--- license: apache-2.0 language: - zh - en tags: - vlm - benchmark - graphic-reasoning - intelligence-test --- # 🧠 ReasonBench: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning background

image:background

## 🌐 Overview **ReasonBench** is a comprehensive benchmark designed to evaluate Visual Language Models (VLMs) on complex graphical reasoning tasks. It contains **1,613 problems** collected from real-world intelligence tests, covering **11 core cognitive dimensions** and **29 task types**. This benchmark provides a robust framework for assessing VLMs' spatial, relational, and abstract reasoning capabilities. **Dataset Type**: Visual Language Reasoning · Graphical Reasoning · Benchmark Evaluation **Paper Link**:[https://arxiv.org/abs/2508.00323](https://arxiv.org/abs/2508.00323) ## 📊 Dataset Structure ### Core Cognitive Dimensions & Task Types | Cognitive Dimension | Task Type | Count | |--------------------------|-----------------------------|-------| | **Positional Patterns** | Translation | 94 | | | Rotation | 56 | | | Combination | 30 | | **Stylistic Patterns** | Crossing | 54 | | | Addition/Subtraction | 67 | | | Black/White Operation | 63 | | **Attribute Patterns** | Symmetry | 109 | | | Open/Close State | 19 | | | Combination | 6 | | **Quantitative Patterns**| Lines | 173 | | | Faces | 137 | | | Points | 66 | | | Elements | 94 | | | Combination | 50 | | **Spatial Patterns** | Cubes | 109 | | | 3D | 46 | | | Polyhedrons | 17 | | | Three Views | 40 | | | Cross-Sections | 35 | | | Spatial Quantitative Trans. | 10 | | **Special Patterns** | 2D Combination | 31 | | | Figure Relations | 40 | | **Alphanumeric** | Alphanumeric | 27 | | **B&W Blocks** | Black & White Blocks | 32 | | **Other Patterns** | Comprehensive | 34 | | **MENSA** | Task 1 | 35 | | | Task 2 | 39 | | **Raven** | Task 1 | 40 | | | Task 2 | 60 | ### 🖼️ Input Formats | Format | Description | |-----------------------|-------------| | **Integrated Format** | Presents questions and options in a single image for holistic processing | | **Separated Format** | Splits questions and options into multiple images for step-by-step reasoning | ## 🔍 Key Features - **Multi-format Evaluation**: Supports both integrated and separated input formats - **Full Accessibility**: Provides public URLs for all images (questions, options, and combined sets) - **Human Baseline**: Includes human performance metrics for comparison - **Diverse Tasks**: Covers 29 distinct reasoning task types across 11 cognitive dimensions ## 🚀 Usage(GPT-4o example) ```python import base64 import requests import os from openai import OpenAI # Requires openai>=1.0.0 # Configuration api_key = os.getenv("OPENAI_API_KEY") if not api_key: raise ValueError("Missing OPENAI_API_KEY environment variable") # Initialize client (official SDK approach) client = OpenAI(api_key=api_key) def process_image_question(image_path: str, question: str, max_tokens=300): """Send image and question to GPT-4o API""" # Encode image to base64 base64_image = base64.b64encode(open(image_path, "rb").read()).decode("utf-8") # Construct messages payload messages = [ { "role": "user", "content": [ {"type": "text", "text": question}, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}", "detail": "auto" # Options: low, high, auto } } ] } ] # Make API request response = client.chat.completions.create( model="gpt-4o", messages=messages, max_tokens=max_tokens ) return response.choices[0].message.content # Example usage if __name__ == "__main__": image_path = "path/to/your/image.jpg" # Update with actual path user_question = "What's in this image?" # Customize your question try: answer = process_image_question(image_path, user_question) print("AI Response:", answer) except Exception as e: print(f"Error: {str(e)}") ``` # 🧠 ReasonBench:复杂图形推理的视觉语言模型评估基准 ## 🌐 概述 **ReasonBench** 是一个用于评估视觉语言模型(VLMs)在复杂图形推理任务表现的基准测试。数据集包含从真实智力测试中收集的 **1,613个问题**,覆盖**11个核心认知维度**和**29种任务类型**,为评估VLMs的空间、关系和抽象推理能力提供综合框架。 **数据集类型**:视觉语言推理 · 图形推理 · 基准评估 **论文地址**:[https://arxiv.org/abs/2508.00323](https://arxiv.org/abs/2508.00323) ## 📊 数据结构 ### 核心认知维度与任务类型 | 认知维度 | 任务类型 | 数量 | |---------------------|------------------------|------| | **位置规律** | 平移 | 94 | | | 旋转 | 56 | | | 组合 | 30 | | **样式规律** | 穿越 | 54 | | | 加减法 | 67 | | | 黑白运算 | 63 | | **属性规律** | 对称 | 109 | | | 开闭状态 | 19 | | | 组合 | 6 | | **数量规律** | 线 | 173 | | | 面 | 137 | | | 点 | 66 | | | 元素 | 94 | | | 组合 | 50 | | **空间规律** | 立方体 | 109 | | | 3D | 46 | | | 多面体 | 17 | | | 三视图 | 40 | | | 剖视图 | 35 | | | 空间数量变换 | 10 | | **特殊规律** | 2D组合 | 31 | | | 图形关系 | 40 | | **字母数字** | 字母数字 | 27 | | **黑白块** | 黑白块 | 32 | | **其他规律** | 综合 | 34 | | **门萨** | 任务1 | 35 | | | 任务2 | 39 | | **瑞文** | 任务1 | 40 | | | 任务2 | 60 | ### 🖼️ 输入格式 | 格式 | 描述 | |---------------------|------| | **集成格式** | 问题与选项呈现在单个图形中,便于模型整体处理 | | **分离格式** | 将问题与选项拆分为多个图形,测试分步推理能力 | ## 🔍 核心特性 - **多格式评估**:支持整体式和分隔式两种输入格式 - **完全开放**:公开所有格式的图片URL(题目、选项、题目+选项) - **人类基准**:提供人类准确率作为参考基准 - **多样化任务**:覆盖11个认知维度的29种推理任务 ## 🚀 使用示例(以openai GPT-4o为例) ```python import base64 import requests import os # 配置OpenAI API密钥 api_key = os.getenv("OPENAI_API_KEY") # 建议将密钥存储在环境变量中 if not api_key: raise ValueError("请设置OPENAI_API_KEY环境变量") # 图像处理函数 def encode_image(image_path): """将本地图像编码为base64字符串""" with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') # 示例图像路径和问题 image_path = "path/to/your/image.jpg" # 替换为你的图像路径 question = "描述这张图片的内容" # 替换为你的问题 # 构建API请求 headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } payload = { "model": "gpt-4o", # 使用支持图像的模型 "messages": [ { "role": "user", "content": [ { "type": "text", "text": question }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{encode_image(image_path)}" } } ] } ], "max_tokens": 300 # 控制响应长度 } # 发送请求 response = requests.post( "https://api.openai.com/v1/chat/completions", headers=headers, json=payload ) # 处理响应 if response.status_code == 200: result = response.json() answer = result['choices'][0]['message']['content'] print("AI回答:", answer) else: print("请求失败,状态码:", response.status_code) print("错误信息:", response.text) ``` 如果需要引用,请引用下列内容 ``` { author = {Jianyi Zhang and Xu Ji and Ziyin Zhou and Yuchen Zhou and Shubo Shi and Haoyu Wu and Zhen Li and Shizhao Liu}, title = {Oedipus and the Sphinx: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning}, howpublished = {arXiv preprint}, archivePrefix = {arXiv}, eprint = {2508.00323}, primaryClass = {cs.AI}, year = {2025}, note = {arXiv:2508.00323v1 [cs.AI]}, url = {https://arxiv.org/abs/2508.00323} } ```