Datasets:
admin
commited on
Commit
·
4f59541
1
Parent(s):
ccc0340
Update Guzheng_Tech99.py
Browse files- Guzheng_Tech99.py +97 -48
Guzheng_Tech99.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import csv
|
| 3 |
import random
|
|
|
|
| 4 |
import datasets
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
from glob import glob
|
| 7 |
|
| 8 |
_NAMES = {
|
|
@@ -64,9 +66,15 @@ class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
|
|
| 64 |
if self.config.name == "default"
|
| 65 |
else datasets.Features(
|
| 66 |
{
|
| 67 |
-
"
|
|
|
|
|
|
|
|
|
|
| 68 |
dtype="float32", shape=(88, 258, 1)
|
| 69 |
),
|
|
|
|
|
|
|
|
|
|
| 70 |
"label": datasets.features.Array2D(
|
| 71 |
dtype="float32", shape=(7, 258)
|
| 72 |
),
|
|
@@ -83,7 +91,7 @@ class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
|
|
| 83 |
square_sum = 0
|
| 84 |
tfle = 0
|
| 85 |
for i in range(len(data)):
|
| 86 |
-
tfle += (data[i].sum(-1).sum(0) != 0).astype("
|
| 87 |
common_sum += data[i].sum(-1).sum(-1)
|
| 88 |
square_sum += (data[i] ** 2).sum(-1).sum(-1)
|
| 89 |
|
|
@@ -92,20 +100,14 @@ class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
|
|
| 92 |
std = np.sqrt(square_avg - common_avg**2)
|
| 93 |
return common_avg, std
|
| 94 |
|
| 95 |
-
def _norm(self,
|
|
|
|
|
|
|
| 96 |
avg = np.tile(avg.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
|
| 97 |
std = np.tile(std.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
|
| 98 |
-
|
| 99 |
-
return data
|
| 100 |
-
|
| 101 |
-
def _load(self, wav_dir, csv_dir, groups, avg=None, std=None):
|
| 102 |
-
# Return all [(audio address, corresponding to csv file address), ( , ), ...] list
|
| 103 |
-
if std is None:
|
| 104 |
-
std = np.array([None])
|
| 105 |
-
|
| 106 |
-
if avg is None:
|
| 107 |
-
avg = np.array([None])
|
| 108 |
|
|
|
|
| 109 |
def files(wav_dir, csv_dir, group):
|
| 110 |
flacs = sorted(glob(os.path.join(wav_dir, group, "*.flac")))
|
| 111 |
if len(flacs) == 0:
|
|
@@ -122,12 +124,18 @@ class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
|
|
| 122 |
|
| 123 |
return result
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
# 帧长为32ms (1000ms/(16000/512) = 32ms), D2的频率是73.418
|
| 132 |
cqt = librosa.cqt(
|
| 133 |
y,
|
|
@@ -141,10 +149,21 @@ class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
|
|
| 141 |
(1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(cqt), ref=np.max)
|
| 142 |
) + 1.0
|
| 143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
def chunk_data(f):
|
| 145 |
-
s = int(_SAMPLE_RATE * _TIME_LENGTH / _HOP_LENGTH)
|
| 146 |
-
xdata = np.transpose(f)
|
| 147 |
x = []
|
|
|
|
|
|
|
| 148 |
length = int(np.ceil((int(len(xdata) / s) + 1) * s))
|
| 149 |
app = np.zeros((length - xdata.shape[0], xdata.shape[1]))
|
| 150 |
xdata = np.concatenate((xdata, app), 0)
|
|
@@ -154,16 +173,16 @@ class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
|
|
| 154 |
|
| 155 |
return np.array(x)
|
| 156 |
|
| 157 |
-
def load_all(audio_path, csv_path):
|
| 158 |
# Load audio features: The shape of cqt (88, 8520), 8520 is the number of frames on the time axis
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
| 160 |
# Load the ground truth label
|
| 161 |
-
hop = _HOP_LENGTH
|
| 162 |
n_steps = cqt.shape[1]
|
| 163 |
-
n_IPTs = 7
|
| 164 |
-
technique = _NAMES
|
| 165 |
IPT_label = np.zeros([n_IPTs, n_steps], dtype=int)
|
| 166 |
-
with open(csv_path, "r") as f: # csv file for each audio
|
| 167 |
reader = csv.DictReader(f, delimiter=",")
|
| 168 |
for label in reader: # each note
|
| 169 |
onset = float(label["onset_time"])
|
|
@@ -175,7 +194,12 @@ class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
|
|
| 175 |
IPT_label[IPT, left:frame_right] = 1
|
| 176 |
|
| 177 |
return dict(
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
)
|
| 180 |
|
| 181 |
data = []
|
|
@@ -184,29 +208,33 @@ class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
|
|
| 184 |
for input_files in files(wav_dir, csv_dir, group):
|
| 185 |
data.append(load_all(*input_files))
|
| 186 |
|
| 187 |
-
i =
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
y_i = dic["IPT_label"]
|
| 192 |
y_i = chunk_data(y_i)
|
| 193 |
if i == 0:
|
| 194 |
-
|
|
|
|
|
|
|
| 195 |
Ytr_i = y_i
|
| 196 |
-
i += 1
|
| 197 |
|
| 198 |
else:
|
| 199 |
-
|
|
|
|
|
|
|
| 200 |
Ytr_i = np.concatenate([Ytr_i, y_i], axis=0)
|
| 201 |
|
| 202 |
# Transform the shape of the input
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
avg, std = self._RoW_norm(Xtr)
|
| 207 |
# Normalize
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
| 210 |
|
| 211 |
def _parse_csv_label(self, csv_file):
|
| 212 |
label = []
|
|
@@ -259,19 +287,40 @@ class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
|
|
| 259 |
testset.append(item)
|
| 260 |
|
| 261 |
else:
|
| 262 |
-
audio_dir = audio_files
|
| 263 |
-
csv_dir = csv_files
|
| 264 |
X_train, Y_train = self._load(audio_dir, csv_dir, ["train"])
|
| 265 |
X_valid, Y_valid = self._load(audio_dir, csv_dir, ["validation"])
|
| 266 |
X_test, Y_test = self._load(audio_dir, csv_dir, ["test"])
|
| 267 |
-
for i in range(len(
|
| 268 |
-
trainset.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
-
for i in range(len(
|
| 271 |
-
validset.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
-
for i in range(len(
|
| 274 |
-
testset.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
random.shuffle(trainset)
|
| 277 |
random.shuffle(validset)
|
|
|
|
| 1 |
import os
|
| 2 |
import csv
|
| 3 |
import random
|
| 4 |
+
import librosa
|
| 5 |
import datasets
|
| 6 |
import numpy as np
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
from glob import glob
|
| 9 |
|
| 10 |
_NAMES = {
|
|
|
|
| 66 |
if self.config.name == "default"
|
| 67 |
else datasets.Features(
|
| 68 |
{
|
| 69 |
+
"mel": datasets.features.Array3D(
|
| 70 |
+
dtype="float32", shape=(128, 258, 1)
|
| 71 |
+
),
|
| 72 |
+
"cqt": datasets.features.Array3D(
|
| 73 |
dtype="float32", shape=(88, 258, 1)
|
| 74 |
),
|
| 75 |
+
"chroma": datasets.features.Array3D(
|
| 76 |
+
dtype="float32", shape=(12, 258, 1)
|
| 77 |
+
),
|
| 78 |
"label": datasets.features.Array2D(
|
| 79 |
dtype="float32", shape=(7, 258)
|
| 80 |
),
|
|
|
|
| 91 |
square_sum = 0
|
| 92 |
tfle = 0
|
| 93 |
for i in range(len(data)):
|
| 94 |
+
tfle += (data[i].sum(-1).sum(0) != 0).astype("float").sum()
|
| 95 |
common_sum += data[i].sum(-1).sum(-1)
|
| 96 |
square_sum += (data[i] ** 2).sum(-1).sum(-1)
|
| 97 |
|
|
|
|
| 100 |
std = np.sqrt(square_avg - common_avg**2)
|
| 101 |
return common_avg, std
|
| 102 |
|
| 103 |
+
def _norm(self, data):
|
| 104 |
+
size = data.shape
|
| 105 |
+
avg, std = self._RoW_norm(data)
|
| 106 |
avg = np.tile(avg.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
|
| 107 |
std = np.tile(std.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
|
| 108 |
+
return (data - avg) / std
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
def _load(self, wav_dir, csv_dir, groups):
|
| 111 |
def files(wav_dir, csv_dir, group):
|
| 112 |
flacs = sorted(glob(os.path.join(wav_dir, group, "*.flac")))
|
| 113 |
if len(flacs) == 0:
|
|
|
|
| 124 |
|
| 125 |
return result
|
| 126 |
|
| 127 |
+
def logMel(y, sr=_SAMPLE_RATE):
|
| 128 |
+
# 帧长为32ms (1000ms/(16000/512) = 32ms), D2的频率是73.418
|
| 129 |
+
mel = librosa.feature.melspectrogram(
|
| 130 |
+
y=y,
|
| 131 |
+
sr=sr,
|
| 132 |
+
hop_length=_HOP_LENGTH,
|
| 133 |
+
fmin=27.5,
|
| 134 |
+
)
|
| 135 |
+
return librosa.power_to_db(mel, ref=np.max)
|
| 136 |
|
| 137 |
+
# Returns the CQT of the input audio
|
| 138 |
+
def logCQT(y, sr=_SAMPLE_RATE):
|
| 139 |
# 帧长为32ms (1000ms/(16000/512) = 32ms), D2的频率是73.418
|
| 140 |
cqt = librosa.cqt(
|
| 141 |
y,
|
|
|
|
| 149 |
(1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(cqt), ref=np.max)
|
| 150 |
) + 1.0
|
| 151 |
|
| 152 |
+
def logChroma(y, sr=_SAMPLE_RATE):
|
| 153 |
+
# 帧长为32ms (1000ms/(16000/512) = 32ms), D2的频率是73.418
|
| 154 |
+
chroma = librosa.feature.chroma_stft(
|
| 155 |
+
y=y,
|
| 156 |
+
sr=sr,
|
| 157 |
+
hop_length=_HOP_LENGTH,
|
| 158 |
+
)
|
| 159 |
+
return (
|
| 160 |
+
(1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(chroma), ref=np.max)
|
| 161 |
+
) + 1.0
|
| 162 |
+
|
| 163 |
def chunk_data(f):
|
|
|
|
|
|
|
| 164 |
x = []
|
| 165 |
+
xdata = np.transpose(f)
|
| 166 |
+
s = _SAMPLE_RATE * _TIME_LENGTH // _HOP_LENGTH
|
| 167 |
length = int(np.ceil((int(len(xdata) / s) + 1) * s))
|
| 168 |
app = np.zeros((length - xdata.shape[0], xdata.shape[1]))
|
| 169 |
xdata = np.concatenate((xdata, app), 0)
|
|
|
|
| 173 |
|
| 174 |
return np.array(x)
|
| 175 |
|
| 176 |
+
def load_all(audio_path, csv_path, hop=_HOP_LENGTH, n_IPTs=7, technique=_NAMES):
|
| 177 |
# Load audio features: The shape of cqt (88, 8520), 8520 is the number of frames on the time axis
|
| 178 |
+
y, sr = librosa.load(audio_path, sr=_SAMPLE_RATE)
|
| 179 |
+
mel = logMel(y, sr)
|
| 180 |
+
cqt = logCQT(y, sr)
|
| 181 |
+
chroma = logChroma(y, sr)
|
| 182 |
# Load the ground truth label
|
|
|
|
| 183 |
n_steps = cqt.shape[1]
|
|
|
|
|
|
|
| 184 |
IPT_label = np.zeros([n_IPTs, n_steps], dtype=int)
|
| 185 |
+
with open(csv_path, "r", encoding="utf-8") as f: # csv file for each audio
|
| 186 |
reader = csv.DictReader(f, delimiter=",")
|
| 187 |
for label in reader: # each note
|
| 188 |
onset = float(label["onset_time"])
|
|
|
|
| 194 |
IPT_label[IPT, left:frame_right] = 1
|
| 195 |
|
| 196 |
return dict(
|
| 197 |
+
audio_path=audio_path,
|
| 198 |
+
csv_path=csv_path,
|
| 199 |
+
mel=mel,
|
| 200 |
+
cqt=cqt,
|
| 201 |
+
chroma=chroma,
|
| 202 |
+
IPT_label=IPT_label,
|
| 203 |
)
|
| 204 |
|
| 205 |
data = []
|
|
|
|
| 208 |
for input_files in files(wav_dir, csv_dir, group):
|
| 209 |
data.append(load_all(*input_files))
|
| 210 |
|
| 211 |
+
for i, dic in tqdm(enumerate(data), total=len(data), desc="Feature extracting"):
|
| 212 |
+
x_mel = chunk_data(dic["mel"])
|
| 213 |
+
x_cqt = chunk_data(dic["cqt"])
|
| 214 |
+
x_chroma = chunk_data(dic["chroma"])
|
| 215 |
y_i = dic["IPT_label"]
|
| 216 |
y_i = chunk_data(y_i)
|
| 217 |
if i == 0:
|
| 218 |
+
Xtr_mel = x_mel
|
| 219 |
+
Xtr_cqt = x_cqt
|
| 220 |
+
Xtr_chroma = x_chroma
|
| 221 |
Ytr_i = y_i
|
|
|
|
| 222 |
|
| 223 |
else:
|
| 224 |
+
Xtr_mel = np.concatenate([Xtr_mel, x_mel], axis=0)
|
| 225 |
+
Xtr_cqt = np.concatenate([Xtr_cqt, x_cqt], axis=0)
|
| 226 |
+
Xtr_chroma = np.concatenate([Xtr_chroma, x_chroma], axis=0)
|
| 227 |
Ytr_i = np.concatenate([Ytr_i, y_i], axis=0)
|
| 228 |
|
| 229 |
# Transform the shape of the input
|
| 230 |
+
Xtr_mel = np.expand_dims(Xtr_mel, axis=3)
|
| 231 |
+
Xtr_cqt = np.expand_dims(Xtr_cqt, axis=3)
|
| 232 |
+
Xtr_chroma = np.expand_dims(Xtr_chroma, axis=3)
|
|
|
|
| 233 |
# Normalize
|
| 234 |
+
Xtr_mel = self._norm(Xtr_mel)
|
| 235 |
+
Xtr_cqt = self._norm(Xtr_cqt)
|
| 236 |
+
Xtr_chroma = self._norm(Xtr_chroma)
|
| 237 |
+
return [list(Xtr_mel), list(Xtr_cqt), list(Xtr_chroma)], list(Ytr_i)
|
| 238 |
|
| 239 |
def _parse_csv_label(self, csv_file):
|
| 240 |
label = []
|
|
|
|
| 287 |
testset.append(item)
|
| 288 |
|
| 289 |
else:
|
| 290 |
+
audio_dir = os.path.join(audio_files, "audio")
|
| 291 |
+
csv_dir = os.path.join(csv_files, "label")
|
| 292 |
X_train, Y_train = self._load(audio_dir, csv_dir, ["train"])
|
| 293 |
X_valid, Y_valid = self._load(audio_dir, csv_dir, ["validation"])
|
| 294 |
X_test, Y_test = self._load(audio_dir, csv_dir, ["test"])
|
| 295 |
+
for i in range(len(Y_train)):
|
| 296 |
+
trainset.append(
|
| 297 |
+
{
|
| 298 |
+
"mel": X_train[0][i],
|
| 299 |
+
"cqt": X_train[1][i],
|
| 300 |
+
"chroma": X_train[2][i],
|
| 301 |
+
"label": Y_train[i],
|
| 302 |
+
}
|
| 303 |
+
)
|
| 304 |
|
| 305 |
+
for i in range(len(Y_valid)):
|
| 306 |
+
validset.append(
|
| 307 |
+
{
|
| 308 |
+
"mel": X_valid[0][i],
|
| 309 |
+
"cqt": X_valid[1][i],
|
| 310 |
+
"chroma": X_valid[2][i],
|
| 311 |
+
"label": Y_valid[i],
|
| 312 |
+
}
|
| 313 |
+
)
|
| 314 |
|
| 315 |
+
for i in range(len(Y_test)):
|
| 316 |
+
testset.append(
|
| 317 |
+
{
|
| 318 |
+
"mel": X_test[0][i],
|
| 319 |
+
"cqt": X_test[1][i],
|
| 320 |
+
"chroma": X_test[2][i],
|
| 321 |
+
"label": Y_test[i],
|
| 322 |
+
}
|
| 323 |
+
)
|
| 324 |
|
| 325 |
random.shuffle(trainset)
|
| 326 |
random.shuffle(validset)
|