cairocode commited on
Commit
b7ff3f6
·
verified ·
1 Parent(s): 7c643ff

Add dataset card with curriculum learning information

Browse files
Files changed (1) hide show
  1. README.md +39 -73
README.md CHANGED
@@ -1,73 +1,39 @@
1
- ---
2
- dataset_info:
3
- features:
4
- - name: audio
5
- dtype: audio
6
- - name: label
7
- dtype: int64
8
- - name: valence
9
- dtype: float64
10
- - name: arousal
11
- dtype: float64
12
- - name: arousal_norm
13
- dtype: float64
14
- - name: valence_norm
15
- dtype: float64
16
- - name: speakerID
17
- dtype: int64
18
- - name: utterance
19
- dtype: string
20
- - name: transcript
21
- dtype: string
22
- - name: emotion
23
- dtype: string
24
- - name: difficulty
25
- dtype: float64
26
- - name: curriculum_order
27
- dtype: int64
28
- - name: overall_agreement
29
- dtype: float64
30
- - name: fleiss_kappa
31
- dtype: float64
32
- - name: krippendorff_alpha
33
- dtype: float64
34
- - name: valence_std
35
- dtype: float64
36
- - name: arousal_std
37
- dtype: float64
38
- - name: dominance_std
39
- dtype: float64
40
- - name: valence_icc
41
- dtype: float64
42
- - name: arousal_icc
43
- dtype: float64
44
- - name: dominance_icc
45
- dtype: float64
46
- - name: n_categorical_evaluators
47
- dtype: int64
48
- - name: n_dimensional_evaluators
49
- dtype: int64
50
- - name: consensus_valence
51
- dtype: float64
52
- - name: consensus_arousal
53
- dtype: float64
54
- - name: consensus_dominance
55
- dtype: float64
56
- - name: naturalness_std
57
- dtype: float64
58
- - name: naturalness_icc
59
- dtype: float64
60
- - name: consensus_naturalness
61
- dtype: float64
62
- splits:
63
- - name: train
64
- num_bytes: 2803902170.0
65
- num_examples: 7798
66
- download_size: 2739152711
67
- dataset_size: 2803902170.0
68
- configs:
69
- - config_name: default
70
- data_files:
71
- - split: train
72
- path: data/train-*
73
- ---
 
1
+
2
+ # IEMOCAP with Curriculum Learning Metrics
3
+
4
+ This dataset enhances the original IEMO_WAV_Diff_2 dataset with inter-evaluator agreement metrics
5
+ for curriculum learning following Lotfian & Busso (2019).
6
+
7
+ ## Additional Columns
8
+
9
+ - `curriculum_order`: Training order (1=highest agreement, train first)
10
+ - `overall_agreement`: Combined agreement score (0-1, higher is better)
11
+ - `fleiss_kappa`: Categorical agreement (-1 to 1, higher is better)
12
+ - `krippendorff_alpha`: Krippendorff's alpha for categorical reliability
13
+ - `valence_std`, `arousal_std`, `dominance_std`: Standard deviation of dimensional ratings (lower is better)
14
+ - `valence_icc`, `arousal_icc`, `dominance_icc`: Intraclass correlation coefficients (0-1, higher is better)
15
+ - `n_categorical_evaluators`, `n_dimensional_evaluators`: Number of evaluators
16
+ - `consensus_valence`, `consensus_arousal`, `consensus_dominance`: Consensus dimensional ratings
17
+
18
+ ## Usage for Curriculum Learning
19
+
20
+ Sort samples by `curriculum_order` and train on high-agreement samples first:
21
+
22
+ ```python
23
+ from datasets import load_dataset
24
+
25
+ dataset = load_dataset("cairocode/MSPI_WAV_Diff_Curriculum")
26
+ train_data = dataset["train"].sort("curriculum_order")
27
+
28
+ # Start with high agreement samples
29
+ easy_samples = train_data.filter(lambda x: x["overall_agreement"] > 0.5)
30
+ hard_samples = train_data.filter(lambda x: x["overall_agreement"] < 0.5)
31
+ ```
32
+
33
+ ## Citation
34
+
35
+ If you use this dataset, please cite:
36
+
37
+ - Original IEMOCAP: Busso et al. (2008)
38
+ - Curriculum learning approach: Lotfian & Busso (2019)
39
+ - Original dataset: cairocode/IEMO_WAV_Diff_2