Datasets:

Modalities:
Audio
Image
Formats:
arrow
ArXiv:
Libraries:
Datasets
License:
admin commited on
Commit
366d487
·
1 Parent(s): 0252ff8

try to use arrow mode

Browse files
Guzheng_Tech99.py DELETED
@@ -1,342 +0,0 @@
1
- import os
2
- import csv
3
- import random
4
- import librosa
5
- import datasets
6
- import numpy as np
7
- from tqdm import tqdm
8
- from glob import glob
9
-
10
- _NAMES = {
11
- "chanyin": 0,
12
- "dianyin": 6,
13
- "shanghua": 2,
14
- "xiahua": 3,
15
- "huazhi": 4,
16
- "guazou": 4,
17
- "lianmo": 4,
18
- "liantuo": 4,
19
- "yaozhi": 5,
20
- "boxian": 1,
21
- }
22
-
23
- _NAME = [
24
- "chanyin", # Vibrato
25
- "boxian", # Plucks
26
- "shanghua", # Upward Portamento
27
- "xiahua", # Downward Portamento
28
- "huazhi/guazou/lianmo/liantuo", # Glissando
29
- "yaozhi", # Tremolo
30
- "dianyin", # Point Note
31
- ]
32
-
33
- _HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}"
34
-
35
- _DOMAIN = f"{_HOMEPAGE}/resolve/master/data"
36
-
37
- _URLS = {
38
- "audio": f"{_DOMAIN}/audio.zip",
39
- "mel": f"{_DOMAIN}/mel.zip",
40
- "label": f"{_DOMAIN}/label.zip",
41
- }
42
-
43
- _TIME_LENGTH = 3 # seconds
44
- _SAMPLE_RATE = 44100
45
- _HOP_LENGTH = 512 # SAMPLE_RATE * ZHEN_LENGTH // 1000
46
-
47
-
48
- class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
49
- def _info(self):
50
- return datasets.DatasetInfo(
51
- features=(
52
- datasets.Features(
53
- {
54
- "audio": datasets.Audio(sampling_rate=44100),
55
- "mel": datasets.Image(),
56
- "label": datasets.Sequence(
57
- feature={
58
- "onset_time": datasets.Value("float32"),
59
- "offset_time": datasets.Value("float32"),
60
- "IPT": datasets.ClassLabel(num_classes=7, names=_NAME),
61
- "note": datasets.Value("int8"),
62
- }
63
- ),
64
- }
65
- )
66
- if self.config.name == "default"
67
- else datasets.Features(
68
- {
69
- "mel": datasets.features.Array3D(
70
- dtype="float32", shape=(128, 258, 1)
71
- ),
72
- "cqt": datasets.features.Array3D(
73
- dtype="float32", shape=(88, 258, 1)
74
- ),
75
- "chroma": datasets.features.Array3D(
76
- dtype="float32", shape=(12, 258, 1)
77
- ),
78
- "label": datasets.features.Array2D(
79
- dtype="float32", shape=(7, 258)
80
- ),
81
- }
82
- )
83
- ),
84
- homepage=_HOMEPAGE,
85
- license="CC-BY-NC-ND",
86
- version="1.2.0",
87
- )
88
-
89
- def _RoW_norm(self, data):
90
- common_sum = 0
91
- square_sum = 0
92
- tfle = 0
93
- for i in range(len(data)):
94
- tfle += (data[i].sum(-1).sum(0) != 0).astype("float").sum()
95
- common_sum += data[i].sum(-1).sum(-1)
96
- square_sum += (data[i] ** 2).sum(-1).sum(-1)
97
-
98
- common_avg = common_sum / tfle
99
- square_avg = square_sum / tfle
100
- std = np.sqrt(square_avg - common_avg**2)
101
- return common_avg, std
102
-
103
- def _norm(self, data):
104
- size = data.shape
105
- avg, std = self._RoW_norm(data)
106
- avg = np.tile(avg.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
107
- std = np.tile(std.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
108
- return (data - avg) / std
109
-
110
- def _load(self, wav_dir, csv_dir, groups):
111
- def files(wav_dir, csv_dir, group):
112
- flacs = sorted(glob(os.path.join(wav_dir, group, "*.flac")))
113
- if len(flacs) == 0:
114
- flacs = sorted(glob(os.path.join(wav_dir, group, "*.wav")))
115
-
116
- csvs = sorted(glob(os.path.join(csv_dir, group, "*.csv")))
117
- files = list(zip(flacs, csvs))
118
- if len(files) == 0:
119
- raise RuntimeError(f"Group {group} is empty")
120
-
121
- result = []
122
- for audio_path, csv_path in files:
123
- result.append((audio_path, csv_path))
124
-
125
- return result
126
-
127
- def logMel(y, sr=_SAMPLE_RATE):
128
- # 帧长为32ms (1000ms/(16000/512) = 32ms), D2的频率是73.418
129
- mel = librosa.feature.melspectrogram(
130
- y=y,
131
- sr=sr,
132
- hop_length=_HOP_LENGTH,
133
- fmin=27.5,
134
- )
135
- return librosa.power_to_db(mel, ref=np.max)
136
-
137
- # Returns the CQT of the input audio
138
- def logCQT(y, sr=_SAMPLE_RATE):
139
- # 帧长为32ms (1000ms/(16000/512) = 32ms), D2的频率是73.418
140
- cqt = librosa.cqt(
141
- y,
142
- sr=sr,
143
- hop_length=_HOP_LENGTH,
144
- fmin=27.5,
145
- n_bins=88,
146
- bins_per_octave=12,
147
- )
148
- return (
149
- (1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(cqt), ref=np.max)
150
- ) + 1.0
151
-
152
- def logChroma(y, sr=_SAMPLE_RATE):
153
- # 帧长为32ms (1000ms/(16000/512) = 32ms), D2的频率是73.418
154
- chroma = librosa.feature.chroma_stft(
155
- y=y,
156
- sr=sr,
157
- hop_length=_HOP_LENGTH,
158
- )
159
- return (
160
- (1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(chroma), ref=np.max)
161
- ) + 1.0
162
-
163
- def chunk_data(f):
164
- x = []
165
- xdata = np.transpose(f)
166
- s = _SAMPLE_RATE * _TIME_LENGTH // _HOP_LENGTH
167
- length = int(np.ceil((int(len(xdata) / s) + 1) * s))
168
- app = np.zeros((length - xdata.shape[0], xdata.shape[1]))
169
- xdata = np.concatenate((xdata, app), 0)
170
- for i in range(int(length / s)):
171
- data = xdata[int(i * s) : int(i * s + s)]
172
- x.append(np.transpose(data[:s, :]))
173
-
174
- return np.array(x)
175
-
176
- def load_all(audio_path, csv_path, hop=_HOP_LENGTH, n_IPTs=7, technique=_NAMES):
177
- # Load audio features: The shape of cqt (88, 8520), 8520 is the number of frames on the time axis
178
- y, sr = librosa.load(audio_path, sr=_SAMPLE_RATE)
179
- mel = logMel(y, sr)
180
- cqt = logCQT(y, sr)
181
- chroma = logChroma(y, sr)
182
- # Load the ground truth label
183
- n_steps = cqt.shape[1]
184
- IPT_label = np.zeros([n_IPTs, n_steps], dtype=int)
185
- with open(csv_path, "r", encoding="utf-8") as f: # csv file for each audio
186
- reader = csv.DictReader(f, delimiter=",")
187
- for label in reader: # each note
188
- onset = float(label["onset_time"])
189
- offset = float(label["offset_time"])
190
- IPT = int(technique[label["IPT"]])
191
- left = int(round(onset * _SAMPLE_RATE / hop))
192
- frame_right = int(round(offset * _SAMPLE_RATE / hop))
193
- frame_right = min(n_steps, frame_right)
194
- IPT_label[IPT, left:frame_right] = 1
195
-
196
- return dict(
197
- audio_path=audio_path,
198
- csv_path=csv_path,
199
- mel=mel,
200
- cqt=cqt,
201
- chroma=chroma,
202
- IPT_label=IPT_label,
203
- )
204
-
205
- data = []
206
- # print(f"Loading {len(groups)} group{'s' if len(groups) > 1 else ''} ")
207
- for group in groups:
208
- for input_files in files(wav_dir, csv_dir, group):
209
- data.append(load_all(*input_files))
210
-
211
- for i, dic in tqdm(enumerate(data), total=len(data), desc="Feature extracting"):
212
- x_mel = chunk_data(dic["mel"])
213
- x_cqt = chunk_data(dic["cqt"])
214
- x_chroma = chunk_data(dic["chroma"])
215
- y_i = dic["IPT_label"]
216
- y_i = chunk_data(y_i)
217
- if i == 0:
218
- Xtr_mel = x_mel
219
- Xtr_cqt = x_cqt
220
- Xtr_chroma = x_chroma
221
- Ytr_i = y_i
222
-
223
- else:
224
- Xtr_mel = np.concatenate([Xtr_mel, x_mel], axis=0)
225
- Xtr_cqt = np.concatenate([Xtr_cqt, x_cqt], axis=0)
226
- Xtr_chroma = np.concatenate([Xtr_chroma, x_chroma], axis=0)
227
- Ytr_i = np.concatenate([Ytr_i, y_i], axis=0)
228
-
229
- # Transform the shape of the input
230
- Xtr_mel = np.expand_dims(Xtr_mel, axis=3)
231
- Xtr_cqt = np.expand_dims(Xtr_cqt, axis=3)
232
- Xtr_chroma = np.expand_dims(Xtr_chroma, axis=3)
233
- # Normalize
234
- Xtr_mel = self._norm(Xtr_mel)
235
- Xtr_cqt = self._norm(Xtr_cqt)
236
- Xtr_chroma = self._norm(Xtr_chroma)
237
- return [list(Xtr_mel), list(Xtr_cqt), list(Xtr_chroma)], list(Ytr_i)
238
-
239
- def _parse_csv_label(self, csv_file):
240
- label = []
241
- with open(csv_file, mode="r", encoding="utf-8") as file:
242
- for row in csv.DictReader(file):
243
- label.append(
244
- {
245
- "onset_time": float(row["onset_time"]),
246
- "offset_time": float(row["offset_time"]),
247
- "IPT": _NAME[_NAMES[row["IPT"]]],
248
- "note": int(row["note"]),
249
- }
250
- )
251
-
252
- return label
253
-
254
- def _split_generators(self, dl_manager):
255
- audio_files = dl_manager.download_and_extract(_URLS["audio"])
256
- csv_files = dl_manager.download_and_extract(_URLS["label"])
257
- trainset, validset, testset = [], [], []
258
- if self.config.name == "default":
259
- files = {}
260
- mel_files = dl_manager.download_and_extract(_URLS["mel"])
261
- for path in dl_manager.iter_files([audio_files]):
262
- fname: str = os.path.basename(path)
263
- if fname.endswith(".flac"):
264
- item_id = fname.split(".")[0]
265
- files[item_id] = {"audio": path}
266
-
267
- for path in dl_manager.iter_files([mel_files]):
268
- fname = os.path.basename(path)
269
- if fname.endswith(".jpg"):
270
- item_id = fname.split(".")[0]
271
- files[item_id]["mel"] = path
272
-
273
- for path in dl_manager.iter_files([csv_files]):
274
- fname = os.path.basename(path)
275
- if fname.endswith(".csv"):
276
- item_id = fname.split(".")[0]
277
- files[item_id]["label"] = self._parse_csv_label(path)
278
-
279
- for item in files.values():
280
- if "train" in item["audio"]:
281
- trainset.append(item)
282
-
283
- elif "validation" in item["audio"]:
284
- validset.append(item)
285
-
286
- elif "test" in item["audio"]:
287
- testset.append(item)
288
-
289
- else:
290
- audio_dir = os.path.join(audio_files, "audio")
291
- csv_dir = os.path.join(csv_files, "label")
292
- X_train, Y_train = self._load(audio_dir, csv_dir, ["train"])
293
- X_valid, Y_valid = self._load(audio_dir, csv_dir, ["validation"])
294
- X_test, Y_test = self._load(audio_dir, csv_dir, ["test"])
295
- for i in range(len(Y_train)):
296
- trainset.append(
297
- {
298
- "mel": X_train[0][i],
299
- "cqt": X_train[1][i],
300
- "chroma": X_train[2][i],
301
- "label": Y_train[i],
302
- }
303
- )
304
-
305
- for i in range(len(Y_valid)):
306
- validset.append(
307
- {
308
- "mel": X_valid[0][i],
309
- "cqt": X_valid[1][i],
310
- "chroma": X_valid[2][i],
311
- "label": Y_valid[i],
312
- }
313
- )
314
-
315
- for i in range(len(Y_test)):
316
- testset.append(
317
- {
318
- "mel": X_test[0][i],
319
- "cqt": X_test[1][i],
320
- "chroma": X_test[2][i],
321
- "label": Y_test[i],
322
- }
323
- )
324
-
325
- random.shuffle(trainset)
326
- random.shuffle(validset)
327
- random.shuffle(testset)
328
- return [
329
- datasets.SplitGenerator(
330
- name=datasets.Split.TRAIN, gen_kwargs={"files": trainset}
331
- ),
332
- datasets.SplitGenerator(
333
- name=datasets.Split.VALIDATION, gen_kwargs={"files": validset}
334
- ),
335
- datasets.SplitGenerator(
336
- name=datasets.Split.TEST, gen_kwargs={"files": testset}
337
- ),
338
- ]
339
-
340
- def _generate_examples(self, files):
341
- for i, path in enumerate(files):
342
- yield i, path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -11,9 +11,70 @@ tags:
11
  pretty_name: Guzheng Technique 99 Dataset
12
  size_categories:
13
  - n<1K
14
- viewer: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
- If you want to view the dataset, please visit [here](https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/dataPeview)
17
  # Dataset Card for Guzheng Technique 99 Dataset
18
  ## Original Content
19
  This dataset is created and used by [[1]](https://arxiv.org/pdf/2303.13272) for frame-level Guzheng playing technique detection. The original dataset encompasses 99 solo compositions for Guzheng, recorded by professional musicians within a studio environment. Each composition is annotated for every note, indicating the onset, offset, pitch, and playing techniques. This is different from the GZ IsoTech, which is annotated at the clip-level. Also, its playing technique categories differ slightly, encompassing a total of seven techniques. They are: _Vibrato (chanyin 颤音), Plucks (boxian 拨弦), Upward Portamento (shanghua 上滑), Downward Portamento (xiahua 下滑), Glissando (huazhi\guazou\lianmo\liantuo 花指\刮奏\连抹\连托), Tremolo (yaozhi 摇指), and Point Note (dianyin 点音)_. This meticulous annotation results in a total of 63,352 annotated labels.
@@ -21,7 +82,7 @@ This dataset is created and used by [[1]](https://arxiv.org/pdf/2303.13272) for
21
  ## Integration
22
  In the original dataset, the labels were stored in a separate CSV file. This posed usability challenges, as researchers had to perform time-consuming operations on CSV parsing and label-audio alignment. After our integration, the data structure has been streamlined and optimized. It now contains three columns: audio sampled at 44,100 Hz, pre-processed mel spectrograms, and a dictionary. This dictionary contains onset, offset, technique numeric labels, and pitch. The number of data entries after integration remains 99, with a cumulative duration amounting to 151.08 minutes. The average audio duration is 91.56 seconds.
23
 
24
- We performed data processing and constructed the [default subset](#default-subset) of the current integrated version of the dataset, and the details of its data structure can be viewed through the [viewer](https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/dataPeview). In light of the fact that the current dataset has been referenced and evaluated in a published article, we transcribe here the details of the dataset processing during the evaluation in the said article: each audio clip is a 3-second segment sampled at 44,100Hz, which is then converted into a log Constant-Q Transform (CQT) spectrogram. A CQT accompanied by a label constitutes a single data entry, forming the first and second columns, respectively. The CQT is a 3-dimensional array with dimensions of 88x258x1, representing the frequency-time structure of the audio. The label, on the other hand, is a 2-dimensional array with dimensions of 7x258, indicating the presence of seven distinct techniques across each time frame. Ultimately, given that the original dataset has already been divided into train, valid, and test sets, we have integrated the feature extraction method mentioned in this article's evaluation process into the API, thereby constructing the [eval subset](#eval-subset), which is not embodied in our paper.
25
 
26
  ## Statistics
27
  In this part, we present statistics at the label-level. The number of audio clips is equivalent to the count of either onset or offset occurrences. The duration of an audio clip is determined by calculating the offset time minus the onset time. At this level, the number of clips is 15,838, and the total duration is 162.69 minutes.
@@ -99,8 +160,14 @@ Chinese, English
99
  ```python
100
  from datasets import load_dataset
101
 
102
- ds = load_dataset("ccmusic-database/Guzheng_Tech99", split="train")
103
- for item in ds:
 
 
 
 
 
 
104
  print(item)
105
  ```
106
 
@@ -121,7 +188,7 @@ for item in ds["test"]:
121
 
122
  ## Maintenance
123
  ```bash
124
- git clone [email protected]:datasets/ccmusic-database/Guzheng_Tech99
125
  cd Guzheng_Tech99
126
  ```
127
 
 
11
  pretty_name: Guzheng Technique 99 Dataset
12
  size_categories:
13
  - n<1K
14
+ dataset_info:
15
+ - config_name: default
16
+ features:
17
+ - name: audio
18
+ dtype:
19
+ audio:
20
+ sampling_rate: 44100
21
+ - name: mel
22
+ dtype: image
23
+ - name: label
24
+ dtype: sequence
25
+ splits:
26
+ - name: train
27
+ num_bytes: 242218
28
+ num_examples: 79
29
+ - name: validation
30
+ num_bytes: 32229
31
+ num_examples: 10
32
+ - name: test
33
+ num_bytes: 31038
34
+ num_examples: 10
35
+ download_size: 683115163
36
+ dataset_size: 305485
37
+ - config_name: eval
38
+ features:
39
+ - name: mel
40
+ dtype: array3d
41
+ - name: cqt
42
+ dtype: array3d
43
+ - name: chroma
44
+ dtype: array3d
45
+ - name: label
46
+ dtype: array2d
47
+ splits:
48
+ - name: train
49
+ num_bytes: 1190227192
50
+ num_examples: 2486
51
+ - name: validation
52
+ num_bytes: 133098616
53
+ num_examples: 278
54
+ - name: test
55
+ num_bytes: 148898092
56
+ num_examples: 311
57
+ download_size: 667607870
58
+ dataset_size: 1472223900
59
+ configs:
60
+ - config_name: default
61
+ data_files:
62
+ - split: train
63
+ path: default/train/data-*.arrow
64
+ - split: validation
65
+ path: default/validation/data-*.arrow
66
+ - split: test
67
+ path: default/test/data-*.arrow
68
+ - config_name: eval
69
+ data_files:
70
+ - split: train
71
+ path: eval/train/data-*.arrow
72
+ - split: validation
73
+ path: eval/validation/data-*.arrow
74
+ - split: test
75
+ path: eval/test/data-*.arrow
76
  ---
77
+
78
  # Dataset Card for Guzheng Technique 99 Dataset
79
  ## Original Content
80
  This dataset is created and used by [[1]](https://arxiv.org/pdf/2303.13272) for frame-level Guzheng playing technique detection. The original dataset encompasses 99 solo compositions for Guzheng, recorded by professional musicians within a studio environment. Each composition is annotated for every note, indicating the onset, offset, pitch, and playing techniques. This is different from the GZ IsoTech, which is annotated at the clip-level. Also, its playing technique categories differ slightly, encompassing a total of seven techniques. They are: _Vibrato (chanyin 颤音), Plucks (boxian 拨弦), Upward Portamento (shanghua 上滑), Downward Portamento (xiahua 下滑), Glissando (huazhi\guazou\lianmo\liantuo 花指\刮奏\连抹\连托), Tremolo (yaozhi 摇指), and Point Note (dianyin 点音)_. This meticulous annotation results in a total of 63,352 annotated labels.
 
82
  ## Integration
83
  In the original dataset, the labels were stored in a separate CSV file. This posed usability challenges, as researchers had to perform time-consuming operations on CSV parsing and label-audio alignment. After our integration, the data structure has been streamlined and optimized. It now contains three columns: audio sampled at 44,100 Hz, pre-processed mel spectrograms, and a dictionary. This dictionary contains onset, offset, technique numeric labels, and pitch. The number of data entries after integration remains 99, with a cumulative duration amounting to 151.08 minutes. The average audio duration is 91.56 seconds.
84
 
85
+ We performed data processing and constructed the [default subset](#default-subset) of the current integrated version of the dataset, and the details of its data structure can be viewed through the [viewer](https://huggingface.co/datasets/ccmusic-database/Guzheng_Tech99/viewer). In light of the fact that the current dataset has been referenced and evaluated in a published article, we transcribe here the details of the dataset processing during the evaluation in the said article: each audio clip is a 3-second segment sampled at 44,100Hz, which is then converted into a log Constant-Q Transform (CQT) spectrogram. A CQT accompanied by a label constitutes a single data entry, forming the first and second columns, respectively. The CQT is a 3-dimensional array with dimensions of 88x258x1, representing the frequency-time structure of the audio. The label, on the other hand, is a 2-dimensional array with dimensions of 7x258, indicating the presence of seven distinct techniques across each time frame. Ultimately, given that the original dataset has already been divided into train, valid, and test sets, we have integrated the feature extraction method mentioned in this article's evaluation process into the API, thereby constructing the [eval subset](#eval-subset), which is not embodied in our paper.
86
 
87
  ## Statistics
88
  In this part, we present statistics at the label-level. The number of audio clips is equivalent to the count of either onset or offset occurrences. The duration of an audio clip is determined by calculating the offset time minus the onset time. At this level, the number of clips is 15,838, and the total duration is 162.69 minutes.
 
160
  ```python
161
  from datasets import load_dataset
162
 
163
+ ds = load_dataset("ccmusic-database/Guzheng_Tech99", name="default")
164
+ for item in ds["train"]:
165
+ print(item)
166
+
167
+ for item in ds["validation"]:
168
+ print(item)
169
+
170
+ for item in ds["test"]:
171
  print(item)
172
  ```
173
 
 
188
 
189
  ## Maintenance
190
  ```bash
191
+ GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/Guzheng_Tech99
192
  cd Guzheng_Tech99
193
  ```
194
 
default/dataset_dict.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"splits": ["train", "validation", "test"]}
default/test/dataset_info.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "guzheng_tech99",
3
+ "citation": "",
4
+ "config_name": "default",
5
+ "dataset_name": "guzheng_tech99",
6
+ "dataset_size": 305485,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/audio.zip": {
10
+ "num_bytes": 667458676,
11
+ "checksum": null
12
+ },
13
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/label.zip": {
14
+ "num_bytes": 149194,
15
+ "checksum": null
16
+ },
17
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/mel.zip": {
18
+ "num_bytes": 15507293,
19
+ "checksum": null
20
+ }
21
+ },
22
+ "download_size": 683115163,
23
+ "features": {
24
+ "audio": {
25
+ "sampling_rate": 44100,
26
+ "_type": "Audio"
27
+ },
28
+ "mel": {
29
+ "_type": "Image"
30
+ },
31
+ "label": {
32
+ "feature": {
33
+ "onset_time": {
34
+ "dtype": "float32",
35
+ "_type": "Value"
36
+ },
37
+ "offset_time": {
38
+ "dtype": "float32",
39
+ "_type": "Value"
40
+ },
41
+ "IPT": {
42
+ "names": [
43
+ "chanyin",
44
+ "boxian",
45
+ "shanghua",
46
+ "xiahua",
47
+ "huazhi/guazou/lianmo/liantuo",
48
+ "yaozhi",
49
+ "dianyin"
50
+ ],
51
+ "_type": "ClassLabel"
52
+ },
53
+ "note": {
54
+ "dtype": "int8",
55
+ "_type": "Value"
56
+ }
57
+ },
58
+ "_type": "Sequence"
59
+ }
60
+ },
61
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99",
62
+ "license": "CC-BY-NC-ND",
63
+ "size_in_bytes": 683420648,
64
+ "splits": {
65
+ "train": {
66
+ "name": "train",
67
+ "num_bytes": 242218,
68
+ "num_examples": 79,
69
+ "dataset_name": "guzheng_tech99"
70
+ },
71
+ "validation": {
72
+ "name": "validation",
73
+ "num_bytes": 32229,
74
+ "num_examples": 10,
75
+ "dataset_name": "guzheng_tech99"
76
+ },
77
+ "test": {
78
+ "name": "test",
79
+ "num_bytes": 31038,
80
+ "num_examples": 10,
81
+ "dataset_name": "guzheng_tech99"
82
+ }
83
+ },
84
+ "version": {
85
+ "version_str": "0.0.0",
86
+ "major": 0,
87
+ "minor": 0,
88
+ "patch": 0
89
+ }
90
+ }
default/test/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "f20b0fc5bfe8a075",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "test"
13
+ }
default/train/dataset_info.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "guzheng_tech99",
3
+ "citation": "",
4
+ "config_name": "default",
5
+ "dataset_name": "guzheng_tech99",
6
+ "dataset_size": 305485,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/audio.zip": {
10
+ "num_bytes": 667458676,
11
+ "checksum": null
12
+ },
13
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/label.zip": {
14
+ "num_bytes": 149194,
15
+ "checksum": null
16
+ },
17
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/mel.zip": {
18
+ "num_bytes": 15507293,
19
+ "checksum": null
20
+ }
21
+ },
22
+ "download_size": 683115163,
23
+ "features": {
24
+ "audio": {
25
+ "sampling_rate": 44100,
26
+ "_type": "Audio"
27
+ },
28
+ "mel": {
29
+ "_type": "Image"
30
+ },
31
+ "label": {
32
+ "feature": {
33
+ "onset_time": {
34
+ "dtype": "float32",
35
+ "_type": "Value"
36
+ },
37
+ "offset_time": {
38
+ "dtype": "float32",
39
+ "_type": "Value"
40
+ },
41
+ "IPT": {
42
+ "names": [
43
+ "chanyin",
44
+ "boxian",
45
+ "shanghua",
46
+ "xiahua",
47
+ "huazhi/guazou/lianmo/liantuo",
48
+ "yaozhi",
49
+ "dianyin"
50
+ ],
51
+ "_type": "ClassLabel"
52
+ },
53
+ "note": {
54
+ "dtype": "int8",
55
+ "_type": "Value"
56
+ }
57
+ },
58
+ "_type": "Sequence"
59
+ }
60
+ },
61
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99",
62
+ "license": "CC-BY-NC-ND",
63
+ "size_in_bytes": 683420648,
64
+ "splits": {
65
+ "train": {
66
+ "name": "train",
67
+ "num_bytes": 242218,
68
+ "num_examples": 79,
69
+ "dataset_name": "guzheng_tech99"
70
+ },
71
+ "validation": {
72
+ "name": "validation",
73
+ "num_bytes": 32229,
74
+ "num_examples": 10,
75
+ "dataset_name": "guzheng_tech99"
76
+ },
77
+ "test": {
78
+ "name": "test",
79
+ "num_bytes": 31038,
80
+ "num_examples": 10,
81
+ "dataset_name": "guzheng_tech99"
82
+ }
83
+ },
84
+ "version": {
85
+ "version_str": "0.0.0",
86
+ "major": 0,
87
+ "minor": 0,
88
+ "patch": 0
89
+ }
90
+ }
default/train/state.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00002.arrow"
5
+ },
6
+ {
7
+ "filename": "data-00001-of-00002.arrow"
8
+ }
9
+ ],
10
+ "_fingerprint": "4e5e30f52fc0d6c2",
11
+ "_format_columns": null,
12
+ "_format_kwargs": {},
13
+ "_format_type": null,
14
+ "_output_all_columns": false,
15
+ "_split": "train"
16
+ }
default/validation/dataset_info.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "guzheng_tech99",
3
+ "citation": "",
4
+ "config_name": "default",
5
+ "dataset_name": "guzheng_tech99",
6
+ "dataset_size": 305485,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/audio.zip": {
10
+ "num_bytes": 667458676,
11
+ "checksum": null
12
+ },
13
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/label.zip": {
14
+ "num_bytes": 149194,
15
+ "checksum": null
16
+ },
17
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/mel.zip": {
18
+ "num_bytes": 15507293,
19
+ "checksum": null
20
+ }
21
+ },
22
+ "download_size": 683115163,
23
+ "features": {
24
+ "audio": {
25
+ "sampling_rate": 44100,
26
+ "_type": "Audio"
27
+ },
28
+ "mel": {
29
+ "_type": "Image"
30
+ },
31
+ "label": {
32
+ "feature": {
33
+ "onset_time": {
34
+ "dtype": "float32",
35
+ "_type": "Value"
36
+ },
37
+ "offset_time": {
38
+ "dtype": "float32",
39
+ "_type": "Value"
40
+ },
41
+ "IPT": {
42
+ "names": [
43
+ "chanyin",
44
+ "boxian",
45
+ "shanghua",
46
+ "xiahua",
47
+ "huazhi/guazou/lianmo/liantuo",
48
+ "yaozhi",
49
+ "dianyin"
50
+ ],
51
+ "_type": "ClassLabel"
52
+ },
53
+ "note": {
54
+ "dtype": "int8",
55
+ "_type": "Value"
56
+ }
57
+ },
58
+ "_type": "Sequence"
59
+ }
60
+ },
61
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99",
62
+ "license": "CC-BY-NC-ND",
63
+ "size_in_bytes": 683420648,
64
+ "splits": {
65
+ "train": {
66
+ "name": "train",
67
+ "num_bytes": 242218,
68
+ "num_examples": 79,
69
+ "dataset_name": "guzheng_tech99"
70
+ },
71
+ "validation": {
72
+ "name": "validation",
73
+ "num_bytes": 32229,
74
+ "num_examples": 10,
75
+ "dataset_name": "guzheng_tech99"
76
+ },
77
+ "test": {
78
+ "name": "test",
79
+ "num_bytes": 31038,
80
+ "num_examples": 10,
81
+ "dataset_name": "guzheng_tech99"
82
+ }
83
+ },
84
+ "version": {
85
+ "version_str": "0.0.0",
86
+ "major": 0,
87
+ "minor": 0,
88
+ "patch": 0
89
+ }
90
+ }
default/validation/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "9fff2e54c4f0b682",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "validation"
13
+ }
eval/dataset_dict.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"splits": ["train", "validation", "test"]}
eval/test/dataset_info.json ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "guzheng_tech99",
3
+ "citation": "",
4
+ "config_name": "eval",
5
+ "dataset_name": "guzheng_tech99",
6
+ "dataset_size": 1472223900,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/audio.zip": {
10
+ "num_bytes": 667458676,
11
+ "checksum": null
12
+ },
13
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/label.zip": {
14
+ "num_bytes": 149194,
15
+ "checksum": null
16
+ }
17
+ },
18
+ "download_size": 667607870,
19
+ "features": {
20
+ "mel": {
21
+ "shape": [
22
+ 128,
23
+ 258,
24
+ 1
25
+ ],
26
+ "dtype": "float32",
27
+ "_type": "Array3D"
28
+ },
29
+ "cqt": {
30
+ "shape": [
31
+ 88,
32
+ 258,
33
+ 1
34
+ ],
35
+ "dtype": "float32",
36
+ "_type": "Array3D"
37
+ },
38
+ "chroma": {
39
+ "shape": [
40
+ 12,
41
+ 258,
42
+ 1
43
+ ],
44
+ "dtype": "float32",
45
+ "_type": "Array3D"
46
+ },
47
+ "label": {
48
+ "shape": [
49
+ 7,
50
+ 258
51
+ ],
52
+ "dtype": "float32",
53
+ "_type": "Array2D"
54
+ }
55
+ },
56
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99",
57
+ "license": "CC-BY-NC-ND",
58
+ "size_in_bytes": 2139831770,
59
+ "splits": {
60
+ "train": {
61
+ "name": "train",
62
+ "num_bytes": 1190227192,
63
+ "num_examples": 2486,
64
+ "shard_lengths": [
65
+ 2000,
66
+ 486
67
+ ],
68
+ "dataset_name": "guzheng_tech99"
69
+ },
70
+ "validation": {
71
+ "name": "validation",
72
+ "num_bytes": 133098616,
73
+ "num_examples": 278,
74
+ "dataset_name": "guzheng_tech99"
75
+ },
76
+ "test": {
77
+ "name": "test",
78
+ "num_bytes": 148898092,
79
+ "num_examples": 311,
80
+ "dataset_name": "guzheng_tech99"
81
+ }
82
+ },
83
+ "version": {
84
+ "version_str": "0.0.0",
85
+ "major": 0,
86
+ "minor": 0,
87
+ "patch": 0
88
+ }
89
+ }
eval/test/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "6d8f89e1d4a22a39",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "test"
13
+ }
eval/train/dataset_info.json ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "guzheng_tech99",
3
+ "citation": "",
4
+ "config_name": "eval",
5
+ "dataset_name": "guzheng_tech99",
6
+ "dataset_size": 1472223900,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/audio.zip": {
10
+ "num_bytes": 667458676,
11
+ "checksum": null
12
+ },
13
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/label.zip": {
14
+ "num_bytes": 149194,
15
+ "checksum": null
16
+ }
17
+ },
18
+ "download_size": 667607870,
19
+ "features": {
20
+ "mel": {
21
+ "shape": [
22
+ 128,
23
+ 258,
24
+ 1
25
+ ],
26
+ "dtype": "float32",
27
+ "_type": "Array3D"
28
+ },
29
+ "cqt": {
30
+ "shape": [
31
+ 88,
32
+ 258,
33
+ 1
34
+ ],
35
+ "dtype": "float32",
36
+ "_type": "Array3D"
37
+ },
38
+ "chroma": {
39
+ "shape": [
40
+ 12,
41
+ 258,
42
+ 1
43
+ ],
44
+ "dtype": "float32",
45
+ "_type": "Array3D"
46
+ },
47
+ "label": {
48
+ "shape": [
49
+ 7,
50
+ 258
51
+ ],
52
+ "dtype": "float32",
53
+ "_type": "Array2D"
54
+ }
55
+ },
56
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99",
57
+ "license": "CC-BY-NC-ND",
58
+ "size_in_bytes": 2139831770,
59
+ "splits": {
60
+ "train": {
61
+ "name": "train",
62
+ "num_bytes": 1190227192,
63
+ "num_examples": 2486,
64
+ "shard_lengths": [
65
+ 2000,
66
+ 486
67
+ ],
68
+ "dataset_name": "guzheng_tech99"
69
+ },
70
+ "validation": {
71
+ "name": "validation",
72
+ "num_bytes": 133098616,
73
+ "num_examples": 278,
74
+ "dataset_name": "guzheng_tech99"
75
+ },
76
+ "test": {
77
+ "name": "test",
78
+ "num_bytes": 148898092,
79
+ "num_examples": 311,
80
+ "dataset_name": "guzheng_tech99"
81
+ }
82
+ },
83
+ "version": {
84
+ "version_str": "0.0.0",
85
+ "major": 0,
86
+ "minor": 0,
87
+ "patch": 0
88
+ }
89
+ }
eval/train/state.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00003.arrow"
5
+ },
6
+ {
7
+ "filename": "data-00001-of-00003.arrow"
8
+ },
9
+ {
10
+ "filename": "data-00002-of-00003.arrow"
11
+ }
12
+ ],
13
+ "_fingerprint": "355b486d72cccb4b",
14
+ "_format_columns": null,
15
+ "_format_kwargs": {},
16
+ "_format_type": null,
17
+ "_output_all_columns": false,
18
+ "_split": "train"
19
+ }
eval/validation/dataset_info.json ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "builder_name": "guzheng_tech99",
3
+ "citation": "",
4
+ "config_name": "eval",
5
+ "dataset_name": "guzheng_tech99",
6
+ "dataset_size": 1472223900,
7
+ "description": "",
8
+ "download_checksums": {
9
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/audio.zip": {
10
+ "num_bytes": 667458676,
11
+ "checksum": null
12
+ },
13
+ "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99/resolve/master/data/label.zip": {
14
+ "num_bytes": 149194,
15
+ "checksum": null
16
+ }
17
+ },
18
+ "download_size": 667607870,
19
+ "features": {
20
+ "mel": {
21
+ "shape": [
22
+ 128,
23
+ 258,
24
+ 1
25
+ ],
26
+ "dtype": "float32",
27
+ "_type": "Array3D"
28
+ },
29
+ "cqt": {
30
+ "shape": [
31
+ 88,
32
+ 258,
33
+ 1
34
+ ],
35
+ "dtype": "float32",
36
+ "_type": "Array3D"
37
+ },
38
+ "chroma": {
39
+ "shape": [
40
+ 12,
41
+ 258,
42
+ 1
43
+ ],
44
+ "dtype": "float32",
45
+ "_type": "Array3D"
46
+ },
47
+ "label": {
48
+ "shape": [
49
+ 7,
50
+ 258
51
+ ],
52
+ "dtype": "float32",
53
+ "_type": "Array2D"
54
+ }
55
+ },
56
+ "homepage": "https://www.modelscope.cn/datasets/ccmusic-database/Guzheng_Tech99",
57
+ "license": "CC-BY-NC-ND",
58
+ "size_in_bytes": 2139831770,
59
+ "splits": {
60
+ "train": {
61
+ "name": "train",
62
+ "num_bytes": 1190227192,
63
+ "num_examples": 2486,
64
+ "shard_lengths": [
65
+ 2000,
66
+ 486
67
+ ],
68
+ "dataset_name": "guzheng_tech99"
69
+ },
70
+ "validation": {
71
+ "name": "validation",
72
+ "num_bytes": 133098616,
73
+ "num_examples": 278,
74
+ "dataset_name": "guzheng_tech99"
75
+ },
76
+ "test": {
77
+ "name": "test",
78
+ "num_bytes": 148898092,
79
+ "num_examples": 311,
80
+ "dataset_name": "guzheng_tech99"
81
+ }
82
+ },
83
+ "version": {
84
+ "version_str": "0.0.0",
85
+ "major": 0,
86
+ "minor": 0,
87
+ "patch": 0
88
+ }
89
+ }
eval/validation/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "45dfd42321288939",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": "validation"
13
+ }