task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #Julia | Julia | function extendedsqrt(x)
try sqrt(x)
catch
if x isa Number
sqrt(complex(x, 0))
else
throw(DomainError())
end
end
end
@show extendedsqrt(1) # 1
@show extendedsqrt(-1) # 0.0 + 1.0im
@show extendedsqrt('x') # ERROR: DomainError |
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #Kotlin | Kotlin | // version 1.0.6
// In Kotlin all Exception classes derive from Throwable and, by convention, end with the word 'Exception'
class MyException (override val message: String?): Throwable(message)
fun foo() {
throw MyException("Bad foo!")
}
fun goo() {
try {
foo()
}
catch (me: MyException) {
println("Caught MyException due to '${me.message}'")
println("\nThe stack trace is:\n")
me.printStackTrace()
}
}
fun main(args: Array<String>) {
goo()
} |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #FreeBASIC | FreeBASIC | ' FB 1.05.0 Win64
Shell "dir"
Sleep |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #Frink | Frink | r = callJava["java.lang.Runtime", "getRuntime"]
println[read[r.exec["dir"].getInputStream[]]] |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #FunL | FunL | import sys.execute
execute( if $os.startsWith('Windows') then 'dir' else 'ls' ) |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #ATS | ATS |
fun
fact
(
n: int
) : int = res where
{
var n: int = n
var res: int = 1
val () = while (n > 0) (res := res * n; n := n - 1)
}
|
http://rosettacode.org/wiki/Exponentiation_operator | Exponentiation operator | Most programming languages have a built-in implementation of exponentiation.
Task
Re-implement integer exponentiation for both intint and floatint as both a procedure, and an operator (if your language supports operator definition).
If the language supports operator (or procedure) overloading, then an overloaded form should be provided for both intint and floatint variants.
Related tasks
Exponentiation order
arbitrary-precision integers (included)
Exponentiation with infix operators in (or operating on) the base
| #Modula-2 | Modula-2 |
(* Library Interface *)
DEFINITION MODULE Exponentiation;
PROCEDURE IntExp(base, exp : INTEGER) : INTEGER;
(* Raises base to the power of exp and returns the result
both base and exp must be of type INTEGER *)
PROCEDURE RealExp(base : REAL; exp : INTEGER) : REAL;
(* Raises base to the power of exp and returns the result
base must be of type REAL, exp of type INTEGER *)
END Exponentiation.
(* Library Implementation *)
IMPLEMENTATION MODULE Exponentiation;
PROCEDURE IntExp(base, exp : INTEGER) : INTEGER;
VAR
i, res : INTEGER;
BEGIN
res := 1;
FOR i := 1 TO exp DO
res := res * base;
END;
RETURN res;
END IntExp;
PROCEDURE RealExp(base: REAL; exp: INTEGER) : REAL;
VAR
i : INTEGER;
res : REAL;
BEGIN
res := 1.0;
IF exp < 0 THEN
FOR i := exp TO -1 DO
res := res / base;
END;
ELSE (* exp >= 0 *)
FOR i := 1 TO exp DO
res := res * base;
END;
END;
RETURN res;
END RealExp;
END Exponentiation.
|
http://rosettacode.org/wiki/Extend_your_language | Extend your language | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Some programming languages allow you to extend the language. While this can be done to a certain degree in most languages (e.g. by using macros), other languages go much further. Most notably in the Forth and Lisp families, programming per se is done by extending the language without any formal distinction between built-in and user-defined elements.
If your language supports it, show how to introduce a new flow control mechanism. A practical and useful example is a four-way branch:
Occasionally, code must be written that depends on two conditions, resulting in up to four branches (depending on whether both, only the first, only the second, or none of the conditions are "true"). In a C-like language this could look like the following:
if (condition1isTrue) {
if (condition2isTrue)
bothConditionsAreTrue();
else
firstConditionIsTrue();
}
else if (condition2isTrue)
secondConditionIsTrue();
else
noConditionIsTrue();
Besides being rather cluttered, the statement(s) for 'condition2isTrue' must be written down twice. If 'condition2isTrue' were a lengthy and involved expression, it would be quite unreadable, and the code generated by the compiler might be unnecessarily large.
This can be improved by introducing a new keyword if2. It is similar to if, but takes two conditional statements instead of one, and up to three 'else' statements. One proposal (in pseudo-C syntax) might be:
if2 (condition1isTrue) (condition2isTrue)
bothConditionsAreTrue();
else1
firstConditionIsTrue();
else2
secondConditionIsTrue();
else
noConditionIsTrue();
Pick the syntax which suits your language. The keywords 'else1' and 'else2' are just examples. The new conditional expression should look, nest and behave analogously to the language's built-in 'if' statement.
| #Scala | Scala | scala> def if2[A](x: => Boolean)(y: => Boolean)(xyt: => A) = new {
| def else1(xt: => A) = new {
| def else2(yt: => A) = new {
| def orElse(nt: => A) = {
| if(x) {
| if(y) xyt else xt
| } else if(y) {
| yt
| } else {
| nt
| }
| }
| }
| }
| }
if2: [A](x: => Boolean)(y: => Boolean)(xyt: => A)java.lang.Object{def else1(xt: => A): java.lang.Object{def else2(yt: =>
A): java.lang.Object{def orElse(nt: => A): A}}} |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #Seed7 | Seed7 | $ include "seed7_05.s7i";
const proc: main is func
local
var integer: number is 0;
begin
for number range 1 to 100 do
if number rem 15 = 0 then
writeln("FizzBuzz");
elsif number rem 5 = 0 then
writeln("Buzz");
elsif number rem 3 = 0 then
writeln("Fizz");
else
writeln(number);
end if;
end for;
end func; |
http://rosettacode.org/wiki/Extensible_prime_generator | Extensible prime generator | Task
Write a generator of prime numbers, in order, that will automatically adjust to accommodate the generation of any reasonably high prime.
The routine should demonstrably rely on either:
Being based on an open-ended counter set to count without upper limit other than system or programming language limits. In this case, explain where this counter is in the code.
Being based on a limit that is extended automatically. In this case, choose a small limit that ensures the limit will be passed when generating some of the values to be asked for below.
If other methods of creating an extensible prime generator are used, the algorithm's means of extensibility/lack of limits should be stated.
The routine should be used to:
Show the first twenty primes.
Show the primes between 100 and 150.
Show the number of primes between 7,700 and 8,000.
Show the 10,000th prime.
Show output on this page.
Note: You may reference code already on this site if it is written to be imported/included, then only the code necessary for import and the performance of this task need be shown. (It is also important to leave a forward link on the referenced tasks entry so that later editors know that the code is used for multiple tasks).
Note 2: If a languages in-built prime generator is extensible or is guaranteed to generate primes up to a system limit, (231 or memory overflow for example), then this may be used as long as an explanation of the limits of the prime generator is also given. (Which may include a link to/excerpt from, language documentation).
Note 3:The task is written so it may be useful in solving the task Emirp primes as well as others (depending on its efficiency).
Reference
Prime Numbers. Website with large count of primes.
| #Ring | Ring |
see "first twenty primes : "
i = 1
nr = 0
while i <= 20
nr += 1
if isPrime(nr) see " " + nr i += 1 ok
end
see "primes between 100 and 150 : "
for nr = 100 to 150
if isPrime(nr) see " " + nr ok
next
see nl
see "primes between 7,700 and 8,000 : "
i = 0
for nr = 7700 to 8000
if isPrime(nr) i += 1 ok
next
see i + nl
see "The 10,000th prime : "
i = 1
nr = 0
while i <= 10000
nr += 1
if isPrime(nr) i += 1 ok
end
see nr + nl
func isPrime n
if n <= 1 return false ok
if n <= 3 return true ok
if (n & 1) = 0 return false ok
for t = 3 to sqrt(n) step 2
if (n % t) = 0 return false ok
next
return true
|
http://rosettacode.org/wiki/Execute_Brain**** | Execute Brain**** | Execute Brain**** is an implementation of Brainf***.
Other implementations of Brainf***.
RCBF is a set of Brainf*** compilers and interpreters written for Rosetta Code in a variety of languages.
Below are links to each of the versions of RCBF.
An implementation need only properly implement the following instructions:
Command
Description
>
Move the pointer to the right
<
Move the pointer to the left
+
Increment the memory cell under the pointer
-
Decrement the memory cell under the pointer
.
Output the character signified by the cell at the pointer
,
Input a character and store it in the cell at the pointer
[
Jump past the matching ] if the cell under the pointer is 0
]
Jump back to the matching [ if the cell under the pointer is nonzero
Any cell size is allowed, EOF (End-O-File) support is optional, as is whether you have bounded or unbounded memory.
| #Brat | Brat |
".""X"r~"-""\/^^{vvvv}c!!!-.256.%{vvvv}c!sa\/"r~"+""\/^^{vvvv}c!!!+.
256.%{vvvv}c!sa\/"r~"[""{"r~"]""}{\/^^{vvvv}c!!!}w!"r~">""+."r~"<""
-."r~"X""\/^^{vvvv}c!!!L[+]\/+]\/+]^^3\/.+1RAp^\/+]\/[-1RA^^-]\/[-\/
"r~"\'\'1 128r@{vv0}m[0"\/.+pse!vvvv<-sh
|
http://rosettacode.org/wiki/Evolutionary_algorithm | Evolutionary algorithm | Starting with:
The target string: "METHINKS IT IS LIKE A WEASEL".
An array of random characters chosen from the set of upper-case letters together with the space, and of the same length as the target string. (Call it the parent).
A fitness function that computes the ‘closeness’ of its argument to the target string.
A mutate function that given a string and a mutation rate returns a copy of the string, with some characters probably mutated.
While the parent is not yet the target:
copy the parent C times, each time allowing some random probability that another character might be substituted using mutate.
Assess the fitness of the parent and all the copies to the target and make the most fit string the new parent, discarding the others.
repeat until the parent converges, (hopefully), to the target.
See also
Wikipedia entry: Weasel algorithm.
Wikipedia entry: Evolutionary algorithm.
Note: to aid comparison, try and ensure the variables and functions mentioned in the task description appear in solutions
A cursory examination of a few of the solutions reveals that the instructions have not been followed rigorously in some solutions. Specifically,
While the parent is not yet the target:
copy the parent C times, each time allowing some random probability that another character might be substituted using mutate.
Note that some of the the solutions given retain characters in the mutated string that are correct in the target string. However, the instruction above does not state to retain any of the characters while performing the mutation. Although some may believe to do so is implied from the use of "converges"
(:* repeat until the parent converges, (hopefully), to the target.
Strictly speaking, the new parent should be selected from the new pool of mutations, and then the new parent used to generate the next set of mutations with parent characters getting retained only by not being mutated. It then becomes possible that the new set of mutations has no member that is fitter than the parent!
As illustration of this error, the code for 8th has the following remark.
Create a new string based on the TOS, changing randomly any characters which
don't already match the target:
NOTE: this has been changed, the 8th version is completely random now
Clearly, this algo will be applying the mutation function only to the parent characters that don't match to the target characters!
To ensure that the new parent is never less fit than the prior parent, both the parent and all of the latest mutations are subjected to the fitness test to select the next parent.
| #CLU | CLU | fitness = proc (s, t: string) returns (int)
f: int := 0
for i: int in int$from_to(1,string$size(s)) do
if s[i] ~= t[i] then f := f-1 end
end
return(f)
end fitness
mutate = proc (mut: int, s: string) returns (string)
own charset: string := " ABCDEFGHIJKLMNOPQRSTUVWXYZ"
out: array[char] := array[char]$predict(1,string$size(s))
for c: char in string$chars(s) do
if random$next(10000) < mut then
c := charset[1+random$next(string$size(charset))]
end
array[char]$addh(out,c)
end
return(string$ac2s(out))
end mutate
weasel = iter (mut, c: int, tgt: string) yields (string)
own charset: string := " ABCDEFGHIJKLMNOPQRSTUVWXYZ"
start: array[char] := array[char]$[]
for i: int in int$from_to(1,string$size(tgt)) do
array[char]$addh(start,charset[1+random$next(string$size(charset))])
end
cur: string := string$ac2s(start)
while true do
yield(cur)
if cur = tgt then break end
best: string := cur
best_fitness: int := fitness(cur, tgt)
for i: int in int$from_to(2,c) do
next: string := mutate(mut, cur)
next_fitness: int := fitness(next, tgt)
if best_fitness <= next_fitness then
best, best_fitness := next, next_fitness
end
end
cur := best
end
end weasel
start_up = proc ()
d: date := now()
random$seed(d.second + 60*(d.minute + 60*d.hour))
po: stream := stream$primary_output()
for m: string in weasel(100, 1000, "METHINKS IT IS LIKE A WEASEL") do
stream$putl(po, m)
end
end start_up |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Lean | Lean |
-- Our first implementation is the usual recursive definition:
def fib1 : ℕ → ℕ
| 0 := 0
| 1 := 1
| (n + 2) := fib1 n + fib1 (n + 1)
-- We can give a second more efficient implementation using an auxiliary function:
def fib_aux : ℕ → ℕ → ℕ → ℕ
| 0 a b := b
| (n + 1) a b := fib_aux n (a + b) a
def fib2 : ℕ → ℕ
| n := fib_aux n 1 0
-- Use #eval to check computations:
#eval fib1 20
#eval fib2 20 |
http://rosettacode.org/wiki/Execute_HQ9%2B | Execute HQ9+ | Task
Implement a HQ9+ interpreter or compiler.
| #Perl | Perl | #!/usr/bin/perl
use warnings;
use strict;
use feature qw(say switch);
my @programme = <> or die "No input. Specify a program file or pipe it to the standard input.\n";
for (@programme) {
for my $char (split //) {
given ($char) {
when ('H') { hello() }
when ('Q') { quinne(@programme) }
when ('9') { bottles() }
default { die "Unknown instruction $char.\n" } # Comment this line to ignore other instructions.
}
}
}
sub hello {
print 'Hello World';
}
sub quinne {
print @programme;
}
sub bottles {
for my $n (reverse 0 .. 99) {
my $before = bottle_count($n);
my $after = bottle_count($n - 1);
my $action = bottle_action($n);
say "\u$before of beer on the wall, $before of beer.";
say "$action, $after of beer on the wall.";
say q() if $n;
}
}
sub bottle_count {
my $n = shift;
given ($n) {
when (-1) { return '99 bottles' }
when (0) { return 'no more bottles' }
when (1) { return '1 bottle' }
default { return "$n bottles" }
}
}
sub bottle_action {
my $n = shift;
return 'Take one down and pass it around' if $n > 0;
return 'Go to the store and buy some more';
} |
http://rosettacode.org/wiki/Execute_a_Markov_algorithm | Execute a Markov algorithm | Execute a Markov algorithm
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create an interpreter for a Markov Algorithm.
Rules have the syntax:
<ruleset> ::= ((<comment> | <rule>) <newline>+)*
<comment> ::= # {<any character>}
<rule> ::= <pattern> <whitespace> -> <whitespace> [.] <replacement>
<whitespace> ::= (<tab> | <space>) [<whitespace>]
There is one rule per line.
If there is a . (period) present before the <replacement>, then this is a terminating rule in which case the interpreter must halt execution.
A ruleset consists of a sequence of rules, with optional comments.
Rulesets
Use the following tests on entries:
Ruleset 1
# This rules file is extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
A -> apple
B -> bag
S -> shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate the output:
I bought a bag of apples from my brother.
Ruleset 2
A test of the terminating rule
# Slightly modified from the rules on Wikipedia
A -> apple
B -> bag
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate:
I bought a bag of apples from T shop.
Ruleset 3
This tests for correct substitution order and may trap simple regexp based replacement routines if special regexp characters are not escaped.
# BNF Syntax testing rules
A -> apple
WWWW -> with
Bgage -> ->.*
B -> bag
->.* -> money
W -> WW
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As W my Bgage from T S.
Should generate:
I bought a bag of apples with my money from T shop.
Ruleset 4
This tests for correct order of scanning of rules, and may trap replacement routines that scan in the wrong order. It implements a general unary multiplication engine. (Note that the input expression must be placed within underscores in this implementation.)
### Unary Multiplication Engine, for testing Markov Algorithm implementations
### By Donal Fellows.
# Unary addition engine
_+1 -> _1+
1+1 -> 11+
# Pass for converting from the splitting of multiplication into ordinary
# addition
1! -> !1
,! -> !+
_! -> _
# Unary multiplication by duplicating left side, right side times
1*1 -> x,@y
1x -> xX
X, -> 1,1
X1 -> 1X
_x -> _X
,x -> ,X
y1 -> 1y
y_ -> _
# Next phase of applying
1@1 -> x,@y
1@_ -> @_
,@_ -> !_
++ -> +
# Termination cleanup for addition
_1 -> 1
1+_ -> 1
_+_ ->
Sample text of:
_1111*11111_
should generate the output:
11111111111111111111
Ruleset 5
A simple Turing machine,
implementing a three-state busy beaver.
The tape consists of 0s and 1s, the states are A, B, C and H (for Halt), and the head position is indicated by writing the state letter before the character where the head is.
All parts of the initial tape the machine operates on have to be given in the input.
Besides demonstrating that the Markov algorithm is Turing-complete, it also made me catch a bug in the C++ implementation which wasn't caught by the first four rulesets.
# Turing machine: three-state busy beaver
#
# state A, symbol 0 => write 1, move right, new state B
A0 -> 1B
# state A, symbol 1 => write 1, move left, new state C
0A1 -> C01
1A1 -> C11
# state B, symbol 0 => write 1, move left, new state A
0B0 -> A01
1B0 -> A11
# state B, symbol 1 => write 1, move right, new state B
B1 -> 1B
# state C, symbol 0 => write 1, move left, new state B
0C0 -> B01
1C0 -> B11
# state C, symbol 1 => write 1, move left, halt
0C1 -> H01
1C1 -> H11
This ruleset should turn
000000A000000
into
00011H1111000
| #Nim | Nim | import strutils, strscans
type Rule = object
pattern: string # Input pattern.
replacement: string # Replacement string (may be empty).
terminating: bool # "true" if terminating rule.
#---------------------------------------------------------------------------------------------------
func parse(rules: string): seq[Rule] =
## Parse a rule set to build a sequence of rules.
var linecount = 0
for line in rules.splitLines():
inc linecount
if line.startsWith('#'): continue
if line.strip.len == 0: continue
# Scan the line.
var pat, rep: string
var terminating = false
if not line.scanf("$+ -> $*", pat, rep):
raise newException(ValueError, "Invalid rule at line " & $linecount)
if rep.startsWith('.'):
# Terminating rule.
rep = rep[1..^1]
terminating = true
result.add(Rule(pattern: pat, replacement: rep, terminating: terminating))
#---------------------------------------------------------------------------------------------------
func apply(text: string; rules: seq[Rule]): string =
## Apply a set of rules to a text and return the result.
result = text
var changed = true
while changed:
changed = false
# Try to apply the rules in sequence.
for rule in rules:
if result.find(rule.pattern) >= 0:
# Found a rule to apply.
result = result.replace(rule.pattern, rule.replacement)
if rule.terminating: return
changed = true
break
#———————————————————————————————————————————————————————————————————————————————————————————————————
const SampleTexts = ["I bought a B of As from T S.",
"I bought a B of As from T S.",
"I bought a B of As W my Bgage from T S.",
"_1111*11111_",
"000000A000000"]
const Rulesets = [
#................................................
"""# This rules file is extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
A -> apple
B -> bag
S -> shop
T -> the
the shop -> my brother
a never used -> .terminating rule""",
#................................................
"""# Slightly modified from the rules on Wikipedia
A -> apple
B -> bag
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule""",
#................................................
"""# BNF Syntax testing rules
A -> apple
WWWW -> with
Bgage -> ->.*
B -> bag
->.* -> money
W -> WW
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule""",
#................................................
"""### Unary Multiplication Engine, for testing Markov Algorithm implementations
### By Donal Fellows.
# Unary addition engine
_+1 -> _1+
1+1 -> 11+
# Pass for converting from the splitting of multiplication into ordinary
# addition
1! -> !1
,! -> !+
_! -> _
# Unary multiplication by duplicating left side, right side times
1*1 -> x,@y
1x -> xX
X, -> 1,1
X1 -> 1X
_x -> _X
,x -> ,X
y1 -> 1y
y_ -> _
# Next phase of applying
1@1 -> x,@y
1@_ -> @_
,@_ -> !_
++ -> +
# Termination cleanup for addition
_1 -> 1
1+_ -> 1
_+_ -> """,
#................................................
"""# Turing machine: three-state busy beaver
#
# state A, symbol 0 => write 1, move right, new state B
A0 -> 1B
# state A, symbol 1 => write 1, move left, new state C
0A1 -> C01
1A1 -> C11
# state B, symbol 0 => write 1, move left, new state A
0B0 -> A01
1B0 -> A11
# state B, symbol 1 => write 1, move right, new state B
B1 -> 1B
# state C, symbol 0 => write 1, move left, new state B
0C0 -> B01
1C0 -> B11
# state C, symbol 1 => write 1, move left, halt
0C1 -> H01
1C1 -> H11"""
]
for n, ruleset in RuleSets:
let rules = ruleset.parse()
echo SampleTexts[n].apply(rules) |
http://rosettacode.org/wiki/Execute_a_Markov_algorithm | Execute a Markov algorithm | Execute a Markov algorithm
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create an interpreter for a Markov Algorithm.
Rules have the syntax:
<ruleset> ::= ((<comment> | <rule>) <newline>+)*
<comment> ::= # {<any character>}
<rule> ::= <pattern> <whitespace> -> <whitespace> [.] <replacement>
<whitespace> ::= (<tab> | <space>) [<whitespace>]
There is one rule per line.
If there is a . (period) present before the <replacement>, then this is a terminating rule in which case the interpreter must halt execution.
A ruleset consists of a sequence of rules, with optional comments.
Rulesets
Use the following tests on entries:
Ruleset 1
# This rules file is extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
A -> apple
B -> bag
S -> shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate the output:
I bought a bag of apples from my brother.
Ruleset 2
A test of the terminating rule
# Slightly modified from the rules on Wikipedia
A -> apple
B -> bag
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate:
I bought a bag of apples from T shop.
Ruleset 3
This tests for correct substitution order and may trap simple regexp based replacement routines if special regexp characters are not escaped.
# BNF Syntax testing rules
A -> apple
WWWW -> with
Bgage -> ->.*
B -> bag
->.* -> money
W -> WW
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As W my Bgage from T S.
Should generate:
I bought a bag of apples with my money from T shop.
Ruleset 4
This tests for correct order of scanning of rules, and may trap replacement routines that scan in the wrong order. It implements a general unary multiplication engine. (Note that the input expression must be placed within underscores in this implementation.)
### Unary Multiplication Engine, for testing Markov Algorithm implementations
### By Donal Fellows.
# Unary addition engine
_+1 -> _1+
1+1 -> 11+
# Pass for converting from the splitting of multiplication into ordinary
# addition
1! -> !1
,! -> !+
_! -> _
# Unary multiplication by duplicating left side, right side times
1*1 -> x,@y
1x -> xX
X, -> 1,1
X1 -> 1X
_x -> _X
,x -> ,X
y1 -> 1y
y_ -> _
# Next phase of applying
1@1 -> x,@y
1@_ -> @_
,@_ -> !_
++ -> +
# Termination cleanup for addition
_1 -> 1
1+_ -> 1
_+_ ->
Sample text of:
_1111*11111_
should generate the output:
11111111111111111111
Ruleset 5
A simple Turing machine,
implementing a three-state busy beaver.
The tape consists of 0s and 1s, the states are A, B, C and H (for Halt), and the head position is indicated by writing the state letter before the character where the head is.
All parts of the initial tape the machine operates on have to be given in the input.
Besides demonstrating that the Markov algorithm is Turing-complete, it also made me catch a bug in the C++ implementation which wasn't caught by the first four rulesets.
# Turing machine: three-state busy beaver
#
# state A, symbol 0 => write 1, move right, new state B
A0 -> 1B
# state A, symbol 1 => write 1, move left, new state C
0A1 -> C01
1A1 -> C11
# state B, symbol 0 => write 1, move left, new state A
0B0 -> A01
1B0 -> A11
# state B, symbol 1 => write 1, move right, new state B
B1 -> 1B
# state C, symbol 0 => write 1, move left, new state B
0C0 -> B01
1C0 -> B11
# state C, symbol 1 => write 1, move left, halt
0C1 -> H01
1C1 -> H11
This ruleset should turn
000000A000000
into
00011H1111000
| #OCaml | OCaml | (* Useful for resource cleanup (such as filehandles) *)
let try_finally x f g =
try let res = f x in g x; res
with e -> g x; raise e
(* Substitute string 'b' for first occurance of regexp 'a' in 's';
* Raise Not_found if there was no occurance of 'a'. *)
let subst a b s =
ignore (Str.search_forward a s 0); (* to generate Not_found *)
Str.replace_first a b s
let parse_rules cin =
let open Str in
let rule = regexp "\\(.+\\)[ \t]+->[ \t]+\\(.*\\)" in
let leader s c = String.length s > 0 && s.[0] = c in
let parse_b s = if leader s '.' then (string_after s 1,true) else (s,false) in
let rec parse_line rules =
try
let s = input_line cin in
if leader s '#' then parse_line rules
else if string_match rule s 0 then
let a = regexp_string (matched_group 1 s) in
let b,terminate = parse_b (matched_group 2 s) in
parse_line ((a,b,terminate)::rules)
else failwith ("parse error: "^s)
with End_of_file -> rules
in List.rev (parse_line [])
let rec run rules text =
let rec apply s = function
| [] -> s
| (a,b,term)::next ->
try
let s' = subst a b s in
if term then s' else run rules s'
with Not_found -> apply s next
in apply text rules
let _ =
if Array.length Sys.argv <> 2 then
print_endline "Expecting one argument: a filename where rules can be found."
else
let rules = try_finally (open_in Sys.argv.(1)) parse_rules close_in in
(* Translate lines read from stdin, until EOF *)
let rec translate () =
print_endline (run rules (input_line stdin));
translate ()
in try translate () with End_of_file -> () |
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #Phix | Phix | constant U0 = 0,
U1 = 1
integer count = 0
procedure baz()
count += 1
if count=1 then
throw(U0,{{"any",{{"thing"},"you"}},"like"})
else
throw(U1)
end if
end procedure
procedure bar()
baz()
end procedure
procedure foo()
for i=1 to 2 do
try
bar()
catch e
if e[E_CODE]=U0 then
?e[E_USER]
else
throw(e) -- (terminates)
end if
end try
puts(1,"still running...\n")
end for
puts(1,"not still running...\n")
end procedure
foo()
|
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #PicoLisp | PicoLisp | (de foo ()
(for Tag '(U0 U1)
(catch 'U0
(bar Tag) ) ) )
(de bar (Tag)
(baz Tag) )
(de baz (Tag)
(throw Tag) )
(mapc trace '(foo bar baz))
(foo) |
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #langur | langur | # do something
throw "not a math exception"
catch .e {
if .e["cat"] == "math" {
# change result...
} else {
# rethrow the exception
throw
}
} else {
# no exception
...
} |
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #Lasso | Lasso | protect => {
handle_error => {
// do something else
}
fail(-1,'Oops')
} |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #FutureBasic | FutureBasic |
include "ConsoleWindow"
local fn DoUnixCommand( cmd as str255 )
dim as str255 s
open "Unix", 2, cmd
while ( not eof(2) )
line input #2, s
print s
wend
close 2
end fn
fn DoUnixCommand( "ls -A" )
|
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #Gambas | Gambas | Public Sub Main()
Shell "ls -aul"
End |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #Genie | Genie | [indent=4]
/*
Execute system command, in Genie
valac executeSystemCommand.gs
./executeSystemCommand
*/
init
try
// Non Blocking
Process.spawn_command_line_async("ls")
except e : SpawnError
stderr.printf("%s\n", e.message) |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #AutoHotkey | AutoHotkey | MsgBox % factorial(4)
factorial(n)
{
result := 1
Loop, % n
result *= A_Index
Return result
} |
http://rosettacode.org/wiki/Exponentiation_operator | Exponentiation operator | Most programming languages have a built-in implementation of exponentiation.
Task
Re-implement integer exponentiation for both intint and floatint as both a procedure, and an operator (if your language supports operator definition).
If the language supports operator (or procedure) overloading, then an overloaded form should be provided for both intint and floatint variants.
Related tasks
Exponentiation order
arbitrary-precision integers (included)
Exponentiation with infix operators in (or operating on) the base
| #Modula-3 | Modula-3 | MODULE Expt EXPORTS Main;
IMPORT IO, Fmt;
PROCEDURE IntExpt(arg, exp: INTEGER): INTEGER =
VAR result := 1;
BEGIN
FOR i := 1 TO exp DO
result := result * arg;
END;
RETURN result;
END IntExpt;
PROCEDURE RealExpt(arg: REAL; exp: INTEGER): REAL =
VAR result := 1.0;
BEGIN
IF exp < 0 THEN
FOR i := exp TO -1 DO
result := result / arg;
END;
ELSE
FOR i := 1 TO exp DO
result := result * arg;
END;
END;
RETURN result;
END RealExpt;
BEGIN
IO.Put("2 ^ 4 = " & Fmt.Int(IntExpt(2, 4)) & "\n");
IO.Put("2.5 ^ 4 = " & Fmt.Real(RealExpt(2.5, 4)) & "\n");
END Expt. |
http://rosettacode.org/wiki/Extend_your_language | Extend your language | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Some programming languages allow you to extend the language. While this can be done to a certain degree in most languages (e.g. by using macros), other languages go much further. Most notably in the Forth and Lisp families, programming per se is done by extending the language without any formal distinction between built-in and user-defined elements.
If your language supports it, show how to introduce a new flow control mechanism. A practical and useful example is a four-way branch:
Occasionally, code must be written that depends on two conditions, resulting in up to four branches (depending on whether both, only the first, only the second, or none of the conditions are "true"). In a C-like language this could look like the following:
if (condition1isTrue) {
if (condition2isTrue)
bothConditionsAreTrue();
else
firstConditionIsTrue();
}
else if (condition2isTrue)
secondConditionIsTrue();
else
noConditionIsTrue();
Besides being rather cluttered, the statement(s) for 'condition2isTrue' must be written down twice. If 'condition2isTrue' were a lengthy and involved expression, it would be quite unreadable, and the code generated by the compiler might be unnecessarily large.
This can be improved by introducing a new keyword if2. It is similar to if, but takes two conditional statements instead of one, and up to three 'else' statements. One proposal (in pseudo-C syntax) might be:
if2 (condition1isTrue) (condition2isTrue)
bothConditionsAreTrue();
else1
firstConditionIsTrue();
else2
secondConditionIsTrue();
else
noConditionIsTrue();
Pick the syntax which suits your language. The keywords 'else1' and 'else2' are just examples. The new conditional expression should look, nest and behave analogously to the language's built-in 'if' statement.
| #Scheme | Scheme |
(define-syntax if2
(syntax-rules ()
((if2 cond1 cond2 both-true first-true second-true none-true)
(let ((c2 cond2))
(if cond1
(if c2 both-true first-true)
(if c2 second-true none-true))))))
|
http://rosettacode.org/wiki/Extend_your_language | Extend your language | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Some programming languages allow you to extend the language. While this can be done to a certain degree in most languages (e.g. by using macros), other languages go much further. Most notably in the Forth and Lisp families, programming per se is done by extending the language without any formal distinction between built-in and user-defined elements.
If your language supports it, show how to introduce a new flow control mechanism. A practical and useful example is a four-way branch:
Occasionally, code must be written that depends on two conditions, resulting in up to four branches (depending on whether both, only the first, only the second, or none of the conditions are "true"). In a C-like language this could look like the following:
if (condition1isTrue) {
if (condition2isTrue)
bothConditionsAreTrue();
else
firstConditionIsTrue();
}
else if (condition2isTrue)
secondConditionIsTrue();
else
noConditionIsTrue();
Besides being rather cluttered, the statement(s) for 'condition2isTrue' must be written down twice. If 'condition2isTrue' were a lengthy and involved expression, it would be quite unreadable, and the code generated by the compiler might be unnecessarily large.
This can be improved by introducing a new keyword if2. It is similar to if, but takes two conditional statements instead of one, and up to three 'else' statements. One proposal (in pseudo-C syntax) might be:
if2 (condition1isTrue) (condition2isTrue)
bothConditionsAreTrue();
else1
firstConditionIsTrue();
else2
secondConditionIsTrue();
else
noConditionIsTrue();
Pick the syntax which suits your language. The keywords 'else1' and 'else2' are just examples. The new conditional expression should look, nest and behave analogously to the language's built-in 'if' statement.
| #Seed7 | Seed7 | $ include "seed7_05.s7i";
$ syntax expr: .if.().().then.().else1.().else2.().else3.().end.if is -> 25;
const proc: if (in boolean: cond1) (in boolean: cond2) then
(in proc: statements1)
else1
(in proc: statements2)
else2
(in proc: statements3)
else3
(in proc: statements4)
end if is func
begin
if cond1 then
if cond2 then
statements1;
else
statements2;
end if;
elsif cond2 then
statements3;
else
statements4;
end if;
end func;
const proc: main is func
begin
if TRUE FALSE then
writeln("error TRUE TRUE");
else1
writeln("TRUE FALSE");
else2
writeln("error FALSE TRUE");
else3
writeln("error FALSE FALSE");
end if;
end func; |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #SenseTalk | SenseTalk | repeat 100
put "" into output
if the counter is a multiple of 3 then
put "Fizz" after output
end if
if the counter is a multiple of 5 then
put "Buzz" after output
end if
if output is empty then
put the counter into output
end if
put output
end repeat |
http://rosettacode.org/wiki/Extensible_prime_generator | Extensible prime generator | Task
Write a generator of prime numbers, in order, that will automatically adjust to accommodate the generation of any reasonably high prime.
The routine should demonstrably rely on either:
Being based on an open-ended counter set to count without upper limit other than system or programming language limits. In this case, explain where this counter is in the code.
Being based on a limit that is extended automatically. In this case, choose a small limit that ensures the limit will be passed when generating some of the values to be asked for below.
If other methods of creating an extensible prime generator are used, the algorithm's means of extensibility/lack of limits should be stated.
The routine should be used to:
Show the first twenty primes.
Show the primes between 100 and 150.
Show the number of primes between 7,700 and 8,000.
Show the 10,000th prime.
Show output on this page.
Note: You may reference code already on this site if it is written to be imported/included, then only the code necessary for import and the performance of this task need be shown. (It is also important to leave a forward link on the referenced tasks entry so that later editors know that the code is used for multiple tasks).
Note 2: If a languages in-built prime generator is extensible or is guaranteed to generate primes up to a system limit, (231 or memory overflow for example), then this may be used as long as an explanation of the limits of the prime generator is also given. (Which may include a link to/excerpt from, language documentation).
Note 3:The task is written so it may be useful in solving the task Emirp primes as well as others (depending on its efficiency).
Reference
Prime Numbers. Website with large count of primes.
| #Ruby | Ruby | require "prime"
puts Prime.take(20).join(", ")
puts Prime.each(150).drop_while{|pr| pr < 100}.join(", ")
puts Prime.each(8000).drop_while{|pr| pr < 7700}.count
puts Prime.take(10_000).last |
http://rosettacode.org/wiki/Execute_Brain**** | Execute Brain**** | Execute Brain**** is an implementation of Brainf***.
Other implementations of Brainf***.
RCBF is a set of Brainf*** compilers and interpreters written for Rosetta Code in a variety of languages.
Below are links to each of the versions of RCBF.
An implementation need only properly implement the following instructions:
Command
Description
>
Move the pointer to the right
<
Move the pointer to the left
+
Increment the memory cell under the pointer
-
Decrement the memory cell under the pointer
.
Output the character signified by the cell at the pointer
,
Input a character and store it in the cell at the pointer
[
Jump past the matching ] if the cell under the pointer is 0
]
Jump back to the matching [ if the cell under the pointer is nonzero
Any cell size is allowed, EOF (End-O-File) support is optional, as is whether you have bounded or unbounded memory.
| #Burlesque | Burlesque |
".""X"r~"-""\/^^{vvvv}c!!!-.256.%{vvvv}c!sa\/"r~"+""\/^^{vvvv}c!!!+.
256.%{vvvv}c!sa\/"r~"[""{"r~"]""}{\/^^{vvvv}c!!!}w!"r~">""+."r~"<""
-."r~"X""\/^^{vvvv}c!!!L[+]\/+]\/+]^^3\/.+1RAp^\/+]\/[-1RA^^-]\/[-\/
"r~"\'\'1 128r@{vv0}m[0"\/.+pse!vvvv<-sh
|
http://rosettacode.org/wiki/Evolutionary_algorithm | Evolutionary algorithm | Starting with:
The target string: "METHINKS IT IS LIKE A WEASEL".
An array of random characters chosen from the set of upper-case letters together with the space, and of the same length as the target string. (Call it the parent).
A fitness function that computes the ‘closeness’ of its argument to the target string.
A mutate function that given a string and a mutation rate returns a copy of the string, with some characters probably mutated.
While the parent is not yet the target:
copy the parent C times, each time allowing some random probability that another character might be substituted using mutate.
Assess the fitness of the parent and all the copies to the target and make the most fit string the new parent, discarding the others.
repeat until the parent converges, (hopefully), to the target.
See also
Wikipedia entry: Weasel algorithm.
Wikipedia entry: Evolutionary algorithm.
Note: to aid comparison, try and ensure the variables and functions mentioned in the task description appear in solutions
A cursory examination of a few of the solutions reveals that the instructions have not been followed rigorously in some solutions. Specifically,
While the parent is not yet the target:
copy the parent C times, each time allowing some random probability that another character might be substituted using mutate.
Note that some of the the solutions given retain characters in the mutated string that are correct in the target string. However, the instruction above does not state to retain any of the characters while performing the mutation. Although some may believe to do so is implied from the use of "converges"
(:* repeat until the parent converges, (hopefully), to the target.
Strictly speaking, the new parent should be selected from the new pool of mutations, and then the new parent used to generate the next set of mutations with parent characters getting retained only by not being mutated. It then becomes possible that the new set of mutations has no member that is fitter than the parent!
As illustration of this error, the code for 8th has the following remark.
Create a new string based on the TOS, changing randomly any characters which
don't already match the target:
NOTE: this has been changed, the 8th version is completely random now
Clearly, this algo will be applying the mutation function only to the parent characters that don't match to the target characters!
To ensure that the new parent is never less fit than the prior parent, both the parent and all of the latest mutations are subjected to the fitness test to select the next parent.
| #COBOL | COBOL | identification division.
program-id. evolutionary-program.
data division.
working-storage section.
01 evolving-strings.
05 target pic a(28)
value 'METHINKS IT IS LIKE A WEASEL'.
05 parent pic a(28).
05 offspring-table.
10 offspring pic a(28)
occurs 50 times.
01 fitness-calculations.
05 fitness pic 99.
05 highest-fitness pic 99.
05 fittest pic 99.
01 parameters.
05 character-set pic a(27)
value 'ABCDEFGHIJKLMNOPQRSTUVWXYZ '.
05 size-of-generation pic 99
value 50.
05 mutation-rate pic 99
value 5.
01 counters-and-working-variables.
05 character-position pic 99.
05 randomization.
10 random-seed pic 9(8).
10 random-number pic 99.
10 random-letter pic 99.
05 generation pic 999.
05 child pic 99.
05 temporary-string pic a(28).
procedure division.
control-paragraph.
accept random-seed from time.
move function random(random-seed) to random-number.
perform random-letter-paragraph,
varying character-position from 1 by 1
until character-position is greater than 28.
move temporary-string to parent.
move zero to generation.
perform output-paragraph.
perform evolution-paragraph,
varying generation from 1 by 1
until parent is equal to target.
stop run.
evolution-paragraph.
perform mutation-paragraph varying child from 1 by 1
until child is greater than size-of-generation.
move zero to highest-fitness.
move 1 to fittest.
perform check-fitness-paragraph varying child from 1 by 1
until child is greater than size-of-generation.
move offspring(fittest) to parent.
perform output-paragraph.
output-paragraph.
display generation ': ' parent.
random-letter-paragraph.
move function random to random-number.
divide random-number by 3.80769 giving random-letter.
add 1 to random-letter.
move character-set(random-letter:1)
to temporary-string(character-position:1).
mutation-paragraph.
move parent to temporary-string.
perform character-mutation-paragraph,
varying character-position from 1 by 1
until character-position is greater than 28.
move temporary-string to offspring(child).
character-mutation-paragraph.
move function random to random-number.
if random-number is less than mutation-rate
then perform random-letter-paragraph.
check-fitness-paragraph.
move offspring(child) to temporary-string.
perform fitness-paragraph.
fitness-paragraph.
move zero to fitness.
perform character-fitness-paragraph,
varying character-position from 1 by 1
until character-position is greater than 28.
if fitness is greater than highest-fitness
then perform fittest-paragraph.
character-fitness-paragraph.
if temporary-string(character-position:1) is equal to
target(character-position:1) then add 1 to fitness.
fittest-paragraph.
move fitness to highest-fitness.
move child to fittest. |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #LFE | LFE |
(defun fib
((0) 0)
((1) 1)
((n)
(+ (fib (- n 1))
(fib (- n 2)))))
|
http://rosettacode.org/wiki/Execute_HQ9%2B | Execute HQ9+ | Task
Implement a HQ9+ interpreter or compiler.
| #Phix | Phix | with javascript_semantics
-- copied from 99_Bottles_of_Beer
constant ninetynine = 2 -- (set this to 9 for testing)
function bottles(integer count)
if count=0 then return "no more bottles"
elsif count=1 then return "1 bottle" end if
if count=-1 then count = ninetynine end if
return sprintf("%d bottles",count)
end function
function bob(integer count)
return bottles(count)&" of beer"
end function
function up1(string bob)
-- Capitalise sentence start (needed just the once, "no more"=>"No more")
bob[1] = upper(bob[1])
return bob
end function
procedure ninetyninebottles()
string thus = bob(ninetynine),
that = "Take one down, pass it around,\n"
for i=ninetynine to 0 by -1 do
puts(1,up1(thus)&" on the wall,\n")
puts(1,thus&".\n")
if i=0 then that = "Go to the store, buy some more,\n"
elsif i=1 then that[6..8] = "it" end if
thus = bob(i-1)
puts(1,that&thus&" on the wall.\n\n")
end for
-- if getc(0) then end if
end procedure
-- the interpreter
procedure hq9(string code)
integer accumulator = 0
for i=1 to length(code) do
switch(upper(code[i]))
case 'H': printf(1,"Hello, world!\n")
case 'Q': printf(1,"%s\n", code);
case '9': ninetyninebottles()
case '+': accumulator += 1
end switch
end for
end procedure
hq9("h9+HqQ+Qq")
|
http://rosettacode.org/wiki/Execute_a_Markov_algorithm | Execute a Markov algorithm | Execute a Markov algorithm
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create an interpreter for a Markov Algorithm.
Rules have the syntax:
<ruleset> ::= ((<comment> | <rule>) <newline>+)*
<comment> ::= # {<any character>}
<rule> ::= <pattern> <whitespace> -> <whitespace> [.] <replacement>
<whitespace> ::= (<tab> | <space>) [<whitespace>]
There is one rule per line.
If there is a . (period) present before the <replacement>, then this is a terminating rule in which case the interpreter must halt execution.
A ruleset consists of a sequence of rules, with optional comments.
Rulesets
Use the following tests on entries:
Ruleset 1
# This rules file is extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
A -> apple
B -> bag
S -> shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate the output:
I bought a bag of apples from my brother.
Ruleset 2
A test of the terminating rule
# Slightly modified from the rules on Wikipedia
A -> apple
B -> bag
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate:
I bought a bag of apples from T shop.
Ruleset 3
This tests for correct substitution order and may trap simple regexp based replacement routines if special regexp characters are not escaped.
# BNF Syntax testing rules
A -> apple
WWWW -> with
Bgage -> ->.*
B -> bag
->.* -> money
W -> WW
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As W my Bgage from T S.
Should generate:
I bought a bag of apples with my money from T shop.
Ruleset 4
This tests for correct order of scanning of rules, and may trap replacement routines that scan in the wrong order. It implements a general unary multiplication engine. (Note that the input expression must be placed within underscores in this implementation.)
### Unary Multiplication Engine, for testing Markov Algorithm implementations
### By Donal Fellows.
# Unary addition engine
_+1 -> _1+
1+1 -> 11+
# Pass for converting from the splitting of multiplication into ordinary
# addition
1! -> !1
,! -> !+
_! -> _
# Unary multiplication by duplicating left side, right side times
1*1 -> x,@y
1x -> xX
X, -> 1,1
X1 -> 1X
_x -> _X
,x -> ,X
y1 -> 1y
y_ -> _
# Next phase of applying
1@1 -> x,@y
1@_ -> @_
,@_ -> !_
++ -> +
# Termination cleanup for addition
_1 -> 1
1+_ -> 1
_+_ ->
Sample text of:
_1111*11111_
should generate the output:
11111111111111111111
Ruleset 5
A simple Turing machine,
implementing a three-state busy beaver.
The tape consists of 0s and 1s, the states are A, B, C and H (for Halt), and the head position is indicated by writing the state letter before the character where the head is.
All parts of the initial tape the machine operates on have to be given in the input.
Besides demonstrating that the Markov algorithm is Turing-complete, it also made me catch a bug in the C++ implementation which wasn't caught by the first four rulesets.
# Turing machine: three-state busy beaver
#
# state A, symbol 0 => write 1, move right, new state B
A0 -> 1B
# state A, symbol 1 => write 1, move left, new state C
0A1 -> C01
1A1 -> C11
# state B, symbol 0 => write 1, move left, new state A
0B0 -> A01
1B0 -> A11
# state B, symbol 1 => write 1, move right, new state B
B1 -> 1B
# state C, symbol 0 => write 1, move left, new state B
0C0 -> B01
1C0 -> B11
# state C, symbol 1 => write 1, move left, halt
0C1 -> H01
1C1 -> H11
This ruleset should turn
000000A000000
into
00011H1111000
| #Perl | Perl | @ARGV == 1 or die "Please provide exactly one source file as an argument.\n";
open my $source, '<', $ARGV[0] or die "I couldn't open \"$ARGV[0]\" for reading. ($!.)\n";
my @rules;
while (<$source>)
{/\A#/ and next;
my @a = /(.*?)\s+->\s+(\.?)(.*)/ or die "Syntax error: $_";
push @rules, \@a;}
close $source;
my $input = do {local $/; <STDIN>;};
OUTER:
{foreach (@rules)
{my ($from, $terminating, $to) = @$_;
$input =~ s/\Q$from\E/$to/
and ($terminating ? last OUTER : redo OUTER);}}
print $input; |
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #PL.2FI | PL/I |
/* Exceptions: Catch an exception thrown in a nested call */
test: proc options (main);
/* 8/1/2011 */
declare (m, n) fixed initial (2);
declare (U0, U1) condition;
foo: procedure () returns (fixed);
on condition(U0) snap begin;
put list ('Raised condition U0 in function <bar>.'); put skip;
end;
m = bar();
m = bar();
return (m);
end foo;
bar: procedure () returns (fixed);
n = n + 1;
return (baz());
return (n);
end bar;
baz: procedure () returns (fixed);
declare first bit(1) static initial ('1'b);
n = n + 1;
if first then do; first = '0'b; signal condition(U0); end;
else signal condition(U1);
return (n);
end baz;
m = foo();
end test;
|
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #Python | Python | class U0(Exception): pass
class U1(Exception): pass
def foo():
for i in range(2):
try:
bar(i)
except U0:
print("Function foo caught exception U0")
def bar(i):
baz(i) # Nest those calls
def baz(i):
raise U1 if i else U0
foo() |
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #Quackery | Quackery | [ this ] is U0
[ this ] is U1
[ 0 = iff U0 else U1
message put bail ] is baz ( n --> )
[ baz ] is bar ( n --> )
[ 2 times
[ i^
1 backup
bar
bailed if
[ message share
U0 oats iff
[ say "Exception U0 raised." cr
echostack
$ "Press enter to continue"
input drop
message release
drop ]
else [ drop bail ] ] ] ] is foo |
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #Lingo | Lingo | -- parent script "ErrorHandler"
on alertHook (me, errorType, errorMessage, alertType)
if alertType=#alert then return 0 -- ignore programmatic alerts
-- log error in file "error.log"
fn = _movie.path&"error.log"
fp = xtra("fileIO").new()
fp.openFile(fn, 2)
if fp.status() = -37 then
fp.createFile(fn)
fp.openFile(fn, 2)
end if
fp.setPosition(fp.getLength())
fp.writeString(_system.date() && _system.time() && errorType & ": " & errorMessage & RETURN)
fp.closeFile()
return 1 -- continues movie playback, no error dialog
end |
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #Logo | Logo | to div.checked :a :b
if :b = 0 [(throw "divzero 0)]
output :a / :b
end
to div.safely :a :b
output catch "divzero [div.checked :a :b]
end |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #gnuplot | gnuplot | !ls |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #Go | Go | package main
import (
"log"
"os"
"os/exec"
)
func main() {
cmd := exec.Command("ls", "-l")
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
if err := cmd.Run(); err != nil {
log.Fatal(err)
}
} |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #AutoIt | AutoIt | ;AutoIt Version: 3.2.10.0
MsgBox (0,"Factorial",factorial(6))
Func factorial($int)
If $int < 0 Then
Return 0
EndIf
$fact = 1
For $i = 1 To $int
$fact = $fact * $i
Next
Return $fact
EndFunc |
http://rosettacode.org/wiki/Exponentiation_operator | Exponentiation operator | Most programming languages have a built-in implementation of exponentiation.
Task
Re-implement integer exponentiation for both intint and floatint as both a procedure, and an operator (if your language supports operator definition).
If the language supports operator (or procedure) overloading, then an overloaded form should be provided for both intint and floatint variants.
Related tasks
Exponentiation order
arbitrary-precision integers (included)
Exponentiation with infix operators in (or operating on) the base
| #Nemerle | Nemerle | using System;
macro @^ (val, pow : int)
{
<[ Math.Pow($val, $pow) ]>
} |
http://rosettacode.org/wiki/Exponentiation_operator | Exponentiation operator | Most programming languages have a built-in implementation of exponentiation.
Task
Re-implement integer exponentiation for both intint and floatint as both a procedure, and an operator (if your language supports operator definition).
If the language supports operator (or procedure) overloading, then an overloaded form should be provided for both intint and floatint variants.
Related tasks
Exponentiation order
arbitrary-precision integers (included)
Exponentiation with infix operators in (or operating on) the base
| #Nim | Nim | proc `^`[T: float|int](base: T; exp: int): T =
var (base, exp) = (base, exp)
result = 1
if exp < 0:
when T is int:
if base * base != 1: return 0
elif (exp and 1) == 0: return 1
else: return base
else:
base = 1.0 / base
exp = -exp
while exp != 0:
if (exp and 1) != 0:
result *= base
exp = exp shr 1
base *= base
echo "2^6 = ", 2^6
echo "2^-6 = ", 2 ^ -6
echo "2.71^6 = ", 2.71^6
echo "2.71^-6 = ", 2.71 ^ -6 |
http://rosettacode.org/wiki/Extend_your_language | Extend your language | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Some programming languages allow you to extend the language. While this can be done to a certain degree in most languages (e.g. by using macros), other languages go much further. Most notably in the Forth and Lisp families, programming per se is done by extending the language without any formal distinction between built-in and user-defined elements.
If your language supports it, show how to introduce a new flow control mechanism. A practical and useful example is a four-way branch:
Occasionally, code must be written that depends on two conditions, resulting in up to four branches (depending on whether both, only the first, only the second, or none of the conditions are "true"). In a C-like language this could look like the following:
if (condition1isTrue) {
if (condition2isTrue)
bothConditionsAreTrue();
else
firstConditionIsTrue();
}
else if (condition2isTrue)
secondConditionIsTrue();
else
noConditionIsTrue();
Besides being rather cluttered, the statement(s) for 'condition2isTrue' must be written down twice. If 'condition2isTrue' were a lengthy and involved expression, it would be quite unreadable, and the code generated by the compiler might be unnecessarily large.
This can be improved by introducing a new keyword if2. It is similar to if, but takes two conditional statements instead of one, and up to three 'else' statements. One proposal (in pseudo-C syntax) might be:
if2 (condition1isTrue) (condition2isTrue)
bothConditionsAreTrue();
else1
firstConditionIsTrue();
else2
secondConditionIsTrue();
else
noConditionIsTrue();
Pick the syntax which suits your language. The keywords 'else1' and 'else2' are just examples. The new conditional expression should look, nest and behave analogously to the language's built-in 'if' statement.
| #Shen | Shen | (defmacro branch-if-macro
[branch-if Cond1 Cond2 Both Fst Snd None] ->
[if Cond1
[if Cond2 Both Fst]
[if Cond2 Snd None]]) |
http://rosettacode.org/wiki/Extend_your_language | Extend your language | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Some programming languages allow you to extend the language. While this can be done to a certain degree in most languages (e.g. by using macros), other languages go much further. Most notably in the Forth and Lisp families, programming per se is done by extending the language without any formal distinction between built-in and user-defined elements.
If your language supports it, show how to introduce a new flow control mechanism. A practical and useful example is a four-way branch:
Occasionally, code must be written that depends on two conditions, resulting in up to four branches (depending on whether both, only the first, only the second, or none of the conditions are "true"). In a C-like language this could look like the following:
if (condition1isTrue) {
if (condition2isTrue)
bothConditionsAreTrue();
else
firstConditionIsTrue();
}
else if (condition2isTrue)
secondConditionIsTrue();
else
noConditionIsTrue();
Besides being rather cluttered, the statement(s) for 'condition2isTrue' must be written down twice. If 'condition2isTrue' were a lengthy and involved expression, it would be quite unreadable, and the code generated by the compiler might be unnecessarily large.
This can be improved by introducing a new keyword if2. It is similar to if, but takes two conditional statements instead of one, and up to three 'else' statements. One proposal (in pseudo-C syntax) might be:
if2 (condition1isTrue) (condition2isTrue)
bothConditionsAreTrue();
else1
firstConditionIsTrue();
else2
secondConditionIsTrue();
else
noConditionIsTrue();
Pick the syntax which suits your language. The keywords 'else1' and 'else2' are just examples. The new conditional expression should look, nest and behave analogously to the language's built-in 'if' statement.
| #Sidef | Sidef | class if2(cond1, cond2) {
method then(block) { # both true
if (cond1 && cond2) {
block.run;
}
return self;
}
method else1(block) { # first true
if (cond1 && !cond2) {
block.run;
}
return self;
}
method else2(block) { # second true
if (cond2 && !cond1) {
block.run;
}
return self;
}
method else(block) { # none true
if (!cond1 && !cond2) {
block.run;
}
return self;
}
}
if2(false, true).then {
say "if2";
}.else1 {
say "else1";
}.else2 {
say "else2"; # <- this gets printed
}.else {
say "else"
} |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #SequenceL | SequenceL | import <Utilities/Conversion.sl>;
import <Utilities/Sequence.sl>;
main(args(2)) :=
let
result[i] :=
"FizzBuzz" when i mod 3 = 0 and i mod 5 = 0
else
"Fizz" when i mod 3 = 0
else
"Buzz" when i mod 5 = 0
else
intToString(i)
foreach i within 1 ... 100;
in
delimit(result, '\n'); |
http://rosettacode.org/wiki/Extensible_prime_generator | Extensible prime generator | Task
Write a generator of prime numbers, in order, that will automatically adjust to accommodate the generation of any reasonably high prime.
The routine should demonstrably rely on either:
Being based on an open-ended counter set to count without upper limit other than system or programming language limits. In this case, explain where this counter is in the code.
Being based on a limit that is extended automatically. In this case, choose a small limit that ensures the limit will be passed when generating some of the values to be asked for below.
If other methods of creating an extensible prime generator are used, the algorithm's means of extensibility/lack of limits should be stated.
The routine should be used to:
Show the first twenty primes.
Show the primes between 100 and 150.
Show the number of primes between 7,700 and 8,000.
Show the 10,000th prime.
Show output on this page.
Note: You may reference code already on this site if it is written to be imported/included, then only the code necessary for import and the performance of this task need be shown. (It is also important to leave a forward link on the referenced tasks entry so that later editors know that the code is used for multiple tasks).
Note 2: If a languages in-built prime generator is extensible or is guaranteed to generate primes up to a system limit, (231 or memory overflow for example), then this may be used as long as an explanation of the limits of the prime generator is also given. (Which may include a link to/excerpt from, language documentation).
Note 3:The task is written so it may be useful in solving the task Emirp primes as well as others (depending on its efficiency).
Reference
Prime Numbers. Website with large count of primes.
| #Rust | Rust | mod pagesieve;
use pagesieve::{count_primes_paged, primes_paged};
fn main() {
println!("First 20 primes:\n {:?}",
primes_paged().take(20).collect::<Vec<_>>());
println!("Primes between 100 and 150:\n {:?}",
primes_paged().skip_while(|&x| x < 100)
.take_while(|&x| x < 150)
.collect::<Vec<_>>());
let diff = count_primes_paged(8000) - count_primes_paged(7700);
println!("There are {} primes between 7,700 and 8,000", diff);
// rust enumerations are zero base, so need to subtract 1!!!
println!("The 10,000th prime is {}", primes_paged().nth(10_000 - 1).unwrap());
} |
http://rosettacode.org/wiki/Execute_Brain**** | Execute Brain**** | Execute Brain**** is an implementation of Brainf***.
Other implementations of Brainf***.
RCBF is a set of Brainf*** compilers and interpreters written for Rosetta Code in a variety of languages.
Below are links to each of the versions of RCBF.
An implementation need only properly implement the following instructions:
Command
Description
>
Move the pointer to the right
<
Move the pointer to the left
+
Increment the memory cell under the pointer
-
Decrement the memory cell under the pointer
.
Output the character signified by the cell at the pointer
,
Input a character and store it in the cell at the pointer
[
Jump past the matching ] if the cell under the pointer is 0
]
Jump back to the matching [ if the cell under the pointer is nonzero
Any cell size is allowed, EOF (End-O-File) support is optional, as is whether you have bounded or unbounded memory.
| #C | C | (ns brainfuck)
(def ^:dynamic *input*)
(def ^:dynamic *output*)
(defrecord Data [ptr cells])
(defn inc-ptr [next-cmd]
(fn [data]
(next-cmd (update-in data [:ptr] inc))))
(defn dec-ptr [next-cmd]
(fn [data]
(next-cmd (update-in data [:ptr] dec))))
(defn inc-cell [next-cmd]
(fn [data]
(next-cmd (update-in data [:cells (:ptr data)] (fnil inc 0)))))
(defn dec-cell [next-cmd]
(fn [data]
(next-cmd (update-in data [:cells (:ptr data)] (fnil dec 0)))))
(defn output-cell [next-cmd]
(fn [data]
(set! *output* (conj *output* (get (:cells data) (:ptr data) 0)))
(next-cmd data)))
(defn input-cell [next-cmd]
(fn [data]
(let [[input & rest-input] *input*]
(set! *input* rest-input)
(next-cmd (update-in data [:cells (:ptr data)] input)))))
(defn if-loop [next-cmd loop-cmd]
(fn [data]
(next-cmd (loop [d data]
(if (zero? (get (:cells d) (:ptr d) 0))
d
(recur (loop-cmd d)))))))
(defn terminate [data] data)
(defn split-cmds [cmds]
(letfn [(split [[cmd & rest-cmds] loop-cmds]
(when (nil? cmd) (throw (Exception. "invalid commands: missing ]")))
(case cmd
\[ (let [[c l] (split-cmds rest-cmds)]
(recur c (str loop-cmds "[" l "]")))
\] [(apply str rest-cmds) loop-cmds]
(recur rest-cmds (str loop-cmds cmd))))]
(split cmds "")))
(defn compile-cmds [[cmd & rest-cmds]]
(if (nil? cmd)
terminate
(case cmd
\> (inc-ptr (compile-cmds rest-cmds))
\< (dec-ptr (compile-cmds rest-cmds))
\+ (inc-cell (compile-cmds rest-cmds))
\- (dec-cell (compile-cmds rest-cmds))
\. (output-cell (compile-cmds rest-cmds))
\, (input-cell (compile-cmds rest-cmds))
\[ (let [[cmds loop-cmds] (split-cmds rest-cmds)]
(if-loop (compile-cmds cmds) (compile-cmds loop-cmds)))
\] (throw (Exception. "invalid commands: missing ["))
(compile-cmds rest-cmds))))
(defn compile-and-run [cmds input]
(binding [*input* input *output* []]
(let [compiled-cmds (compile-cmds cmds)]
(println (compiled-cmds (Data. 0 {}))))
(println *output*)
(println (apply str (map char *output*)))))
|
http://rosettacode.org/wiki/Evolutionary_algorithm | Evolutionary algorithm | Starting with:
The target string: "METHINKS IT IS LIKE A WEASEL".
An array of random characters chosen from the set of upper-case letters together with the space, and of the same length as the target string. (Call it the parent).
A fitness function that computes the ‘closeness’ of its argument to the target string.
A mutate function that given a string and a mutation rate returns a copy of the string, with some characters probably mutated.
While the parent is not yet the target:
copy the parent C times, each time allowing some random probability that another character might be substituted using mutate.
Assess the fitness of the parent and all the copies to the target and make the most fit string the new parent, discarding the others.
repeat until the parent converges, (hopefully), to the target.
See also
Wikipedia entry: Weasel algorithm.
Wikipedia entry: Evolutionary algorithm.
Note: to aid comparison, try and ensure the variables and functions mentioned in the task description appear in solutions
A cursory examination of a few of the solutions reveals that the instructions have not been followed rigorously in some solutions. Specifically,
While the parent is not yet the target:
copy the parent C times, each time allowing some random probability that another character might be substituted using mutate.
Note that some of the the solutions given retain characters in the mutated string that are correct in the target string. However, the instruction above does not state to retain any of the characters while performing the mutation. Although some may believe to do so is implied from the use of "converges"
(:* repeat until the parent converges, (hopefully), to the target.
Strictly speaking, the new parent should be selected from the new pool of mutations, and then the new parent used to generate the next set of mutations with parent characters getting retained only by not being mutated. It then becomes possible that the new set of mutations has no member that is fitter than the parent!
As illustration of this error, the code for 8th has the following remark.
Create a new string based on the TOS, changing randomly any characters which
don't already match the target:
NOTE: this has been changed, the 8th version is completely random now
Clearly, this algo will be applying the mutation function only to the parent characters that don't match to the target characters!
To ensure that the new parent is never less fit than the prior parent, both the parent and all of the latest mutations are subjected to the fitness test to select the next parent.
| #ColdFusion | ColdFusion |
<Cfset theString = 'METHINKS IT IS LIKE A WEASEL'>
<cfparam name="parent" default="">
<Cfset theAlphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ ">
<Cfset fitness = 0>
<Cfset children = 3>
<Cfset counter = 0>
<Cfloop from="1" to="#children#" index="child">
<Cfparam name="child#child#" default="">
<Cfparam name="fitness#child#" default=0>
</Cfloop>
<Cfloop condition="fitness lt 1">
<Cfset oldparent = parent>
<Cfset counter = counter + 1>
<cfloop from="1" to="#children#" index="child">
<Cfset thischild = ''>
<Cfloop from="1" to="#len(theString)#" index="i">
<cfset Mutate = Mid(theAlphabet, RandRange(1, 28), 1)>
<cfif fitness eq 0>
<Cfset thischild = thischild & mutate>
<Cfelse>
<Cfif Mid(theString, i, 1) eq Mid(variables["child" & child], i, 1)>
<Cfset thischild = thischild & Mid(variables["child" & child], i, 1)>
<Cfelse>
<cfset MutateChance = 1/fitness>
<Cfset MutateChanceRand = rand()>
<Cfif MutateChanceRand lte MutateChance>
<Cfset thischild = thischild & mutate>
<Cfelse>
<Cfset thischild = thischild & Mid(variables["child" & child], i, 1)>
</Cfif>
</Cfif>
</cfif>
</Cfloop>
<Cfset variables["child" & child] = thischild>
</cfloop>
<cfloop from="1" to="#children#" index="child">
<Cfset thisChildFitness = 0>
<Cfloop from="1" to="#len(theString)#" index="i">
<Cfif Mid(variables["child" & child], i, 1) eq Mid(theString, i, 1)>
<Cfset thisChildFitness = thisChildFitness + 1>
</Cfif>
</Cfloop>
<Cfset variables["fitness" & child] = (thisChildFitness)/len(theString)>
<Cfif variables["fitness" & child] gt fitness>
<Cfset fitness = variables["fitness" & child]>
<Cfset parent = variables["child" & child]>
</Cfif>
</cfloop>
<Cfif parent neq oldparent>
<Cfoutput>###counter# #numberformat(fitness*100, 99)#% fit: #parent#<br></Cfoutput><cfflush>
</Cfif>
</Cfloop>
|
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Liberty_BASIC | Liberty BASIC |
for i = 0 to 15
print fiboR(i),fiboI(i)
next i
function fiboR(n)
if n <= 1 then
fiboR = n
else
fiboR = fiboR(n-1) + fiboR(n-2)
end if
end function
function fiboI(n)
a = 0
b = 1
for i = 1 to n
temp = a + b
a = b
b = temp
next i
fiboI = a
end function
|
http://rosettacode.org/wiki/Execute_HQ9%2B | Execute HQ9+ | Task
Implement a HQ9+ interpreter or compiler.
| #php | php |
/*
H Prints "Hello, world!"
Q Prints the entire text of the source code file.
9 Prints the complete canonical lyrics to "99 Bottles of Beer on the Wall"
+ Increments the accumulator.
*/
$accumulator = 0;
echo 'HQ9+: ';
$program = trim(fgets(STDIN));
foreach (str_split($program) as $chr) {
switch ($chr) {
case 'H':
case 'h':
printHelloWorld();
break;
case 'Q':
case 'q':
printSource($program);
break;
case '9':
print99Bottles();
break;
case '+':
$accumulator = incrementAccumulator($accumulator);
break;
default:
printError($chr);
}
}
function printHelloWorld() {
echo 'Hello, world!'. PHP_EOL;
}
function printSource($program) {
echo var_export($program, true) . PHP_EOL;
}
function print99Bottles() {
$n = 99;
while($n >= 1) {
echo $n;
echo ' Bottles of Beer on the Wall ';
echo $n;
echo ' bottles of beer, take one down pass it around ';
echo $n-1;
echo ' bottles of beer on the wall.'. PHP_EOL;
$n--;
}
}
function incrementAccumulator($accumulator) {
return ++$accumulator;
}
function printError($chr) {
echo "Invalid input: ". $chr;
} |
http://rosettacode.org/wiki/Execute_a_Markov_algorithm | Execute a Markov algorithm | Execute a Markov algorithm
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create an interpreter for a Markov Algorithm.
Rules have the syntax:
<ruleset> ::= ((<comment> | <rule>) <newline>+)*
<comment> ::= # {<any character>}
<rule> ::= <pattern> <whitespace> -> <whitespace> [.] <replacement>
<whitespace> ::= (<tab> | <space>) [<whitespace>]
There is one rule per line.
If there is a . (period) present before the <replacement>, then this is a terminating rule in which case the interpreter must halt execution.
A ruleset consists of a sequence of rules, with optional comments.
Rulesets
Use the following tests on entries:
Ruleset 1
# This rules file is extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
A -> apple
B -> bag
S -> shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate the output:
I bought a bag of apples from my brother.
Ruleset 2
A test of the terminating rule
# Slightly modified from the rules on Wikipedia
A -> apple
B -> bag
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate:
I bought a bag of apples from T shop.
Ruleset 3
This tests for correct substitution order and may trap simple regexp based replacement routines if special regexp characters are not escaped.
# BNF Syntax testing rules
A -> apple
WWWW -> with
Bgage -> ->.*
B -> bag
->.* -> money
W -> WW
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As W my Bgage from T S.
Should generate:
I bought a bag of apples with my money from T shop.
Ruleset 4
This tests for correct order of scanning of rules, and may trap replacement routines that scan in the wrong order. It implements a general unary multiplication engine. (Note that the input expression must be placed within underscores in this implementation.)
### Unary Multiplication Engine, for testing Markov Algorithm implementations
### By Donal Fellows.
# Unary addition engine
_+1 -> _1+
1+1 -> 11+
# Pass for converting from the splitting of multiplication into ordinary
# addition
1! -> !1
,! -> !+
_! -> _
# Unary multiplication by duplicating left side, right side times
1*1 -> x,@y
1x -> xX
X, -> 1,1
X1 -> 1X
_x -> _X
,x -> ,X
y1 -> 1y
y_ -> _
# Next phase of applying
1@1 -> x,@y
1@_ -> @_
,@_ -> !_
++ -> +
# Termination cleanup for addition
_1 -> 1
1+_ -> 1
_+_ ->
Sample text of:
_1111*11111_
should generate the output:
11111111111111111111
Ruleset 5
A simple Turing machine,
implementing a three-state busy beaver.
The tape consists of 0s and 1s, the states are A, B, C and H (for Halt), and the head position is indicated by writing the state letter before the character where the head is.
All parts of the initial tape the machine operates on have to be given in the input.
Besides demonstrating that the Markov algorithm is Turing-complete, it also made me catch a bug in the C++ implementation which wasn't caught by the first four rulesets.
# Turing machine: three-state busy beaver
#
# state A, symbol 0 => write 1, move right, new state B
A0 -> 1B
# state A, symbol 1 => write 1, move left, new state C
0A1 -> C01
1A1 -> C11
# state B, symbol 0 => write 1, move left, new state A
0B0 -> A01
1B0 -> A11
# state B, symbol 1 => write 1, move right, new state B
B1 -> 1B
# state C, symbol 0 => write 1, move left, new state B
0C0 -> B01
1C0 -> B11
# state C, symbol 1 => write 1, move left, halt
0C1 -> H01
1C1 -> H11
This ruleset should turn
000000A000000
into
00011H1111000
| #Phix | Phix | procedure markov(string rules, input, expected)
sequence subs = {}, reps = {}
sequence lines = split(substitute(rules,'\t',' '),'\n')
for i=1 to length(lines) do
string li = lines[i]
if length(li) and li[1]!='#' then
integer k = match(" -> ",li)
if k then
subs = append(subs,trim(li[1..k-1]))
reps = append(reps,trim(li[k+4..$]))
end if
end if
end for
string res = input
bool term = false
while 1 do
bool found = false
for i=1 to length(subs) do
string sub = subs[i]
integer k = match(sub,res)
if k then
found = true
string rep = reps[i]
if length(rep) and rep[1]='.' then
rep = rep[2..$]
term = true
end if
res[k..k+length(sub)-1] = rep
exit
end if
if term then exit end if
end for
if term or not found then exit end if
end while
?{input,res,iff(res=expected?"ok":"**ERROR**")}
end procedure
constant ruleset1 = """
# This rules file is extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
A -> apple
B -> bag
S -> shop
T -> the
the shop -> my brother
a never used -> .terminating rule"""
markov(ruleset1,"I bought a B of As from T S.","I bought a bag of apples from my brother.")
constant ruleset2 = """
# Slightly modified from the rules on Wikipedia
A -> apple
B -> bag
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule"""
markov(ruleset2,"I bought a B of As from T S.","I bought a bag of apples from T shop.")
constant ruleset3 = """
# BNF Syntax testing rules
A -> apple
WWWW -> with
Bgage -> ->.*
B -> bag
->.* -> money
W -> WW
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule"""
markov(ruleset3,"I bought a B of As W my Bgage from T S.","I bought a bag of apples with my money from T shop.")
constant ruleset4 = """
### Unary Multiplication Engine, for testing Markov Algorithm implementations
### By Donal Fellows.
# Unary addition engine
_+1 -> _1+
1+1 -> 11+
# Pass for converting from the splitting of multiplication into ordinary
# addition
1! -> !1
,! -> !+
_! -> _
# Unary multiplication by duplicating left side, right side times
1*1 -> x,@y
1x -> xX
X, -> 1,1
X1 -> 1X
_x -> _X
,x -> ,X
y1 -> 1y
y_ -> _
# Next phase of applying
1@1 -> x,@y
1@_ -> @_
,@_ -> !_
++ -> +
# Termination cleanup for addition
_1 -> 1
1+_ -> 1
_+_ ->
"""
markov(ruleset4,"_1111*11111_","11111111111111111111")
constant ruleset5 = """
# Turing machine: three-state busy beaver
#
# state A, symbol 0 => write 1, move right, new state B
A0 -> 1B
# state A, symbol 1 => write 1, move left, new state C
0A1 -> C01
1A1 -> C11
# state B, symbol 0 => write 1, move left, new state A
0B0 -> A01
1B0 -> A11
# state B, symbol 1 => write 1, move right, new state B
B1 -> 1B
# state C, symbol 0 => write 1, move left, new state B
0C0 -> B01
1C0 -> B11
# state C, symbol 1 => write 1, move left, halt
0C1 -> H01
1C1 -> H11
"""
markov(ruleset5,"000000A000000","00011H1111000")
|
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #R | R |
number_of_calls_to_baz <- 0
foo <- function()
{
for(i in 1:2) tryCatch(bar())
}
bar <- function() baz()
baz <- function()
{
e <- simpleError(ifelse(number_of_calls_to_baz > 0, "U1", "U0"))
assign("number_of_calls_to_baz", number_of_calls_to_baz + 1, envir=globalenv())
stop(e)
}
|
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #Racket | Racket |
#lang racket
(define-struct (exn:U0 exn) ())
(define-struct (exn:U1 exn) ())
(define (foo)
(for ([i 2])
(with-handlers ([exn:U0? (λ(_) (displayln "Function foo caught exception U0"))])
(bar i))))
(define (bar i)
(baz i))
(define (baz i)
(if (= i 0)
(raise (make-exn:U0 "failed 0" (current-continuation-marks)))
(raise (make-exn:U1 "failed 1" (current-continuation-marks)))))
(foo)
|
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #Raku | Raku | sub foo() {
for 0..1 -> $i {
bar $i;
CATCH {
when /U0/ { say "Function foo caught exception U0" }
}
}
}
sub bar($i) { baz $i }
sub baz($i) { die "U$i" }
foo; |
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #Logtalk | Logtalk |
:- object(exceptions).
:- public(double/2).
double(X, Y) :-
catch(double_it(X,Y), Error, handler(Error, Y)).
handler(error(not_a_number(X), logtalk(This::double(X,Y), Sender)), Y) :-
% try to fix the error and resume computation;
% if not possible, rethrow the exception
( catch(number_codes(Nx, X), _, fail) ->
double_it(Nx, Y)
; throw(error(not_a_number(X), logtalk(This::double(X,Y), Sender)))
).
double_it(X, Y) :-
( number(X) ->
Y is 2*X
; this(This),
sender(Sender),
throw(error(not_a_number(X), logtalk(This::double(X,Y), Sender)))
).
:- end_object.
|
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #Lua | Lua |
error("Something bad happened!")
|
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #Groovy | Groovy | println "ls -la".execute().text |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #GUISS | GUISS | Start,Programs,Accessories,MSDOS Prompt,Type:dir[enter] |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #Avail | Avail | Assert: 7! = 5040; |
http://rosettacode.org/wiki/Exponentiation_operator | Exponentiation operator | Most programming languages have a built-in implementation of exponentiation.
Task
Re-implement integer exponentiation for both intint and floatint as both a procedure, and an operator (if your language supports operator definition).
If the language supports operator (or procedure) overloading, then an overloaded form should be provided for both intint and floatint variants.
Related tasks
Exponentiation order
arbitrary-precision integers (included)
Exponentiation with infix operators in (or operating on) the base
| #Objeck | Objeck | class Exp {
function : Main(args : String[]) ~ Nil {
Pow(2,30)->PrintLine();
Pow(2.0,30)->PrintLine();
Pow(2.0,-2)->PrintLine();
}
function : native : Pow(base : Float, exp : Int) ~ Float {
if(exp < 0) {
return 1 / base->Power(exp * -1.0);
};
ans := 1.0;
while(exp > 0) {
ans *= base;
exp -= 1;
};
return ans;
}
} |
http://rosettacode.org/wiki/Extend_your_language | Extend your language | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Some programming languages allow you to extend the language. While this can be done to a certain degree in most languages (e.g. by using macros), other languages go much further. Most notably in the Forth and Lisp families, programming per se is done by extending the language without any formal distinction between built-in and user-defined elements.
If your language supports it, show how to introduce a new flow control mechanism. A practical and useful example is a four-way branch:
Occasionally, code must be written that depends on two conditions, resulting in up to four branches (depending on whether both, only the first, only the second, or none of the conditions are "true"). In a C-like language this could look like the following:
if (condition1isTrue) {
if (condition2isTrue)
bothConditionsAreTrue();
else
firstConditionIsTrue();
}
else if (condition2isTrue)
secondConditionIsTrue();
else
noConditionIsTrue();
Besides being rather cluttered, the statement(s) for 'condition2isTrue' must be written down twice. If 'condition2isTrue' were a lengthy and involved expression, it would be quite unreadable, and the code generated by the compiler might be unnecessarily large.
This can be improved by introducing a new keyword if2. It is similar to if, but takes two conditional statements instead of one, and up to three 'else' statements. One proposal (in pseudo-C syntax) might be:
if2 (condition1isTrue) (condition2isTrue)
bothConditionsAreTrue();
else1
firstConditionIsTrue();
else2
secondConditionIsTrue();
else
noConditionIsTrue();
Pick the syntax which suits your language. The keywords 'else1' and 'else2' are just examples. The new conditional expression should look, nest and behave analogously to the language's built-in 'if' statement.
| #Smalltalk | Smalltalk | or:condition2 ifBoth:bothBlk ifFirst:firstBlk ifSecond:scndBlk ifNone:noneBlk
"I know for sure, that I am true..."
^ condition2 ifTrue:bothBlk ifFalse:firstBlk |
http://rosettacode.org/wiki/Extend_your_language | Extend your language | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Some programming languages allow you to extend the language. While this can be done to a certain degree in most languages (e.g. by using macros), other languages go much further. Most notably in the Forth and Lisp families, programming per se is done by extending the language without any formal distinction between built-in and user-defined elements.
If your language supports it, show how to introduce a new flow control mechanism. A practical and useful example is a four-way branch:
Occasionally, code must be written that depends on two conditions, resulting in up to four branches (depending on whether both, only the first, only the second, or none of the conditions are "true"). In a C-like language this could look like the following:
if (condition1isTrue) {
if (condition2isTrue)
bothConditionsAreTrue();
else
firstConditionIsTrue();
}
else if (condition2isTrue)
secondConditionIsTrue();
else
noConditionIsTrue();
Besides being rather cluttered, the statement(s) for 'condition2isTrue' must be written down twice. If 'condition2isTrue' were a lengthy and involved expression, it would be quite unreadable, and the code generated by the compiler might be unnecessarily large.
This can be improved by introducing a new keyword if2. It is similar to if, but takes two conditional statements instead of one, and up to three 'else' statements. One proposal (in pseudo-C syntax) might be:
if2 (condition1isTrue) (condition2isTrue)
bothConditionsAreTrue();
else1
firstConditionIsTrue();
else2
secondConditionIsTrue();
else
noConditionIsTrue();
Pick the syntax which suits your language. The keywords 'else1' and 'else2' are just examples. The new conditional expression should look, nest and behave analogously to the language's built-in 'if' statement.
| #Standard_ML | Standard ML | (* Languages with pattern matching ALREADY HAVE THIS! *)
fun myfunc (pred1, pred2) =
case (pred1, pred2) of
(true, true) => print ("(true, true)\n")
| (true, false) => print ("(true, false)\n")
| (false, true) => print ("(false, true)\n")
| (false, false) => print ("(false, false)\n");
myfunc (true, true);
myfunc (true, false);
myfunc (false, true);
myfunc (false, false); |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #Shale | Shale | #!/usr/local/bin/shale
string library
r var
i var
i 1 =
{ i 100 <= } {
r "" =
i 3 % 0 == { r r "fizz" concat string::() = } ifthen
i 5 % 0 == { r r "buzz" concat string::() = } ifthen
r "" equals string::() { i } { r } if i "%3d: %p\n" printf
i++
} while |
http://rosettacode.org/wiki/Extensible_prime_generator | Extensible prime generator | Task
Write a generator of prime numbers, in order, that will automatically adjust to accommodate the generation of any reasonably high prime.
The routine should demonstrably rely on either:
Being based on an open-ended counter set to count without upper limit other than system or programming language limits. In this case, explain where this counter is in the code.
Being based on a limit that is extended automatically. In this case, choose a small limit that ensures the limit will be passed when generating some of the values to be asked for below.
If other methods of creating an extensible prime generator are used, the algorithm's means of extensibility/lack of limits should be stated.
The routine should be used to:
Show the first twenty primes.
Show the primes between 100 and 150.
Show the number of primes between 7,700 and 8,000.
Show the 10,000th prime.
Show output on this page.
Note: You may reference code already on this site if it is written to be imported/included, then only the code necessary for import and the performance of this task need be shown. (It is also important to leave a forward link on the referenced tasks entry so that later editors know that the code is used for multiple tasks).
Note 2: If a languages in-built prime generator is extensible or is guaranteed to generate primes up to a system limit, (231 or memory overflow for example), then this may be used as long as an explanation of the limits of the prime generator is also given. (Which may include a link to/excerpt from, language documentation).
Note 3:The task is written so it may be useful in solving the task Emirp primes as well as others (depending on its efficiency).
Reference
Prime Numbers. Website with large count of primes.
| #Seed7 | Seed7 | $ include "seed7_05.s7i";
const func boolean: isPrime (in integer: number) is func
result
var boolean: prime is FALSE;
local
var integer: count is 2;
begin
if number = 2 then
prime := TRUE;
elsif number > 2 then
while number rem count <> 0 and count * count <= number do
incr(count);
end while;
prime := number rem count <> 0;
end if;
end func;
var integer: currentPrime is 1;
var integer: primeNum is 0;
const func integer: getPrime is func
result
var integer: nextPrime is 0;
begin
repeat
incr(currentPrime);
until isPrime(currentPrime);
nextPrime := currentPrime;
incr(primeNum);
end func;
const proc: main is func
local
var integer: aPrime is 0;
var integer: count is 0;
begin
write("First twenty primes:");
while primeNum < 20 do
write(" " <& getPrime);
end while;
writeln;
repeat
aPrime := getPrime;
until aPrime >= 100;
write("Primes between 100 and 150:");
while aPrime <= 150 do
write(" " <& aPrime);
aPrime := getPrime;
end while;
writeln;
repeat
aPrime := getPrime;
until aPrime >= 7700;
while aPrime <= 8000 do
incr(count);
aPrime := getPrime;
end while;
writeln("Number of primes between 7,700 and 8,000: " <& count);
repeat
aPrime := getPrime;
until primeNum = 9999; # discard up to and including the 9,999 prime!
writeln("The 10,000th prime: " <& getPrime);
end func; |
http://rosettacode.org/wiki/Execute_Brain**** | Execute Brain**** | Execute Brain**** is an implementation of Brainf***.
Other implementations of Brainf***.
RCBF is a set of Brainf*** compilers and interpreters written for Rosetta Code in a variety of languages.
Below are links to each of the versions of RCBF.
An implementation need only properly implement the following instructions:
Command
Description
>
Move the pointer to the right
<
Move the pointer to the left
+
Increment the memory cell under the pointer
-
Decrement the memory cell under the pointer
.
Output the character signified by the cell at the pointer
,
Input a character and store it in the cell at the pointer
[
Jump past the matching ] if the cell under the pointer is 0
]
Jump back to the matching [ if the cell under the pointer is nonzero
Any cell size is allowed, EOF (End-O-File) support is optional, as is whether you have bounded or unbounded memory.
| #C.23 | C# | (ns brainfuck)
(def ^:dynamic *input*)
(def ^:dynamic *output*)
(defrecord Data [ptr cells])
(defn inc-ptr [next-cmd]
(fn [data]
(next-cmd (update-in data [:ptr] inc))))
(defn dec-ptr [next-cmd]
(fn [data]
(next-cmd (update-in data [:ptr] dec))))
(defn inc-cell [next-cmd]
(fn [data]
(next-cmd (update-in data [:cells (:ptr data)] (fnil inc 0)))))
(defn dec-cell [next-cmd]
(fn [data]
(next-cmd (update-in data [:cells (:ptr data)] (fnil dec 0)))))
(defn output-cell [next-cmd]
(fn [data]
(set! *output* (conj *output* (get (:cells data) (:ptr data) 0)))
(next-cmd data)))
(defn input-cell [next-cmd]
(fn [data]
(let [[input & rest-input] *input*]
(set! *input* rest-input)
(next-cmd (update-in data [:cells (:ptr data)] input)))))
(defn if-loop [next-cmd loop-cmd]
(fn [data]
(next-cmd (loop [d data]
(if (zero? (get (:cells d) (:ptr d) 0))
d
(recur (loop-cmd d)))))))
(defn terminate [data] data)
(defn split-cmds [cmds]
(letfn [(split [[cmd & rest-cmds] loop-cmds]
(when (nil? cmd) (throw (Exception. "invalid commands: missing ]")))
(case cmd
\[ (let [[c l] (split-cmds rest-cmds)]
(recur c (str loop-cmds "[" l "]")))
\] [(apply str rest-cmds) loop-cmds]
(recur rest-cmds (str loop-cmds cmd))))]
(split cmds "")))
(defn compile-cmds [[cmd & rest-cmds]]
(if (nil? cmd)
terminate
(case cmd
\> (inc-ptr (compile-cmds rest-cmds))
\< (dec-ptr (compile-cmds rest-cmds))
\+ (inc-cell (compile-cmds rest-cmds))
\- (dec-cell (compile-cmds rest-cmds))
\. (output-cell (compile-cmds rest-cmds))
\, (input-cell (compile-cmds rest-cmds))
\[ (let [[cmds loop-cmds] (split-cmds rest-cmds)]
(if-loop (compile-cmds cmds) (compile-cmds loop-cmds)))
\] (throw (Exception. "invalid commands: missing ["))
(compile-cmds rest-cmds))))
(defn compile-and-run [cmds input]
(binding [*input* input *output* []]
(let [compiled-cmds (compile-cmds cmds)]
(println (compiled-cmds (Data. 0 {}))))
(println *output*)
(println (apply str (map char *output*)))))
|
http://rosettacode.org/wiki/Evolutionary_algorithm | Evolutionary algorithm | Starting with:
The target string: "METHINKS IT IS LIKE A WEASEL".
An array of random characters chosen from the set of upper-case letters together with the space, and of the same length as the target string. (Call it the parent).
A fitness function that computes the ‘closeness’ of its argument to the target string.
A mutate function that given a string and a mutation rate returns a copy of the string, with some characters probably mutated.
While the parent is not yet the target:
copy the parent C times, each time allowing some random probability that another character might be substituted using mutate.
Assess the fitness of the parent and all the copies to the target and make the most fit string the new parent, discarding the others.
repeat until the parent converges, (hopefully), to the target.
See also
Wikipedia entry: Weasel algorithm.
Wikipedia entry: Evolutionary algorithm.
Note: to aid comparison, try and ensure the variables and functions mentioned in the task description appear in solutions
A cursory examination of a few of the solutions reveals that the instructions have not been followed rigorously in some solutions. Specifically,
While the parent is not yet the target:
copy the parent C times, each time allowing some random probability that another character might be substituted using mutate.
Note that some of the the solutions given retain characters in the mutated string that are correct in the target string. However, the instruction above does not state to retain any of the characters while performing the mutation. Although some may believe to do so is implied from the use of "converges"
(:* repeat until the parent converges, (hopefully), to the target.
Strictly speaking, the new parent should be selected from the new pool of mutations, and then the new parent used to generate the next set of mutations with parent characters getting retained only by not being mutated. It then becomes possible that the new set of mutations has no member that is fitter than the parent!
As illustration of this error, the code for 8th has the following remark.
Create a new string based on the TOS, changing randomly any characters which
don't already match the target:
NOTE: this has been changed, the 8th version is completely random now
Clearly, this algo will be applying the mutation function only to the parent characters that don't match to the target characters!
To ensure that the new parent is never less fit than the prior parent, both the parent and all of the latest mutations are subjected to the fitness test to select the next parent.
| #Commodore_BASIC | Commodore BASIC | 10 N=100:P=0.05:TI$="000000"
20 Z$="METHINKS IT IS LIKE A WEASEL"
30 L=LEN(Z$)
40 DIMX(N,L)
50 FORI=1TOL
60 IFMID$(Z$,I,1)=" "THENX(0,I)=0:GOTO80
70 X(0,I)=ASC(MID$(Z$,I))-64
80 NEXT
90 FORK=1TON:FORI=1TOL:X(K,I)=INT(RND(0)*27):NEXT:NEXT
100 S=-100:B=0
110 K=B:GOSUB300
120 FORK=1TON:IFK=BTHEN150
130 FORI=1TOL:IFRND(.)<PTHENX(K,I)=INT(RND(0)*27)
140 NEXT
150 NEXT
160 S=-100:B=0
170 FORK=1TON
180 F=0:FORI=1TOL:IFX(K,I)<>X(0,I)THENF=F-1:IFF<STHENI=L
190 NEXT:IFF>STHENS=F:B=K
200 NEXT
210 PRINT"BEST:"B;"SCORE:"S
220 IFS=0THEN270
230 FORK=1TON:IFK=BTHEN250
240 FORI=1TOL:X(K,I)=X(B,I):NEXT
250 NEXT
260 GOTO110
270 PRINT"WE HAVE A WEASEL!":K=B:GOSUB300
280 PRINT"TIME:"TI$:END
300 FORI=1TOL:IFX(K,I)THENPRINTCHR$(64+X(K,I));:GOTO320
310 PRINT" ";
320 NEXT:PRINT"<":RETURN |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Lingo | Lingo | on fib (n)
if n<2 then return n
return fib(n-1)+fib(n-2)
end |
http://rosettacode.org/wiki/Execute_HQ9%2B | Execute HQ9+ | Task
Implement a HQ9+ interpreter or compiler.
| #PicoLisp | PicoLisp | (de hq9+ (Code)
(let Accu 0
(for C (chop Code)
(case C
("H" (prinl "Hello, world"))
("Q" (prinl Code))
("9"
(for (N 99 (gt0 N))
(prinl N " bottles of beer on the wall")
(prinl N " bottles of beer")
(prinl "Take one down, pass it around")
(prinl (dec 'N) " bottles of beer on the wall")
(prinl) ) )
("+" (inc 'Accu)) ) )
Accu ) ) |
http://rosettacode.org/wiki/Execute_HQ9%2B | Execute HQ9+ | Task
Implement a HQ9+ interpreter or compiler.
| #PowerShell | PowerShell |
function Invoke-HQ9PlusInterpreter ([switch]$Global)
{
$sb = New-Object -TypeName System.Text.StringBuilder
for ($i = 99; $i -gt 2; $i--)
{
$sb.Append((("{0,2} bottles of beer on the wall, " +
"{0,2} bottles of beer! Take one down, pass it around, " +
"{1,2} bottles of beer on the wall.`n") -f $i, ($i - 1))) | Out-Null
}
$sb.Append((" 2 bottles of beer on the wall, " +
" 2 bottles of beer! Take one down, pass it around, " +
" 1 bottle of beer on the wall.`n")) | Out-Null
$sb.Append((" 1 bottle of beer on the wall, " +
" 1 bottle of beer! Take one down, pass it around...`n")) | Out-Null
$sb.Append(("No more bottles of beer on the wall, No more bottles of beer!`n" +
"Go to the store and get us some more, 99 bottles of beer on the wall!")) | Out-Null
$99BottlesOfBeer = $sb.ToString()
$helloWorld = "Hello, world!"
if ($Global) {New-Variable -Name "+" -Value 0 -Scope Global -ErrorAction SilentlyContinue}
Write-Host "Press Ctrl-C or Enter nothing to exit." -ForegroundColor Cyan
while ($code -ne "")
{
$code = Read-Host -Prompt "HQ9+"
($code.ToCharArray() | Select-String -Pattern "[HQ9+]").Matches.Value | ForEach-Object {
switch ($_)
{
"H" {$helloWorld; break}
"Q" {$code; break}
"9" {$99BottlesOfBeer; break}
"+" {if ($Global) {${global:+}++}}
}
}
}
}
Set-Alias -Name HQ9+ -Value Invoke-HQ9PlusInterpreter
|
http://rosettacode.org/wiki/Execute_a_Markov_algorithm | Execute a Markov algorithm | Execute a Markov algorithm
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create an interpreter for a Markov Algorithm.
Rules have the syntax:
<ruleset> ::= ((<comment> | <rule>) <newline>+)*
<comment> ::= # {<any character>}
<rule> ::= <pattern> <whitespace> -> <whitespace> [.] <replacement>
<whitespace> ::= (<tab> | <space>) [<whitespace>]
There is one rule per line.
If there is a . (period) present before the <replacement>, then this is a terminating rule in which case the interpreter must halt execution.
A ruleset consists of a sequence of rules, with optional comments.
Rulesets
Use the following tests on entries:
Ruleset 1
# This rules file is extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
A -> apple
B -> bag
S -> shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate the output:
I bought a bag of apples from my brother.
Ruleset 2
A test of the terminating rule
# Slightly modified from the rules on Wikipedia
A -> apple
B -> bag
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate:
I bought a bag of apples from T shop.
Ruleset 3
This tests for correct substitution order and may trap simple regexp based replacement routines if special regexp characters are not escaped.
# BNF Syntax testing rules
A -> apple
WWWW -> with
Bgage -> ->.*
B -> bag
->.* -> money
W -> WW
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As W my Bgage from T S.
Should generate:
I bought a bag of apples with my money from T shop.
Ruleset 4
This tests for correct order of scanning of rules, and may trap replacement routines that scan in the wrong order. It implements a general unary multiplication engine. (Note that the input expression must be placed within underscores in this implementation.)
### Unary Multiplication Engine, for testing Markov Algorithm implementations
### By Donal Fellows.
# Unary addition engine
_+1 -> _1+
1+1 -> 11+
# Pass for converting from the splitting of multiplication into ordinary
# addition
1! -> !1
,! -> !+
_! -> _
# Unary multiplication by duplicating left side, right side times
1*1 -> x,@y
1x -> xX
X, -> 1,1
X1 -> 1X
_x -> _X
,x -> ,X
y1 -> 1y
y_ -> _
# Next phase of applying
1@1 -> x,@y
1@_ -> @_
,@_ -> !_
++ -> +
# Termination cleanup for addition
_1 -> 1
1+_ -> 1
_+_ ->
Sample text of:
_1111*11111_
should generate the output:
11111111111111111111
Ruleset 5
A simple Turing machine,
implementing a three-state busy beaver.
The tape consists of 0s and 1s, the states are A, B, C and H (for Halt), and the head position is indicated by writing the state letter before the character where the head is.
All parts of the initial tape the machine operates on have to be given in the input.
Besides demonstrating that the Markov algorithm is Turing-complete, it also made me catch a bug in the C++ implementation which wasn't caught by the first four rulesets.
# Turing machine: three-state busy beaver
#
# state A, symbol 0 => write 1, move right, new state B
A0 -> 1B
# state A, symbol 1 => write 1, move left, new state C
0A1 -> C01
1A1 -> C11
# state B, symbol 0 => write 1, move left, new state A
0B0 -> A01
1B0 -> A11
# state B, symbol 1 => write 1, move right, new state B
B1 -> 1B
# state C, symbol 0 => write 1, move left, new state B
0C0 -> B01
1C0 -> B11
# state C, symbol 1 => write 1, move left, halt
0C1 -> H01
1C1 -> H11
This ruleset should turn
000000A000000
into
00011H1111000
| #PHP | PHP | <?php
function markov($text, $ruleset) {
$lines = explode(PHP_EOL, $ruleset);
$rules = array();
foreach ($lines AS $line) {
$spc = "[\t ]+";
if (empty($line) OR preg_match('/^#/', $line)) {
continue;
} elseif (preg_match('/^(.+)' . $spc . '->' . $spc . '(\.?)(.*)$/', $line, $matches)) {
list($dummy, $pattern, $terminating, $replacement) = $matches;
$rules[] = array(
'pattern' => trim($pattern),
'terminating' => ($terminating === '.'),
'replacement' => trim($replacement),
);
}
}
do {
$found = false;
foreach ($rules AS $rule) {
if (strpos($text, $rule['pattern']) !== FALSE) {
$text = str_replace($rule['pattern'], $rule['replacement'], $text);
if ($rule['terminating']) {
return $text;
}
$found = true;
break;
}
}
} while($found);
return $text;
}
$conf = array(
1 => array(
'text' => 'I bought a B of As from T S.',
'rule' => '
# This rules file is extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
A -> apple
B -> bag
S -> shop
T -> the
the shop -> my brother
a never used -> .terminating rule
',
),
2 => array(
'text' => 'I bought a B of As from T S.',
'rule' => '
# Slightly modified from the rules on Wikipedia
A -> apple
B -> bag
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
',
),
3 => array(
'text' => 'I bought a B of As W my Bgage from T S.',
'rule' => '
# BNF Syntax testing rules
A -> apple
WWWW -> with
Bgage -> ->.*
B -> bag
->.* -> money
W -> WW
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
',
),
4 => array(
'text' => '_1111*11111_',
'rule' => '
### Unary Multiplication Engine, for testing Markov Algorithm implementations
### By Donal Fellows.
# Unary addition engine
_+1 -> _1+
1+1 -> 11+
# Pass for converting from the splitting of multiplication into ordinary
# addition
1! -> !1
,! -> !+
_! -> _
# Unary multiplication by duplicating left side, right side times
1*1 -> x,@y
1x -> xX
X, -> 1,1
X1 -> 1X
_x -> _X
,x -> ,X
y1 -> 1y
y_ -> _
# Next phase of applying
1@1 -> x,@y
1@_ -> @_
,@_ -> !_
++ -> +
# Termination cleanup for addition
_1 -> 1
1+_ -> 1
_+_ ->
',
),
5 => array(
'text' => '000000A000000',
'rule' => '
# Turing machine: three-state busy beaver
#
# state A, symbol 0 => write 1, move right, new state B
A0 -> 1B
# state A, symbol 1 => write 1, move left, new state C
0A1 -> C01
1A1 -> C11
# state B, symbol 0 => write 1, move left, new state A
0B0 -> A01
1B0 -> A11
# state B, symbol 1 => write 1, move right, new state B
B1 -> 1B
# state C, symbol 0 => write 1, move left, new state B
0C0 -> B01
1C0 -> B11
# state C, symbol 1 => write 1, move left, halt
0C1 -> H01
1C1 -> H11
',
),
6 => array(
'text' => '101',
'rule' => '
# Another example extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
1 -> 0|
|0 -> 0||
0 ->
',
),
);
foreach ($conf AS $id => $rule) {
echo 'Ruleset ', $id, ' : ', markov($rule['text'], $rule['rule']), PHP_EOL;
} |
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #REXX | REXX | /*REXX program creates two exceptions and demonstrates how to handle (catch) them. */
call foo /*invoke the FOO function (below). */
say 'The REXX mainline program has completed.' /*indicate that Elroy was here. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
foo: call bar; call bar /*invoke BAR function twice. */
return 0 /*return a zero to the invoker. */
/*the 1st U0 in REXX program is used.*/
U0: say 'exception U0 caught in FOO' /*handle the U0 exception. */
return -2 /*return to the invoker. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
bar: call baz /*have BAR function invoke BAZ function*/
return 0 /*return a zero to the invoker. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
baz: if symbol('BAZ#')=='LIT' then baz#=0 /*initialize the first BAZ invocation #*/
baz# = baz#+1 /*bump the BAZ invocation number by 1. */
if baz#==1 then signal U0 /*if first invocation, then raise U0 */
if baz#==2 then signal U1 /* " second " " " U1 */
return 0 /*return a 0 (zero) to the invoker.*/
/* [↓] this U0 subroutine is ignored.*/
U0: return -1 /*handle exception if not caught. */
U1: return -1 /* " " " " " */ |
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #Ruby | Ruby | def foo
2.times do |i|
begin
bar(i)
rescue U0
$stderr.puts "captured exception U0"
end
end
end
def bar(i)
baz(i)
end
def baz(i)
raise i == 0 ? U0 : U1
end
class U0 < StandardError; end
class U1 < StandardError; end
foo |
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #M2000_Interpreter | M2000 Interpreter |
Module Errors {
Module Check {
Module Error1 {
A=1/0
}
Try ok {
Error1
}
' we get an Error, and Error$ print division by zero in module Error1
If Error or not ok then Print Error$
Error "New Error"
}
Try {
Check
}
Print Error=0 ' no Error return
Print Error$ ' but Error message isn't clear
' Error$ used one time, then cleared automatic
}
Errors
Print Error$=""
|
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #Make | Make | all:
false |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #Haskell | Haskell | import System.Cmd
main = system "ls"
|
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #HicEst | HicEst | SYSTEM(CoMmand='pause')
SYSTEM(CoMmand='dir & pause') |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #AWK | AWK | function fact_r(n)
{
if ( n <= 1 ) return 1;
return n*fact_r(n-1);
} |
http://rosettacode.org/wiki/Exponentiation_operator | Exponentiation operator | Most programming languages have a built-in implementation of exponentiation.
Task
Re-implement integer exponentiation for both intint and floatint as both a procedure, and an operator (if your language supports operator definition).
If the language supports operator (or procedure) overloading, then an overloaded form should be provided for both intint and floatint variants.
Related tasks
Exponentiation order
arbitrary-precision integers (included)
Exponentiation with infix operators in (or operating on) the base
| #OCaml | OCaml | let pow one mul a n =
let rec g p x = function
| 0 -> x
| i ->
g (mul p p) (if i mod 2 = 1 then mul p x else x) (i/2)
in
g a one n
;;
pow 1 ( * ) 2 16;; (* 65536 *)
pow 1.0 ( *. ) 2.0 16;; (* 65536. *)
(* pow is not limited to exponentiation *)
pow 0 ( + ) 2 16;; (* 32 *)
pow "" ( ^ ) "abc " 10;; (* "abc abc abc abc abc abc abc abc abc abc " *)
pow [ ] ( @ ) [ 1; 2 ] 10;; (* [1; 2; 1; 2; 1; 2; 1; 2; 1; 2; 1; 2; 1; 2; 1; 2; 1; 2; 1; 2] *)
(* Thue-Morse sequence *)
Array.init 32 (fun n -> (1 - pow 1 ( - ) 0 n) lsr 1);;
(* [|0; 1; 1; 0; 1; 0; 0; 1; 1; 0; 0; 1; 0; 1; 1; 0;
1; 0; 0; 1; 0; 1; 1; 0; 0; 1; 1; 0; 1; 0; 0; 1|]
See http://en.wikipedia.org/wiki/Thue-Morse_sequence
*) |
http://rosettacode.org/wiki/Extend_your_language | Extend your language | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Some programming languages allow you to extend the language. While this can be done to a certain degree in most languages (e.g. by using macros), other languages go much further. Most notably in the Forth and Lisp families, programming per se is done by extending the language without any formal distinction between built-in and user-defined elements.
If your language supports it, show how to introduce a new flow control mechanism. A practical and useful example is a four-way branch:
Occasionally, code must be written that depends on two conditions, resulting in up to four branches (depending on whether both, only the first, only the second, or none of the conditions are "true"). In a C-like language this could look like the following:
if (condition1isTrue) {
if (condition2isTrue)
bothConditionsAreTrue();
else
firstConditionIsTrue();
}
else if (condition2isTrue)
secondConditionIsTrue();
else
noConditionIsTrue();
Besides being rather cluttered, the statement(s) for 'condition2isTrue' must be written down twice. If 'condition2isTrue' were a lengthy and involved expression, it would be quite unreadable, and the code generated by the compiler might be unnecessarily large.
This can be improved by introducing a new keyword if2. It is similar to if, but takes two conditional statements instead of one, and up to three 'else' statements. One proposal (in pseudo-C syntax) might be:
if2 (condition1isTrue) (condition2isTrue)
bothConditionsAreTrue();
else1
firstConditionIsTrue();
else2
secondConditionIsTrue();
else
noConditionIsTrue();
Pick the syntax which suits your language. The keywords 'else1' and 'else2' are just examples. The new conditional expression should look, nest and behave analogously to the language's built-in 'if' statement.
| #Tcl | Tcl | proc if2 {cond1 cond2 bothTrueBody firstTrueBody secondTrueBody bothFalseBody} {
# Must evaluate both conditions, and should do so in order
set c1 [uplevel 1 [list expr $cond1]
set c2 [uplevel 1 [list expr $cond2]
# Now use that to decide what to do
if {$c1 && $c2} {
uplevel 1 $bothTrueBody
} elseif {$c1 && !$c2} {
uplevel 1 $firstTrueBody
} elseif {$c2 && !$c1} {
uplevel 1 $secondTrueBody
} else {
uplevel 1 $bothFalseBody
}
} |
http://rosettacode.org/wiki/FizzBuzz | FizzBuzz | Task
Write a program that prints the integers from 1 to 100 (inclusive).
But:
for multiples of three, print Fizz (instead of the number)
for multiples of five, print Buzz (instead of the number)
for multiples of both three and five, print FizzBuzz (instead of the number)
The FizzBuzz problem was presented as the lowest level of comprehension required to illustrate adequacy.
Also see
(a blog) dont-overthink-fizzbuzz
(a blog) fizzbuzz-the-programmers-stairway-to-heaven
| #Shen | Shen | (define fizzbuzz
101 -> (nl)
N -> (let divisible-by? (/. A B (integer? (/ A B)))
(cases (divisible-by? N 15) (do (output "Fizzbuzz!~%")
(fizzbuzz (+ N 1)))
(divisible-by? N 3) (do (output "Fizz!~%")
(fizzbuzz (+ N 1)))
(divisible-by? N 5) (do (output "Buzz!~%")
(fizzbuzz (+ N 1)))
true (do (output (str N))
(nl)
(fizzbuzz (+ N 1))))))
(fizzbuzz 1) |
http://rosettacode.org/wiki/Extensible_prime_generator | Extensible prime generator | Task
Write a generator of prime numbers, in order, that will automatically adjust to accommodate the generation of any reasonably high prime.
The routine should demonstrably rely on either:
Being based on an open-ended counter set to count without upper limit other than system or programming language limits. In this case, explain where this counter is in the code.
Being based on a limit that is extended automatically. In this case, choose a small limit that ensures the limit will be passed when generating some of the values to be asked for below.
If other methods of creating an extensible prime generator are used, the algorithm's means of extensibility/lack of limits should be stated.
The routine should be used to:
Show the first twenty primes.
Show the primes between 100 and 150.
Show the number of primes between 7,700 and 8,000.
Show the 10,000th prime.
Show output on this page.
Note: You may reference code already on this site if it is written to be imported/included, then only the code necessary for import and the performance of this task need be shown. (It is also important to leave a forward link on the referenced tasks entry so that later editors know that the code is used for multiple tasks).
Note 2: If a languages in-built prime generator is extensible or is guaranteed to generate primes up to a system limit, (231 or memory overflow for example), then this may be used as long as an explanation of the limits of the prime generator is also given. (Which may include a link to/excerpt from, language documentation).
Note 3:The task is written so it may be useful in solving the task Emirp primes as well as others (depending on its efficiency).
Reference
Prime Numbers. Website with large count of primes.
| #Sidef | Sidef | say ("First 20: ", 20.nth_prime.primes.join(' '))
say ("Between 100 and 150: ", primes(100,150).join(' '))
say (prime_count(7700,8000), " primes between 7700 and 8000")
say ("10,000th prime: ", nth_prime(10_000)) |
http://rosettacode.org/wiki/Execute_Brain**** | Execute Brain**** | Execute Brain**** is an implementation of Brainf***.
Other implementations of Brainf***.
RCBF is a set of Brainf*** compilers and interpreters written for Rosetta Code in a variety of languages.
Below are links to each of the versions of RCBF.
An implementation need only properly implement the following instructions:
Command
Description
>
Move the pointer to the right
<
Move the pointer to the left
+
Increment the memory cell under the pointer
-
Decrement the memory cell under the pointer
.
Output the character signified by the cell at the pointer
,
Input a character and store it in the cell at the pointer
[
Jump past the matching ] if the cell under the pointer is 0
]
Jump back to the matching [ if the cell under the pointer is nonzero
Any cell size is allowed, EOF (End-O-File) support is optional, as is whether you have bounded or unbounded memory.
| #C.2B.2B | C++ | (ns brainfuck)
(def ^:dynamic *input*)
(def ^:dynamic *output*)
(defrecord Data [ptr cells])
(defn inc-ptr [next-cmd]
(fn [data]
(next-cmd (update-in data [:ptr] inc))))
(defn dec-ptr [next-cmd]
(fn [data]
(next-cmd (update-in data [:ptr] dec))))
(defn inc-cell [next-cmd]
(fn [data]
(next-cmd (update-in data [:cells (:ptr data)] (fnil inc 0)))))
(defn dec-cell [next-cmd]
(fn [data]
(next-cmd (update-in data [:cells (:ptr data)] (fnil dec 0)))))
(defn output-cell [next-cmd]
(fn [data]
(set! *output* (conj *output* (get (:cells data) (:ptr data) 0)))
(next-cmd data)))
(defn input-cell [next-cmd]
(fn [data]
(let [[input & rest-input] *input*]
(set! *input* rest-input)
(next-cmd (update-in data [:cells (:ptr data)] input)))))
(defn if-loop [next-cmd loop-cmd]
(fn [data]
(next-cmd (loop [d data]
(if (zero? (get (:cells d) (:ptr d) 0))
d
(recur (loop-cmd d)))))))
(defn terminate [data] data)
(defn split-cmds [cmds]
(letfn [(split [[cmd & rest-cmds] loop-cmds]
(when (nil? cmd) (throw (Exception. "invalid commands: missing ]")))
(case cmd
\[ (let [[c l] (split-cmds rest-cmds)]
(recur c (str loop-cmds "[" l "]")))
\] [(apply str rest-cmds) loop-cmds]
(recur rest-cmds (str loop-cmds cmd))))]
(split cmds "")))
(defn compile-cmds [[cmd & rest-cmds]]
(if (nil? cmd)
terminate
(case cmd
\> (inc-ptr (compile-cmds rest-cmds))
\< (dec-ptr (compile-cmds rest-cmds))
\+ (inc-cell (compile-cmds rest-cmds))
\- (dec-cell (compile-cmds rest-cmds))
\. (output-cell (compile-cmds rest-cmds))
\, (input-cell (compile-cmds rest-cmds))
\[ (let [[cmds loop-cmds] (split-cmds rest-cmds)]
(if-loop (compile-cmds cmds) (compile-cmds loop-cmds)))
\] (throw (Exception. "invalid commands: missing ["))
(compile-cmds rest-cmds))))
(defn compile-and-run [cmds input]
(binding [*input* input *output* []]
(let [compiled-cmds (compile-cmds cmds)]
(println (compiled-cmds (Data. 0 {}))))
(println *output*)
(println (apply str (map char *output*)))))
|
http://rosettacode.org/wiki/Evolutionary_algorithm | Evolutionary algorithm | Starting with:
The target string: "METHINKS IT IS LIKE A WEASEL".
An array of random characters chosen from the set of upper-case letters together with the space, and of the same length as the target string. (Call it the parent).
A fitness function that computes the ‘closeness’ of its argument to the target string.
A mutate function that given a string and a mutation rate returns a copy of the string, with some characters probably mutated.
While the parent is not yet the target:
copy the parent C times, each time allowing some random probability that another character might be substituted using mutate.
Assess the fitness of the parent and all the copies to the target and make the most fit string the new parent, discarding the others.
repeat until the parent converges, (hopefully), to the target.
See also
Wikipedia entry: Weasel algorithm.
Wikipedia entry: Evolutionary algorithm.
Note: to aid comparison, try and ensure the variables and functions mentioned in the task description appear in solutions
A cursory examination of a few of the solutions reveals that the instructions have not been followed rigorously in some solutions. Specifically,
While the parent is not yet the target:
copy the parent C times, each time allowing some random probability that another character might be substituted using mutate.
Note that some of the the solutions given retain characters in the mutated string that are correct in the target string. However, the instruction above does not state to retain any of the characters while performing the mutation. Although some may believe to do so is implied from the use of "converges"
(:* repeat until the parent converges, (hopefully), to the target.
Strictly speaking, the new parent should be selected from the new pool of mutations, and then the new parent used to generate the next set of mutations with parent characters getting retained only by not being mutated. It then becomes possible that the new set of mutations has no member that is fitter than the parent!
As illustration of this error, the code for 8th has the following remark.
Create a new string based on the TOS, changing randomly any characters which
don't already match the target:
NOTE: this has been changed, the 8th version is completely random now
Clearly, this algo will be applying the mutation function only to the parent characters that don't match to the target characters!
To ensure that the new parent is never less fit than the prior parent, both the parent and all of the latest mutations are subjected to the fitness test to select the next parent.
| #Common_Lisp | Common Lisp | (defun fitness (string target)
"Closeness of string to target; lower number is better"
(loop for c1 across string
for c2 across target
count (char/= c1 c2)))
(defun mutate (string chars p)
"Mutate each character of string with probablity p using characters from chars"
(dotimes (n (length string))
(when (< (random 1.0) p)
(setf (aref string n) (aref chars (random (length chars))))))
string)
(defun random-string (chars length)
"Generate a new random string consisting of letters from char and specified length"
(do ((n 0 (1+ n))
(str (make-string length)))
((= n length) str)
(setf (aref str n) (aref chars (random (length chars))))))
(defun evolve-string (target string chars c p)
"Generate new mutant strings, and choose the most fit string"
(let ((mutated-strs (list string)))
(dotimes (n c)
(push (mutate (copy-seq string) chars p) mutated-strs))
(reduce #'(lambda (s0 s1)
(if (< (fitness s0 target)
(fitness s1 target))
s0
s1))
mutated-strs)))
(defun evolve-gens (target c p)
(let ((chars " ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
(do ((parent (random-string chars (length target))
(evolve-string target parent chars c p))
(n 0 (1+ n)))
((string= target parent) (format t "Generation ~A: ~S~%" n parent))
(format t "Generation ~A: ~S~%" n parent)))) |
http://rosettacode.org/wiki/Fibonacci_sequence | Fibonacci sequence | The Fibonacci sequence is a sequence Fn of natural numbers defined recursively:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2, if n>1
Task
Write a function to generate the nth Fibonacci number.
Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion).
The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition:
Fn = Fn+2 - Fn+1, if n<0
support for negative n in the solution is optional.
Related tasks
Fibonacci n-step number sequences
Leonardo numbers
References
Wikipedia, Fibonacci number
Wikipedia, Lucas number
MathWorld, Fibonacci Number
Some identities for r-Fibonacci numbers
OEIS Fibonacci numbers
OEIS Lucas numbers
| #Lisaac | Lisaac | - fib(n : UINTEGER_32) : UINTEGER_64 <- (
+ result : UINTEGER_64;
(n < 2).if {
result := n;
} else {
result := fib(n - 1) + fib(n - 2);
};
result
); |
http://rosettacode.org/wiki/Execute_HQ9%2B | Execute HQ9+ | Task
Implement a HQ9+ interpreter or compiler.
| #PureBasic | PureBasic | Procedure hq9plus(code.s)
Protected accumulator, i, bottles
For i = 1 To Len(code)
Select Mid(code, i, 1)
Case "h", "H"
PrintN("Hello, world!")
Case "q", "Q"
PrintN(code)
Case "9"
bottles = 99
While bottles
PrintN(Str(bottles) + " bottles of beer on the wall, " + Str(bottles) + " bottles of beer,")
bottles - 1
PrintN("Take one down, pass it around, " + Str(bottles) + " bottles of beer on the wall.")
Wend
Case "+"
accumulator + 1
EndSelect
Next i
EndProcedure
If OpenConsole()
Define testCode.s = "hq9+HqQ+Qq"
hq9plus(testCode)
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf |
http://rosettacode.org/wiki/Execute_a_Markov_algorithm | Execute a Markov algorithm | Execute a Markov algorithm
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create an interpreter for a Markov Algorithm.
Rules have the syntax:
<ruleset> ::= ((<comment> | <rule>) <newline>+)*
<comment> ::= # {<any character>}
<rule> ::= <pattern> <whitespace> -> <whitespace> [.] <replacement>
<whitespace> ::= (<tab> | <space>) [<whitespace>]
There is one rule per line.
If there is a . (period) present before the <replacement>, then this is a terminating rule in which case the interpreter must halt execution.
A ruleset consists of a sequence of rules, with optional comments.
Rulesets
Use the following tests on entries:
Ruleset 1
# This rules file is extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
A -> apple
B -> bag
S -> shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate the output:
I bought a bag of apples from my brother.
Ruleset 2
A test of the terminating rule
# Slightly modified from the rules on Wikipedia
A -> apple
B -> bag
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate:
I bought a bag of apples from T shop.
Ruleset 3
This tests for correct substitution order and may trap simple regexp based replacement routines if special regexp characters are not escaped.
# BNF Syntax testing rules
A -> apple
WWWW -> with
Bgage -> ->.*
B -> bag
->.* -> money
W -> WW
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As W my Bgage from T S.
Should generate:
I bought a bag of apples with my money from T shop.
Ruleset 4
This tests for correct order of scanning of rules, and may trap replacement routines that scan in the wrong order. It implements a general unary multiplication engine. (Note that the input expression must be placed within underscores in this implementation.)
### Unary Multiplication Engine, for testing Markov Algorithm implementations
### By Donal Fellows.
# Unary addition engine
_+1 -> _1+
1+1 -> 11+
# Pass for converting from the splitting of multiplication into ordinary
# addition
1! -> !1
,! -> !+
_! -> _
# Unary multiplication by duplicating left side, right side times
1*1 -> x,@y
1x -> xX
X, -> 1,1
X1 -> 1X
_x -> _X
,x -> ,X
y1 -> 1y
y_ -> _
# Next phase of applying
1@1 -> x,@y
1@_ -> @_
,@_ -> !_
++ -> +
# Termination cleanup for addition
_1 -> 1
1+_ -> 1
_+_ ->
Sample text of:
_1111*11111_
should generate the output:
11111111111111111111
Ruleset 5
A simple Turing machine,
implementing a three-state busy beaver.
The tape consists of 0s and 1s, the states are A, B, C and H (for Halt), and the head position is indicated by writing the state letter before the character where the head is.
All parts of the initial tape the machine operates on have to be given in the input.
Besides demonstrating that the Markov algorithm is Turing-complete, it also made me catch a bug in the C++ implementation which wasn't caught by the first four rulesets.
# Turing machine: three-state busy beaver
#
# state A, symbol 0 => write 1, move right, new state B
A0 -> 1B
# state A, symbol 1 => write 1, move left, new state C
0A1 -> C01
1A1 -> C11
# state B, symbol 0 => write 1, move left, new state A
0B0 -> A01
1B0 -> A11
# state B, symbol 1 => write 1, move right, new state B
B1 -> 1B
# state C, symbol 0 => write 1, move left, new state B
0C0 -> B01
1C0 -> B11
# state C, symbol 1 => write 1, move left, halt
0C1 -> H01
1C1 -> H11
This ruleset should turn
000000A000000
into
00011H1111000
| #PicoLisp | PicoLisp | (de markov (File Text)
(use (@A @Z R)
(let Rules
(make
(in File
(while (skip "#")
(when (match '(@A " " "-" ">" " " @Z) (replace (line) "@" "#"))
(link (cons (clip @A) (clip @Z))) ) ) ) )
(setq Text (chop Text))
(pack
(loop
(NIL
(find
'((R) (match (append '(@A) (car R) '(@Z)) Text))
Rules )
Text )
(T (= "." (cadr (setq R @)))
(append @A (cddr R) @Z) )
(setq Text (append @A (cdr R) @Z)) ) ) ) ) ) |
http://rosettacode.org/wiki/Execute_a_Markov_algorithm | Execute a Markov algorithm | Execute a Markov algorithm
You are encouraged to solve this task according to the task description, using any language you may know.
Task
Create an interpreter for a Markov Algorithm.
Rules have the syntax:
<ruleset> ::= ((<comment> | <rule>) <newline>+)*
<comment> ::= # {<any character>}
<rule> ::= <pattern> <whitespace> -> <whitespace> [.] <replacement>
<whitespace> ::= (<tab> | <space>) [<whitespace>]
There is one rule per line.
If there is a . (period) present before the <replacement>, then this is a terminating rule in which case the interpreter must halt execution.
A ruleset consists of a sequence of rules, with optional comments.
Rulesets
Use the following tests on entries:
Ruleset 1
# This rules file is extracted from Wikipedia:
# http://en.wikipedia.org/wiki/Markov_Algorithm
A -> apple
B -> bag
S -> shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate the output:
I bought a bag of apples from my brother.
Ruleset 2
A test of the terminating rule
# Slightly modified from the rules on Wikipedia
A -> apple
B -> bag
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As from T S.
Should generate:
I bought a bag of apples from T shop.
Ruleset 3
This tests for correct substitution order and may trap simple regexp based replacement routines if special regexp characters are not escaped.
# BNF Syntax testing rules
A -> apple
WWWW -> with
Bgage -> ->.*
B -> bag
->.* -> money
W -> WW
S -> .shop
T -> the
the shop -> my brother
a never used -> .terminating rule
Sample text of:
I bought a B of As W my Bgage from T S.
Should generate:
I bought a bag of apples with my money from T shop.
Ruleset 4
This tests for correct order of scanning of rules, and may trap replacement routines that scan in the wrong order. It implements a general unary multiplication engine. (Note that the input expression must be placed within underscores in this implementation.)
### Unary Multiplication Engine, for testing Markov Algorithm implementations
### By Donal Fellows.
# Unary addition engine
_+1 -> _1+
1+1 -> 11+
# Pass for converting from the splitting of multiplication into ordinary
# addition
1! -> !1
,! -> !+
_! -> _
# Unary multiplication by duplicating left side, right side times
1*1 -> x,@y
1x -> xX
X, -> 1,1
X1 -> 1X
_x -> _X
,x -> ,X
y1 -> 1y
y_ -> _
# Next phase of applying
1@1 -> x,@y
1@_ -> @_
,@_ -> !_
++ -> +
# Termination cleanup for addition
_1 -> 1
1+_ -> 1
_+_ ->
Sample text of:
_1111*11111_
should generate the output:
11111111111111111111
Ruleset 5
A simple Turing machine,
implementing a three-state busy beaver.
The tape consists of 0s and 1s, the states are A, B, C and H (for Halt), and the head position is indicated by writing the state letter before the character where the head is.
All parts of the initial tape the machine operates on have to be given in the input.
Besides demonstrating that the Markov algorithm is Turing-complete, it also made me catch a bug in the C++ implementation which wasn't caught by the first four rulesets.
# Turing machine: three-state busy beaver
#
# state A, symbol 0 => write 1, move right, new state B
A0 -> 1B
# state A, symbol 1 => write 1, move left, new state C
0A1 -> C01
1A1 -> C11
# state B, symbol 0 => write 1, move left, new state A
0B0 -> A01
1B0 -> A11
# state B, symbol 1 => write 1, move right, new state B
B1 -> 1B
# state C, symbol 0 => write 1, move left, new state B
0C0 -> B01
1C0 -> B11
# state C, symbol 1 => write 1, move left, halt
0C1 -> H01
1C1 -> H11
This ruleset should turn
000000A000000
into
00011H1111000
| #Prolog | Prolog | :- module('markov.pl', [markov/3, apply_markov/3]).
:- use_module(library(lambda)).
apply_markov(Rules, Sentence, Replacement) :-
maplist(\X^Y^(atom_chars(X, Ch), phrase(markov(Y), Ch, [])), Rules, TmpRules),
% comments produce empty rules
exclude(=([]), TmpRules, LstRules),
atom_chars(Sentence, L),
apply_rules(L, LstRules, R),
atom_chars(Replacement, R).
apply_rules(In, Rules, Out ) :-
apply_one_rule(In, Rules, Out1, Keep_On),
( Keep_On = false
-> Out = Out1
; apply_rules(Out1, Rules, Out)).
apply_one_rule(In, [Rule | Rules], Out, Keep_On) :-
extract(Rule, In, Out1, KeepOn),
( KeepOn = false
-> Out = Out1, Keep_On = KeepOn
; (KeepOn = stop
-> Out = Out1,
Keep_On = true
; apply_one_rule(Out1, Rules, Out, Keep_On))).
apply_one_rule(In, [], In, false) .
extract([Pattern, Replace], In, Out, Keep_On) :-
( Replace = [.|Rest]
-> R = Rest
; R = Replace),
( (append(Pattern, End, T), append(Deb, T, In))
-> extract([Pattern, Replace], End, NewEnd, _Keep_On),
append_3(Deb, R, NewEnd, Out),
Keep_On = stop
; Out = In,
( R = Replace
-> Keep_On = true
; Keep_On = false)).
append_3(A, B, C, D) :-
append(A, B, T),
append(T, C, D).
% creation of the rules
markov(A) --> line(A).
line(A) --> text(A), newline.
newline --> ['\n'], newline.
newline --> [].
text([]) --> comment([]).
text(A) --> rule(A).
comment([]) --> ['#'], anything.
anything --> [X], {X \= '\n'}, anything.
anything --> ['\n'].
anything --> [].
rule([A,B]) -->
pattern(A), whitespaces, ['-', '>'], whitespaces, end_rule(B).
pattern([X | R]) --> [X], {X \= '\n'}, pattern(R).
pattern([]) --> [].
whitespaces --> ['\t'], whitespace.
whitespaces --> [' '], whitespace.
whitespace --> whitespaces.
whitespace --> [].
end_rule([.| A]) --> [.], rest_of_rule(A).
end_rule(A) --> rest_of_rule(A).
end_rule([]) --> [].
rest_of_rule(A) --> replacement(A).
replacement([X | R]) --> [X], {X \= '\n'}, replacement(R).
replacement([]) --> [].
|
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #Rust | Rust | #[derive(Debug)]
enum U {
U0(i32),
U1(String),
}
fn baz(i: u8) -> Result<(), U> {
match i {
0 => Err(U::U0(42)),
1 => Err(U::U1("This will be returned from main".into())),
_ => Ok(()),
}
}
fn bar(i: u8) -> Result<(), U> {
baz(i)
}
fn foo() -> Result<(), U> {
for i in 0..2 {
match bar(i) {
Ok(()) => {},
Err(U::U0(n)) => eprintln!("Caught U0 in foo: {}", n),
Err(e) => return Err(e),
}
}
Ok(())
}
fn main() -> Result<(), U> {
foo()
} |
http://rosettacode.org/wiki/Exceptions/Catch_an_exception_thrown_in_a_nested_call | Exceptions/Catch an exception thrown in a nested call | Show how to create a user-defined exception and show how to catch an exception raised from several nested calls away.
Create two user-defined exceptions, U0 and U1.
Have function foo call function bar twice.
Have function bar call function baz.
Arrange for function baz to raise, or throw exception U0 on its first call, then exception U1 on its second.
Function foo should catch only exception U0, not U1.
Show/describe what happens when the program is run.
| #Scala | Scala | object ExceptionsTest extends App {
class U0 extends Exception
class U1 extends Exception
def foo {
for (i <- 0 to 1)
try {
bar(i)
} catch { case e: U0 => println("Function foo caught exception U0") }
}
def bar(i: Int) {
def baz(i: Int) = { if (i == 0) throw new U0 else throw new U1 }
baz(i) // Nest those calls
}
foo
}
|
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #Maple | Maple |
errorproc:=proc(n)
local a;
try
a:=1/n;
catch "numeric exception: division by zero":
error "Something went wrong when dividing."
end try;
end proc;
|
http://rosettacode.org/wiki/Exceptions | Exceptions | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
This task is to give an example of an exception handling routine
and to "throw" a new exception.
Related task
Exceptions Through Nested Calls
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | f[x_] := If[x > 10, Throw[overflow], x!]
Example usage :
Catch[f[2] + f[11]]
-> overflow
Catch[f[2] + f[3]]
-> 8 |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #HolyC | HolyC | Dir; |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #Icon_and_Unicon | Icon and Unicon | procedure main()
write("Trying command ",cmd := if &features == "UNIX" then "ls" else "dir")
system(cmd)
end |
http://rosettacode.org/wiki/Execute_a_system_command | Execute a system command | Task
Run either the ls system command (dir on Windows), or the pause system command.
Related task
Get system command output
| #IDL | IDL | $ls |
http://rosettacode.org/wiki/Factorial | Factorial | Definitions
The factorial of 0 (zero) is defined as being 1 (unity).
The Factorial Function of a positive integer, n, is defined as the product of the sequence:
n, n-1, n-2, ... 1
Task
Write a function to return the factorial of a number.
Solutions can be iterative or recursive.
Support for trapping negative n errors is optional.
Related task
Primorial numbers
| #Axe | Axe | Lbl FACT
1→R
For(I,1,r₁)
R*I→R
End
R
Return |
http://rosettacode.org/wiki/Exponentiation_operator | Exponentiation operator | Most programming languages have a built-in implementation of exponentiation.
Task
Re-implement integer exponentiation for both intint and floatint as both a procedure, and an operator (if your language supports operator definition).
If the language supports operator (or procedure) overloading, then an overloaded form should be provided for both intint and floatint variants.
Related tasks
Exponentiation order
arbitrary-precision integers (included)
Exponentiation with infix operators in (or operating on) the base
| #Oforth | Oforth | : powint(r, n)
| i |
1 n abs loop: i [ r * ]
n isNegative ifTrue: [ inv ] ;
2 3 powint println
2 powint(3) println
1.2 4 powint println
1.2 powint(4) println |
http://rosettacode.org/wiki/Exponentiation_operator | Exponentiation operator | Most programming languages have a built-in implementation of exponentiation.
Task
Re-implement integer exponentiation for both intint and floatint as both a procedure, and an operator (if your language supports operator definition).
If the language supports operator (or procedure) overloading, then an overloaded form should be provided for both intint and floatint variants.
Related tasks
Exponentiation order
arbitrary-precision integers (included)
Exponentiation with infix operators in (or operating on) the base
| #PARI.2FGP | PARI/GP | ex(a, b)={
my(c = 1);
while(b > 1,
if(b % 2, c *= a);
a = a^2;
b >>= 1
);
a * c
}; |
http://rosettacode.org/wiki/Extend_your_language | Extend your language | Control Structures
These are examples of control structures. You may also be interested in:
Conditional structures
Exceptions
Flow-control structures
Loops
Some programming languages allow you to extend the language. While this can be done to a certain degree in most languages (e.g. by using macros), other languages go much further. Most notably in the Forth and Lisp families, programming per se is done by extending the language without any formal distinction between built-in and user-defined elements.
If your language supports it, show how to introduce a new flow control mechanism. A practical and useful example is a four-way branch:
Occasionally, code must be written that depends on two conditions, resulting in up to four branches (depending on whether both, only the first, only the second, or none of the conditions are "true"). In a C-like language this could look like the following:
if (condition1isTrue) {
if (condition2isTrue)
bothConditionsAreTrue();
else
firstConditionIsTrue();
}
else if (condition2isTrue)
secondConditionIsTrue();
else
noConditionIsTrue();
Besides being rather cluttered, the statement(s) for 'condition2isTrue' must be written down twice. If 'condition2isTrue' were a lengthy and involved expression, it would be quite unreadable, and the code generated by the compiler might be unnecessarily large.
This can be improved by introducing a new keyword if2. It is similar to if, but takes two conditional statements instead of one, and up to three 'else' statements. One proposal (in pseudo-C syntax) might be:
if2 (condition1isTrue) (condition2isTrue)
bothConditionsAreTrue();
else1
firstConditionIsTrue();
else2
secondConditionIsTrue();
else
noConditionIsTrue();
Pick the syntax which suits your language. The keywords 'else1' and 'else2' are just examples. The new conditional expression should look, nest and behave analogously to the language's built-in 'if' statement.
| #TXR | TXR | (defmacro if2 (cond1 cond2 both first second . neither)
(let ((res1 (gensym))
(res2 (gensym)))
^(let ((,res1 ,cond1)
(,res2 ,cond2))
(cond ((and ,res1 ,res2) ,both)
(,res1 ,first)
(,res2 ,second)
(t ,*neither))))) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.