Update README.md
Browse files
README.md
CHANGED
@@ -1,42 +1,92 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
-
|
28 |
-
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
## Usage
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
## Contact
|
42 |
-
For questions or feedback, please contact [email protected]
|
|
|
1 |
+
---
|
2 |
+
title: Codium Windurf System Monitoring Dataset
|
3 |
+
tags:
|
4 |
+
- system-monitoring
|
5 |
+
- time-series
|
6 |
+
- anomaly-detection
|
7 |
+
- predictive-maintenance
|
8 |
+
- macOS
|
9 |
+
license: mit
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
---
|
13 |
+
|
14 |
+
# Codium Windurf System Monitoring Dataset (100% Open-Source)
|
15 |
+
|
16 |
+
## Dataset Summary
|
17 |
+
The **Codium Windurf System Monitoring Dataset** is a **100% open-source dataset** designed for **time-series analysis, anomaly detection, and system performance optimization**. It captures **real-time system metrics** from macOS, providing a structured collection of CPU, memory, disk, network, and thermal sensor data. The dataset is ideal for **fine-tuning AI models** for predictive maintenance, anomaly detection, and system load forecasting.
|
18 |
+
|
19 |
+
## Dataset Features
|
20 |
+
- **OS Compatibility:** macOS
|
21 |
+
- **Data Collection Interval:** 1-5 seconds
|
22 |
+
- **Total Storage Limit:** 4GB
|
23 |
+
- **File Format:** CSV & Parquet
|
24 |
+
- **Data Fields:**
|
25 |
+
- `timestamp`: Date and time of capture
|
26 |
+
- `cpu_usage`: CPU usage percentage per core
|
27 |
+
- `memory_used_mb`: RAM usage in MB
|
28 |
+
- `disk_read_mb`: Disk read in MB
|
29 |
+
- `disk_write_mb`: Disk write in MB
|
30 |
+
- `net_sent_mb`: Network upload in MB
|
31 |
+
- `net_recv_mb`: Network download in MB
|
32 |
+
- `battery_status`: Battery percentage (Mac only)
|
33 |
+
- `cpu_temp`: CPU temperature in °C
|
34 |
+
|
35 |
+
## Usage Examples
|
36 |
+
### **1️⃣ Load in Python**
|
37 |
+
```python
|
38 |
+
from datasets import load_dataset
|
39 |
+
|
40 |
+
dataset = load_dataset("bniladridas/codium-windurf-system-monitoring")
|
41 |
+
df = dataset["train"].to_pandas()
|
42 |
+
|
43 |
+
print(df.head())
|
44 |
+
```
|
45 |
+
|
46 |
+
### **2️⃣ Train an Anomaly Detection Model**
|
47 |
+
```python
|
48 |
+
from sklearn.ensemble import IsolationForest
|
49 |
+
|
50 |
+
# Convert time-series to numerical format
|
51 |
+
df["cpu_usage_avg"] = df["cpu_usage"].apply(lambda x: sum(x) / len(x))
|
52 |
+
|
53 |
+
# Train model
|
54 |
+
model = IsolationForest(contamination=0.05)
|
55 |
+
model.fit(df[["cpu_usage_avg", "memory_used_mb", "disk_read_mb", "disk_write_mb"]])
|
56 |
+
|
57 |
+
# Predict anomalies
|
58 |
+
df["anomaly"] = model.predict(df[["cpu_usage_avg", "memory_used_mb", "disk_read_mb", "disk_write_mb"]])
|
59 |
+
```
|
60 |
+
|
61 |
+
## Potential Use Cases
|
62 |
+
✅ **AI Fine-Tuning** for real-time system monitoring models
|
63 |
+
✅ **Time-Series Forecasting** of CPU & memory usage
|
64 |
+
✅ **Anomaly Detection** for overheating and system failures
|
65 |
+
✅ **Predictive Maintenance** for proactive issue detection
|
66 |
+
|
67 |
+
## Licensing & Contributions
|
68 |
+
- **License:** MIT (100% Open-Source & Free)
|
69 |
+
- **Contributions:** PRs are welcome! Open an issue for improvements.
|
70 |
+
|
71 |
+
## How to Upload to Hugging Face
|
72 |
+
### **1️⃣ Install Hugging Face CLI**
|
73 |
+
```bash
|
74 |
+
pip install huggingface_hub
|
75 |
+
huggingface-cli login
|
76 |
+
```
|
77 |
+
|
78 |
+
### **2️⃣ Push the Dataset**
|
79 |
+
```python
|
80 |
+
from datasets import Dataset
|
81 |
+
import pandas as pd
|
82 |
+
|
83 |
+
# Load the dataset
|
84 |
+
df = pd.read_csv("system_monitoring_dataset.csv")
|
85 |
+
dataset = Dataset.from_pandas(df)
|
86 |
+
|
87 |
+
# Upload to Hugging Face
|
88 |
+
dataset.push_to_hub("bniladridas/codium-windurf-system-monitoring")
|
89 |
+
```
|
90 |
|
91 |
## Contact
|
92 |
+
For questions or feedback, please contact [email protected]
|