bniladridas commited on
Commit
a40db9a
·
verified ·
1 Parent(s): 79f4512

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -40
README.md CHANGED
@@ -1,42 +1,92 @@
1
- # Codium Windurf System Monitoring Dataset
2
-
3
- ## Overview
4
- This dataset contains system monitoring metrics collected from macOS systems. The data is collected at 1-second intervals and includes various system metrics useful for AI fine-tuning, time-series forecasting, anomaly detection, and predictive maintenance.
5
-
6
- ## Dataset Details
7
- - **Dataset Name**: Codium Windurf System Monitoring Dataset
8
- - **Storage Limit**: 4GB
9
- - **Data Formats**: CSV & Parquet
10
- - **Collection Interval**: 1 second
11
- - **Programming Language**: Python (macOS)
12
-
13
- ## Metrics Collected
14
- - `timestamp`: Date and time of collection
15
- - `cpu_usage`: CPU usage per core (%)
16
- - `memory_used_mb`: RAM usage (MB)
17
- - `disk_read_mb`: Disk read (MB)
18
- - `disk_write_mb`: Disk write (MB)
19
- - `net_sent_mb`: Network upload (MB)
20
- - `net_recv_mb`: Network download (MB)
21
- - `battery_status`: Battery percentage
22
- - `cpu_temp`: CPU temperature (°C)
23
-
24
- ## Target Use Cases
25
- - AI Fine-Tuning (System Monitoring Models)
26
- - Time-Series Forecasting (CPU & Memory Usage)
27
- - Anomaly Detection (Overheating & Failures)
28
- - Predictive Maintenance (System Optimization)
29
-
30
- ## Dataset Structure
31
- The dataset is available in two formats:
32
- 1. `system_monitoring_dataset.csv`
33
- 2. `system_monitoring_dataset.parquet`
34
-
35
- ## Usage
36
- To use this dataset, simply download the files and load them using your preferred data analysis tools. The Parquet format is recommended for efficient storage and processing.
37
-
38
- ## License
39
- MIT License
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ## Contact
42
- For questions or feedback, please contact [email protected]
 
1
+ ---
2
+ title: Codium Windurf System Monitoring Dataset
3
+ tags:
4
+ - system-monitoring
5
+ - time-series
6
+ - anomaly-detection
7
+ - predictive-maintenance
8
+ - macOS
9
+ license: mit
10
+ language:
11
+ - en
12
+ ---
13
+
14
+ # Codium Windurf System Monitoring Dataset (100% Open-Source)
15
+
16
+ ## Dataset Summary
17
+ The **Codium Windurf System Monitoring Dataset** is a **100% open-source dataset** designed for **time-series analysis, anomaly detection, and system performance optimization**. It captures **real-time system metrics** from macOS, providing a structured collection of CPU, memory, disk, network, and thermal sensor data. The dataset is ideal for **fine-tuning AI models** for predictive maintenance, anomaly detection, and system load forecasting.
18
+
19
+ ## Dataset Features
20
+ - **OS Compatibility:** macOS
21
+ - **Data Collection Interval:** 1-5 seconds
22
+ - **Total Storage Limit:** 4GB
23
+ - **File Format:** CSV & Parquet
24
+ - **Data Fields:**
25
+ - `timestamp`: Date and time of capture
26
+ - `cpu_usage`: CPU usage percentage per core
27
+ - `memory_used_mb`: RAM usage in MB
28
+ - `disk_read_mb`: Disk read in MB
29
+ - `disk_write_mb`: Disk write in MB
30
+ - `net_sent_mb`: Network upload in MB
31
+ - `net_recv_mb`: Network download in MB
32
+ - `battery_status`: Battery percentage (Mac only)
33
+ - `cpu_temp`: CPU temperature in °C
34
+
35
+ ## Usage Examples
36
+ ### **1️⃣ Load in Python**
37
+ ```python
38
+ from datasets import load_dataset
39
+
40
+ dataset = load_dataset("bniladridas/codium-windurf-system-monitoring")
41
+ df = dataset["train"].to_pandas()
42
+
43
+ print(df.head())
44
+ ```
45
+
46
+ ### **2️⃣ Train an Anomaly Detection Model**
47
+ ```python
48
+ from sklearn.ensemble import IsolationForest
49
+
50
+ # Convert time-series to numerical format
51
+ df["cpu_usage_avg"] = df["cpu_usage"].apply(lambda x: sum(x) / len(x))
52
+
53
+ # Train model
54
+ model = IsolationForest(contamination=0.05)
55
+ model.fit(df[["cpu_usage_avg", "memory_used_mb", "disk_read_mb", "disk_write_mb"]])
56
+
57
+ # Predict anomalies
58
+ df["anomaly"] = model.predict(df[["cpu_usage_avg", "memory_used_mb", "disk_read_mb", "disk_write_mb"]])
59
+ ```
60
+
61
+ ## Potential Use Cases
62
+ ✅ **AI Fine-Tuning** for real-time system monitoring models
63
+ ✅ **Time-Series Forecasting** of CPU & memory usage
64
+ ✅ **Anomaly Detection** for overheating and system failures
65
+ ✅ **Predictive Maintenance** for proactive issue detection
66
+
67
+ ## Licensing & Contributions
68
+ - **License:** MIT (100% Open-Source & Free)
69
+ - **Contributions:** PRs are welcome! Open an issue for improvements.
70
+
71
+ ## How to Upload to Hugging Face
72
+ ### **1️⃣ Install Hugging Face CLI**
73
+ ```bash
74
+ pip install huggingface_hub
75
+ huggingface-cli login
76
+ ```
77
+
78
+ ### **2️⃣ Push the Dataset**
79
+ ```python
80
+ from datasets import Dataset
81
+ import pandas as pd
82
+
83
+ # Load the dataset
84
+ df = pd.read_csv("system_monitoring_dataset.csv")
85
+ dataset = Dataset.from_pandas(df)
86
+
87
+ # Upload to Hugging Face
88
+ dataset.push_to_hub("bniladridas/codium-windurf-system-monitoring")
89
+ ```
90
 
91
  ## Contact
92
+ For questions or feedback, please contact [email protected]