--- title: Codium Windurf System Monitoring Dataset tags: - system-monitoring - time-series - anomaly-detection - predictive-maintenance - macOS license: mit language: - en --- # Codium Windurf System Monitoring Dataset (100% Open-Source) ## Dataset Summary The **Codium Windurf System Monitoring Dataset** is a **100% open-source dataset** designed for **time-series analysis, anomaly detection, and system performance optimization**. It captures **real-time system metrics** from macOS, providing a structured collection of CPU, memory, disk, network, and thermal sensor data. The dataset is ideal for **fine-tuning AI models** for predictive maintenance, anomaly detection, and system load forecasting. ## Dataset Features - **OS Compatibility:** macOS - **Data Collection Interval:** 1-5 seconds - **Total Storage Limit:** 4GB - **File Format:** CSV & Parquet - **Data Fields:** - `timestamp`: Date and time of capture - `cpu_usage`: CPU usage percentage per core - `memory_used_mb`: RAM usage in MB - `disk_read_mb`: Disk read in MB - `disk_write_mb`: Disk write in MB - `net_sent_mb`: Network upload in MB - `net_recv_mb`: Network download in MB - `battery_status`: Battery percentage (Mac only) - `cpu_temp`: CPU temperature in °C ## Usage Examples ### **1️⃣ Load in Python** ```python from datasets import load_dataset dataset = load_dataset("bniladridas/codium-windurf-system-monitoring") df = dataset["train"].to_pandas() print(df.head()) ``` ### **2️⃣ Train an Anomaly Detection Model** ```python from sklearn.ensemble import IsolationForest # Convert time-series to numerical format df["cpu_usage_avg"] = df["cpu_usage"].apply(lambda x: sum(x) / len(x)) # Train model model = IsolationForest(contamination=0.05) model.fit(df[["cpu_usage_avg", "memory_used_mb", "disk_read_mb", "disk_write_mb"]]) # Predict anomalies df["anomaly"] = model.predict(df[["cpu_usage_avg", "memory_used_mb", "disk_read_mb", "disk_write_mb"]]) ``` ## Potential Use Cases ✅ **AI Fine-Tuning** for real-time system monitoring models ✅ **Time-Series Forecasting** of CPU & memory usage ✅ **Anomaly Detection** for overheating and system failures ✅ **Predictive Maintenance** for proactive issue detection ## Licensing & Contributions - **License:** MIT (100% Open-Source & Free) - **Contributions:** PRs are welcome! Open an issue for improvements. ## How to Upload to Hugging Face ### **1️⃣ Install Hugging Face CLI** ```bash pip install huggingface_hub huggingface-cli login ``` ### **2️⃣ Push the Dataset** ```python from datasets import Dataset import pandas as pd # Load the dataset df = pd.read_csv("system_monitoring_dataset.csv") dataset = Dataset.from_pandas(df) # Upload to Hugging Face dataset.push_to_hub("bniladridas/codium-windurf-system-monitoring") ``` ## Contact For questions or feedback, please contact bniladridas@gmail.com