Datasets:
Create squad_tr.py
Browse files- squad_tr.py +206 -0
squad_tr.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
# This file is based off of the dataset loader script for the original SQuAD2.0
|
17 |
+
# dataset.
|
18 |
+
#
|
19 |
+
# https://huggingface.co/datasets/squad_v2
|
20 |
+
|
21 |
+
# Lint as: python3
|
22 |
+
"""SQuAD-TR Dataset"""
|
23 |
+
|
24 |
+
|
25 |
+
import itertools
|
26 |
+
import json
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
30 |
+
|
31 |
+
|
32 |
+
logger = datasets.logging.get_logger(__name__)
|
33 |
+
|
34 |
+
_HOMEPAGE = "https://github.com/boun-tabi/squad-tr"
|
35 |
+
|
36 |
+
_CITATION = """\
|
37 |
+
@article{
|
38 |
+
budur2023squadtr,
|
39 |
+
title={Building Efficient and Effective OpenQA Systems for Low-Resource Languages},
|
40 |
+
author={todo},
|
41 |
+
journal={todo},
|
42 |
+
year={2023}
|
43 |
+
}
|
44 |
+
"""
|
45 |
+
|
46 |
+
_DESCRIPTION = """\
|
47 |
+
SQuAD-TR is a machine translated version of the original SQuAD2.0 dataset into
|
48 |
+
Turkish.
|
49 |
+
"""
|
50 |
+
|
51 |
+
_VERSION = "1.0.0"
|
52 |
+
|
53 |
+
_DATA_URL = _HOMEPAGE + "/raw/beta/data"
|
54 |
+
_DATA_URLS = {
|
55 |
+
"default": {
|
56 |
+
"train": f"{_DATA_URL}/squad-tr-train-v{_VERSION}.json.gz",
|
57 |
+
"dev": f"{_DATA_URL}/squad-tr-dev-v{_VERSION}.json.gz",
|
58 |
+
},
|
59 |
+
"excluded": {
|
60 |
+
"train": f"{_DATA_URL}/squad-tr-train-v{_VERSION}-excluded.json.gz",
|
61 |
+
"dev": f"{_DATA_URL}/squad-tr-dev-v{_VERSION}-excluded.json.gz",
|
62 |
+
}
|
63 |
+
}
|
64 |
+
|
65 |
+
|
66 |
+
class SquadTRConfig(datasets.BuilderConfig):
|
67 |
+
"""BuilderConfig for SQuAD-TR."""
|
68 |
+
|
69 |
+
def __init__(self, **kwargs):
|
70 |
+
"""BuilderConfig for SQuAD-TR.
|
71 |
+
Args:
|
72 |
+
**kwargs: keyword arguments forwarded to super.
|
73 |
+
"""
|
74 |
+
super(SquadTRConfig, self).__init__(**kwargs)
|
75 |
+
|
76 |
+
|
77 |
+
class SquadTR(datasets.GeneratorBasedBuilder):
|
78 |
+
"""SQuAD-TR: Machine translated version of the original SQuAD2.0 dataset into Turkish."""
|
79 |
+
|
80 |
+
VERSION = datasets.Version(_VERSION)
|
81 |
+
|
82 |
+
BUILDER_CONFIGS = [
|
83 |
+
SquadTRConfig(
|
84 |
+
name="default",
|
85 |
+
version=datasets.Version(_VERSION),
|
86 |
+
description="SQuAD-TR default version.",
|
87 |
+
),
|
88 |
+
SquadTRConfig(
|
89 |
+
name="excluded",
|
90 |
+
version=datasets.Version(_VERSION),
|
91 |
+
description="SQuAD-TR excluded version.",
|
92 |
+
),
|
93 |
+
SquadTRConfig(
|
94 |
+
name="openqa",
|
95 |
+
version=datasets.Version(_VERSION),
|
96 |
+
description="SQuAD-TR OpenQA version.",
|
97 |
+
),
|
98 |
+
]
|
99 |
+
|
100 |
+
DEFAULT_CONFIG_NAME = "default"
|
101 |
+
|
102 |
+
def _info(self):
|
103 |
+
|
104 |
+
# We change the contents of the "answers" field based on the
|
105 |
+
# configuration selected. Specifically, we are excluding the
|
106 |
+
# "answer_start" field for the "excluded" and "openqa" configurations.
|
107 |
+
if self.config.name in ["excluded", "openqa"]:
|
108 |
+
answers_feature = datasets.features.Sequence({
|
109 |
+
"text": datasets.Value("string"),
|
110 |
+
})
|
111 |
+
else:
|
112 |
+
answers_feature = datasets.features.Sequence({
|
113 |
+
"text": datasets.Value("string"),
|
114 |
+
"answer_start": datasets.Value("int32"),
|
115 |
+
})
|
116 |
+
|
117 |
+
# Constructing our dataset features.
|
118 |
+
features = datasets.Features({
|
119 |
+
"id": datasets.Value("string"),
|
120 |
+
"title": datasets.Value("string"),
|
121 |
+
"context": datasets.Value("string"),
|
122 |
+
"question": datasets.Value("string"),
|
123 |
+
"answers": answers_feature
|
124 |
+
})
|
125 |
+
|
126 |
+
return datasets.DatasetInfo(
|
127 |
+
description=_DESCRIPTION,
|
128 |
+
features=features,
|
129 |
+
supervised_keys=None,
|
130 |
+
homepage=_HOMEPAGE,
|
131 |
+
citation=_CITATION,
|
132 |
+
task_templates=[
|
133 |
+
QuestionAnsweringExtractive(question_column="question", context_column="context", answers_column="answers")
|
134 |
+
],
|
135 |
+
)
|
136 |
+
|
137 |
+
def _split_generators(self, dl_manager):
|
138 |
+
|
139 |
+
# If the configuration selected is "default" or "excluded", we directly
|
140 |
+
# load the files from the URLs in _DATA_URLS. For the "openqa"
|
141 |
+
# configuration, we combine the datapints from the two different files
|
142 |
+
# used in the "default" and "excluded" configurations.
|
143 |
+
if self.config.name == "openqa":
|
144 |
+
default_files = dl_manager.download_and_extract(_DATA_URLS["default"])
|
145 |
+
excluded_files = dl_manager.download_and_extract(_DATA_URLS["excluded"])
|
146 |
+
train_file_paths = [default_files["train"], excluded_files["train"]]
|
147 |
+
dev_file_paths = [default_files["dev"], excluded_files["dev"]]
|
148 |
+
|
149 |
+
return [
|
150 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath_list": train_file_paths}),
|
151 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath_list": dev_file_paths}),
|
152 |
+
]
|
153 |
+
else:
|
154 |
+
config_urls = _DATA_URLS[self.config.name]
|
155 |
+
downloaded_files = dl_manager.download_and_extract(config_urls)
|
156 |
+
|
157 |
+
return [
|
158 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
159 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
160 |
+
]
|
161 |
+
|
162 |
+
|
163 |
+
def _generate_examples(self, filepath=None, filepath_list=None):
|
164 |
+
"""This function returns the examples in the raw (text) form."""
|
165 |
+
assert filepath or filepath_list
|
166 |
+
if filepath:
|
167 |
+
filepath_list = [filepath]
|
168 |
+
|
169 |
+
# Combining the generators for the different filepaths
|
170 |
+
generators = [self._generate_examples_from_filepath(f) for f in filepath_list]
|
171 |
+
for generator in generators:
|
172 |
+
for element in generator:
|
173 |
+
yield element
|
174 |
+
|
175 |
+
def _generate_examples_from_filepath(self, filepath):
|
176 |
+
logger.info("generating examples from = %s", filepath)
|
177 |
+
key = 0
|
178 |
+
with open(filepath, encoding="utf-8") as f:
|
179 |
+
squad = json.load(f)
|
180 |
+
for article in squad["data"]:
|
181 |
+
title = article.get("title", "")
|
182 |
+
for paragraph in article["paragraphs"]:
|
183 |
+
context = paragraph["context"] # Do not strip leading blank spaces GH-2585
|
184 |
+
for qa in paragraph["qas"]:
|
185 |
+
# Constructing our answers dictonary. Note that the
|
186 |
+
# answers_dictionary won't include the answer_start
|
187 |
+
# field in the "excluded" and "openqa" modes.
|
188 |
+
answers_dictionary = {
|
189 |
+
"text": [answer["text"] for answer in qa["answers"]],
|
190 |
+
}
|
191 |
+
if self.config.name not in ["excluded", "openqa"]:
|
192 |
+
answers_dictionary["answer_start"] = [answer["answer_start"] for answer in qa["answers"]]
|
193 |
+
|
194 |
+
# Constructing our datapoint
|
195 |
+
datapoint = {
|
196 |
+
"title": title,
|
197 |
+
"context": context,
|
198 |
+
"question": qa["question"],
|
199 |
+
"id": qa["id"],
|
200 |
+
"answers": answers_dictionary,
|
201 |
+
}
|
202 |
+
|
203 |
+
# Features currently used are "context", "question", and "answers".
|
204 |
+
# Others are extracted here for the ease of future expansions.
|
205 |
+
yield key, datapoint
|
206 |
+
key += 1
|