title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Theano: new features and speed improvements
cs.SC cs.LG
Theano is a linear algebra compiler that optimizes a user's symbolically-specified mathematical computations to produce efficient low-level implementations. In this paper, we present new features and efficiency improvements to Theano, and benchmarks demonstrating Theano's performance relative to Torch7, a recently introduced machine learning library, and to RNNLM, a C++ library targeted at recurrent neural networks.
Fr\'ed\'eric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, Yoshua Bengio
null
1211.5590
null
null
Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions
cs.LG stat.ML
We apply the spike-and-slab Restricted Boltzmann Machine (ssRBM) to texture modeling. The ssRBM with tiled-convolution weight sharing (TssRBM) achieves or surpasses the state-of-the-art on texture synthesis and inpainting by parametric models. We also develop a novel RBM model with a spike-and-slab visible layer and binary variables in the hidden layer. This model is designed to be stacked on top of the TssRBM. We show the resulting deep belief network (DBN) is a powerful generative model that improves on single-layer models and is capable of modeling not only single high-resolution and challenging textures but also multiple textures.
Heng Luo, Pierre Luc Carrier, Aaron Courville, Yoshua Bengio
null
1211.5687
null
null
Bayesian learning of noisy Markov decision processes
stat.ML cs.LG stat.CO
We consider the inverse reinforcement learning problem, that is, the problem of learning from, and then predicting or mimicking a controller based on state/action data. We propose a statistical model for such data, derived from the structure of a Markov decision process. Adopting a Bayesian approach to inference, we show how latent variables of the model can be estimated, and how predictions about actions can be made, in a unified framework. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from the posterior distribution. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.
Sumeetpal S. Singh and Nicolas Chopin and Nick Whiteley
null
1211.5901
null
null
Online Stochastic Optimization with Multiple Objectives
cs.LG math.OC
In this paper we propose a general framework to characterize and solve the stochastic optimization problems with multiple objectives underlying many real world learning applications. We first propose a projection based algorithm which attains an $O(T^{-1/3})$ convergence rate. Then, by leveraging on the theory of Lagrangian in constrained optimization, we devise a novel primal-dual stochastic approximation algorithm which attains the optimal convergence rate of $O(T^{-1/2})$ for general Lipschitz continuous objectives.
Mehrdad Mahdavi, Tianbao Yang, Rong Jin
null
1211.6013
null
null
Random Projections for Linear Support Vector Machines
cs.LG stat.ML
Let X be a data matrix of rank \rho, whose rows represent n points in d-dimensional space. The linear support vector machine constructs a hyperplane separator that maximizes the 1-norm soft margin. We develop a new oblivious dimension reduction technique which is precomputed and can be applied to any input matrix X. We prove that, with high probability, the margin and minimum enclosing ball in the feature space are preserved to within \epsilon-relative error, ensuring comparable generalization as in the original space in the case of classification. For regression, we show that the margin is preserved to \epsilon-relative error with high probability. We present extensive experiments with real and synthetic data to support our theory.
Saurabh Paul, Christos Boutsidis, Malik Magdon-Ismail, Petros Drineas
null
1211.6085
null
null
The Interplay Between Stability and Regret in Online Learning
cs.LG stat.ML
This paper considers the stability of online learning algorithms and its implications for learnability (bounded regret). We introduce a novel quantity called {\em forward regret} that intuitively measures how good an online learning algorithm is if it is allowed a one-step look-ahead into the future. We show that given stability, bounded forward regret is equivalent to bounded regret. We also show that the existence of an algorithm with bounded regret implies the existence of a stable algorithm with bounded regret and bounded forward regret. The equivalence results apply to general, possibly non-convex problems. To the best of our knowledge, our analysis provides the first general connection between stability and regret in the online setting that is not restricted to a particular class of algorithms. Our stability-regret connection provides a simple recipe for analyzing regret incurred by any online learning algorithm. Using our framework, we analyze several existing online learning algorithms as well as the "approximate" versions of algorithms like RDA that solve an optimization problem at each iteration. Our proofs are simpler than existing analysis for the respective algorithms, show a clear trade-off between stability and forward regret, and provide tighter regret bounds in some cases. Furthermore, using our recipe, we analyze "approximate" versions of several algorithms such as follow-the-regularized-leader (FTRL) that requires solving an optimization problem at each step.
Ankan Saha and Prateek Jain and Ambuj Tewari
null
1211.6158
null
null
A simple non-parametric Topic Mixture for Authors and Documents
cs.LG stat.ML
This article reviews the Author-Topic Model and presents a new non-parametric extension based on the Hierarchical Dirichlet Process. The extension is especially suitable when no prior information about the number of components necessary is available. A blocked Gibbs sampler is described and focus put on staying as close as possible to the original model with only the minimum of theoretical and implementation overhead necessary.
Arnim Bleier
null
1211.6248
null
null
Duality between subgradient and conditional gradient methods
cs.LG math.OC stat.ML
Given a convex optimization problem and its dual, there are many possible first-order algorithms. In this paper, we show the equivalence between mirror descent algorithms and algorithms generalizing the conditional gradient method. This is done through convex duality, and implies notably that for certain problems, such as for supervised machine learning problems with non-smooth losses or problems regularized by non-smooth regularizers, the primal subgradient method and the dual conditional gradient method are formally equivalent. The dual interpretation leads to a form of line search for mirror descent, as well as guarantees of convergence for primal-dual certificates.
Francis Bach (INRIA Paris - Rocquencourt, LIENS)
null
1211.6302
null
null
An Approach of Improving Students Academic Performance by using k means clustering algorithm and Decision tree
cs.LG
Improving students academic performance is not an easy task for the academic community of higher learning. The academic performance of engineering and science students during their first year at university is a turning point in their educational path and usually encroaches on their General Point Average,GPA in a decisive manner. The students evaluation factors like class quizzes mid and final exam assignment lab work are studied. It is recommended that all these correlated information should be conveyed to the class teacher before the conduction of final exam. This study will help the teachers to reduce the drop out ratio to a significant level and improve the performance of students. In this paper, we present a hybrid procedure based on Decision Tree of Data mining method and Data Clustering that enables academicians to predict students GPA and based on that instructor can take necessary step to improve student academic performance.
Md. Hedayetul Islam Shovon, Mahfuza Haque
null
1211.6340
null
null
Multi-Target Regression via Input Space Expansion: Treating Targets as Inputs
cs.LG
In many practical applications of supervised learning the task involves the prediction of multiple target variables from a common set of input variables. When the prediction targets are binary the task is called multi-label classification, while when the targets are continuous the task is called multi-target regression. In both tasks, target variables often exhibit statistical dependencies and exploiting them in order to improve predictive accuracy is a core challenge. A family of multi-label classification methods address this challenge by building a separate model for each target on an expanded input space where other targets are treated as additional input variables. Despite the success of these methods in the multi-label classification domain, their applicability and effectiveness in multi-target regression has not been studied until now. In this paper, we introduce two new methods for multi-target regression, called Stacked Single-Target and Ensemble of Regressor Chains, by adapting two popular multi-label classification methods of this family. Furthermore, we highlight an inherent problem of these methods - a discrepancy of the values of the additional input variables between training and prediction - and develop extensions that use out-of-sample estimates of the target variables during training in order to tackle this problem. The results of an extensive experimental evaluation carried out on a large and diverse collection of datasets show that, when the discrepancy is appropriately mitigated, the proposed methods attain consistent improvements over the independent regressions baseline. Moreover, two versions of Ensemble of Regression Chains perform significantly better than four state-of-the-art methods including regularization-based multi-task learning methods and a multi-objective random forest approach.
Eleftherios Spyromitros-Xioufis, Grigorios Tsoumakas, William Groves, Ioannis Vlahavas
10.1007/s10994-016-5546-z
1211.6581
null
null
TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks
cs.NI cs.AI cs.IT cs.LG math.IT
Recent works have validated the possibility of improving energy efficiency in radio access networks (RANs), achieved by dynamically turning on/off some base stations (BSs). In this paper, we extend the research over BS switching operations, which should match up with traffic load variations. Instead of depending on the dynamic traffic loads which are still quite challenging to precisely forecast, we firstly formulate the traffic variations as a Markov decision process. Afterwards, in order to foresightedly minimize the energy consumption of RANs, we design a reinforcement learning framework based BS switching operation scheme. Furthermore, to avoid the underlying curse of dimensionality in reinforcement learning, a transfer actor-critic algorithm (TACT), which utilizes the transferred learning expertise in historical periods or neighboring regions, is proposed and provably converges. In the end, we evaluate our proposed scheme by extensive simulations under various practical configurations and show that the proposed TACT algorithm contributes to a performance jumpstart and demonstrates the feasibility of significant energy efficiency improvement at the expense of tolerable delay performance.
Rongpeng Li, Zhifeng Zhao, Xianfu Chen, Jacques Palicot, Honggang Zhang
10.1109/TWC.2014.022014.130840
1211.6616
null
null
Nonparametric Bayesian Mixed-effect Model: a Sparse Gaussian Process Approach
cs.LG stat.ML
Multi-task learning models using Gaussian processes (GP) have been developed and successfully applied in various applications. The main difficulty with this approach is the computational cost of inference using the union of examples from all tasks. Therefore sparse solutions, that avoid using the entire data directly and instead use a set of informative "representatives" are desirable. The paper investigates this problem for the grouped mixed-effect GP model where each individual response is given by a fixed-effect, taken from one of a set of unknown groups, plus a random individual effect function that captures variations among individuals. Such models have been widely used in previous work but no sparse solutions have been developed. The paper presents the first sparse solution for such problems, showing how the sparse approximation can be obtained by maximizing a variational lower bound on the marginal likelihood, generalizing ideas from single-task Gaussian processes to handle the mixed-effect model as well as grouping. Experiments using artificial and real data validate the approach showing that it can recover the performance of inference with the full sample, that it outperforms baseline methods, and that it outperforms state of the art sparse solutions for other multi-task GP formulations.
Yuyang Wang, Roni Khardon
10.1007/978-3-642-33460-3_51
1211.6653
null
null
Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring Nonnegative Matrices
stat.ML cs.LG cs.NA math.OC
Although nonnegative matrix factorization (NMF) is NP-hard in general, it has been shown very recently that it is tractable under the assumption that the input nonnegative data matrix is close to being separable (separability requires that all columns of the input matrix belongs to the cone spanned by a small subset of these columns). Since then, several algorithms have been designed to handle this subclass of NMF problems. In particular, Bittorf, Recht, R\'e and Tropp (`Factoring nonnegative matrices with linear programs', NIPS 2012) proposed a linear programming model, referred to as Hottopixx. In this paper, we provide a new and more general robustness analysis of their method. In particular, we design a provably more robust variant using a post-processing strategy which allows us to deal with duplicates and near duplicates in the dataset.
Nicolas Gillis
10.1137/120900629
1211.6687
null
null
Graph Laplacians on Singular Manifolds: Toward understanding complex spaces: graph Laplacians on manifolds with singularities and boundaries
cs.AI cs.CG cs.LG
Recently, much of the existing work in manifold learning has been done under the assumption that the data is sampled from a manifold without boundaries and singularities or that the functions of interest are evaluated away from such points. At the same time, it can be argued that singularities and boundaries are an important aspect of the geometry of realistic data. In this paper we consider the behavior of graph Laplacians at points at or near boundaries and two main types of other singularities: intersections, where different manifolds come together and sharp "edges", where a manifold sharply changes direction. We show that the behavior of graph Laplacian near these singularities is quite different from that in the interior of the manifolds. In fact, a phenomenon somewhat reminiscent of the Gibbs effect in the analysis of Fourier series, can be observed in the behavior of graph Laplacian near such points. Unlike in the interior of the domain, where graph Laplacian converges to the Laplace-Beltrami operator, near singularities graph Laplacian tends to a first-order differential operator, which exhibits different scaling behavior as a function of the kernel width. One important implication is that while points near the singularities occupy only a small part of the total volume, the difference in scaling results in a disproportionately large contribution to the total behavior. Another significant finding is that while the scaling behavior of the operator is the same near different types of singularities, they are very distinct at a more refined level of analysis. We believe that a comprehensive understanding of these structures in addition to the standard case of a smooth manifold can take us a long way toward better methods for analysis of complex non-linear data and can lead to significant progress in algorithm design.
Mikhail Belkin and Qichao Que and Yusu Wang and Xueyuan Zhou
null
1211.6727
null
null
On unbiased performance evaluation for protein inference
stat.AP cs.LG q-bio.QM
This letter is a response to the comments of Serang (2012) on Huang and He (2012) in Bioinformatics. Serang (2012) claimed that the parameters for the Fido algorithm should be specified using the grid search method in Serang et al. (2010) so as to generate a deserved accuracy in performance comparison. It seems that it is an argument on parameter tuning. However, it is indeed the issue of how to conduct an unbiased performance evaluation for comparing different protein inference algorithms. In this letter, we would explain why we don't use the grid search for parameter selection in Huang and He (2012) and show that this procedure may result in an over-estimated performance that is unfair to competing algorithms. In fact, this issue has also been pointed out by Li and Radivojac (2012).
Zengyou He, Ting Huang, Peijun Zhu
null
1211.6834
null
null
Classification Recouvrante Bas\'ee sur les M\'ethodes \`a Noyau
cs.LG stat.CO stat.ME stat.ML
Overlapping clustering problem is an important learning issue in which clusters are not mutually exclusive and each object may belongs simultaneously to several clusters. This paper presents a kernel based method that produces overlapping clusters on a high feature space using mercer kernel techniques to improve separability of input patterns. The proposed method, called OKM-K(Overlapping $k$-means based kernel method), extends OKM (Overlapping $k$-means) method to produce overlapping schemes. Experiments are performed on overlapping dataset and empirical results obtained with OKM-K outperform results obtained with OKM.
Chiheb-Eddine Ben N'Cir and Nadia Essoussi
null
1211.6851
null
null
Overlapping clustering based on kernel similarity metric
stat.ML cs.LG stat.ME
Producing overlapping schemes is a major issue in clustering. Recent proposed overlapping methods relies on the search of an optimal covering and are based on different metrics, such as Euclidean distance and I-Divergence, used to measure closeness between observations. In this paper, we propose the use of another measure for overlapping clustering based on a kernel similarity metric .We also estimate the number of overlapped clusters using the Gram matrix. Experiments on both Iris and EachMovie datasets show the correctness of the estimation of number of clusters and show that measure based on kernel similarity metric improves the precision, recall and f-measure in overlapping clustering.
Chiheb-Eddine Ben N'Cir and Nadia Essoussi and Patrice Bertrand
null
1211.6859
null
null
Automating rule generation for grammar checkers
cs.CL cs.LG
In this paper, I describe several approaches to automatic or semi-automatic development of symbolic rules for grammar checkers from the information contained in corpora. The rules obtained this way are an important addition to manually-created rules that seem to dominate in rule-based checkers. However, the manual process of creation of rules is costly, time-consuming and error-prone. It seems therefore advisable to use machine-learning algorithms to create the rules automatically or semi-automatically. The results obtained seem to corroborate my initial hypothesis that symbolic machine learning algorithms can be useful for acquiring new rules for grammar checking. It turns out, however, that for practical uses, error corpora cannot be the sole source of information used in grammar checking. I suggest therefore that only by using different approaches, grammar-checkers, or more generally, computer-aided proofreading tools, will be able to cover most frequent and severe mistakes and avoid false alarms that seem to distract users.
Marcin Mi{\l}kowski
null
1211.6887
null
null
On the Use of Non-Stationary Policies for Stationary Infinite-Horizon Markov Decision Processes
cs.LG cs.AI
We consider infinite-horizon stationary $\gamma$-discounted Markov Decision Processes, for which it is known that there exists a stationary optimal policy. Using Value and Policy Iteration with some error $\epsilon$ at each iteration, it is well-known that one can compute stationary policies that are $\frac{2\gamma}{(1-\gamma)^2}\epsilon$-optimal. After arguing that this guarantee is tight, we develop variations of Value and Policy Iteration for computing non-stationary policies that can be up to $\frac{2\gamma}{1-\gamma}\epsilon$-optimal, which constitutes a significant improvement in the usual situation when $\gamma$ is close to 1. Surprisingly, this shows that the problem of "computing near-optimal non-stationary policies" is much simpler than that of "computing near-optimal stationary policies".
Bruno Scherrer (INRIA Nancy - Grand Est / LORIA), Boris Lesner (INRIA Nancy - Grand Est / LORIA)
null
1211.6898
null
null
Learning-Assisted Automated Reasoning with Flyspeck
cs.AI cs.DL cs.LG cs.LO
The considerable mathematical knowledge encoded by the Flyspeck project is combined with external automated theorem provers (ATPs) and machine-learning premise selection methods trained on the proofs, producing an AI system capable of answering a wide range of mathematical queries automatically. The performance of this architecture is evaluated in a bootstrapping scenario emulating the development of Flyspeck from axioms to the last theorem, each time using only the previous theorems and proofs. It is shown that 39% of the 14185 theorems could be proved in a push-button mode (without any high-level advice and user interaction) in 30 seconds of real time on a fourteen-CPU workstation. The necessary work involves: (i) an implementation of sound translations of the HOL Light logic to ATP formalisms: untyped first-order, polymorphic typed first-order, and typed higher-order, (ii) export of the dependency information from HOL Light and ATP proofs for the machine learners, and (iii) choice of suitable representations and methods for learning from previous proofs, and their integration as advisors with HOL Light. This work is described and discussed here, and an initial analysis of the body of proofs that were found fully automatically is provided.
Cezary Kaliszyk and Josef Urban
10.1007/s10817-014-9303-3
1211.7012
null
null
Orientation Determination from Cryo-EM images Using Least Unsquared Deviation
cs.LG math.NA math.OC q-bio.BM
A major challenge in single particle reconstruction from cryo-electron microscopy is to establish a reliable ab-initio three-dimensional model using two-dimensional projection images with unknown orientations. Common-lines based methods estimate the orientations without additional geometric information. However, such methods fail when the detection rate of common-lines is too low due to the high level of noise in the images. An approximation to the least squares global self consistency error was obtained using convex relaxation by semidefinite programming. In this paper we introduce a more robust global self consistency error and show that the corresponding optimization problem can be solved via semidefinite relaxation. In order to prevent artificial clustering of the estimated viewing directions, we further introduce a spectral norm term that is added as a constraint or as a regularization term to the relaxed minimization problem. The resulted problems are solved by using either the alternating direction method of multipliers or an iteratively reweighted least squares procedure. Numerical experiments with both simulated and real images demonstrate that the proposed methods significantly reduce the orientation estimation error when the detection rate of common-lines is low.
Lanhui Wang, Amit Singer, Zaiwen Wen
null
1211.7045
null
null
A recursive divide-and-conquer approach for sparse principal component analysis
cs.CV cs.LG stat.ML
In this paper, a new method is proposed for sparse PCA based on the recursive divide-and-conquer methodology. The main idea is to separate the original sparse PCA problem into a series of much simpler sub-problems, each having a closed-form solution. By recursively solving these sub-problems in an analytical way, an efficient algorithm is constructed to solve the sparse PCA problem. The algorithm only involves simple computations and is thus easy to implement. The proposed method can also be very easily extended to other sparse PCA problems with certain constraints, such as the nonnegative sparse PCA problem. Furthermore, we have shown that the proposed algorithm converges to a stationary point of the problem, and its computational complexity is approximately linear in both data size and dimensionality. The effectiveness of the proposed method is substantiated by extensive experiments implemented on a series of synthetic and real data in both reconstruction-error-minimization and data-variance-maximization viewpoints.
Qian Zhao and Deyu Meng and Zongben Xu
null
1211.7219
null
null
Efficient algorithms for robust recovery of images from compressed data
cs.IT cs.LG math.IT stat.ML
Compressed sensing (CS) is an important theory for sub-Nyquist sampling and recovery of compressible data. Recently, it has been extended by Pham and Venkatesh to cope with the case where corruption to the CS data is modeled as impulsive noise. The new formulation, termed as robust CS, combines robust statistics and CS into a single framework to suppress outliers in the CS recovery. To solve the newly formulated robust CS problem, Pham and Venkatesh suggested a scheme that iteratively solves a number of CS problems, the solutions from which converge to the true robust compressed sensing solution. However, this scheme is rather inefficient as it has to use existing CS solvers as a proxy. To overcome limitation with the original robust CS algorithm, we propose to solve the robust CS problem directly in this paper and drive more computationally efficient algorithms by following latest advances in large-scale convex optimization for non-smooth regularization. Furthermore, we also extend the robust CS formulation to various settings, including additional affine constraints, $\ell_1$-norm loss function, mixed-norm regularization, and multi-tasking, so as to further improve robust CS. We also derive simple but effective algorithms to solve these extensions. We demonstrate that the new algorithms provide much better computational advantage over the original robust CS formulation, and effectively solve more sophisticated extensions where the original methods simply cannot. We demonstrate the usefulness of the extensions on several CS imaging tasks.
Duc Son Pham and Svetha Venkatesh
null
1211.7276
null
null
Approximate Rank-Detecting Factorization of Low-Rank Tensors
stat.ML cs.LG math.NA
We present an algorithm, AROFAC2, which detects the (CP-)rank of a degree 3 tensor and calculates its factorization into rank-one components. We provide generative conditions for the algorithm to work and demonstrate on both synthetic and real world data that AROFAC2 is a potentially outperforming alternative to the gold standard PARAFAC over which it has the advantages that it can intrinsically detect the true rank, avoids spurious components, and is stable with respect to outliers and non-Gaussian noise.
Franz J. Kir\'aly and Andreas Ziehe
null
1211.7369
null
null
Cumulative Step-size Adaptation on Linear Functions
cs.LG stat.ML
The CSA-ES is an Evolution Strategy with Cumulative Step size Adaptation, where the step size is adapted measuring the length of a so-called cumulative path. The cumulative path is a combination of the previous steps realized by the algorithm, where the importance of each step decreases with time. This article studies the CSA-ES on composites of strictly increasing functions with affine linear functions through the investigation of its underlying Markov chains. Rigorous results on the change and the variation of the step size are derived with and without cumulation. The step-size diverges geometrically fast in most cases. Furthermore, the influence of the cumulation parameter is studied.
Alexandre Chotard (INRIA Saclay - Ile de France, LRI), Anne Auger (INRIA Saclay - Ile de France), Nikolaus Hansen (INRIA Saclay - Ile de France)
null
1212.0139
null
null
Pedestrian Detection with Unsupervised Multi-Stage Feature Learning
cs.CV cs.LG
Pedestrian detection is a problem of considerable practical interest. Adding to the list of successful applications of deep learning methods to vision, we report state-of-the-art and competitive results on all major pedestrian datasets with a convolutional network model. The model uses a few new twists, such as multi-stage features, connections that skip layers to integrate global shape information with local distinctive motif information, and an unsupervised method based on convolutional sparse coding to pre-train the filters at each stage.
Pierre Sermanet and Koray Kavukcuoglu and Soumith Chintala and Yann LeCun
null
1212.0142
null
null
Message-Passing Algorithms for Quadratic Minimization
cs.IT cs.LG math.IT stat.ML
Gaussian belief propagation (GaBP) is an iterative algorithm for computing the mean of a multivariate Gaussian distribution, or equivalently, the minimum of a multivariate positive definite quadratic function. Sufficient conditions, such as walk-summability, that guarantee the convergence and correctness of GaBP are known, but GaBP may fail to converge to the correct solution given an arbitrary positive definite quadratic function. As was observed in previous work, the GaBP algorithm fails to converge if the computation trees produced by the algorithm are not positive definite. In this work, we will show that the failure modes of the GaBP algorithm can be understood via graph covers, and we prove that a parameterized generalization of the min-sum algorithm can be used to ensure that the computation trees remain positive definite whenever the input matrix is positive definite. We demonstrate that the resulting algorithm is closely related to other iterative schemes for quadratic minimization such as the Gauss-Seidel and Jacobi algorithms. Finally, we observe, empirically, that there always exists a choice of parameters such that the above generalization of the GaBP algorithm converges.
Nicholas Ruozzi and Sekhar Tatikonda
null
1212.0171
null
null
Hypergraph and protein function prediction with gene expression data
stat.ML cs.LG q-bio.QM
Most network-based protein (or gene) function prediction methods are based on the assumption that the labels of two adjacent proteins in the network are likely to be the same. However, assuming the pairwise relationship between proteins or genes is not complete, the information a group of genes that show very similar patterns of expression and tend to have similar functions (i.e. the functional modules) is missed. The natural way overcoming the information loss of the above assumption is to represent the gene expression data as the hypergraph. Thus, in this paper, the three un-normalized, random walk, and symmetric normalized hypergraph Laplacian based semi-supervised learning methods applied to hypergraph constructed from the gene expression data in order to predict the functions of yeast proteins are introduced. Experiment results show that the average accuracy performance measures of these three hypergraph Laplacian based semi-supervised learning methods are the same. However, their average accuracy performance measures of these three methods are much greater than the average accuracy performance measures of un-normalized graph Laplacian based semi-supervised learning method (i.e. the baseline method of this paper) applied to gene co-expression network created from the gene expression data.
Loc Tran
null
1212.0388
null
null
Nonparametric risk bounds for time-series forecasting
math.ST cs.LG stat.ML stat.TH
We derive generalization error bounds for traditional time-series forecasting models. Our results hold for many standard forecasting tools including autoregressive models, moving average models, and, more generally, linear state-space models. These non-asymptotic bounds need only weak assumptions on the data-generating process, yet allow forecasters to select among competing models and to guarantee, with high probability, that their chosen model will perform well. We motivate our techniques with and apply them to standard economic and financial forecasting tools---a GARCH model for predicting equity volatility and a dynamic stochastic general equilibrium model (DSGE), the standard tool in macroeconomic forecasting. We demonstrate in particular how our techniques can aid forecasters and policy makers in choosing models which behave well under uncertainty and mis-specification.
Daniel J. McDonald and Cosma Rohilla Shalizi and Mark Schervish
null
1212.0463
null
null
Low-rank Matrix Completion using Alternating Minimization
stat.ML cs.LG math.OC
Alternating minimization represents a widely applicable and empirically successful approach for finding low-rank matrices that best fit the given data. For example, for the problem of low-rank matrix completion, this method is believed to be one of the most accurate and efficient, and formed a major component of the winning entry in the Netflix Challenge. In the alternating minimization approach, the low-rank target matrix is written in a bi-linear form, i.e. $X = UV^\dag$; the algorithm then alternates between finding the best $U$ and the best $V$. Typically, each alternating step in isolation is convex and tractable. However the overall problem becomes non-convex and there has been almost no theoretical understanding of when this approach yields a good result. In this paper we present first theoretical analysis of the performance of alternating minimization for matrix completion, and the related problem of matrix sensing. For both these problems, celebrated recent results have shown that they become well-posed and tractable once certain (now standard) conditions are imposed on the problem. We show that alternating minimization also succeeds under similar conditions. Moreover, compared to existing results, our paper shows that alternating minimization guarantees faster (in particular, geometric) convergence to the true matrix, while allowing a simpler analysis.
Prateek Jain, Praneeth Netrapalli and Sujay Sanghavi
null
1212.0467
null
null
Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties
q-bio.GN cs.CE cs.LG q-bio.CB
Predicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect. In an effort to integrate these complementary approaches, we developed machine learning models to predict the response of cancer cell lines to drug treatment, quantified through IC50 values, based on both the genomic features of the cell lines and the chemical properties of the considered drugs. Models predicted IC50 values in a 8-fold cross-validation and an independent blind test with coefficient of determination R2 of 0.72 and 0.64 respectively. Furthermore, models were able to predict with comparable accuracy (R2 of 0.61) IC50s of cell lines from a tissue not used in the training stage. Our in silico models can be used to optimise the experimental design of drug-cell screenings by estimating a large proportion of missing IC50 values rather than experimentally measure them. The implications of our results go beyond virtual drug screening design: potentially thousands of drugs could be probed in silico to systematically test their potential efficacy as anti-tumour agents based on their structure, thus providing a computational framework to identify new drug repositioning opportunities as well as ultimately be useful for personalized medicine by linking the genomic traits of patients to drug sensitivity.
Michael P. Menden, Francesco Iorio, Mathew Garnett, Ultan McDermott, Cyril Benes, Pedro J. Ballester, Julio Saez-Rodriguez
10.1371/journal.pone.0061318
1212.0504
null
null
An Empirical Evaluation of Portfolios Approaches for solving CSPs
cs.AI cs.LG
Recent research in areas such as SAT solving and Integer Linear Programming has shown that the performances of a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. We report an empirical evaluation and comparison of portfolio approaches applied to Constraint Satisfaction Problems (CSPs). We compared models developed on top of off-the-shelf machine learning algorithms with respect to approaches used in the SAT field and adapted for CSPs, considering different portfolio sizes and using as evaluation metrics the number of solved problems and the time taken to solve them. Results indicate that the best SAT approaches have top performances also in the CSP field and are slightly more competitive than simple models built on top of classification algorithms.
Roberto Amadini, Maurizio Gabbrielli, Jacopo Mauro
null
1212.0692
null
null
Training Support Vector Machines Using Frank-Wolfe Optimization Methods
cs.LG cs.CV math.OC stat.ML
Training a Support Vector Machine (SVM) requires the solution of a quadratic programming problem (QP) whose computational complexity becomes prohibitively expensive for large scale datasets. Traditional optimization methods cannot be directly applied in these cases, mainly due to memory restrictions. By adopting a slightly different objective function and under mild conditions on the kernel used within the model, efficient algorithms to train SVMs have been devised under the name of Core Vector Machines (CVMs). This framework exploits the equivalence of the resulting learning problem with the task of building a Minimal Enclosing Ball (MEB) problem in a feature space, where data is implicitly embedded by a kernel function. In this paper, we improve on the CVM approach by proposing two novel methods to build SVMs based on the Frank-Wolfe algorithm, recently revisited as a fast method to approximate the solution of a MEB problem. In contrast to CVMs, our algorithms do not require to compute the solutions of a sequence of increasingly complex QPs and are defined by using only analytic optimization steps. Experiments on a large collection of datasets show that our methods scale better than CVMs in most cases, sometimes at the price of a slightly lower accuracy. As CVMs, the proposed methods can be easily extended to machine learning problems other than binary classification. However, effective classifiers are also obtained using kernels which do not satisfy the condition required by CVMs and can thus be used for a wider set of problems.
Emanuele Frandi, Ricardo Nanculef, Maria Grazia Gasparo, Stefano Lodi, Claudio Sartori
10.1142/S0218001413600033
1212.0695
null
null
Dynamic recommender system : using cluster-based biases to improve the accuracy of the predictions
cs.LG cs.DB cs.IR
It is today accepted that matrix factorization models allow a high quality of rating prediction in recommender systems. However, a major drawback of matrix factorization is its static nature that results in a progressive declining of the accuracy of the predictions after each factorization. This is due to the fact that the new obtained ratings are not taken into account until a new factorization is computed, which can not be done very often because of the high cost of matrix factorization. In this paper, aiming at improving the accuracy of recommender systems, we propose a cluster-based matrix factorization technique that enables online integration of new ratings. Thus, we significantly enhance the obtained predictions between two matrix factorizations. We use finer-grained user biases by clustering similar items into groups, and allocating in these groups a bias to each user. The experiments we did on large datasets demonstrated the efficiency of our approach.
Modou Gueye, Talel Abdessalem, Hubert Naacke
null
1212.0763
null
null
Advances in Optimizing Recurrent Networks
cs.LG
After a more than decade-long period of relatively little research activity in the area of recurrent neural networks, several new developments will be reviewed here that have allowed substantial progress both in understanding and in technical solutions towards more efficient training of recurrent networks. These advances have been motivated by and related to the optimization issues surrounding deep learning. Although recurrent networks are extremely powerful in what they can in principle represent in terms of modelling sequences,their training is plagued by two aspects of the same issue regarding the learning of long-term dependencies. Experiments reported here evaluate the use of clipping gradients, spanning longer time ranges with leaky integration, advanced momentum techniques, using more powerful output probability models, and encouraging sparser gradients to help symmetry breaking and credit assignment. The experiments are performed on text and music data and show off the combined effects of these techniques in generally improving both training and test error.
Yoshua Bengio, Nicolas Boulanger-Lewandowski and Razvan Pascanu
null
1212.0901
null
null
Multiclass Diffuse Interface Models for Semi-Supervised Learning on Graphs
stat.ML cs.LG math.ST physics.data-an stat.TH
We present a graph-based variational algorithm for multiclass classification of high-dimensional data, motivated by total variation techniques. The energy functional is based on a diffuse interface model with a periodic potential. We augment the model by introducing an alternative measure of smoothness that preserves symmetry among the class labels. Through this modification of the standard Laplacian, we construct an efficient multiclass method that allows for sharp transitions between classes. The experimental results demonstrate that our approach is competitive with the state of the art among other graph-based algorithms.
Cristina Garcia-Cardona, Arjuna Flenner and Allon G. Percus
null
1212.0945
null
null
Evaluating Classifiers Without Expert Labels
cs.LG cs.IR stat.ML
This paper considers the challenge of evaluating a set of classifiers, as done in shared task evaluations like the KDD Cup or NIST TREC, without expert labels. While expert labels provide the traditional cornerstone for evaluating statistical learners, limited or expensive access to experts represents a practical bottleneck. Instead, we seek methodology for estimating performance of the classifiers which is more scalable than expert labeling yet preserves high correlation with evaluation based on expert labels. We consider both: 1) using only labels automatically generated by the classifiers (blind evaluation); and 2) using labels obtained via crowdsourcing. While crowdsourcing methods are lauded for scalability, using such data for evaluation raises serious concerns given the prevalence of label noise. In regard to blind evaluation, two broad strategies are investigated: combine & score and score & combine methods infer a single pseudo-gold label set by aggregating classifier labels; classifiers are then evaluated based on this single pseudo-gold label set. On the other hand, score & combine methods: 1) sample multiple label sets from classifier outputs, 2) evaluate classifiers on each label set, and 3) average classifier performance across label sets. When additional crowd labels are also collected, we investigate two alternative avenues for exploiting them: 1) direct evaluation of classifiers; or 2) supervision of combine & score methods. To assess generality of our techniques, classifier performance is measured using four common classification metrics, with statistical significance tests. Finally, we measure both score and rank correlations between estimated classifier performance vs. actual performance according to expert judgments. Rigorous evaluation of classifiers from the TREC 2011 Crowdsourcing Track shows reliable evaluation can be achieved without reliance on expert labels.
Hyun Joon Jung and Matthew Lease
null
1212.0960
null
null
Compiling Relational Database Schemata into Probabilistic Graphical Models
cs.AI cs.DB cs.LG stat.ML
Instead of requiring a domain expert to specify the probabilistic dependencies of the data, in this work we present an approach that uses the relational DB schema to automatically construct a Bayesian graphical model for a database. This resulting model contains customized distributions for columns, latent variables that cluster the data, and factors that reflect and represent the foreign key links. Experiments demonstrate the accuracy of the model and the scalability of inference on synthetic and real-world data.
Sameer Singh and Thore Graepel
null
1212.0967
null
null
Cost-Sensitive Support Vector Machines
cs.LG stat.ML
A new procedure for learning cost-sensitive SVM(CS-SVM) classifiers is proposed. The SVM hinge loss is extended to the cost sensitive setting, and the CS-SVM is derived as the minimizer of the associated risk. The extension of the hinge loss draws on recent connections between risk minimization and probability elicitation. These connections are generalized to cost-sensitive classification, in a manner that guarantees consistency with the cost-sensitive Bayes risk, and associated Bayes decision rule. This ensures that optimal decision rules, under the new hinge loss, implement the Bayes-optimal cost-sensitive classification boundary. Minimization of the new hinge loss is shown to be a generalization of the classic SVM optimization problem, and can be solved by identical procedures. The dual problem of CS-SVM is carefully scrutinized by means of regularization theory and sensitivity analysis and the CS-SVM algorithm is substantiated. The proposed algorithm is also extended to cost-sensitive learning with example dependent costs. The minimum cost sensitive risk is proposed as the performance measure and is connected to ROC analysis through vector optimization. The resulting algorithm avoids the shortcomings of previous approaches to cost-sensitive SVM design, and is shown to have superior experimental performance on a large number of cost sensitive and imbalanced datasets.
Hamed Masnadi-Shirazi, Nuno Vasconcelos and Arya Iranmehr
null
1212.0975
null
null
Making Early Predictions of the Accuracy of Machine Learning Applications
cs.LG cs.AI stat.ML
The accuracy of machine learning systems is a widely studied research topic. Established techniques such as cross-validation predict the accuracy on unseen data of the classifier produced by applying a given learning method to a given training data set. However, they do not predict whether incurring the cost of obtaining more data and undergoing further training will lead to higher accuracy. In this paper we investigate techniques for making such early predictions. We note that when a machine learning algorithm is presented with a training set the classifier produced, and hence its error, will depend on the characteristics of the algorithm, on training set's size, and also on its specific composition. In particular we hypothesise that if a number of classifiers are produced, and their observed error is decomposed into bias and variance terms, then although these components may behave differently, their behaviour may be predictable. We test our hypothesis by building models that, given a measurement taken from the classifier created from a limited number of samples, predict the values that would be measured from the classifier produced when the full data set is presented. We create separate models for bias, variance and total error. Our models are built from the results of applying ten different machine learning algorithms to a range of data sets, and tested with "unseen" algorithms and datasets. We analyse the results for various numbers of initial training samples, and total dataset sizes. Results show that our predictions are very highly correlated with the values observed after undertaking the extra training. Finally we consider the more complex case where an ensemble of heterogeneous classifiers is trained, and show how we can accurately estimate an upper bound on the accuracy achievable after further training.
J. E. Smith, P. Caleb-Solly, M. A. Tahir, D. Sannen, H. van-Brussel
null
1212.1100
null
null
On the Convergence Properties of Optimal AdaBoost
cs.LG cs.AI stat.ML
AdaBoost is one of the most popular ML algorithms. It is simple to implement and often found very effective by practitioners, while still being mathematically elegant and theoretically sound. AdaBoost's interesting behavior in practice still puzzles the ML community. We address the algorithm's stability and establish multiple convergence properties of "Optimal AdaBoost," a term coined by Rudin, Daubechies, and Schapire in 2004. We prove, in a reasonably strong computational sense, the almost universal existence of time averages, and with that, the convergence of the classifier itself, its generalization error, and its resulting margins, among many other objects, for fixed data sets under arguably reasonable conditions. Specifically, we frame Optimal AdaBoost as a dynamical system and, employing tools from ergodic theory, prove that, under a condition that Optimal AdaBoost does not have ties for best weak classifier eventually, a condition for which we provide empirical evidence from high dimensional real-world datasets, the algorithm's update behaves like a continuous map. We provide constructive proofs of several arbitrarily accurate approximations of Optimal AdaBoost; prove that they exhibit certain cycling behavior in finite time, and that the resulting dynamical system is ergodic; and establish sufficient conditions for the same to hold for the actual Optimal-AdaBoost update. We believe that our results provide reasonably strong evidence for the affirmative answer to two open conjectures, at least from a broad computational-theory perspective: AdaBoost always cycles and is an ergodic dynamical system. We present empirical evidence that cycles are hard to detect while time averages stabilize quickly. Our results ground future convergence-rate analysis and may help optimize generalization ability and alleviate a practitioner's burden of deciding how long to run the algorithm.
Joshua Belanich and Luis E. Ortiz
null
1212.1108
null
null
Using Wikipedia to Boost SVD Recommender Systems
cs.LG cs.IR stat.ML
Singular Value Decomposition (SVD) has been used successfully in recent years in the area of recommender systems. In this paper we present how this model can be extended to consider both user ratings and information from Wikipedia. By mapping items to Wikipedia pages and quantifying their similarity, we are able to use this information in order to improve recommendation accuracy, especially when the sparsity is high. Another advantage of the proposed approach is the fact that it can be easily integrated into any other SVD implementation, regardless of additional parameters that may have been added to it. Preliminary experimental results on the MovieLens dataset are encouraging.
Gilad Katz, Guy Shani, Bracha Shapira, Lior Rokach
null
1212.1131
null
null
On Some Integrated Approaches to Inference
stat.ML cs.LG
We present arguments for the formulation of unified approach to different standard continuous inference methods from partial information. It is claimed that an explicit partition of information into a priori (prior knowledge) and a posteriori information (data) is an important way of standardizing inference approaches so that they can be compared on a normative scale, and so that notions of optimal algorithms become farther-reaching. The inference methods considered include neural network approaches, information-based complexity, and Monte Carlo, spline, and regularization methods. The model is an extension of currently used continuous complexity models, with a class of algorithms in the form of optimization methods, in which an optimization functional (involving the data) is minimized. This extends the family of current approaches in continuous complexity theory, which include the use of interpolatory algorithms in worst and average case settings.
Mark A. Kon and Leszek Plaskota
null
1212.1180
null
null
Distributed Adaptive Networks: A Graphical Evolutionary Game-Theoretic View
cs.GT cs.LG
Distributed adaptive filtering has been considered as an effective approach for data processing and estimation over distributed networks. Most existing distributed adaptive filtering algorithms focus on designing different information diffusion rules, regardless of the nature evolutionary characteristic of a distributed network. In this paper, we study the adaptive network from the game theoretic perspective and formulate the distributed adaptive filtering problem as a graphical evolutionary game. With the proposed formulation, the nodes in the network are regarded as players and the local combiner of estimation information from different neighbors is regarded as different strategies selection. We show that this graphical evolutionary game framework is very general and can unify the existing adaptive network algorithms. Based on this framework, as examples, we further propose two error-aware adaptive filtering algorithms. Moreover, we use graphical evolutionary game theory to analyze the information diffusion process over the adaptive networks and evolutionarily stable strategy of the system. Finally, simulation results are shown to verify the effectiveness of our analysis and proposed methods.
Chunxiao Jiang and Yan Chen and K. J. Ray Liu
10.1109/TSP.2013.2280444
1212.1245
null
null
Excess risk bounds for multitask learning with trace norm regularization
stat.ML cs.LG
Trace norm regularization is a popular method of multitask learning. We give excess risk bounds with explicit dependence on the number of tasks, the number of examples per task and properties of the data distribution. The bounds are independent of the dimension of the input space, which may be infinite as in the case of reproducing kernel Hilbert spaces. A byproduct of the proof are bounds on the expected norm of sums of random positive semidefinite matrices with subexponential moments.
Andreas Maurer and Massimiliano Pontil
null
1212.1496
null
null
Layer-wise learning of deep generative models
cs.NE cs.LG stat.ML
When using deep, multi-layered architectures to build generative models of data, it is difficult to train all layers at once. We propose a layer-wise training procedure admitting a performance guarantee compared to the global optimum. It is based on an optimistic proxy of future performance, the best latent marginal. We interpret auto-encoders in this setting as generative models, by showing that they train a lower bound of this criterion. We test the new learning procedure against a state of the art method (stacked RBMs), and find it to improve performance. Both theory and experiments highlight the importance, when training deep architectures, of using an inference model (from data to hidden variables) richer than the generative model (from hidden variables to data).
Ludovic Arnold and Yann Ollivier
null
1212.1524
null
null
Learning Mixtures of Arbitrary Distributions over Large Discrete Domains
cs.LG cs.DS
We give an algorithm for learning a mixture of {\em unstructured} distributions. This problem arises in various unsupervised learning scenarios, for example in learning {\em topic models} from a corpus of documents spanning several topics. We show how to learn the constituents of a mixture of $k$ arbitrary distributions over a large discrete domain $[n]=\{1,2,\dots,n\}$ and the mixture weights, using $O(n\polylog n)$ samples. (In the topic-model learning setting, the mixture constituents correspond to the topic distributions.) This task is information-theoretically impossible for $k>1$ under the usual sampling process from a mixture distribution. However, there are situations (such as the above-mentioned topic model case) in which each sample point consists of several observations from the same mixture constituent. This number of observations, which we call the {\em "sampling aperture"}, is a crucial parameter of the problem. We obtain the {\em first} bounds for this mixture-learning problem {\em without imposing any assumptions on the mixture constituents.} We show that efficient learning is possible exactly at the information-theoretically least-possible aperture of $2k-1$. Thus, we achieve near-optimal dependence on $n$ and optimal aperture. While the sample-size required by our algorithm depends exponentially on $k$, we prove that such a dependence is {\em unavoidable} when one considers general mixtures. A sequence of tools contribute to the algorithm, such as concentration results for random matrices, dimension reduction, moment estimations, and sensitivity analysis.
Yuval Rabani, Leonard Schulman, Chaitanya Swamy
null
1212.1527
null
null
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
cs.LG math.OC stat.ML
Stochastic Gradient Descent (SGD) is one of the simplest and most popular stochastic optimization methods. While it has already been theoretically studied for decades, the classical analysis usually required non-trivial smoothness assumptions, which do not apply to many modern applications of SGD with non-smooth objective functions such as support vector machines. In this paper, we investigate the performance of SGD without such smoothness assumptions, as well as a running average scheme to convert the SGD iterates to a solution with optimal optimization accuracy. In this framework, we prove that after T rounds, the suboptimality of the last SGD iterate scales as O(log(T)/\sqrt{T}) for non-smooth convex objective functions, and O(log(T)/T) in the non-smooth strongly convex case. To the best of our knowledge, these are the first bounds of this kind, and almost match the minimax-optimal rates obtainable by appropriate averaging schemes. We also propose a new and simple averaging scheme, which not only attains optimal rates, but can also be easily computed on-the-fly (in contrast, the suffix averaging scheme proposed in Rakhlin et al. (2011) is not as simple to implement). Finally, we provide some experimental illustrations.
Ohad Shamir and Tong Zhang
null
1212.1824
null
null
High-dimensional sequence transduction
cs.LG
We investigate the problem of transforming an input sequence into a high-dimensional output sequence in order to transcribe polyphonic audio music into symbolic notation. We introduce a probabilistic model based on a recurrent neural network that is able to learn realistic output distributions given the input and we devise an efficient algorithm to search for the global mode of that distribution. The resulting method produces musically plausible transcriptions even under high levels of noise and drastically outperforms previous state-of-the-art approaches on five datasets of synthesized sounds and real recordings, approximately halving the test error rate.
Nicolas Boulanger-Lewandowski, Yoshua Bengio and Pascal Vincent
null
1212.1936
null
null
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
cs.LG math.OC stat.ML
In this note, we present a new averaging technique for the projected stochastic subgradient method. By using a weighted average with a weight of t+1 for each iterate w_t at iteration t, we obtain the convergence rate of O(1/t) with both an easy proof and an easy implementation. The new scheme is compared empirically to existing techniques, with similar performance behavior.
Simon Lacoste-Julien, Mark Schmidt, Francis Bach
null
1212.2002
null
null
A class of random fields on complete graphs with tractable partition function
cs.LG stat.ML
The aim of this short note is to draw attention to a method by which the partition function and marginal probabilities for a certain class of random fields on complete graphs can be computed in polynomial time. This class includes Ising models with homogeneous pairwise potentials but arbitrary (inhomogeneous) unary potentials. Similarly, the partition function and marginal probabilities can be computed in polynomial time for random fields on complete bipartite graphs, provided they have homogeneous pairwise potentials. We expect that these tractable classes of large scale random fields can be very useful for the evaluation of approximation algorithms by providing exact error estimates.
Boris Flach
10.1109/TPAMI.2013.99
1212.2136
null
null
Bag-of-Words Representation for Biomedical Time Series Classification
cs.LG cs.AI
Automatic analysis of biomedical time series such as electroencephalogram (EEG) and electrocardiographic (ECG) signals has attracted great interest in the community of biomedical engineering due to its important applications in medicine. In this work, a simple yet effective bag-of-words representation that is able to capture both local and global structure similarity information is proposed for biomedical time series representation. In particular, similar to the bag-of-words model used in text document domain, the proposed method treats a time series as a text document and extracts local segments from the time series as words. The biomedical time series is then represented as a histogram of codewords, each entry of which is the count of a codeword appeared in the time series. Although the temporal order of the local segments is ignored, the bag-of-words representation is able to capture high-level structural information because both local and global structural information are well utilized. The performance of the bag-of-words model is validated on three datasets extracted from real EEG and ECG signals. The experimental results demonstrate that the proposed method is not only insensitive to parameters of the bag-of-words model such as local segment length and codebook size, but also robust to noise.
Jin Wang, Ping Liu, Mary F.H.She, Saeid Nahavandi and and Abbas Kouzani
10.1016/j.bspc.2013.06.004
1212.2262
null
null
Runtime Optimizations for Prediction with Tree-Based Models
cs.DB cs.IR cs.LG
Tree-based models have proven to be an effective solution for web ranking as well as other problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, given an already-trained model. Although exceedingly simple conceptually, most implementations of tree-based models do not efficiently utilize modern superscalar processor architectures. By laying out data structures in memory in a more cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching predictions using a technique called vectorization, we are able to better exploit modern processor architectures and significantly improve the speed of tree-based models over hard-coded if-else blocks. Our work contributes to the exploration of architecture-conscious runtime implementations of machine learning algorithms.
Nima Asadi, Jimmy Lin, and Arjen P. de Vries
null
1212.2287
null
null
PAC-Bayesian Learning and Domain Adaptation
stat.ML cs.LG
In machine learning, Domain Adaptation (DA) arises when the distribution gen- erating the test (target) data differs from the one generating the learning (source) data. It is well known that DA is an hard task even under strong assumptions, among which the covariate-shift where the source and target distributions diverge only in their marginals, i.e. they have the same labeling function. Another popular approach is to consider an hypothesis class that moves closer the two distributions while implying a low-error for both tasks. This is a VC-dim approach that restricts the complexity of an hypothesis class in order to get good generalization. Instead, we propose a PAC-Bayesian approach that seeks for suitable weights to be given to each hypothesis in order to build a majority vote. We prove a new DA bound in the PAC-Bayesian context. This leads us to design the first DA-PAC-Bayesian algorithm based on the minimization of the proposed bound. Doing so, we seek for a \rho-weighted majority vote that takes into account a trade-off between three quantities. The first two quantities being, as usual in the PAC-Bayesian approach, (a) the complexity of the majority vote (measured by a Kullback-Leibler divergence) and (b) its empirical risk (measured by the \rho-average errors on the source sample). The third quantity is (c) the capacity of the majority vote to distinguish some structural difference between the source and target samples.
Pascal Germain, Amaury Habrard (LAHC), Fran\c{c}ois Laviolette, Emilie Morvant (LIF)
null
1212.2340
null
null
On the complexity of learning a language: An improvement of Block's algorithm
cs.CL cs.LG
Language learning is thought to be a highly complex process. One of the hurdles in learning a language is to learn the rules of syntax of the language. Rules of syntax are often ordered in that before one rule can applied one must apply another. It has been thought that to learn the order of n rules one must go through all n! permutations. Thus to learn the order of 27 rules would require 27! steps or 1.08889x10^{28} steps. This number is much greater than the number of seconds since the beginning of the universe! In an insightful analysis the linguist Block ([Block 86], pp. 62-63, p.238) showed that with the assumption of transitivity this vast number of learning steps reduces to a mere 377 steps. We present a mathematical analysis of the complexity of Block's algorithm. The algorithm has a complexity of order n^2 given n rules. In addition, we improve Block's results exponentially, by introducing an algorithm that has complexity of order less than n log n.
Eric Werner
null
1212.2390
null
null
Mining Techniques in Network Security to Enhance Intrusion Detection Systems
cs.CR cs.LG
In intrusion detection systems, classifiers still suffer from several drawbacks such as data dimensionality and dominance, different network feature types, and data impact on the classification. In this paper two significant enhancements are presented to solve these drawbacks. The first enhancement is an improved feature selection using sequential backward search and information gain. This, in turn, extracts valuable features that enhance positively the detection rate and reduce the false positive rate. The second enhancement is transferring nominal network features to numeric ones by exploiting the discrete random variable and the probability mass function to solve the problem of different feature types, the problem of data dominance, and data impact on the classification. The latter is combined to known normalization methods to achieve a significant hybrid normalization approach. Finally, an intensive and comparative study approves the efficiency of these enhancements and shows better performance comparing to other proposed methods.
Maher Salem and Ulrich Buehler
10.5121/ijnsa
1212.2414
null
null
Robust Face Recognition using Local Illumination Normalization and Discriminant Feature Point Selection
cs.LG cs.CV
Face recognition systems must be robust to the variation of various factors such as facial expression, illumination, head pose and aging. Especially, the robustness against illumination variation is one of the most important problems to be solved for the practical use of face recognition systems. Gabor wavelet is widely used in face detection and recognition because it gives the possibility to simulate the function of human visual system. In this paper, we propose a method for extracting Gabor wavelet features which is stable under the variation of local illumination and show experiment results demonstrating its effectiveness.
Song Han, Jinsong Kim, Cholhun Kim, Jongchol Jo, and Sunam Han
null
1212.2415
null
null
Active Collaborative Filtering
cs.IR cs.LG stat.ML
Collaborative filtering (CF) allows the preferences of multiple users to be pooled to make recommendations regarding unseen products. We consider in this paper the problem of online and interactive CF: given the current ratings associated with a user, what queries (new ratings) would most improve the quality of the recommendations made? We cast this terms of expected value of information (EVOI); but the online computational cost of computing optimal queries is prohibitive. We show how offline prototyping and computation of bounds on EVOI can be used to dramatically reduce the required online computation. The framework we develop is general, but we focus on derivations and empirical study in the specific case of the multiple-cause vector quantization model.
Craig Boutilier, Richard S. Zemel, Benjamin Marlin
null
1212.2442
null
null
Bayesian Hierarchical Mixtures of Experts
cs.LG stat.ML
The Hierarchical Mixture of Experts (HME) is a well-known tree-based model for regression and classification, based on soft probabilistic splits. In its original formulation it was trained by maximum likelihood, and is therefore prone to over-fitting. Furthermore the maximum likelihood framework offers no natural metric for optimizing the complexity and structure of the tree. Previous attempts to provide a Bayesian treatment of the HME model have relied either on ad-hoc local Gaussian approximations or have dealt with related models representing the joint distribution of both input and output variables. In this paper we describe a fully Bayesian treatment of the HME model based on variational inference. By combining local and global variational methods we obtain a rigourous lower bound on the marginal probability of the data under the model. This bound is optimized during the training phase, and its resulting value can be used for model order selection. We present results using this approach for a data set describing robot arm kinematics.
Christopher M. Bishop, Markus Svensen
null
1212.2447
null
null
The Information Bottleneck EM Algorithm
cs.LG stat.ML
Learning with hidden variables is a central challenge in probabilistic graphical models that has important implications for many real-life problems. The classical approach is using the Expectation Maximization (EM) algorithm. This algorithm, however, can get trapped in local maxima. In this paper we explore a new approach that is based on the Information Bottleneck principle. In this approach, we view the learning problem as a tradeoff between two information theoretic objectives. The first is to make the hidden variables uninformative about the identity of specific instances. The second is to make the hidden variables informative about the observed attributes. By exploring different tradeoffs between these two objectives, we can gradually converge on a high-scoring solution. As we show, the resulting, Information Bottleneck Expectation Maximization (IB-EM) algorithm, manages to find solutions that are superior to standard EM methods.
Gal Elidan, Nir Friedman
null
1212.2460
null
null
A New Algorithm for Maximum Likelihood Estimation in Gaussian Graphical Models for Marginal Independence
stat.ME cs.LG stat.ML
Graphical models with bi-directed edges (<->) represent marginal independence: the absence of an edge between two vertices indicates that the corresponding variables are marginally independent. In this paper, we consider maximum likelihood estimation in the case of continuous variables with a Gaussian joint distribution, sometimes termed a covariance graph model. We present a new fitting algorithm which exploits standard regression techniques and establish its convergence properties. Moreover, we contrast our procedure to existing estimation methods.
Mathias Drton, Thomas S. Richardson
null
1212.2462
null
null
A Robust Independence Test for Constraint-Based Learning of Causal Structure
cs.AI cs.LG stat.ML
Constraint-based (CB) learning is a formalism for learning a causal network with a database D by performing a series of conditional-independence tests to infer structural information. This paper considers a new test of independence that combines ideas from Bayesian learning, Bayesian network inference, and classical hypothesis testing to produce a more reliable and robust test. The new test can be calculated in the same asymptotic time and space required for the standard tests such as the chi-squared test, but it allows the specification of a prior distribution over parameters and can be used when the database is incomplete. We prove that the test is correct, and we demonstrate empirically that, when used with a CB causal discovery algorithm with noninformative priors, it recovers structural features more reliably and it produces networks with smaller KL-Divergence, especially as the number of nodes increases or the number of records decreases. Another benefit is the dramatic reduction in the probability that a CB algorithm will stall during the search, providing a remedy for an annoying problem plaguing CB learning when the database is small.
Denver Dash, Marek J. Druzdzel
null
1212.2464
null
null
On Information Regularization
cs.LG stat.ML
We formulate a principle for classification with the knowledge of the marginal distribution over the data points (unlabeled data). The principle is cast in terms of Tikhonov style regularization where the regularization penalty articulates the way in which the marginal density should constrain otherwise unrestricted conditional distributions. Specifically, the regularization penalty penalizes any information introduced between the examples and labels beyond what is provided by the available labeled examples. The work extends Szummer and Jaakkola's information regularization (NIPS 2002) to multiple dimensions, providing a regularizer independent of the covering of the space used in the derivation. We show in addition how the information regularizer can be used as a measure of complexity of the classification task with unlabeled data and prove a relevant sample-complexity bound. We illustrate the regularization principle in practice by restricting the class of conditional distributions to be logistic regression models and constructing the regularization penalty from a finite set of unlabeled examples.
Adrian Corduneanu, Tommi S. Jaakkola
null
1212.2466
null
null
Large-Sample Learning of Bayesian Networks is NP-Hard
cs.LG cs.AI stat.ML
In this paper, we provide new complexity results for algorithms that learn discrete-variable Bayesian networks from data. Our results apply whenever the learning algorithm uses a scoring criterion that favors the simplest model able to represent the generative distribution exactly. Our results therefore hold whenever the learning algorithm uses a consistent scoring criterion and is applied to a sufficiently large dataset. We show that identifying high-scoring structures is hard, even when we are given an independence oracle, an inference oracle, and/or an information oracle. Our negative results also apply to the learning of discrete-variable Bayesian networks in which each node has at most k parents, for all k > 3.
David Maxwell Chickering, Christopher Meek, David Heckerman
null
1212.2468
null
null
Reasoning about Bayesian Network Classifiers
cs.LG cs.AI stat.ML
Bayesian network classifiers are used in many fields, and one common class of classifiers are naive Bayes classifiers. In this paper, we introduce an approach for reasoning about Bayesian network classifiers in which we explicitly convert them into Ordered Decision Diagrams (ODDs), which are then used to reason about the properties of these classifiers. Specifically, we present an algorithm for converting any naive Bayes classifier into an ODD, and we show theoretically and experimentally that this algorithm can give us an ODD that is tractable in size even given an intractable number of instances. Since ODDs are tractable representations of classifiers, our algorithm allows us to efficiently test the equivalence of two naive Bayes classifiers and characterize discrepancies between them. We also show a number of additional results including a count of distinct classifiers that can be induced by changing some CPT in a naive Bayes classifier, and the range of allowable changes to a CPT which keeps the current classifier unchanged.
Hei Chan, Adnan Darwiche
null
1212.2470
null
null
Monte Carlo Matrix Inversion Policy Evaluation
cs.LG cs.AI cs.NA
In 1950, Forsythe and Leibler (1950) introduced a statistical technique for finding the inverse of a matrix by characterizing the elements of the matrix inverse as expected values of a sequence of random walks. Barto and Duff (1994) subsequently showed relations between this technique and standard dynamic programming and temporal differencing methods. The advantage of the Monte Carlo matrix inversion (MCMI) approach is that it scales better with respect to state-space size than alternative techniques. In this paper, we introduce an algorithm for performing reinforcement learning policy evaluation using MCMI. We demonstrate that MCMI improves on runtime over a maximum likelihood model-based policy evaluation approach and on both runtime and accuracy over the temporal differencing (TD) policy evaluation approach. We further improve on MCMI policy evaluation by adding an importance sampling technique to our algorithm to reduce the variance of our estimator. Lastly, we illustrate techniques for scaling up MCMI to large state spaces in order to perform policy improvement.
Fletcher Lu, Dale Schuurmans
null
1212.2471
null
null
Budgeted Learning of Naive-Bayes Classifiers
cs.LG stat.ML
Frequently, acquiring training data has an associated cost. We consider the situation where the learner may purchase data during training, subject TO a budget. IN particular, we examine the CASE WHERE each feature label has an associated cost, AND the total cost OF ALL feature labels acquired during training must NOT exceed the budget.This paper compares methods FOR choosing which feature label TO purchase next, given the budget AND the CURRENT belief state OF naive Bayes model parameters.Whereas active learning has traditionally focused ON myopic(greedy) strategies FOR query selection, this paper presents a tractable method FOR incorporating knowledge OF the budget INTO the decision making process, which improves performance.
Daniel J. Lizotte, Omid Madani, Russell Greiner
null
1212.2472
null
null
Learning Riemannian Metrics
cs.LG stat.ML
We propose a solution to the problem of estimating a Riemannian metric associated with a given differentiable manifold. The metric learning problem is based on minimizing the relative volume of a given set of points. We derive the details for a family of metrics on the multinomial simplex. The resulting metric has applications in text classification and bears some similarity to TFIDF representation of text documents.
Guy Lebanon
null
1212.2474
null
null
Efficient Gradient Estimation for Motor Control Learning
cs.LG cs.SY
The task of estimating the gradient of a function in the presence of noise is central to several forms of reinforcement learning, including policy search methods. We present two techniques for reducing gradient estimation errors in the presence of observable input noise applied to the control signal. The first method extends the idea of a reinforcement baseline by fitting a local linear model to the function whose gradient is being estimated; we show how to find the linear model that minimizes the variance of the gradient estimate, and how to estimate the model from data. The second method improves this further by discounting components of the gradient vector that have high variance. These methods are applied to the problem of motor control learning, where actuator noise has a significant influence on behavior. In particular, we apply the techniques to learn locally optimal controllers for a dart-throwing task using a simulated three-link arm; we demonstrate that proposed methods significantly improve the reward function gradient estimate and, consequently, the learning curve, over existing methods.
Gregory Lawrence, Noah Cowan, Stuart Russell
null
1212.2475
null
null
Approximate Inference and Constrained Optimization
cs.LG cs.AI stat.ML
Loopy and generalized belief propagation are popular algorithms for approximate inference in Markov random fields and Bayesian networks. Fixed points of these algorithms correspond to extrema of the Bethe and Kikuchi free energy. However, belief propagation does not always converge, which explains the need for approaches that explicitly minimize the Kikuchi/Bethe free energy, such as CCCP and UPS. Here we describe a class of algorithms that solves this typically nonconvex constrained minimization of the Kikuchi free energy through a sequence of convex constrained minimizations of upper bounds on the Kikuchi free energy. Intuitively one would expect tighter bounds to lead to faster algorithms, which is indeed convincingly demonstrated in our simulations. Several ideas are applied to obtain tight convex bounds that yield dramatic speed-ups over CCCP.
Tom Heskes, Kees Albers, Hilbert Kappen
null
1212.2480
null
null
Sufficient Dimensionality Reduction with Irrelevant Statistics
cs.LG stat.ML
The problem of finding a reduced dimensionality representation of categorical variables while preserving their most relevant characteristics is fundamental for the analysis of complex data. Specifically, given a co-occurrence matrix of two variables, one often seeks a compact representation of one variable which preserves information about the other variable. We have recently introduced ``Sufficient Dimensionality Reduction' [GT-2003], a method that extracts continuous reduced dimensional features whose measurements (i.e., expectation values) capture maximal mutual information among the variables. However, such measurements often capture information that is irrelevant for a given task. Widely known examples are illumination conditions, which are irrelevant as features for face recognition, writing style which is irrelevant as a feature for content classification, and intonation which is irrelevant as a feature for speech recognition. Such irrelevance cannot be deduced apriori, since it depends on the details of the task, and is thus inherently ill defined in the purely unsupervised case. Separating relevant from irrelevant features can be achieved using additional side data that contains such irrelevant structures. This approach was taken in [CT-2002], extending the information bottleneck method, which uses clustering to compress the data. Here we use this side-information framework to identify features whose measurements are maximally informative for the original data set, but carry as little information as possible on a side data set. In statistical terms this can be understood as extracting statistics which are maximally sufficient for the original dataset, while simultaneously maximally ancillary for the side dataset. We formulate this tradeoff as a constrained optimization problem and characterize its solutions. We then derive a gradient descent algorithm for this problem, which is based on the Generalized Iterative Scaling method for finding maximum entropy distributions. The method is demonstrated on synthetic data, as well as on real face recognition datasets, and is shown to outperform standard methods such as oriented PCA.
Amir Globerson, Gal Chechik, Naftali Tishby
null
1212.2483
null
null
Locally Weighted Naive Bayes
cs.LG stat.ML
Despite its simplicity, the naive Bayes classifier has surprised machine learning researchers by exhibiting good performance on a variety of learning problems. Encouraged by these results, researchers have looked to overcome naive Bayes primary weakness - attribute independence - and improve the performance of the algorithm. This paper presents a locally weighted version of naive Bayes that relaxes the independence assumption by learning local models at prediction time. Experimental results show that locally weighted naive Bayes rarely degrades accuracy compared to standard naive Bayes and, in many cases, improves accuracy dramatically. The main advantage of this method compared to other techniques for enhancing naive Bayes is its conceptual and computational simplicity.
Eibe Frank, Mark Hall, Bernhard Pfahringer
null
1212.2487
null
null
A Distance-Based Branch and Bound Feature Selection Algorithm
cs.LG stat.ML
There is no known efficient method for selecting k Gaussian features from n which achieve the lowest Bayesian classification error. We show an example of how greedy algorithms faced with this task are led to give results that are not optimal. This motivates us to propose a more robust approach. We present a Branch and Bound algorithm for finding a subset of k independent Gaussian features which minimizes the naive Bayesian classification error. Our algorithm uses additive monotonic distance measures to produce bounds for the Bayesian classification error in order to exclude many feature subsets from evaluation, while still returning an optimal solution. We test our method on synthetic data as well as data obtained from gene expression profiling.
Ari Frank, Dan Geiger, Zohar Yakhini
null
1212.2488
null
null
On the Convergence of Bound Optimization Algorithms
cs.LG stat.ML
Many practitioners who use the EM algorithm complain that it is sometimes slow. When does this happen, and what can be done about it? In this paper, we study the general class of bound optimization algorithms - including Expectation-Maximization, Iterative Scaling and CCCP - and their relationship to direct optimization algorithms such as gradient-based methods for parameter learning. We derive a general relationship between the updates performed by bound optimization methods and those of gradient and second-order methods and identify analytic conditions under which bound optimization algorithms exhibit quasi-Newton behavior, and conditions under which they possess poor, first-order convergence. Based on this analysis, we consider several specific algorithms, interpret and analyze their convergence properties and provide some recipes for preprocessing input to these algorithms to yield faster convergence behavior. We report empirical results supporting our analysis and showing that simple data preprocessing can result in dramatically improved performance of bound optimizers in practice.
Ruslan R Salakhutdinov, Sam T Roweis, Zoubin Ghahramani
null
1212.2490
null
null
Automated Analytic Asymptotic Evaluation of the Marginal Likelihood for Latent Models
cs.LG stat.ML
We present and implement two algorithms for analytic asymptotic evaluation of the marginal likelihood of data given a Bayesian network with hidden nodes. As shown by previous work, this evaluation is particularly hard for latent Bayesian network models, namely networks that include hidden variables, where asymptotic approximation deviates from the standard BIC score. Our algorithms solve two central difficulties in asymptotic evaluation of marginal likelihood integrals, namely, evaluation of regular dimensionality drop for latent Bayesian network models and computation of non-standard approximation formulas for singular statistics for these models. The presented algorithms are implemented in Matlab and Maple and their usage is demonstrated for marginal likelihood approximations for Bayesian networks with hidden variables.
Dmitry Rusakov, Dan Geiger
null
1212.2491
null
null
Learning Generative Models of Similarity Matrices
cs.LG stat.ML
We describe a probabilistic (generative) view of affinity matrices along with inference algorithms for a subclass of problems associated with data clustering. This probabilistic view is helpful in understanding different models and algorithms that are based on affinity functions OF the data. IN particular, we show how(greedy) inference FOR a specific probabilistic model IS equivalent TO the spectral clustering algorithm.It also provides a framework FOR developing new algorithms AND extended models. AS one CASE, we present new generative data clustering models that allow us TO infer the underlying distance measure suitable for the clustering problem at hand. These models seem to perform well in a larger class of problems for which other clustering algorithms (including spectral clustering) usually fail. Experimental evaluation was performed in a variety point data sets, showing excellent performance.
Romer Rosales, Brendan J. Frey
null
1212.2494
null
null
Learning Continuous Time Bayesian Networks
cs.LG stat.ML
Continuous time Bayesian networks (CTBNs) describe structured stochastic processes with finitely many states that evolve over continuous time. A CTBN is a directed (possibly cyclic) dependency graph over a set of variables, each of which represents a finite state continuous time Markov process whose transition model is a function of its parents. We address the problem of learning parameters and structure of a CTBN from fully observed data. We define a conjugate prior for CTBNs, and show how it can be used both for Bayesian parameter estimation and as the basis of a Bayesian score for structure learning. Because acyclicity is not a constraint in CTBNs, we can show that the structure learning problem is significantly easier, both in theory and in practice, than structure learning for dynamic Bayesian networks (DBNs). Furthermore, as CTBNs can tailor the parameters and dependency structure to the different time granularities of the evolution of different variables, they can provide a better fit to continuous-time processes than DBNs with a fixed time granularity.
Uri Nodelman, Christian R. Shelton, Daphne Koller
null
1212.2498
null
null
On Local Optima in Learning Bayesian Networks
cs.LG cs.AI stat.ML
This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness is set at maximum, KES corresponds to the greedy equivalence search algorithm (GES). When greediness is kept at minimum, we prove that under mild assumptions KES asymptotically returns any inclusion optimal BN with nonzero probability. Experimental results for both synthetic and real data are reported showing that KES often finds a better local optima than GES. Moreover, we use KES to experimentally confirm that the number of different local optima is often huge.
Jens D. Nielsen, Tomas Kocka, Jose M. Pena
null
1212.2500
null
null
Efficiently Inducing Features of Conditional Random Fields
cs.LG stat.ML
Conditional Random Fields (CRFs) are undirected graphical models, a special case of which correspond to conditionally-trained finite state machines. A key advantage of these models is their great flexibility to include a wide array of overlapping, multi-granularity, non-independent features of the input. In face of this freedom, an important question that remains is, what features should be used? This paper presents a feature induction method for CRFs. Founded on the principle of constructing only those feature conjunctions that significantly increase log-likelihood, the approach is based on that of Della Pietra et al [1997], but altered to work with conditional rather than joint probabilities, and with additional modifications for providing tractability specifically for a sequence model. In comparison with traditional approaches, automated feature induction offers both improved accuracy and more than an order of magnitude reduction in feature count; it enables the use of richer, higher-order Markov models, and offers more freedom to liberally guess about which atomic features may be relevant to a task. The induction method applies to linear-chain CRFs, as well as to more arbitrary CRF structures, also known as Relational Markov Networks [Taskar & Koller, 2002]. We present experimental results on a named entity extraction task.
Andrew McCallum
null
1212.2504
null
null
Collaborative Ensemble Learning: Combining Collaborative and Content-Based Information Filtering via Hierarchical Bayes
cs.LG cs.IR stat.ML
Collaborative filtering (CF) and content-based filtering (CBF) have widely been used in information filtering applications. Both approaches have their strengths and weaknesses which is why researchers have developed hybrid systems. This paper proposes a novel approach to unify CF and CBF in a probabilistic framework, named collaborative ensemble learning. It uses probabilistic SVMs to model each user's profile (as CBF does).At the prediction phase, it combines a society OF users profiles, represented by their respective SVM models, to predict an active users preferences(the CF idea).The combination scheme is embedded in a probabilistic framework and retains an intuitive explanation.Moreover, collaborative ensemble learning does not require a global training stage and thus can incrementally incorporate new data.We report results based on two data sets. For the Reuters-21578 text data set, we simulate user ratings under the assumption that each user is interested in only one category. In the second experiment, we use users' opinions on a set of 642 art images that were collected through a web-based survey. For both data sets, collaborative ensemble achieved excellent performance in terms of recommendation accuracy.
Kai Yu, Anton Schwaighofer, Volker Tresp, Wei-Ying Ma, HongJiang Zhang
null
1212.2508
null
null
Markov Random Walk Representations with Continuous Distributions
cs.LG stat.ML
Representations based on random walks can exploit discrete data distributions for clustering and classification. We extend such representations from discrete to continuous distributions. Transition probabilities are now calculated using a diffusion equation with a diffusion coefficient that inversely depends on the data density. We relate this diffusion equation to a path integral and derive the corresponding path probability measure. The framework is useful for incorporating continuous data densities and prior knowledge.
Chen-Hsiang Yeang, Martin Szummer
null
1212.2510
null
null
Stochastic complexity of Bayesian networks
cs.LG stat.ML
Bayesian networks are now being used in enormous fields, for example, diagnosis of a system, data mining, clustering and so on. In spite of their wide range of applications, the statistical properties have not yet been clarified, because the models are nonidentifiable and non-regular. In a Bayesian network, the set of its parameter for a smaller model is an analytic set with singularities in the space of large ones. Because of these singularities, the Fisher information matrices are not positive definite. In other words, the mathematical foundation for learning was not constructed. In recent years, however, we have developed a method to analyze non-regular models using algebraic geometry. This method revealed the relation between the models singularities and its statistical properties. In this paper, applying this method to Bayesian networks with latent variables, we clarify the order of the stochastic complexities.Our result claims that the upper bound of those is smaller than the dimension of the parameter space. This means that the Bayesian generalization error is also far smaller than that of regular model, and that Schwarzs model selection criterion BIC needs to be improved for Bayesian networks.
Keisuke Yamazaki, Sumio Watanbe
null
1212.2511
null
null
A Generalized Mean Field Algorithm for Variational Inference in Exponential Families
cs.LG stat.ML
The mean field methods, which entail approximating intractable probability distributions variationally with distributions from a tractable family, enjoy high efficiency, guaranteed convergence, and provide lower bounds on the true likelihood. But due to requirement for model-specific derivation of the optimization equations and unclear inference quality in various models, it is not widely used as a generic approximate inference algorithm. In this paper, we discuss a generalized mean field theory on variational approximation to a broad class of intractable distributions using a rich set of tractable distributions via constrained optimization over distribution spaces. We present a class of generalized mean field (GMF) algorithms for approximate inference in complex exponential family models, which entails limiting the optimization over the class of cluster-factorizable distributions. GMF is a generic method requiring no model-specific derivations. It factors a complex model into a set of disjoint variable clusters, and uses a set of canonical fix-point equations to iteratively update the cluster distributions, and converge to locally optimal cluster marginals that preserve the original dependency structure within each cluster, hence, fully decomposed the overall inference problem. We empirically analyzed the effect of different tractable family (clusters of different granularity) on inference quality, and compared GMF with BP on several canonical models. Possible extension to higher-order MF approximation is also discussed.
Eric P. Xing, Michael I. Jordan, Stuart Russell
null
1212.2512
null
null
Efficient Parametric Projection Pursuit Density Estimation
cs.LG stat.ML
Product models of low dimensional experts are a powerful way to avoid the curse of dimensionality. We present the ``under-complete product of experts' (UPoE), where each expert models a one dimensional projection of the data. The UPoE is fully tractable and may be interpreted as a parametric probabilistic model for projection pursuit. Its ML learning rules are identical to the approximate learning rules proposed before for under-complete ICA. We also derive an efficient sequential learning algorithm and discuss its relationship to projection pursuit density estimation and feature induction algorithms for additive random field models.
Max Welling, Richard S. Zemel, Geoffrey E. Hinton
null
1212.2513
null
null
Boltzmann Machine Learning with the Latent Maximum Entropy Principle
cs.LG stat.ML
We present a new statistical learning paradigm for Boltzmann machines based on a new inference principle we have proposed: the latent maximum entropy principle (LME). LME is different both from Jaynes maximum entropy principle and from standard maximum likelihood estimation.We demonstrate the LME principle BY deriving new algorithms for Boltzmann machine parameter estimation, and show how robust and fast new variant of the EM algorithm can be developed.Our experiments show that estimation based on LME generally yields better results than maximum likelihood estimation, particularly when inferring hidden units from small amounts of data.
Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao
null
1212.2514
null
null
Learning Measurement Models for Unobserved Variables
cs.LG stat.ML
Observed associations in a database may be due in whole or part to variations in unrecorded (latent) variables. Identifying such variables and their causal relationships with one another is a principal goal in many scientific and practical domains. Previous work shows that, given a partition of observed variables such that members of a class share only a single latent common cause, standard search algorithms for causal Bayes nets can infer structural relations between latent variables. We introduce an algorithm for discovering such partitions when they exist. Uniquely among available procedures, the algorithm is (asymptotically) correct under standard assumptions in causal Bayes net search algorithms, requires no prior knowledge of the number of latent variables, and does not depend on the mathematical form of the relationships among the latent variables. We evaluate the algorithm on a variety of simulated data sets.
Ricardo Silva, Richard Scheines, Clark Glymour, Peter L. Spirtes
null
1212.2516
null
null
Learning Module Networks
cs.LG cs.CE stat.ML
Methods for learning Bayesian network structure can discover dependency structure between observed variables, and have been shown to be useful in many applications. However, in domains that involve a large number of variables, the space of possible network structures is enormous, making it difficult, for both computational and statistical reasons, to identify a good model. In this paper, we consider a solution to this problem, suitable for domains where many variables have similar behavior. Our method is based on a new class of models, which we call module networks. A module network explicitly represents the notion of a module - a set of variables that have the same parents in the network and share the same conditional probability distribution. We define the semantics of module networks, and describe an algorithm that learns a module network from data. The algorithm learns both the partitioning of the variables into modules and the dependency structure between the variables. We evaluate our algorithm on synthetic data, and on real data in the domains of gene expression and the stock market. Our results show that module networks generalize better than Bayesian networks, and that the learned module network structure reveals regularities that are obscured in learned Bayesian networks.
Eran Segal, Dana Pe'er, Aviv Regev, Daphne Koller, Nir Friedman
null
1212.2517
null
null
Convex Relaxations for Learning Bounded Treewidth Decomposable Graphs
cs.LG cs.DS stat.ML
We consider the problem of learning the structure of undirected graphical models with bounded treewidth, within the maximum likelihood framework. This is an NP-hard problem and most approaches consider local search techniques. In this paper, we pose it as a combinatorial optimization problem, which is then relaxed to a convex optimization problem that involves searching over the forest and hyperforest polytopes with special structures, independently. A supergradient method is used to solve the dual problem, with a run-time complexity of $O(k^3 n^{k+2} \log n)$ for each iteration, where $n$ is the number of variables and $k$ is a bound on the treewidth. We compare our approach to state-of-the-art methods on synthetic datasets and classical benchmarks, showing the gains of the novel convex approach.
K. S. Sesh Kumar (LIENS, INRIA Paris - Rocquencourt), Francis Bach (LIENS, INRIA Paris - Rocquencourt)
null
1212.2573
null
null
Optimal diagnostic tests for sporadic Creutzfeldt-Jakob disease based on support vector machine classification of RT-QuIC data
q-bio.QM cs.LG stat.AP
In this work we study numerical construction of optimal clinical diagnostic tests for detecting sporadic Creutzfeldt-Jakob disease (sCJD). A cerebrospinal fluid sample (CSF) from a suspected sCJD patient is subjected to a process which initiates the aggregation of a protein present only in cases of sCJD. This aggregation is indirectly observed in real-time at regular intervals, so that a longitudinal set of data is constructed that is then analysed for evidence of this aggregation. The best existing test is based solely on the final value of this set of data, which is compared against a threshold to conclude whether or not aggregation, and thus sCJD, is present. This test criterion was decided upon by analysing data from a total of 108 sCJD and non-sCJD samples, but this was done subjectively and there is no supporting mathematical analysis declaring this criterion to be exploiting the available data optimally. This paper addresses this deficiency, seeking to validate or improve the test primarily via support vector machine (SVM) classification. Besides this, we address a number of additional issues such as i) early stopping of the measurement process, ii) the possibility of detecting the particular type of sCJD and iii) the incorporation of additional patient data such as age, sex, disease duration and timing of CSF sampling into the construction of the test.
William Hulme, Peter Richt\'arik, Lynne McGuire and Alison Green
null
1212.2617
null
null
Joint Training of Deep Boltzmann Machines
stat.ML cs.LG
We introduce a new method for training deep Boltzmann machines jointly. Prior methods require an initial learning pass that trains the deep Boltzmann machine greedily, one layer at a time, or do not perform well on classifi- cation tasks.
Ian Goodfellow, Aaron Courville, Yoshua Bengio
null
1212.2686
null
null
Bayesian one-mode projection for dynamic bipartite graphs
stat.ML cond-mat.stat-mech cs.LG
We propose a Bayesian methodology for one-mode projecting a bipartite network that is being observed across a series of discrete time steps. The resulting one mode network captures the uncertainty over the presence/absence of each link and provides a probability distribution over its possible weight values. Additionally, the incorporation of prior knowledge over previous states makes the resulting network less sensitive to noise and missing observations that usually take place during the data collection process. The methodology consists of computationally inexpensive update rules and is scalable to large problems, via an appropriate distributed implementation.
Ioannis Psorakis, Iead Rezek, Zach Frankel, Stephen J. Roberts
null
1212.2767
null
null
Dictionary Subselection Using an Overcomplete Joint Sparsity Model
cs.LG math.OC stat.ML
Many natural signals exhibit a sparse representation, whenever a suitable describing model is given. Here, a linear generative model is considered, where many sparsity-based signal processing techniques rely on such a simplified model. As this model is often unknown for many classes of the signals, we need to select such a model based on the domain knowledge or using some exemplar signals. This paper presents a new exemplar based approach for the linear model (called the dictionary) selection, for such sparse inverse problems. The problem of dictionary selection, which has also been called the dictionary learning in this setting, is first reformulated as a joint sparsity model. The joint sparsity model here differs from the standard joint sparsity model as it considers an overcompleteness in the representation of each signal, within the range of selected subspaces. The new dictionary selection paradigm is examined with some synthetic and realistic simulations.
Mehrdad Yaghoobi, Laurent Daudet, Michael E. Davies
null
1212.2834
null
null
Cost-Sensitive Feature Selection of Data with Errors
cs.LG
In data mining applications, feature selection is an essential process since it reduces a model's complexity. The cost of obtaining the feature values must be taken into consideration in many domains. In this paper, we study the cost-sensitive feature selection problem on numerical data with measurement errors, test costs and misclassification costs. The major contributions of this paper are four-fold. First, a new data model is built to address test costs and misclassification costs as well as error boundaries. Second, a covering-based rough set with measurement errors is constructed. Given a confidence interval, the neighborhood is an ellipse in a two-dimension space, or an ellipsoidal in a three-dimension space, etc. Third, a new cost-sensitive feature selection problem is defined on this covering-based rough set. Fourth, both backtracking and heuristic algorithms are proposed to deal with this new problem. The algorithms are tested on six UCI (University of California - Irvine) data sets. Experimental results show that (1) the pruning techniques of the backtracking algorithm help reducing the number of operations significantly, and (2) the heuristic algorithm usually obtains optimal results. This study is a step toward realistic applications of cost-sensitive learning.
Hong Zhao, Fan Min and William Zhu
null
1212.3185
null
null
Learning Sparse Low-Threshold Linear Classifiers
stat.ML cs.LG
We consider the problem of learning a non-negative linear classifier with a $1$-norm of at most $k$, and a fixed threshold, under the hinge-loss. This problem generalizes the problem of learning a $k$-monotone disjunction. We prove that we can learn efficiently in this setting, at a rate which is linear in both $k$ and the size of the threshold, and that this is the best possible rate. We provide an efficient online learning algorithm that achieves the optimal rate, and show that in the batch case, empirical risk minimization achieves this rate as well. The rates we show are tighter than the uniform convergence rate, which grows with $k^2$.
Sivan Sabato and Shai Shalev-Shwartz and Nathan Srebro and Daniel Hsu and Tong Zhang
null
1212.3276
null
null
Know Your Personalization: Learning Topic level Personalization in Online Services
cs.LG cs.IR
Online service platforms (OSPs), such as search engines, news-websites, ad-providers, etc., serve highly pe rsonalized content to the user, based on the profile extracted from his history with the OSP. Although personalization (generally) leads to a better user experience, it also raises privacy concerns for the user---he does not know what is present in his profile and more importantly, what is being used to per sonalize content for him. In this paper, we capture OSP's personalization for an user in a new data structure called the person alization vector ($\eta$), which is a weighted vector over a set of topics, and present techniques to compute it for users of an OSP. Our approach treats OSPs as black-boxes, and extracts $\eta$ by mining only their output, specifical ly, the personalized (for an user) and vanilla (without any user information) contents served, and the differences in these content. We formulate a new model called Latent Topic Personalization (LTP) that captures the personalization vector into a learning framework and present efficient inference algorithms for it. We do extensive experiments for search result personalization using both data from real Google users and synthetic datasets. Our results show high accuracy (R-pre = 84%) of LTP in finding personalized topics. For Google data, our qualitative results show how LTP can also identifies evidences---queries for results on a topic with high $\eta$ value were re-ranked. Finally, we show how our approach can be used to build a new Privacy evaluation framework focused at end-user privacy on commercial OSPs.
Anirban Majumder and Nisheeth Shrivastava
null
1212.3390
null
null
Proceedings Quantities in Formal Methods
cs.LO cs.FL cs.LG cs.SE
This volume contains the proceedings of the Workshop on Quantities in Formal Methods, QFM 2012, held in Paris, France on 28 August 2012. The workshop was affiliated with the 18th Symposium on Formal Methods, FM 2012. The focus of the workshop was on quantities in modeling, verification, and synthesis. Modern applications of formal methods require to reason formally on quantities such as time, resources, or probabilities. Standard formal methods and tools have gotten very good at modeling (and verifying) qualitative properties: whether or not certain events will occur. During the last years, these methods and tools have been extended to also cover quantitative aspects, notably leading to tools like e.g. UPPAAL (for real-time systems), PRISM (for probabilistic systems), and PHAVer (for hybrid systems). A lot of work remains to be done however before these tools can be used in the industrial applications at which they are aiming.
Uli Fahrenberg (Irisa / INRIA Rennes, France), Axel Legay (Irisa / INRIA Rennes, France), Claus Thrane (Aalborg University, Denmark)
10.4204/EPTCS.103
1212.3454
null
null
Machine Learning in Proof General: Interfacing Interfaces
cs.AI cs.LG cs.LO
We present ML4PG - a machine learning extension for Proof General. It allows users to gather proof statistics related to shapes of goals, sequences of applied tactics, and proof tree structures from the libraries of interactive higher-order proofs written in Coq and SSReflect. The gathered data is clustered using the state-of-the-art machine learning algorithms available in MATLAB and Weka. ML4PG provides automated interfacing between Proof General and MATLAB/Weka. The results of clustering are used by ML4PG to provide proof hints in the process of interactive proof development.
Ekaterina Komendantskaya (School of Computing, University of Dundee), J\'onathan Heras (School of Computing, University of Dundee), Gudmund Grov (School of Mathematical and Computer Sciences, Heriot-Watt University)
10.4204/EPTCS.118.2
1212.3618
null
null
Learning efficient sparse and low rank models
cs.LG
Parsimony, including sparsity and low rank, has been shown to successfully model data in numerous machine learning and signal processing tasks. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with parsimony-promoting terms. The inherently sequential structure and data-dependent complexity and latency of iterative optimization constitute a major limitation in many applications requiring real-time performance or involving large-scale data. Another limitation encountered by these modeling techniques is the difficulty of their inclusion in discriminative learning scenarios. In this work, we propose to move the emphasis from the model to the pursuit algorithm, and develop a process-centric view of parsimonious modeling, in which a learned deterministic fixed-complexity pursuit process is used in lieu of iterative optimization. We show a principled way to construct learnable pursuit process architectures for structured sparse and robust low rank models, derived from the iteration of proximal descent algorithms. These architectures learn to approximate the exact parsimonious representation at a fraction of the complexity of the standard optimization methods. We also show that appropriate training regimes allow to naturally extend parsimonious models to discriminative settings. State-of-the-art results are demonstrated on several challenging problems in image and audio processing with several orders of magnitude speedup compared to the exact optimization algorithms.
Pablo Sprechmann, Alex M. Bronstein and Guillermo Sapiro
null
1212.3631
null
null
A metric for software vulnerabilities classification
cs.SE cs.LG
Vulnerability discovery and exploits detection are two wide areas of study in software engineering. This preliminary work tries to combine existing methods with machine learning techniques to define a metric classification of vulnerable computer programs. First a feature set has been defined and later two models have been tested against real world vulnerabilities. A relation between the classifier choice and the features has also been outlined.
Gabriele Modena
null
1212.3669
null
null
Biologically Inspired Spiking Neurons : Piecewise Linear Models and Digital Implementation
cs.LG cs.NE q-bio.NC
There has been a strong push recently to examine biological scale simulations of neuromorphic algorithms to achieve stronger inference capabilities. This paper presents a set of piecewise linear spiking neuron models, which can reproduce different behaviors, similar to the biological neuron, both for a single neuron as well as a network of neurons. The proposed models are investigated, in terms of digital implementation feasibility and costs, targeting large scale hardware implementation. Hardware synthesis and physical implementations on FPGA show that the proposed models can produce precise neural behaviors with higher performance and considerably lower implementation costs compared with the original model. Accordingly, a compact structure of the models which can be trained with supervised and unsupervised learning algorithms has been developed. Using this structure and based on a spike rate coding, a character recognition case study has been implemented and tested.
Hamid Soleimani, Arash Ahmadi and Mohammad Bavandpour
10.1109/TCSI.2012.2206463
1212.3765
null
null