Datasets:
File size: 2,870 Bytes
5945e4d 63300b9 5945e4d c3a41d2 5945e4d bd8d178 5945e4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: mit
language:
- en
tags:
- text-classification
- social-science
- politics
- sentiment-analysis
- benchmark
task_categories:
- text-classification
task_ids:
- multi-class-classification
- sentiment-classification
annotations_creators:
- human-annotated
multilinguality: monolingual
---
[](https://github.com/iqss-research/readme-software)
# Automated Nonparametric Content Analysis Datasets
This repository provides the four benchmark datasets used in:
> Connor T. Jerzak, Gary King, and Anton Strezhnev. **An Improved Method of Automated Nonparametric Content Analysis for Social Science.** *Political Analysis*, 31(1): 42–58, 2023.
Each dataset is formatted for easy loading in Python and R (CSV). Labels are integer-coded from `1,...,K`; text is provided as raw strings.
## Datasets
| Name | Documents | Categories | Source & Description |
| --------------- | --------: | ---------: | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **enron.csv** | 1,426 | 5 | Corporate emails from the Enron corpus, hand-coded into five thematic categories (e.g., business, personal, legal) |
| **immigration.csv** | 462 | 5 | Newspaper editorials on immigration policy, hand-coded into five sentiment/policy categories; originally used in Hopkins & King (2010) and Jerzak et al. (2023) |
| **clinton.csv** | 1,938 | 7 | Blog posts about Hillary Clinton from 2008, hand-coded into seven topical categories; feature space of \~3,623 word stems |
| **stanford.csv** | 11,855 | 5 | Sentences from the Stanford Sentiment Treebank, labeled on a five-point sentiment scale; commonly used in text quantification research |
---
### Citation
Connor T. Jerzak, Gary King, Anton Strezhnev. *An Improved Method of Automated Nonparametric Content Analysis for Social Science*. Political Analysis, 31(1): 42–58, 2023. [\[PDF\]](https://gking.harvard.edu/sites/scholar.harvard.edu/files/gking/files/div-class-title-an-improved-method-of-automated-nonparametric-content-analysis-for-social-science-div.pdf)
```
@article{JSK-readme2,
title={An Improved Method of Automated Nonparametric Content Analysis for Social Science},
author={Jerzak, Connor T. and Gary King and Anton Strezhnev},
journal={Political Analysis},
year={2023},
volume={31},
number={1},
pages={42-58}
}
```
|