Datasets:
File size: 7,918 Bytes
1ca4486 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import dotenv\n",
"dotenv.load_dotenv()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['func', 'target', 'cwe', 'project', 'commit_id', 'hash', 'size', 'message'],\n",
" num_rows: 264393\n",
" })\n",
" validation: Dataset({\n",
" features: ['func', 'target', 'cwe', 'project', 'commit_id', 'hash', 'size', 'message'],\n",
" num_rows: 33049\n",
" })\n",
" test: Dataset({\n",
" features: ['func', 'target', 'cwe', 'project', 'commit_id', 'hash', 'size', 'message'],\n",
" num_rows: 33050\n",
" })\n",
"})\n",
"{'func': 'static boolean ReadICCProfile(j_decompress_ptr jpeg_info)\\n{\\n char\\n magick[12];\\n\\n ErrorManager\\n *error_manager;\\n\\n ExceptionInfo\\n *exception;\\n\\n Image\\n *image;\\n\\n MagickBooleanType\\n status;\\n\\n register ssize_t\\n i;\\n\\n register unsigned char\\n *p;\\n\\n size_t\\n length;\\n\\n StringInfo\\n *icc_profile,\\n *profile;\\n\\n /*\\n Read color profile.\\n */\\n length=(size_t) ((size_t) GetCharacter(jpeg_info) << 8);\\n length+=(size_t) GetCharacter(jpeg_info);\\n length-=2;\\n if (length <= 14)\\n {\\n while (length-- > 0)\\n if (GetCharacter(jpeg_info) == EOF)\\n break;\\n return(TRUE);\\n }\\n for (i=0; i < 12; i++)\\n magick[i]=(char) GetCharacter(jpeg_info);\\n if (LocaleCompare(magick,ICC_PROFILE) != 0)\\n {\\n /*\\n Not a ICC profile, return.\\n */\\n for (i=0; i < (ssize_t) (length-12); i++)\\n if (GetCharacter(jpeg_info) == EOF)\\n break;\\n return(TRUE);\\n }\\n (void) GetCharacter(jpeg_info); /* id */\\n (void) GetCharacter(jpeg_info); /* markers */\\n length-=14;\\n error_manager=(ErrorManager *) jpeg_info->client_data;\\n exception=error_manager->exception;\\n image=error_manager->image;\\n profile=BlobToStringInfo((const void *) NULL,length);\\n if (profile == (StringInfo *) NULL)\\n {\\n (void) ThrowMagickException(exception,GetMagickModule(),\\n ResourceLimitError,\"MemoryAllocationFailed\",\"`%s\\'\",image->filename);\\n return(FALSE);\\n }\\n error_manager->profile=profile;\\n p=GetStringInfoDatum(profile);\\n for (i=0; i < (ssize_t) length; i++)\\n {\\n int\\n c;\\n\\n c=GetCharacter(jpeg_info);\\n if (c == EOF)\\n break;\\n *p++=(unsigned char) c;\\n }\\n if (i != (ssize_t) length)\\n {\\n profile=DestroyStringInfo(profile);\\n (void) ThrowMagickException(exception,GetMagickModule(),\\n CorruptImageError,\"InsufficientImageDataInFile\",\"`%s\\'\",\\n image->filename);\\n return(FALSE);\\n }\\n error_manager->profile=NULL;\\n icc_profile=(StringInfo *) GetImageProfile(image,\"icc\");\\n if (icc_profile != (StringInfo *) NULL)\\n {\\n ConcatenateStringInfo(icc_profile,profile);\\n profile=DestroyStringInfo(profile);\\n }\\n else\\n {\\n status=SetImageProfile(image,\"icc\",profile,exception);\\n profile=DestroyStringInfo(profile);\\n if (status == MagickFalse)\\n {\\n (void) ThrowMagickException(exception,GetMagickModule(),\\n ResourceLimitError,\"MemoryAllocationFailed\",\"`%s\\'\",image->filename);\\n return(FALSE);\\n }\\n }\\n if (image->debug != MagickFalse)\\n (void) LogMagickEvent(CoderEvent,GetMagickModule(),\\n \"Profile: ICC, %.20g bytes\",(double) length);\\n return(TRUE);\\n}', 'target': 1, 'cwe': ['CWE-416'], 'project': 'ImageMagick', 'commit_id': '39f226a9c137f547e12afde972eeba7551124493', 'hash': 1.623740923374004e+38, 'size': 111, 'message': 'https://github.com/ImageMagick/ImageMagick/issues/1641'}\n"
]
}
],
"source": [
"from datasets import load_dataset, DatasetDict\n",
"import os\n",
"\n",
"dataset = load_dataset(\"json\", data_files=\"diversevul_20230702.jsonl\")\n",
"\n",
"# Split into train/valid/test\n",
"train_valid = dataset[\"train\"].train_test_split(test_size=0.2, seed=0, train_indices_cache_file_name=\"train.indices\")\n",
"train_data, valid_data = train_valid[\"train\"], train_valid[\"test\"]\n",
"valid_test = valid_data.train_test_split(test_size=0.5, seed=0, train_indices_cache_file_name=\"valid.indices\", test_indices_cache_file_name=\"test.indices\")\n",
"valid_data, test_data = valid_test[\"train\"], valid_test[\"test\"]\n",
"dataset = DatasetDict({\n",
" \"train\": train_data,\n",
" \"validation\": valid_data,\n",
" \"test\": test_data,\n",
"})\n",
"\n",
"print(dataset)\n",
"print(dataset[\"train\"][0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset.save_to_disk(\"diversevul\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Pushing dataset shards to the dataset hub: 100%|ββββββββββ| 2/2 [00:00<00:00, 543.87it/s]\n",
"\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"Creating parquet from Arrow format: 100%|ββββββββββ| 34/34 [00:03<00:00, 8.88ba/s]\n",
"Pushing dataset shards to the dataset hub: 100%|ββββββββββ| 1/1 [00:12<00:00, 12.34s/it]\n",
"\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"\u001b[A\n",
"Creating parquet from Arrow format: 100%|ββββββββββ| 34/34 [00:03<00:00, 9.98ba/s]\n",
"Pushing dataset shards to the dataset hub: 100%|ββββββββββ| 1/1 [00:11<00:00, 11.55s/it]\n",
"Downloading metadata: 100%|ββββββββββ| 263/263 [00:00<00:00, 495kB/s]\n"
]
}
],
"source": [
"dataset.push_to_hub(\"benjis/diversevul\", token=os.getenv(\"HUGGINGFACEHUB_API_TOKEN\"))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|