Datasets:
admin
commited on
Commit
·
5823503
1
Parent(s):
663772c
2 arrows base
Browse files- README.md +70 -18
- eval/dataset_dict.json +1 -0
- eval/test/dataset_info.json +108 -0
- eval/test/state.json +13 -0
- eval/train/dataset_info.json +108 -0
- eval/train/state.json +34 -0
- eval/validation/dataset_info.json +108 -0
- eval/validation/state.json +13 -0
- music_genre.py +0 -195
README.md
CHANGED
@@ -12,14 +12,81 @@ tags:
|
|
12 |
pretty_name: Music Genre Dataset
|
13 |
size_categories:
|
14 |
- 10K<n<100K
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
---
|
17 |
|
18 |
# Dataset Card for Music Genre
|
19 |
The Default dataset comprises approximately 1,700 musical pieces in .mp3 format, sourced from the NetEase music. The lengths of these pieces range from 270 to 300 seconds. All are sampled at the rate of 22,050 Hz. As the website providing the audio music includes style labels for the downloaded music, there are no specific annotators involved. Validation is achieved concurrently with the downloading process. They are categorized into a total of 16 genres.
|
20 |
|
21 |
## Dataset Structure
|
22 |
-
<https://www.modelscope.cn/datasets/ccmusic-database/music_genre/dataPeview>
|
23 |
<style>
|
24 |
.genres td {
|
25 |
vertical-align: middle !important;
|
@@ -123,21 +190,6 @@ Audio classification
|
|
123 |
Multilingual
|
124 |
|
125 |
## Usage
|
126 |
-
### Default Subset
|
127 |
-
```python
|
128 |
-
from datasets import load_dataset
|
129 |
-
|
130 |
-
ds = load_dataset("ccmusic-database/music_genre")
|
131 |
-
for item in ds["train"]:
|
132 |
-
print(item)
|
133 |
-
|
134 |
-
for item in ds["validation"]:
|
135 |
-
print(item)
|
136 |
-
|
137 |
-
for item in ds["test"]:
|
138 |
-
print(item)
|
139 |
-
```
|
140 |
-
|
141 |
### Eval Subset
|
142 |
```python
|
143 |
from datasets import load_dataset
|
@@ -155,7 +207,7 @@ for item in ds["test"]:
|
|
155 |
|
156 |
## Maintenance
|
157 |
```bash
|
158 |
-
git clone [email protected]:datasets/ccmusic-database/music_genre
|
159 |
cd music_genre
|
160 |
```
|
161 |
|
|
|
12 |
pretty_name: Music Genre Dataset
|
13 |
size_categories:
|
14 |
- 10K<n<100K
|
15 |
+
dataset_info:
|
16 |
+
- config_name: eval
|
17 |
+
features:
|
18 |
+
- name: mel
|
19 |
+
dtype: image
|
20 |
+
- name: cqt
|
21 |
+
dtype: image
|
22 |
+
- name: chroma
|
23 |
+
dtype: image
|
24 |
+
- name: fst_level_label
|
25 |
+
dtype:
|
26 |
+
class_label:
|
27 |
+
names:
|
28 |
+
'0': Classic
|
29 |
+
'1': Non_classic
|
30 |
+
- name: sec_level_label
|
31 |
+
dtype:
|
32 |
+
class_label:
|
33 |
+
names:
|
34 |
+
'0': Symphony
|
35 |
+
'1': Opera
|
36 |
+
'2': Solo
|
37 |
+
'3': Chamber
|
38 |
+
'4': Pop
|
39 |
+
'5': Dance_and_house
|
40 |
+
'6': Indie
|
41 |
+
'7': Soul_or_RnB
|
42 |
+
'8': Rock
|
43 |
+
- name: thr_level_label
|
44 |
+
dtype:
|
45 |
+
class_label:
|
46 |
+
names:
|
47 |
+
'0': Symphony
|
48 |
+
'1': Opera
|
49 |
+
'2': Solo
|
50 |
+
'3': Chamber
|
51 |
+
'4': Pop_vocal_ballad
|
52 |
+
'5': Adult_contemporary
|
53 |
+
'6': Teen_pop
|
54 |
+
'7': Contemporary_dance_pop
|
55 |
+
'8': Dance_pop
|
56 |
+
'9': Classic_indie_pop
|
57 |
+
'10': Chamber_cabaret_and_art_pop
|
58 |
+
'11': Soul_or_RnB
|
59 |
+
'12': Adult_alternative_rock
|
60 |
+
'13': Uplifting_anthemic_rock
|
61 |
+
'14': Soft_rock
|
62 |
+
'15': Acoustic_pop
|
63 |
+
splits:
|
64 |
+
- name: train
|
65 |
+
num_bytes: 19661943
|
66 |
+
num_examples: 29100
|
67 |
+
- name: validation
|
68 |
+
num_bytes: 2453757
|
69 |
+
num_examples: 3637
|
70 |
+
- name: test
|
71 |
+
num_bytes: 2456508
|
72 |
+
num_examples: 3638
|
73 |
+
download_size: 4436653005
|
74 |
+
dataset_size: 24572208
|
75 |
+
configs:
|
76 |
+
- config_name: eval
|
77 |
+
data_files:
|
78 |
+
- split: train
|
79 |
+
path: eval/train/data-*.arrow
|
80 |
+
- split: validation
|
81 |
+
path: eval/validation/data-*.arrow
|
82 |
+
- split: test
|
83 |
+
path: eval/test/data-*.arrow
|
84 |
---
|
85 |
|
86 |
# Dataset Card for Music Genre
|
87 |
The Default dataset comprises approximately 1,700 musical pieces in .mp3 format, sourced from the NetEase music. The lengths of these pieces range from 270 to 300 seconds. All are sampled at the rate of 22,050 Hz. As the website providing the audio music includes style labels for the downloaded music, there are no specific annotators involved. Validation is achieved concurrently with the downloading process. They are categorized into a total of 16 genres.
|
88 |
|
89 |
## Dataset Structure
|
|
|
90 |
<style>
|
91 |
.genres td {
|
92 |
vertical-align: middle !important;
|
|
|
190 |
Multilingual
|
191 |
|
192 |
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
### Eval Subset
|
194 |
```python
|
195 |
from datasets import load_dataset
|
|
|
207 |
|
208 |
## Maintenance
|
209 |
```bash
|
210 |
+
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/music_genre
|
211 |
cd music_genre
|
212 |
```
|
213 |
|
eval/dataset_dict.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"splits": ["train", "validation", "test"]}
|
eval/test/dataset_info.json
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"builder_name": "music_genre",
|
3 |
+
"citation": "",
|
4 |
+
"config_name": "eval",
|
5 |
+
"dataset_name": "music_genre",
|
6 |
+
"dataset_size": 24572208,
|
7 |
+
"description": "",
|
8 |
+
"download_checksums": {
|
9 |
+
"https://www.modelscope.cn/datasets/ccmusic-database/music_genre/resolve/master/data/eval.zip": {
|
10 |
+
"num_bytes": 4436653005,
|
11 |
+
"checksum": null
|
12 |
+
}
|
13 |
+
},
|
14 |
+
"download_size": 4436653005,
|
15 |
+
"features": {
|
16 |
+
"mel": {
|
17 |
+
"_type": "Image"
|
18 |
+
},
|
19 |
+
"cqt": {
|
20 |
+
"_type": "Image"
|
21 |
+
},
|
22 |
+
"chroma": {
|
23 |
+
"_type": "Image"
|
24 |
+
},
|
25 |
+
"fst_level_label": {
|
26 |
+
"names": [
|
27 |
+
"Classic",
|
28 |
+
"Non_classic"
|
29 |
+
],
|
30 |
+
"_type": "ClassLabel"
|
31 |
+
},
|
32 |
+
"sec_level_label": {
|
33 |
+
"names": [
|
34 |
+
"Symphony",
|
35 |
+
"Opera",
|
36 |
+
"Solo",
|
37 |
+
"Chamber",
|
38 |
+
"Pop",
|
39 |
+
"Dance_and_house",
|
40 |
+
"Indie",
|
41 |
+
"Soul_or_RnB",
|
42 |
+
"Rock"
|
43 |
+
],
|
44 |
+
"_type": "ClassLabel"
|
45 |
+
},
|
46 |
+
"thr_level_label": {
|
47 |
+
"names": [
|
48 |
+
"Symphony",
|
49 |
+
"Opera",
|
50 |
+
"Solo",
|
51 |
+
"Chamber",
|
52 |
+
"Pop_vocal_ballad",
|
53 |
+
"Adult_contemporary",
|
54 |
+
"Teen_pop",
|
55 |
+
"Contemporary_dance_pop",
|
56 |
+
"Dance_pop",
|
57 |
+
"Classic_indie_pop",
|
58 |
+
"Chamber_cabaret_and_art_pop",
|
59 |
+
"Soul_or_RnB",
|
60 |
+
"Adult_alternative_rock",
|
61 |
+
"Uplifting_anthemic_rock",
|
62 |
+
"Soft_rock",
|
63 |
+
"Acoustic_pop"
|
64 |
+
],
|
65 |
+
"_type": "ClassLabel"
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"homepage": "https://www.modelscope.cn/datasets/ccmusic-database/music_genre",
|
69 |
+
"license": "CC-BY-NC-ND",
|
70 |
+
"size_in_bytes": 4461225213,
|
71 |
+
"splits": {
|
72 |
+
"train": {
|
73 |
+
"name": "train",
|
74 |
+
"num_bytes": 19661943,
|
75 |
+
"num_examples": 29100,
|
76 |
+
"dataset_name": "music_genre"
|
77 |
+
},
|
78 |
+
"validation": {
|
79 |
+
"name": "validation",
|
80 |
+
"num_bytes": 2453757,
|
81 |
+
"num_examples": 3637,
|
82 |
+
"dataset_name": "music_genre"
|
83 |
+
},
|
84 |
+
"test": {
|
85 |
+
"name": "test",
|
86 |
+
"num_bytes": 2456508,
|
87 |
+
"num_examples": 3638,
|
88 |
+
"dataset_name": "music_genre"
|
89 |
+
}
|
90 |
+
},
|
91 |
+
"supervised_keys": {
|
92 |
+
"input": "mel",
|
93 |
+
"output": "sec_level_label"
|
94 |
+
},
|
95 |
+
"task_templates": [
|
96 |
+
{
|
97 |
+
"task": "image-classification",
|
98 |
+
"image_column": "mel",
|
99 |
+
"label_column": "sec_level_label"
|
100 |
+
}
|
101 |
+
],
|
102 |
+
"version": {
|
103 |
+
"version_str": "0.0.0",
|
104 |
+
"major": 0,
|
105 |
+
"minor": 0,
|
106 |
+
"patch": 0
|
107 |
+
}
|
108 |
+
}
|
eval/test/state.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00001.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "39a75b20be049dd1",
|
8 |
+
"_format_columns": null,
|
9 |
+
"_format_kwargs": {},
|
10 |
+
"_format_type": null,
|
11 |
+
"_output_all_columns": false,
|
12 |
+
"_split": "test"
|
13 |
+
}
|
eval/train/dataset_info.json
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"builder_name": "music_genre",
|
3 |
+
"citation": "",
|
4 |
+
"config_name": "eval",
|
5 |
+
"dataset_name": "music_genre",
|
6 |
+
"dataset_size": 24572208,
|
7 |
+
"description": "",
|
8 |
+
"download_checksums": {
|
9 |
+
"https://www.modelscope.cn/datasets/ccmusic-database/music_genre/resolve/master/data/eval.zip": {
|
10 |
+
"num_bytes": 4436653005,
|
11 |
+
"checksum": null
|
12 |
+
}
|
13 |
+
},
|
14 |
+
"download_size": 4436653005,
|
15 |
+
"features": {
|
16 |
+
"mel": {
|
17 |
+
"_type": "Image"
|
18 |
+
},
|
19 |
+
"cqt": {
|
20 |
+
"_type": "Image"
|
21 |
+
},
|
22 |
+
"chroma": {
|
23 |
+
"_type": "Image"
|
24 |
+
},
|
25 |
+
"fst_level_label": {
|
26 |
+
"names": [
|
27 |
+
"Classic",
|
28 |
+
"Non_classic"
|
29 |
+
],
|
30 |
+
"_type": "ClassLabel"
|
31 |
+
},
|
32 |
+
"sec_level_label": {
|
33 |
+
"names": [
|
34 |
+
"Symphony",
|
35 |
+
"Opera",
|
36 |
+
"Solo",
|
37 |
+
"Chamber",
|
38 |
+
"Pop",
|
39 |
+
"Dance_and_house",
|
40 |
+
"Indie",
|
41 |
+
"Soul_or_RnB",
|
42 |
+
"Rock"
|
43 |
+
],
|
44 |
+
"_type": "ClassLabel"
|
45 |
+
},
|
46 |
+
"thr_level_label": {
|
47 |
+
"names": [
|
48 |
+
"Symphony",
|
49 |
+
"Opera",
|
50 |
+
"Solo",
|
51 |
+
"Chamber",
|
52 |
+
"Pop_vocal_ballad",
|
53 |
+
"Adult_contemporary",
|
54 |
+
"Teen_pop",
|
55 |
+
"Contemporary_dance_pop",
|
56 |
+
"Dance_pop",
|
57 |
+
"Classic_indie_pop",
|
58 |
+
"Chamber_cabaret_and_art_pop",
|
59 |
+
"Soul_or_RnB",
|
60 |
+
"Adult_alternative_rock",
|
61 |
+
"Uplifting_anthemic_rock",
|
62 |
+
"Soft_rock",
|
63 |
+
"Acoustic_pop"
|
64 |
+
],
|
65 |
+
"_type": "ClassLabel"
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"homepage": "https://www.modelscope.cn/datasets/ccmusic-database/music_genre",
|
69 |
+
"license": "CC-BY-NC-ND",
|
70 |
+
"size_in_bytes": 4461225213,
|
71 |
+
"splits": {
|
72 |
+
"train": {
|
73 |
+
"name": "train",
|
74 |
+
"num_bytes": 19661943,
|
75 |
+
"num_examples": 29100,
|
76 |
+
"dataset_name": "music_genre"
|
77 |
+
},
|
78 |
+
"validation": {
|
79 |
+
"name": "validation",
|
80 |
+
"num_bytes": 2453757,
|
81 |
+
"num_examples": 3637,
|
82 |
+
"dataset_name": "music_genre"
|
83 |
+
},
|
84 |
+
"test": {
|
85 |
+
"name": "test",
|
86 |
+
"num_bytes": 2456508,
|
87 |
+
"num_examples": 3638,
|
88 |
+
"dataset_name": "music_genre"
|
89 |
+
}
|
90 |
+
},
|
91 |
+
"supervised_keys": {
|
92 |
+
"input": "mel",
|
93 |
+
"output": "sec_level_label"
|
94 |
+
},
|
95 |
+
"task_templates": [
|
96 |
+
{
|
97 |
+
"task": "image-classification",
|
98 |
+
"image_column": "mel",
|
99 |
+
"label_column": "sec_level_label"
|
100 |
+
}
|
101 |
+
],
|
102 |
+
"version": {
|
103 |
+
"version_str": "0.0.0",
|
104 |
+
"major": 0,
|
105 |
+
"minor": 0,
|
106 |
+
"patch": 0
|
107 |
+
}
|
108 |
+
}
|
eval/train/state.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00008.arrow"
|
5 |
+
},
|
6 |
+
{
|
7 |
+
"filename": "data-00001-of-00008.arrow"
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"filename": "data-00002-of-00008.arrow"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"filename": "data-00003-of-00008.arrow"
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"filename": "data-00004-of-00008.arrow"
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"filename": "data-00005-of-00008.arrow"
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"filename": "data-00006-of-00008.arrow"
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"filename": "data-00007-of-00008.arrow"
|
26 |
+
}
|
27 |
+
],
|
28 |
+
"_fingerprint": "cf206ff81eed2816",
|
29 |
+
"_format_columns": null,
|
30 |
+
"_format_kwargs": {},
|
31 |
+
"_format_type": null,
|
32 |
+
"_output_all_columns": false,
|
33 |
+
"_split": "train"
|
34 |
+
}
|
eval/validation/dataset_info.json
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"builder_name": "music_genre",
|
3 |
+
"citation": "",
|
4 |
+
"config_name": "eval",
|
5 |
+
"dataset_name": "music_genre",
|
6 |
+
"dataset_size": 24572208,
|
7 |
+
"description": "",
|
8 |
+
"download_checksums": {
|
9 |
+
"https://www.modelscope.cn/datasets/ccmusic-database/music_genre/resolve/master/data/eval.zip": {
|
10 |
+
"num_bytes": 4436653005,
|
11 |
+
"checksum": null
|
12 |
+
}
|
13 |
+
},
|
14 |
+
"download_size": 4436653005,
|
15 |
+
"features": {
|
16 |
+
"mel": {
|
17 |
+
"_type": "Image"
|
18 |
+
},
|
19 |
+
"cqt": {
|
20 |
+
"_type": "Image"
|
21 |
+
},
|
22 |
+
"chroma": {
|
23 |
+
"_type": "Image"
|
24 |
+
},
|
25 |
+
"fst_level_label": {
|
26 |
+
"names": [
|
27 |
+
"Classic",
|
28 |
+
"Non_classic"
|
29 |
+
],
|
30 |
+
"_type": "ClassLabel"
|
31 |
+
},
|
32 |
+
"sec_level_label": {
|
33 |
+
"names": [
|
34 |
+
"Symphony",
|
35 |
+
"Opera",
|
36 |
+
"Solo",
|
37 |
+
"Chamber",
|
38 |
+
"Pop",
|
39 |
+
"Dance_and_house",
|
40 |
+
"Indie",
|
41 |
+
"Soul_or_RnB",
|
42 |
+
"Rock"
|
43 |
+
],
|
44 |
+
"_type": "ClassLabel"
|
45 |
+
},
|
46 |
+
"thr_level_label": {
|
47 |
+
"names": [
|
48 |
+
"Symphony",
|
49 |
+
"Opera",
|
50 |
+
"Solo",
|
51 |
+
"Chamber",
|
52 |
+
"Pop_vocal_ballad",
|
53 |
+
"Adult_contemporary",
|
54 |
+
"Teen_pop",
|
55 |
+
"Contemporary_dance_pop",
|
56 |
+
"Dance_pop",
|
57 |
+
"Classic_indie_pop",
|
58 |
+
"Chamber_cabaret_and_art_pop",
|
59 |
+
"Soul_or_RnB",
|
60 |
+
"Adult_alternative_rock",
|
61 |
+
"Uplifting_anthemic_rock",
|
62 |
+
"Soft_rock",
|
63 |
+
"Acoustic_pop"
|
64 |
+
],
|
65 |
+
"_type": "ClassLabel"
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"homepage": "https://www.modelscope.cn/datasets/ccmusic-database/music_genre",
|
69 |
+
"license": "CC-BY-NC-ND",
|
70 |
+
"size_in_bytes": 4461225213,
|
71 |
+
"splits": {
|
72 |
+
"train": {
|
73 |
+
"name": "train",
|
74 |
+
"num_bytes": 19661943,
|
75 |
+
"num_examples": 29100,
|
76 |
+
"dataset_name": "music_genre"
|
77 |
+
},
|
78 |
+
"validation": {
|
79 |
+
"name": "validation",
|
80 |
+
"num_bytes": 2453757,
|
81 |
+
"num_examples": 3637,
|
82 |
+
"dataset_name": "music_genre"
|
83 |
+
},
|
84 |
+
"test": {
|
85 |
+
"name": "test",
|
86 |
+
"num_bytes": 2456508,
|
87 |
+
"num_examples": 3638,
|
88 |
+
"dataset_name": "music_genre"
|
89 |
+
}
|
90 |
+
},
|
91 |
+
"supervised_keys": {
|
92 |
+
"input": "mel",
|
93 |
+
"output": "sec_level_label"
|
94 |
+
},
|
95 |
+
"task_templates": [
|
96 |
+
{
|
97 |
+
"task": "image-classification",
|
98 |
+
"image_column": "mel",
|
99 |
+
"label_column": "sec_level_label"
|
100 |
+
}
|
101 |
+
],
|
102 |
+
"version": {
|
103 |
+
"version_str": "0.0.0",
|
104 |
+
"major": 0,
|
105 |
+
"minor": 0,
|
106 |
+
"patch": 0
|
107 |
+
}
|
108 |
+
}
|
eval/validation/state.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "data-00000-of-00001.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "1af7cf18053a82fb",
|
8 |
+
"_format_columns": null,
|
9 |
+
"_format_kwargs": {},
|
10 |
+
"_format_type": null,
|
11 |
+
"_output_all_columns": false,
|
12 |
+
"_split": "validation"
|
13 |
+
}
|
music_genre.py
DELETED
@@ -1,195 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import datasets
|
4 |
-
from datasets.tasks import ImageClassification
|
5 |
-
|
6 |
-
_NAMES_1 = {
|
7 |
-
1: "Classic",
|
8 |
-
2: "Non_classic",
|
9 |
-
}
|
10 |
-
|
11 |
-
_NAMES_2 = {
|
12 |
-
3: "Symphony",
|
13 |
-
4: "Opera",
|
14 |
-
5: "Solo",
|
15 |
-
6: "Chamber",
|
16 |
-
7: "Pop",
|
17 |
-
8: "Dance_and_house",
|
18 |
-
9: "Indie",
|
19 |
-
10: "Soul_or_RnB",
|
20 |
-
11: "Rock",
|
21 |
-
}
|
22 |
-
|
23 |
-
_NAMES_3 = {
|
24 |
-
3: "Symphony",
|
25 |
-
4: "Opera",
|
26 |
-
5: "Solo",
|
27 |
-
6: "Chamber",
|
28 |
-
12: "Pop_vocal_ballad",
|
29 |
-
13: "Adult_contemporary",
|
30 |
-
14: "Teen_pop",
|
31 |
-
15: "Contemporary_dance_pop",
|
32 |
-
16: "Dance_pop",
|
33 |
-
17: "Classic_indie_pop",
|
34 |
-
18: "Chamber_cabaret_and_art_pop",
|
35 |
-
10: "Soul_or_RnB",
|
36 |
-
19: "Adult_alternative_rock",
|
37 |
-
20: "Uplifting_anthemic_rock",
|
38 |
-
21: "Soft_rock",
|
39 |
-
22: "Acoustic_pop",
|
40 |
-
}
|
41 |
-
|
42 |
-
_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}"
|
43 |
-
|
44 |
-
_DOMAIN = f"{_HOMEPAGE}/resolve/master/data"
|
45 |
-
|
46 |
-
_URLS = {
|
47 |
-
"audio": f"{_DOMAIN}/audio.zip",
|
48 |
-
"mel": f"{_DOMAIN}/mel.zip",
|
49 |
-
"eval": f"{_DOMAIN}/eval.zip",
|
50 |
-
}
|
51 |
-
|
52 |
-
|
53 |
-
class music_genre(datasets.GeneratorBasedBuilder):
|
54 |
-
def _info(self):
|
55 |
-
return datasets.DatasetInfo(
|
56 |
-
features=(
|
57 |
-
datasets.Features(
|
58 |
-
{
|
59 |
-
"audio": datasets.Audio(sampling_rate=22050),
|
60 |
-
"mel": datasets.Image(),
|
61 |
-
"fst_level_label": datasets.features.ClassLabel(
|
62 |
-
names=list(_NAMES_1.values())
|
63 |
-
),
|
64 |
-
"sec_level_label": datasets.features.ClassLabel(
|
65 |
-
names=list(_NAMES_2.values())
|
66 |
-
),
|
67 |
-
"thr_level_label": datasets.features.ClassLabel(
|
68 |
-
names=list(_NAMES_3.values())
|
69 |
-
),
|
70 |
-
}
|
71 |
-
)
|
72 |
-
if self.config.name == "raw"
|
73 |
-
else datasets.Features(
|
74 |
-
{
|
75 |
-
"mel": datasets.Image(),
|
76 |
-
"cqt": datasets.Image(),
|
77 |
-
"chroma": datasets.Image(),
|
78 |
-
"fst_level_label": datasets.features.ClassLabel(
|
79 |
-
names=list(_NAMES_1.values())
|
80 |
-
),
|
81 |
-
"sec_level_label": datasets.features.ClassLabel(
|
82 |
-
names=list(_NAMES_2.values())
|
83 |
-
),
|
84 |
-
"thr_level_label": datasets.features.ClassLabel(
|
85 |
-
names=list(_NAMES_3.values())
|
86 |
-
),
|
87 |
-
}
|
88 |
-
)
|
89 |
-
),
|
90 |
-
supervised_keys=("mel", "sec_level_label"),
|
91 |
-
homepage=_HOMEPAGE,
|
92 |
-
license="CC-BY-NC-ND",
|
93 |
-
version="1.2.0",
|
94 |
-
task_templates=[
|
95 |
-
ImageClassification(
|
96 |
-
task="image-classification",
|
97 |
-
image_column="mel",
|
98 |
-
label_column="sec_level_label",
|
99 |
-
)
|
100 |
-
],
|
101 |
-
)
|
102 |
-
|
103 |
-
def _split_generators(self, dl_manager):
|
104 |
-
dataset = []
|
105 |
-
if self.config.name == "raw":
|
106 |
-
files = {}
|
107 |
-
audio_files = dl_manager.download_and_extract(_URLS["audio"])
|
108 |
-
mel_files = dl_manager.download_and_extract(_URLS["mel"])
|
109 |
-
for path in dl_manager.iter_files([audio_files]):
|
110 |
-
fname: str = os.path.basename(path)
|
111 |
-
if fname.endswith(".mp3"):
|
112 |
-
files[fname.split(".mp")[0]] = {"audio": path}
|
113 |
-
|
114 |
-
for path in dl_manager.iter_files([mel_files]):
|
115 |
-
fname = os.path.basename(path)
|
116 |
-
if fname.endswith(".jpg"):
|
117 |
-
files[fname.split(".jp")[0]]["mel"] = path
|
118 |
-
|
119 |
-
dataset = list(files.values())
|
120 |
-
|
121 |
-
else:
|
122 |
-
data_files = dl_manager.download_and_extract(_URLS["eval"])
|
123 |
-
for path in dl_manager.iter_files([data_files]):
|
124 |
-
if os.path.basename(path).endswith(".jpg") and "mel" in path:
|
125 |
-
dataset.append(
|
126 |
-
{
|
127 |
-
"mel": path,
|
128 |
-
"cqt": path.replace("\\mel\\", "\\cqt\\").replace(
|
129 |
-
"/mel/", "/cqt/"
|
130 |
-
),
|
131 |
-
"chroma": path.replace("\\mel\\", "\\chroma\\").replace(
|
132 |
-
"/mel/", "/chroma/"
|
133 |
-
),
|
134 |
-
}
|
135 |
-
)
|
136 |
-
|
137 |
-
random.shuffle(dataset)
|
138 |
-
data_count = len(dataset)
|
139 |
-
p80 = int(data_count * 0.8)
|
140 |
-
p90 = int(data_count * 0.9)
|
141 |
-
return [
|
142 |
-
datasets.SplitGenerator(
|
143 |
-
name=datasets.Split.TRAIN,
|
144 |
-
gen_kwargs={"files": dataset[:p80]},
|
145 |
-
),
|
146 |
-
datasets.SplitGenerator(
|
147 |
-
name=datasets.Split.VALIDATION,
|
148 |
-
gen_kwargs={"files": dataset[p80:p90]},
|
149 |
-
),
|
150 |
-
datasets.SplitGenerator(
|
151 |
-
name=datasets.Split.TEST,
|
152 |
-
gen_kwargs={"files": dataset[p90:]},
|
153 |
-
),
|
154 |
-
]
|
155 |
-
|
156 |
-
def _calc_label(self, path, depth, substr="/mel/"):
|
157 |
-
spect = substr
|
158 |
-
dirpath: str = os.path.dirname(path)
|
159 |
-
substr_index = dirpath.find(spect)
|
160 |
-
if substr_index < 0:
|
161 |
-
spect = spect.replace("/", "\\")
|
162 |
-
substr_index = dirpath.find(spect)
|
163 |
-
|
164 |
-
labstr = dirpath[substr_index + len(spect) :]
|
165 |
-
labs = labstr.split("/")
|
166 |
-
if len(labs) < 2:
|
167 |
-
labs = labstr.split("\\")
|
168 |
-
|
169 |
-
if depth <= len(labs):
|
170 |
-
return int(labs[depth - 1].split("_")[0])
|
171 |
-
|
172 |
-
else:
|
173 |
-
return int(labs[-1].split("_")[0])
|
174 |
-
|
175 |
-
def _generate_examples(self, files):
|
176 |
-
if self.config.name == "raw":
|
177 |
-
for i, path in enumerate(files):
|
178 |
-
yield i, {
|
179 |
-
"audio": path["audio"],
|
180 |
-
"mel": path["mel"],
|
181 |
-
"fst_level_label": _NAMES_1[self._calc_label(path["mel"], 1)],
|
182 |
-
"sec_level_label": _NAMES_2[self._calc_label(path["mel"], 2)],
|
183 |
-
"thr_level_label": _NAMES_3[self._calc_label(path["mel"], 3)],
|
184 |
-
}
|
185 |
-
|
186 |
-
else:
|
187 |
-
for i, path in enumerate(files):
|
188 |
-
yield i, {
|
189 |
-
"mel": path["mel"],
|
190 |
-
"cqt": path["cqt"],
|
191 |
-
"chroma": path["chroma"],
|
192 |
-
"fst_level_label": _NAMES_1[self._calc_label(path["mel"], 1)],
|
193 |
-
"sec_level_label": _NAMES_2[self._calc_label(path["mel"], 2)],
|
194 |
-
"thr_level_label": _NAMES_3[self._calc_label(path["mel"], 3)],
|
195 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|