90.5,
|
1273 |
+
"grad_norm": 1.2020200490951538,
|
1274 |
+
"learning_rate": 1e-06,
|
1275 |
+
"loss": 0.242,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 91.0,
|
1280 |
+
"grad_norm": 1.275436520576477,
|
1281 |
+
"learning_rate": 1e-06,
|
1282 |
+
"loss": 0.2505,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 91.5,
|
1287 |
+
"grad_norm": 1.1096285581588745,
|
1288 |
+
"learning_rate": 1e-06,
|
1289 |
+
"loss": 0.2833,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 92.0,
|
1294 |
+
"grad_norm": 1.0823484659194946,
|
1295 |
+
"learning_rate": 1e-06,
|
1296 |
+
"loss": 0.216,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 92.5,
|
1301 |
+
"grad_norm": 1.112586498260498,
|
1302 |
+
"learning_rate": 1e-06,
|
1303 |
+
"loss": 0.2292,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 93.0,
|
1308 |
+
"grad_norm": 1.004947543144226,
|
1309 |
+
"learning_rate": 1e-06,
|
1310 |
+
"loss": 0.2399,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 93.5,
|
1315 |
+
"grad_norm": 1.10011887550354,
|
1316 |
+
"learning_rate": 1e-06,
|
1317 |
+
"loss": 0.263,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 94.0,
|
1322 |
+
"grad_norm": 0.9535015821456909,
|
1323 |
+
"learning_rate": 1e-06,
|
1324 |
+
"loss": 0.218,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 94.5,
|
1329 |
+
"grad_norm": 1.0121976137161255,
|
1330 |
+
"learning_rate": 1e-06,
|
1331 |
+
"loss": 0.191,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 95.0,
|
1336 |
+
"grad_norm": 0.9026556611061096,
|
1337 |
+
"learning_rate": 1e-06,
|
1338 |
+
"loss": 0.2278,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 95.5,
|
1343 |
+
"grad_norm": 0.9730249643325806,
|
1344 |
+
"learning_rate": 1e-06,
|
1345 |
+
"loss": 0.2422,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 96.0,
|
1350 |
+
"grad_norm": 0.9288642406463623,
|
1351 |
+
"learning_rate": 1e-06,
|
1352 |
+
"loss": 0.2353,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 96.5,
|
1357 |
+
"grad_norm": 0.8509739637374878,
|
1358 |
+
"learning_rate": 1e-06,
|
1359 |
+
"loss": 0.2292,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 97.0,
|
1364 |
+
"grad_norm": 0.9947998523712158,
|
1365 |
+
"learning_rate": 1e-06,
|
1366 |
+
"loss": 0.2309,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 97.5,
|
1371 |
+
"grad_norm": 1.109282374382019,
|
1372 |
+
"learning_rate": 1e-06,
|
1373 |
+
"loss": 0.2369,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 98.0,
|
1378 |
+
"grad_norm": 0.8555991053581238,
|
1379 |
+
"learning_rate": 1e-06,
|
1380 |
+
"loss": 0.2011,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 98.5,
|
1385 |
+
"grad_norm": 0.9674638509750366,
|
1386 |
+
"learning_rate": 1e-06,
|
1387 |
+
"loss": 0.2385,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 99.0,
|
1392 |
+
"grad_norm": 0.781050443649292,
|
1393 |
+
"learning_rate": 1e-06,
|
1394 |
+
"loss": 0.1881,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 99.5,
|
1399 |
+
"grad_norm": 0.8599874377250671,
|
1400 |
+
"learning_rate": 1e-06,
|
1401 |
+
"loss": 0.2031,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 100.0,
|
1406 |
+
"grad_norm": 0.8711087703704834,
|
1407 |
+
"learning_rate": 1e-06,
|
1408 |
+
"loss": 0.2214,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 100.5,
|
1413 |
+
"grad_norm": 0.9213354587554932,
|
1414 |
+
"learning_rate": 1e-06,
|
1415 |
+
"loss": 0.2313,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 101.0,
|
1420 |
+
"grad_norm": 0.871462345123291,
|
1421 |
+
"learning_rate": 1e-06,
|
1422 |
+
"loss": 0.1978,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 101.5,
|
1427 |
+
"grad_norm": 0.7935155630111694,
|
1428 |
+
"learning_rate": 1e-06,
|
1429 |
+
"loss": 0.1873,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 102.0,
|
1434 |
+
"grad_norm": 0.9139618277549744,
|
1435 |
+
"learning_rate": 1e-06,
|
1436 |
+
"loss": 0.2283,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 102.5,
|
1441 |
+
"grad_norm": 0.8635255694389343,
|
1442 |
+
"learning_rate": 1e-06,
|
1443 |
+
"loss": 0.228,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 103.0,
|
1448 |
+
"grad_norm": 0.9213907122612,
|
1449 |
+
"learning_rate": 1e-06,
|
1450 |
+
"loss": 0.1837,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 103.5,
|
1455 |
+
"grad_norm": 0.7787233591079712,
|
1456 |
+
"learning_rate": 1e-06,
|
1457 |
+
"loss": 0.1652,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 104.0,
|
1462 |
+
"grad_norm": 0.8260976076126099,
|
1463 |
+
"learning_rate": 1e-06,
|
1464 |
+
"loss": 0.1986,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 104.5,
|
1469 |
+
"grad_norm": 0.8949348330497742,
|
1470 |
+
"learning_rate": 1e-06,
|
1471 |
+
"loss": 0.172,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 105.0,
|
1476 |
+
"grad_norm": 0.8772971630096436,
|
1477 |
+
"learning_rate": 1e-06,
|
1478 |
+
"loss": 0.201,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 105.5,
|
1483 |
+
"grad_norm": 0.7942510843276978,
|
1484 |
+
"learning_rate": 1e-06,
|
1485 |
+
"loss": 0.1754,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 106.0,
|
1490 |
+
"grad_norm": 0.8099932670593262,
|
1491 |
+
"learning_rate": 1e-06,
|
1492 |
+
"loss": 0.1586,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 106.5,
|
1497 |
+
"grad_norm": 0.880547285079956,
|
1498 |
+
"learning_rate": 1e-06,
|
1499 |
+
"loss": 0.1516,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 107.0,
|
1504 |
+
"grad_norm": 0.8132925033569336,
|
1505 |
+
"learning_rate": 1e-06,
|
1506 |
+
"loss": 0.1657,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 107.5,
|
1511 |
+
"grad_norm": 0.8455451726913452,
|
1512 |
+
"learning_rate": 1e-06,
|
1513 |
+
"loss": 0.1994,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 108.0,
|
1518 |
+
"grad_norm": 0.9202403426170349,
|
1519 |
+
"learning_rate": 1e-06,
|
1520 |
+
"loss": 0.1486,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 108.5,
|
1525 |
+
"grad_norm": 0.8958231806755066,
|
1526 |
+
"learning_rate": 1e-06,
|
1527 |
+
"loss": 0.1949,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 109.0,
|
1532 |
+
"grad_norm": 0.8252700567245483,
|
1533 |
+
"learning_rate": 1e-06,
|
1534 |
+
"loss": 0.1645,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 109.5,
|
1539 |
+
"grad_norm": 0.796977698802948,
|
1540 |
+
"learning_rate": 1e-06,
|
1541 |
+
"loss": 0.1297,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 110.0,
|
1546 |
+
"grad_norm": 0.8288230895996094,
|
1547 |
+
"learning_rate": 1e-06,
|
1548 |
+
"loss": 0.1967,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 110.5,
|
1553 |
+
"grad_norm": 0.9239948987960815,
|
1554 |
+
"learning_rate": 1e-06,
|
1555 |
+
"loss": 0.1546,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 111.0,
|
1560 |
+
"grad_norm": 0.8271680474281311,
|
1561 |
+
"learning_rate": 1e-06,
|
1562 |
+
"loss": 0.1748,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 111.5,
|
1567 |
+
"grad_norm": 0.7675459980964661,
|
1568 |
+
"learning_rate": 1e-06,
|
1569 |
+
"loss": 0.1262,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 112.0,
|
1574 |
+
"grad_norm": 0.7924964427947998,
|
1575 |
+
"learning_rate": 1e-06,
|
1576 |
+
"loss": 0.1434,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 112.5,
|
1581 |
+
"grad_norm": 0.9103841185569763,
|
1582 |
+
"learning_rate": 1e-06,
|
1583 |
+
"loss": 0.186,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 113.0,
|
1588 |
+
"grad_norm": 0.8457869291305542,
|
1589 |
+
"learning_rate": 1e-06,
|
1590 |
+
"loss": 0.1384,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 113.5,
|
1595 |
+
"grad_norm": 0.8478854298591614,
|
1596 |
+
"learning_rate": 1e-06,
|
1597 |
+
"loss": 0.1743,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 114.0,
|
1602 |
+
"grad_norm": 0.8645926713943481,
|
1603 |
+
"learning_rate": 1e-06,
|
1604 |
+
"loss": 0.1514,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 114.5,
|
1609 |
+
"grad_norm": 0.9108607769012451,
|
1610 |
+
"learning_rate": 1e-06,
|
1611 |
+
"loss": 0.1759,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 115.0,
|
1616 |
+
"grad_norm": 0.8300096392631531,
|
1617 |
+
"learning_rate": 1e-06,
|
1618 |
+
"loss": 0.1375,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 115.5,
|
1623 |
+
"grad_norm": 0.9206691384315491,
|
1624 |
+
"learning_rate": 1e-06,
|
1625 |
+
"loss": 0.1369,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 116.0,
|
1630 |
+
"grad_norm": 0.7558128833770752,
|
1631 |
+
"learning_rate": 1e-06,
|
1632 |
+
"loss": 0.1242,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 116.5,
|
1637 |
+
"grad_norm": 0.8597300052642822,
|
1638 |
+
"learning_rate": 1e-06,
|
1639 |
+
"loss": 0.128,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 117.0,
|
1644 |
+
"grad_norm": 0.8134746551513672,
|
1645 |
+
"learning_rate": 1e-06,
|
1646 |
+
"loss": 0.1547,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 117.5,
|
1651 |
+
"grad_norm": 0.9657474160194397,
|
1652 |
+
"learning_rate": 1e-06,
|
1653 |
+
"loss": 0.1534,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 118.0,
|
1658 |
+
"grad_norm": 0.7481112480163574,
|
1659 |
+
"learning_rate": 1e-06,
|
1660 |
+
"loss": 0.1282,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 118.5,
|
1665 |
+
"grad_norm": 0.6953885555267334,
|
1666 |
+
"learning_rate": 1e-06,
|
1667 |
+
"loss": 0.0988,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 119.0,
|
1672 |
+
"grad_norm": 0.8225458860397339,
|
1673 |
+
"learning_rate": 1e-06,
|
1674 |
+
"loss": 0.1135,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 119.5,
|
1679 |
+
"grad_norm": 0.7915026545524597,
|
1680 |
+
"learning_rate": 1e-06,
|
1681 |
+
"loss": 0.1043,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 120.0,
|
1686 |
+
"grad_norm": 0.7963205575942993,
|
1687 |
+
"learning_rate": 1e-06,
|
1688 |
+
"loss": 0.1474,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 120.5,
|
1693 |
+
"grad_norm": 0.796559751033783,
|
1694 |
+
"learning_rate": 1e-06,
|
1695 |
+
"loss": 0.1295,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 121.0,
|
1700 |
+
"grad_norm": 0.8174726963043213,
|
1701 |
+
"learning_rate": 1e-06,
|
1702 |
+
"loss": 0.1305,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 121.5,
|
1707 |
+
"grad_norm": 0.7992000579833984,
|
1708 |
+
"learning_rate": 1e-06,
|
1709 |
+
"loss": 0.1078,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 122.0,
|
1714 |
+
"grad_norm": 0.7742059826850891,
|
1715 |
+
"learning_rate": 1e-06,
|
1716 |
+
"loss": 0.1082,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 122.5,
|
1721 |
+
"grad_norm": 0.7738575339317322,
|
1722 |
+
"learning_rate": 1e-06,
|
1723 |
+
"loss": 0.1075,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 123.0,
|
1728 |
+
"grad_norm": 0.7644574642181396,
|
1729 |
+
"learning_rate": 1e-06,
|
1730 |
+
"loss": 0.1228,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 123.5,
|
1735 |
+
"grad_norm": 0.7060183882713318,
|
1736 |
+
"learning_rate": 1e-06,
|
1737 |
+
"loss": 0.1115,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 124.0,
|
1742 |
+
"grad_norm": 0.7386205196380615,
|
1743 |
+
"learning_rate": 1e-06,
|
1744 |
+
"loss": 0.1181,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 124.5,
|
1749 |
+
"grad_norm": 0.7068957090377808,
|
1750 |
+
"learning_rate": 1e-06,
|
1751 |
+
"loss": 0.1156,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 125.0,
|
1756 |
+
"grad_norm": 0.7993431687355042,
|
1757 |
+
"learning_rate": 1e-06,
|
1758 |
+
"loss": 0.088,
|
1759 |
+
"step": 250
|
1760 |
+
}
|
1761 |
+
],
|
1762 |
+
"logging_steps": 1.0,
|
1763 |
+
"max_steps": 10000,
|
1764 |
+
"num_input_tokens_seen": 0,
|
1765 |
+
"num_train_epochs": 5000,
|
1766 |
+
"save_steps": 50,
|
1767 |
+
"stateful_callbacks": {
|
1768 |
+
"TrainerControl": {
|
1769 |
+
"args": {
|
1770 |
+
"should_epoch_stop": false,
|
1771 |
+
"should_evaluate": false,
|
1772 |
+
"should_log": false,
|
1773 |
+
"should_save": true,
|
1774 |
+
"should_training_stop": false
|
1775 |
+
},
|
1776 |
+
"attributes": {}
|
1777 |
+
}
|
1778 |
+
},
|
1779 |
+
"total_flos": 3.317943074155397e+17,
|
1780 |
+
"train_batch_size": 4,
|
1781 |
+
"trial_name": null,
|
1782 |
+
"trial_params": null
|
1783 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eddbfe2b39be9df083ba4ee7aa28f6cb6116ae440c069e5ea511599f289c0bdc
|
3 |
+
size 7032
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|