--- annotations_creators: - crowdsourced - expert-generated - machine-generated language_creators: - crowdsourced - expert-generated - machine-generated language: - af - ar - az - be - bg - bn - ca - ceb - cs - cy - da - de - el - en - es - et - eu - fa - fi - fr - ga - gl - he - hi - hr - hu - hy - id - it - ja - ka - ko - la - lt - lv - ms - nl - pl - pt - ro - ru - sk - sl - sq - sr - sv - ta - th - tr - uk - ur - vi - zh license: - cc-by-nc-sa-4.0 multilinguality: - translation size_categories: - 100K<n<1M source_datasets: - extended|lama task_categories: - question-answering - text-classification task_ids: - open-domain-qa - text-scoring paperswithcode_id: null pretty_name: MLama tags: - probing dataset_info: features: - name: uuid dtype: string - name: lineid dtype: uint32 - name: obj_uri dtype: string - name: obj_label dtype: string - name: sub_uri dtype: string - name: sub_label dtype: string - name: template dtype: string - name: language dtype: string - name: predicate_id dtype: string config_name: all splits: - name: test num_bytes: 125919995 num_examples: 843143 download_size: 40772287 dataset_size: 125919995 --- # Dataset Card for [Dataset Name] ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Multilingual LAMA](http://cistern.cis.lmu.de/mlama/) - **Repository:** [Github](https://github.com/norakassner/mlama) - **Paper:** [Arxiv](https://arxiv.org/abs/2102.00894) - **Point of Contact:** [Contact section](http://cistern.cis.lmu.de/mlama/) ### Dataset Summary This dataset provides the data for mLAMA, a multilingual version of LAMA. Regarding LAMA see https://github.com/facebookresearch/LAMA. For mLAMA the TREx and GoogleRE part of LAMA was considered and machine translated using Google Translate, and the Wikidata and Google Knowledge Graph API. The machine translated templates were checked for validity, i.e., whether they contain exactly one '[X]' and one '[Y]'. This data can be used for creating fill-in-the-blank queries like "Paris is the capital of [MASK]" across 53 languages. For more details see the website http://cistern.cis.lmu.de/mlama/ or the github repo https://github.com/norakassner/mlama. ### Supported Tasks and Leaderboards Language model knowledge probing. ### Languages This dataset contains data in 53 languages: af,ar,az,be,bg,bn,ca,ceb,cs,cy,da,de,el,en,es,et,eu,fa,fi,fr,ga,gl,he,hi,hr,hu,hy,id,it,ja,ka,ko,la,lt,lv,ms,nl,pl,pt,ro,ru,sk,sl,sq,sr,sv,ta,th,tr,uk,ur,vi,zh ## Dataset Structure For each of the 53 languages and each of the 43 relations/predicates there is a set of triples. ### Data Instances For each language and relation there are triples, that consists of an object, a predicate and a subject. For each predicate there is a template available. An example for `dataset["test"][0]` is given here: ```python { 'language': 'af', 'lineid': 0, 'obj_label': 'Frankryk', 'obj_uri': 'Q142', 'predicate_id': 'P1001', 'sub_label': 'President van Frankryk', 'sub_uri': 'Q191954', 'template': "[X] is 'n wettige term in [Y].", 'uuid': '3fe3d4da-9df9-45ba-8109-784ce5fba38a' } ``` ### Data Fields Each instance has the following fields * "uuid": a unique identifier * "lineid": a identifier unique to mlama * "obj_id": knowledge graph id of the object * "obj_label": surface form of the object * "sub_id": knowledge graph id of the subject * "sub_label": surface form of the subject * "template": template * "language": language code * "predicate_id": relation id ### Data Splits There is only one partition that is labelled as 'test data'. ## Dataset Creation ### Curation Rationale The dataset was translated into 53 languages to investigate knowledge in pretrained language models multilingually. ### Source Data #### Initial Data Collection and Normalization The data has several sources: LAMA (https://github.com/facebookresearch/LAMA) licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) T-REx (https://hadyelsahar.github.io/t-rex/) licensed under Creative Commons Attribution-ShareAlike 4.0 International License Google-RE (https://github.com/google-research-datasets/relation-extraction-corpus) Wikidata (https://www.wikidata.org/) licensed under Creative Commons CC0 License and Creative Commons Attribution-ShareAlike License #### Who are the source language producers? See links above. ### Annotations #### Annotation process Crowdsourced (wikidata) and machine translated. #### Who are the annotators? Unknown. ### Personal and Sensitive Information Names of (most likely) famous people who have entries in Google Knowledge Graph or Wikidata. ## Considerations for Using the Data Data was created through machine translation and automatic processes. ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations Not all triples are available in all languages. ## Additional Information ### Dataset Curators The authors of the mLAMA paper and the authors of the original datasets. ### Licensing Information The Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). https://creativecommons.org/licenses/by-nc-sa/4.0/ ### Citation Information ``` @article{kassner2021multilingual, author = {Nora Kassner and Philipp Dufter and Hinrich Sch{\"{u}}tze}, title = {Multilingual {LAMA:} Investigating Knowledge in Multilingual Pretrained Language Models}, journal = {CoRR}, volume = {abs/2102.00894}, year = {2021}, url = {https://arxiv.org/abs/2102.00894}, archivePrefix = {arXiv}, eprint = {2102.00894}, timestamp = {Tue, 09 Feb 2021 13:35:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2102-00894.bib}, bibsource = {dblp computer science bibliography, https://dblp.org}, note = {to appear in EACL2021} } ``` ### Contributions Thanks to [@pdufter](https://github.com/pdufter) for adding this dataset.