Update main reference
Browse files
README.md
CHANGED
|
@@ -41,7 +41,7 @@ tags:
|
|
| 41 |
|
| 42 |
### Dataset Summary
|
| 43 |
This is the oficial repository for SuperTweetEval, a unified benchmark of 12 heterogeneous NLP tasks.
|
| 44 |
-
More details on the task and an evaluation of language models can be found on the reference paper.
|
| 45 |
|
| 46 |
|
| 47 |
### Data Splits
|
|
@@ -167,10 +167,15 @@ In the following we present the information contained in each of the datasets.
|
|
| 167 |
|
| 168 |
### Main reference paper
|
| 169 |
|
| 170 |
-
Please cite the [reference paper]() if you use this benchmark.
|
| 171 |
|
| 172 |
```bibtex
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
```
|
| 175 |
|
| 176 |
### References of individual datasets
|
|
|
|
| 41 |
|
| 42 |
### Dataset Summary
|
| 43 |
This is the oficial repository for SuperTweetEval, a unified benchmark of 12 heterogeneous NLP tasks.
|
| 44 |
+
More details on the task and an evaluation of language models can be found on the [reference paper](https://arxiv.org/abs/2310.14757), published in EMNLP 2023 (Findings).
|
| 45 |
|
| 46 |
|
| 47 |
### Data Splits
|
|
|
|
| 167 |
|
| 168 |
### Main reference paper
|
| 169 |
|
| 170 |
+
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this benchmark.
|
| 171 |
|
| 172 |
```bibtex
|
| 173 |
+
@inproceedings{antypas2023supertweeteval,
|
| 174 |
+
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
|
| 175 |
+
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
|
| 176 |
+
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
|
| 177 |
+
year={2023}
|
| 178 |
+
}
|
| 179 |
```
|
| 180 |
|
| 181 |
### References of individual datasets
|