File size: 30,637 Bytes
16dcd38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from pathlib import Path

from geco_data_generator import (
    attrgenfunct,
    contdepfunct,
    basefunctions,
    generator,
    corruptor,
)

do_large_tests = False  # Set to True to run tests to generate large
# datasets - warning is time consuming
import os
import time
import unittest

import random

random.seed(42)

# =============================================================================

# Define test cases, each being a list containing the main parameters required
# for generating a data set:
# 1) rec_id_attr_name
# 2) num_org_rec
# 3) num_dup_rec
# 4) max_duplicate_per_record
# 5) num_duplicates_distribution ('uniform', 'poisson', 'zipf')
# 6) max_modification_per_attr
# 7) num_modification_per_record
#
test_cases = [
    ['rec_id', 100, 100, 1, 'uniform', 1, 1],
    ['rec_id', 100, 100, 1, 'poisson', 1, 1],
    ['rec_id', 100, 100, 1, 'zipf', 1, 1],
    ['rec_id', 10000, 10000, 1, 'uniform', 1, 1],
    ['rec_id', 10000, 10000, 1, 'poisson', 1, 1],
    ['rec_id', 10000, 10000, 1, 'zipf', 1, 1],
]
if do_large_tests == True:
    test_cases += [
        ['rec_id', 100000, 100000, 1, 'uniform', 1, 1],
        ['rec_id', 100000, 100000, 1, 'poisson', 1, 1],
        ['rec_id', 100000, 100000, 1, 'zipf', 1, 1],
    ]
#
test_cases += [
    ['rec_id', 100, 20, 1, 'uniform', 1, 1],
    ['rec_id', 100, 20, 1, 'poisson', 1, 1],
    ['rec_id', 100, 20, 1, 'zipf', 1, 1],
    ['rec_id', 10000, 2000, 1, 'uniform', 1, 1],
    ['rec_id', 10000, 2000, 1, 'poisson', 1, 1],
    ['rec_id', 10000, 2000, 1, 'zipf', 1, 1],
]
if do_large_tests == True:
    test_cases += [
        ['rec_id', 100000, 20000, 1, 'uniform', 1, 1],
        ['rec_id', 100000, 20000, 1, 'poisson', 1, 1],
        ['rec_id', 100000, 20000, 1, 'zipf', 1, 1],
    ]
#
test_cases += [
    ['rec_num', 123, 321, 5, 'uniform', 1, 3],
    ['rec_num', 123, 321, 5, 'poisson', 1, 3],
    ['rec_num', 123, 321, 5, 'zipf', 1, 3],
    ['rec_num', 12345, 14321, 5, 'uniform', 1, 3],
    ['rec_num', 12345, 14321, 5, 'poisson', 1, 3],
    ['rec_num', 12345, 14321, 5, 'zipf', 1, 3],
]
if do_large_tests == True:
    test_cases += [
        ['rec_num', 123456, 154321, 5, 'uniform', 1, 3],
        ['rec_num', 123456, 154321, 5, 'poisson', 1, 3],
        ['rec_num', 123456, 154321, 5, 'zipf', 1, 3],
    ]
#
test_cases += [
    ['rec_num', 123, 321, 3, 'uniform', 3, 9],
    ['rec_num', 123, 321, 3, 'poisson', 3, 9],
    ['rec_num', 123, 321, 3, 'zipf', 3, 9],
    ['rec_num', 12345, 14321, 3, 'uniform', 3, 9],
    ['rec_num', 12345, 14321, 3, 'poisson', 3, 9],
    ['rec_num', 12345, 14321, 3, 'zipf', 3, 9],
]
if do_large_tests == True:
    test_cases += [
        ['rec_num', 123456, 154321, 3, 'uniform', 3, 9],
        ['rec_num', 123456, 154321, 3, 'poisson', 3, 9],
        ['rec_num', 123456, 154321, 3, 'zipf', 3, 9],
    ]
#
test_cases += [
    ['rec_num', 321, 123, 11, 'uniform', 2, 7],
    ['rec_num', 321, 123, 11, 'poisson', 2, 7],
    ['rec_num', 321, 123, 11, 'zipf', 2, 7],
    ['rec_num', 43210, 14321, 11, 'uniform', 2, 7],
    ['rec_num', 43210, 14321, 11, 'poisson', 2, 7],
    ['rec_num', 43210, 14321, 11, 'zipf', 2, 7],
]
if do_large_tests == True:
    test_cases += [
        ['rec_num', 654321, 123456, 11, 'uniform', 2, 7],
        ['rec_num', 654321, 123456, 11, 'poisson', 2, 7],
        ['rec_num', 654321, 123456, 11, 'zipf', 2, 7],
    ]

# Set the Unicode encoding for all test data generation
#
unicode_encoding_used = 'ascii'

# Check the unicode encoding selected is valid
#
basefunctions.check_unicode_encoding_exists(unicode_encoding_used)

# =============================================================================


class TestCase(unittest.TestCase):

    # Initialise test case  - - - - - - - - - - - - - - - - - - - - - - - - - - -
    #
    def setUp(self):
        pass  # Nothing to initialize

    # Clean up test case  - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    #
    def tearDown(self):
        pass  # Nothing to clean up

    # ---------------------------------------------------------------------------
    # Start test cases

    def testDataGeneration(self, test_case):
        """Test the overall generation of a data set according to the parameters
        given by checking if the generated data sets follows the parameter
        specification given.
        """

        rec_id_attr_name = test_case[0]
        num_org_rec = test_case[1]
        num_dup_rec = test_case[2]
        max_duplicate_per_record = test_case[3]
        num_duplicates_distribution = test_case[4]
        max_modification_per_attr = test_case[5]
        num_modification_per_record = test_case[6]

        test_res_list = ['', 'Test case parameters:']
        test_res_list.append('  rec_id_attr_name = %s' % (rec_id_attr_name))
        test_res_list.append('  num_org_rec = %s' % (num_org_rec))
        test_res_list.append('  num_dup_rec = %s' % (num_dup_rec))
        test_res_list.append(
            '  max_duplicate_per_record = %s' % (max_duplicate_per_record)
        )
        test_res_list.append(
            '  num_duplicates_distribution = %s' % (num_duplicates_distribution)
        )
        test_res_list.append(
            '  max_modification_per_attr = %s' % (max_modification_per_attr)
        )
        test_res_list.append(
            '  num_modification_per_record = %s' % (num_modification_per_record)
        )
        test_res_list.append('')

        # Define the attributes to be generated (based on methods from - - - - -
        # the generator.py module)

        # Individual attributes
        #
        given_name_attr = generator.GenerateFreqAttribute(
            attribute_name='given-name',
            freq_file_name='../lookup-files/givenname_freq.csv',
            has_header_line=False,
            unicode_encoding=unicode_encoding_used,
        )

        surnname_attr = generator.GenerateFreqAttribute(
            attribute_name='surname',
            freq_file_name='../lookup-files/surname-freq.csv',
            has_header_line=False,
            unicode_encoding=unicode_encoding_used,
        )

        postcode_attr = generator.GenerateFreqAttribute(
            attribute_name='postcode',
            freq_file_name='../lookup-files/postcode_act_freq.csv',
            has_header_line=False,
            unicode_encoding=unicode_encoding_used,
        )

        oz_phone_num_attr = generator.GenerateFuncAttribute(
            attribute_name='oz-phone-number',
            function=attrgenfunct.generate_phone_number_australia,
        )

        credit_card_attr = generator.GenerateFuncAttribute(
            attribute_name='credit-card-number',
            function=attrgenfunct.generate_credit_card_number,
        )

        age_uniform_attr = generator.GenerateFuncAttribute(
            attribute_name='age-uniform',
            function=attrgenfunct.generate_uniform_age,
            parameters=[0, 120],
        )

        age_death_normal_attr = generator.GenerateFuncAttribute(
            attribute_name='age-death-normal',
            function=attrgenfunct.generate_normal_age,
            parameters=[80, 20, 0, 120],
        )

        income_normal_attr = generator.GenerateFuncAttribute(
            attribute_name='income-normal',
            function=attrgenfunct.generate_normal_value,
            parameters=[75000, 20000, 0, 1000000, 'float2'],
        )

        rating_normal_attr = generator.GenerateFuncAttribute(
            attribute_name='rating-normal',
            function=attrgenfunct.generate_normal_value,
            parameters=[2.5, 1.0, 0.0, 5.0, 'int'],
        )

        # Compund (dependent) attributes
        #
        gender_city_comp_attr = generator.GenerateCateCateCompoundAttribute(
            categorical1_attribute_name='gender',
            categorical2_attribute_name='city',
            lookup_file_name='../lookup-files/gender-city.csv',
            has_header_line=True,
            unicode_encoding=unicode_encoding_used,
        )

        gender_income_comp_attr = generator.GenerateCateContCompoundAttribute(
            categorical_attribute_name='alt-gender',
            continuous_attribute_name='income',
            continuous_value_type='float1',
            lookup_file_name='gender-income.csv',
            has_header_line=False,
            unicode_encoding=unicode_encoding_used,
        )

        gender_city_salary_comp_attr = generator.GenerateCateCateContCompoundAttribute(
            categorical1_attribute_name='alt-gender-2',
            categorical2_attribute_name='town',
            continuous_attribute_name='salary',
            continuous_value_type='float4',
            lookup_file_name='gender-city-income.csv',
            has_header_line=False,
            unicode_encoding=unicode_encoding_used,
        )

        age_blood_pressure_comp_attr = generator.GenerateContContCompoundAttribute(
            continuous1_attribute_name='medical-age',
            continuous2_attribute_name='blood-pressure',
            continuous1_funct_name='uniform',
            continuous1_funct_param=[10, 110],
            continuous2_function=contdepfunct.blood_pressure_depending_on_age,
            continuous1_value_type='int',
            continuous2_value_type='float3',
        )

        age_salary_comp_attr = generator.GenerateContContCompoundAttribute(
            continuous1_attribute_name='medical-age-2',
            continuous2_attribute_name='medical-salary',
            continuous1_funct_name='normal',
            continuous1_funct_param=[45, 20, 25, 130],
            continuous2_function=contdepfunct.salary_depending_on_age,
            continuous1_value_type='int',
            continuous2_value_type='float1',
        )

        # Define how attribute values are to be modified (corrupted) - - - - - -
        # (based on methods from the corruptor.py module)
        #
        average_edit_corruptor = corruptor.CorruptValueEdit(
            position_function=corruptor.position_mod_normal,
            char_set_funct=basefunctions.char_set_ascii,
            insert_prob=0.25,
            delete_prob=0.25,
            substitute_prob=0.25,
            transpose_prob=0.25,
        )

        sub_tra_edit_corruptor = corruptor.CorruptValueEdit(
            position_function=corruptor.position_mod_uniform,
            char_set_funct=basefunctions.char_set_ascii,
            insert_prob=0.0,
            delete_prob=0.0,
            substitute_prob=0.5,
            transpose_prob=0.5,
        )

        ins_del_edit_corruptor = corruptor.CorruptValueEdit(
            position_function=corruptor.position_mod_normal,
            char_set_funct=basefunctions.char_set_ascii,
            insert_prob=0.5,
            delete_prob=0.5,
            substitute_prob=0.0,
            transpose_prob=0.0,
        )

        surname_misspell_corruptor = corruptor.CorruptCategoricalValue(
            lookup_file_name='surname-misspell.csv',
            has_header_line=False,
            unicode_encoding=unicode_encoding_used,
        )

        ocr_corruptor = corruptor.CorruptValueOCR(
            position_function=corruptor.position_mod_uniform,
            lookup_file_name='ocr-variations.csv',
            has_header_line=False,
            unicode_encoding=unicode_encoding_used,
        )

        keyboard_corruptor = corruptor.CorruptValueKeyboard(
            position_function=corruptor.position_mod_normal, row_prob=0.5, col_prob=0.5
        )

        phonetic_corruptor = corruptor.CorruptValuePhonetic(
            position_function=corruptor.position_mod_uniform,
            lookup_file_name='phonetic-variations.csv',
            has_header_line=False,
            unicode_encoding=unicode_encoding_used,
        )

        missing_val_empty_corruptor = corruptor.CorruptMissingValue()
        missing_val_miss_corruptor = corruptor.CorruptMissingValue(missing_value='miss')
        missing_val_unkown_corruptor = corruptor.CorruptMissingValue(
            missing_value='unknown'
        )

        # Define the attributes to be generated for this data set, and the data
        # set itself
        #
        attr_name_list = [
            'given-name',
            'surname',
            'city',
            'postcode',
            'oz-phone-number',
            'credit-card-number',
            'age-uniform',
            'age-death-normal',
            'income-normal',
            'rating-normal',
            'gender',
            'alt-gender',
            'alt-gender-2',
            'town',
            'income',
            'salary',
            'medical-age',
            'blood-pressure',
            'medical-age-2',
            'medical-salary',
        ]

        attr_data_list = [
            given_name_attr,
            surnname_attr,
            postcode_attr,
            oz_phone_num_attr,
            credit_card_attr,
            age_uniform_attr,
            age_death_normal_attr,
            income_normal_attr,
            rating_normal_attr,
            gender_city_comp_attr,
            gender_income_comp_attr,
            gender_city_salary_comp_attr,
            age_blood_pressure_comp_attr,
            age_salary_comp_attr,
        ]

        # Initialise the main data generator
        #
        test_data_generator = generator.GenerateDataSet(
            output_file_name='no-file-name',
            write_header_line=True,
            rec_id_attr_name=rec_id_attr_name,
            number_of_records=num_org_rec,
            attribute_name_list=attr_name_list,
            attribute_data_list=attr_data_list,
            unicode_encoding=unicode_encoding_used,
        )

        # Define distribution of how likely an attribute will be selected for
        # modification (sum of probabilities must be 1.0)
        #
        attr_mod_prob_dictionary = {
            'given-name': 0.1,
            'surname': 0.1,
            'city': 0.1,
            'postcode': 0.1,
            'oz-phone-number': 0.1,
            'age-death-normal': 0.1,
            'income-normal': 0.1,
            'gender': 0.1,
            'town': 0.1,
            'income': 0.1,
        }

        # For each attribute, a distribution of which corruptors to apply needs
        # to be given, with the sum ofprobabilities to be 1.0 for each attribute
        #
        attr_mod_data_dictionary = {
            'given-name': [
                (0.25, average_edit_corruptor),
                (0.25, ocr_corruptor),
                (0.25, phonetic_corruptor),
                (0.25, missing_val_miss_corruptor),
            ],
            'surname': [(0.5, surname_misspell_corruptor), (0.5, average_edit_corruptor)],
            'city': [(0.5, keyboard_corruptor), (0.5, missing_val_empty_corruptor)],
            'postcode': [
                (0.3, missing_val_unkown_corruptor),
                (0.7, sub_tra_edit_corruptor),
            ],
            'oz-phone-number': [
                (0.2, missing_val_empty_corruptor),
                (0.4, sub_tra_edit_corruptor),
                (0.4, keyboard_corruptor),
            ],
            'age-death-normal': [(1.0, missing_val_unkown_corruptor)],
            'income-normal': [
                (0.3, keyboard_corruptor),
                (0.3, ocr_corruptor),
                (0.4, missing_val_empty_corruptor),
            ],
            'gender': [(0.5, sub_tra_edit_corruptor), (0.5, ocr_corruptor)],
            'town': [
                (0.2, average_edit_corruptor),
                (0.3, ocr_corruptor),
                (0.2, keyboard_corruptor),
                (0.3, phonetic_corruptor),
            ],
            'income': [(1.0, missing_val_miss_corruptor)],
        }

        # Initialise the main data corruptor
        #
        test_data_corruptor = corruptor.CorruptDataSet(
            number_of_org_records=num_org_rec,
            number_of_mod_records=num_dup_rec,
            attribute_name_list=attr_name_list,
            max_num_dup_per_rec=max_duplicate_per_record,
            num_dup_dist=num_duplicates_distribution,
            max_num_mod_per_attr=max_modification_per_attr,
            num_mod_per_rec=num_modification_per_record,
            attr_mod_prob_dict=attr_mod_prob_dictionary,
            attr_mod_data_dict=attr_mod_data_dictionary,
        )

        passed = True  # Assume the test will pass :-)

        # Start the generation process
        #
        try:
            rec_dict = test_data_generator.generate()

        except Exception as exce_value:  # Something bad happened
            test_res_list.append(
                '  generator.generate() raised Exception: "%s"' % (str(exce_value))
            )
            return test_res_list  # Abandon test

        num_org_rec_gen = len(rec_dict)

        if num_org_rec_gen != num_org_rec:
            passed = False
            test_res_list.append(
                '  Wrong number of original records generated:'
                + ' %d, expected %d' % (num_org_rec_gen, num_org_rec)
            )

        # Corrupt (modify) the original records into duplicate records
        #
        try:
            rec_dict = test_data_corruptor.corrupt_records(rec_dict)
        except Exception as exce_value:  # Something bad happened
            test_res_list.append(
                '  corruptor.corrupt_records() raised '
                + 'Exception: "%s"' % (str(exce_value))
            )
            return test_res_list  # Abandon test

        num_dup_rec_gen = len(rec_dict) - num_org_rec_gen

        if num_dup_rec_gen != num_dup_rec:
            passed = False
            test_res_list.append(
                '  Wrong number of duplicate records generated:'
                + ' %d, expected %d' % (num_dup_rec_gen, num_dup_rec)
            )

        num_dup_counts = {}  # Count how many records have a certain number of
        # duplicates

        # Do tests on all generated records
        #
        for (rec_id, rec_list) in rec_dict.iteritems():
            if len(rec_list) != len(attr_name_list):
                passed = False
                test_res_list.append(
                    '  Record with identifier "%s" contains wrong' % (rec_id)
                    + ' number of attributes: '
                    + ' %d, expected %d' % (len(rec_list), len(attr_name_list))
                )

            if 'org' in rec_id:  # An original record

                # Check the number of duplicates for this record is what is expected
                #
                num_dups = 0
                rec_num = rec_id.split('-')[1]

                for d in range(max_duplicate_per_record * 2):
                    tmp_rec_id = 'rec-%s-dup-%d' % (rec_num, d)
                    if tmp_rec_id in rec_dict:
                        num_dups += 1
                if num_dups > max_duplicate_per_record:
                    passed = False
                    test_res_list.append(
                        '  Too many duplicate records for original'
                        + ' record "%s": %d' % (rec_id),
                        num_dups,
                    )

                d_count = num_dup_counts.get(num_dups, 0) + 1
                num_dup_counts[num_dups] = d_count

                # Check no duplicate number is outside expected range
                #
                for d in range(max_duplicate_per_record, max_duplicate_per_record * 2):
                    tmp_rec_id = 'rec-%s-dup-%d' % (rec_num, d)
                    if tmp_rec_id in rec_dict:
                        passed = False
                        test_res_list.append(
                            '  Illegal duplicate number: %s' % (tmp_rec_id)
                            + ' (larger than max. number '
                            + 'of duplicates per record %sd' % (max_duplicate_per_record)
                        )

                # Check values in certain attributes only contain letters
                #
                for i in [0, 1, 2, 10, 11, 12, 13]:
                    test_val = rec_list[i].replace(' ', '')
                    test_val = test_val.replace('-', '')
                    test_val = test_val.replace("'", '')
                    if test_val.isalpha() == False:
                        passed = False
                        test_res_list.append(
                            '  Value in attribute "%s" is not only ' % (attr_name_list[i])
                            + 'letters:'
                        )
                        test_res_list.append('    Org: %s' % (str(rec_list)))

                # Check values in certain attributes only contain digits
                #
                for i in [3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19]:
                    test_val = rec_list[i].replace(' ', '')
                    test_val = test_val.replace('.', '')
                    if test_val.isdigit() == False:
                        passed = False
                        test_res_list.append(
                            '  Value in attribute "%s" is not only ' % (attr_name_list[i])
                            + 'digits:'
                        )
                        test_res_list.append('    Org: %s' % (str(rec_list)))

                # Check age values are in range
                #
                for i in [6, 7, 16]:
                    test_val = int(rec_list[i].strip())
                    if (test_val < 0) or (test_val > 130):
                        passed = False
                        test_res_list.append(
                            '  Age value in attribute "%s" is out of' % (attr_name_list[i])
                            + ' range:'
                        )
                        test_res_list.append('    Org: %s' % (str(rec_list)))

                # Check length of postcode, telephone and credit card numbers
                #
                if len(rec_list[3]) != 4:
                    passed = False
                    test_res_list.append('  Postcode has not 4 digits:')
                    test_res_list.append('    Org: %s' % (str(rec_list)))

                if (len(rec_list[4]) != 12) or (rec_list[4][0] != '0'):
                    passed = False
                    test_res_list.append('  Australian phone number has wrong format:')
                    test_res_list.append('    Org: %s' % (str(rec_list)))

                # Check 'rating' is between 0 and 5
                #
                test_val = int(rec_list[9].strip())
                if (test_val < 0) or (test_val > 5):
                    passed = False
                    test_res_list.append('  "rating-normal" value is out of range:')
                    test_res_list.append('    Org: %s' % (str(rec_list)))

                # Check gender values
                #
                test_val = rec_list[10]
                if test_val not in ['male', 'female']:
                    passed = False
                    test_res_list.append('  "gender" value is out of range:')
                    test_res_list.append('    Org: %s' % (str(rec_list)))

                test_val = rec_list[11]
                if test_val not in ['m', 'f', 'na']:
                    passed = False
                    test_res_list.append('  "alt-gender" value is out of range:')
                    test_res_list.append('    Org: %s' % (str(rec_list)))

                test_val = rec_list[12]
                if test_val not in ['male', 'female']:
                    passed = False
                    test_res_list.append('  "alt-gender-2" value is out of range:')
                    test_res_list.append('    Org: %s' % (str(rec_list)))

            if 'dup' in rec_id:  # A duplicate record

                # Get the corresponding original record
                #
                org_rec_id = 'rec-%s-org' % (rec_id.split('-')[1])
                org_rec_list = rec_dict[org_rec_id]

                # Check the duplicate number
                #
                dup_num = int(rec_id.split('-')[-1])
                if (dup_num < 0) or (dup_num > max_duplicate_per_record - 1):
                    passed = False
                    test_res_list.append(
                        '  Duplicate record with identifier "%s" ' % (rec_id)
                        + ' has an illegal duplicate number:'
                        + ' %d' % (dup_num)
                    )
                    test_res_list.append('    Org: %s' % (str(org_rec_list)))
                    test_res_list.append('    Dup: %s' % (str(rec_list)))

                # Check that a duplicate record contains the expected - - - - - - - - -
                # number of modifications

                num_diff_val = 0  # Count how many values are different

                for i in range(len(rec_list)):  # Check all attribute values
                    if rec_list[i] != org_rec_list[i]:
                        num_diff_val += 1

                if num_diff_val == 0:  # No differences between org and dup record
                    passed = False
                    test_res_list.append(
                        '  Duplicate record with identifier "%s" ' % (rec_id)
                        + 'is the same as it original record'
                    )
                    test_res_list.append('    Org: %s' % (str(org_rec_list)))
                    test_res_list.append('    Dup: %s' % (str(rec_list)))

                if num_diff_val < num_modification_per_record:
                    passed = False
                    test_res_list.append(
                        '  Duplicate record with identifier "%s" ' % (rec_id)
                        + 'contains less modifications '
                        + 'than expected (%d instead of %d)'
                        % (num_diff_val, num_modification_per_record)
                    )
                    test_res_list.append('    Org: %s' % (str(org_rec_list)))
                    test_res_list.append('    Dup: %s' % (str(rec_list)))

                # Check that certain attributes have not been modified
                #
                for i in [5, 6, 9, 11, 12, 15, 16, 17, 18, 19]:
                    if rec_list[i] != org_rec_list[i]:
                        passed = False
                        test_res_list.append(
                            '  Duplicate record with identifier "%s" ' % (rec_id)
                            + 'contains modified attribute '
                            + 'values that should not be modified'
                        )
                        test_res_list.append('    Org: %s' % (str(org_rec_list)))
                        test_res_list.append('    Dup: %s' % (str(rec_list)))

                # Check the content of certain attribute values, and how they
                # differ between original and duplicate records
                #
                # Due to the possibility thatmultiple modifications are applied on the
                # same attribute these tests are limited

                test_org_val = org_rec_list[2]  # City
                test_dup_val = rec_list[2]
                if test_dup_val != '':
                    if len(test_org_val) != len(test_dup_val):
                        passed = False
                        test_res_list.append('  "city" values have different length:')
                        test_res_list.append('    Org: %s' % (str(org_rec_list)))
                        test_res_list.append('    Dup: %s' % (str(rec_list)))

                test_org_val = org_rec_list[4]  # Australian phone number
                test_dup_val = rec_list[4]
                if test_dup_val != '':
                    if len(test_org_val) != len(test_dup_val):
                        passed = False
                        test_res_list.append(
                            '  "oz-phone-number" values have different' + ' length:'
                        )
                        test_res_list.append('    Org: %s' % (str(org_rec_list)))
                        test_res_list.append('    Dup: %s' % (str(rec_list)))

                test_org_val = org_rec_list[7]  # Age-death-normal
                test_dup_val = rec_list[7]
                if test_dup_val != 'unknown':
                    if test_org_val != test_dup_val:
                        passed = False
                        test_res_list.append('  Wrong value for "age-death-normal":')
                        test_res_list.append('    Org: %s' % (str(org_rec_list)))
                        test_res_list.append('    Dup: %s' % (str(rec_list)))

                test_org_val = org_rec_list[14]  # Income
                test_dup_val = rec_list[14]
                if test_dup_val != 'miss':
                    if test_org_val != test_dup_val:
                        passed = False
                        test_res_list.append('  Wrong value for "income":')
                        test_res_list.append('    Org: %s' % (str(org_rec_list)))
                        test_res_list.append('    Dup: %s' % (str(rec_list)))

        test_res_list.append(
            '  Distribution of duplicates: ("%s" expected)' % num_duplicates_distribution
        )
        dup_keys = num_dup_counts.keys()
        dup_keys.sort()
        for d in dup_keys:
            test_res_list.append('    %d: %d records' % (d, num_dup_counts[d]))
        test_res_list.append('')

        if passed == True:
            test_res_list.append('  All tests passed')
        test_res_list.append('')

        return test_res_list


# =============================================================================
# Generate a time string to be used for the log file
#
curr_time_tuple = time.localtime()
curr_time_str = (
    str(curr_time_tuple[0])
    + str(curr_time_tuple[1]).zfill(2)
    + str(curr_time_tuple[2]).zfill(2)
    + '-'
    + str(curr_time_tuple[3]).zfill(2)
    + str(curr_time_tuple[4]).zfill(2)
)

# Write test output header line into the log file
#
Path('./logs').mkdir(exist_ok=True)
out_file_name = './logs/mainTest-%s.txt' % (curr_time_str)

out_file = open(out_file_name, 'w')

out_file.write('Test results generated by mainTest.py' + os.linesep)

out_file.write('Test started: ' + curr_time_str + os.linesep)

out_file.write(os.linesep)

for test_case in test_cases:

    # Create instances for the testcase class that calls all tests
    #
    test_case_ins = TestCase('testDataGeneration')
    test_res_list = test_case_ins.testDataGeneration(test_case)

    # Write test output results into the log file
    #
    for line in test_res_list:
        out_file.write(line + os.linesep)

    for line in test_res_list:
        print(line)

out_file.close()

print('Test results are written to', out_file_name)