--- language: - en multilinguality: - monolingual size_categories: - 10K<n<100K task_categories: - text-generation task_ids: - summarization tags: - conditional-text-generation --- # GovReport dataset for summarization Dataset for summarization of long documents.\ Adapted from this [repo](https://github.com/luyang-huang96/LongDocSum) and this [paper](https://arxiv.org/pdf/2104.02112.pdf)\ This dataset is compatible with the [`run_summarization.py`](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) script from Transformers if you add this line to the `summarization_name_mapping` variable: ```python "ccdv/govreport-summarization": ("report", "summary") ``` ### Data Fields - `id`: paper id - `report`: a string containing the body of the report - `summary`: a string containing the summary of the report ### Data Splits This dataset has 3 splits: _train_, _validation_, and _test_. \ Token counts with a RoBERTa tokenizer. | Dataset Split | Number of Instances | Avg. tokens | | ------------- | --------------------|:----------------------| | Train | 17,517 | < 9,000 / < 500 | | Validation | 973 | < 9,000 / < 500 | | Test | 973 | < 9,000 / < 500 | # Cite original article ``` @misc{huang2021efficient, title={Efficient Attentions for Long Document Summarization}, author={Luyang Huang and Shuyang Cao and Nikolaus Parulian and Heng Ji and Lu Wang}, year={2021}, eprint={2104.02112}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```