Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
cpalenmichel commited on
Commit
41af597
·
verified ·
1 Parent(s): 18d042d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +195 -74
README.md CHANGED
@@ -1,74 +1,195 @@
1
- ---
2
- dataset_info:
3
- features:
4
- - name: tokens
5
- sequence: string
6
- - name: ner_tags
7
- sequence:
8
- class_label:
9
- names:
10
- '0': O
11
- '1': B-UoM
12
- '2': I-UoM
13
- '3': B-color
14
- '4': I-color
15
- '5': B-condition
16
- '6': I-condition
17
- '7': B-content
18
- '8': I-content
19
- '9': B-core_product_type
20
- '10': I-core_product_type
21
- '11': B-creator
22
- '12': I-creator
23
- '13': B-department
24
- '14': I-department
25
- '15': B-material
26
- '16': I-material
27
- '17': B-modifier
28
- '18': I-modifier
29
- '19': B-occasion
30
- '20': I-occasion
31
- '21': B-origin
32
- '22': I-origin
33
- '23': B-price
34
- '24': I-price
35
- '25': B-product_name
36
- '26': I-product_name
37
- '27': B-product_number
38
- '28': I-product_number
39
- '29': B-quantity
40
- '30': I-quantity
41
- '31': B-shape
42
- '32': I-shape
43
- '33': B-time
44
- '34': I-time
45
- splits:
46
- - name: train
47
- num_bytes: 553523
48
- num_examples: 7841
49
- - name: test
50
- num_bytes: 70308
51
- num_examples: 993
52
- - name: validation
53
- num_bytes: 61109
54
- num_examples: 871
55
- download_size: 242711
56
- dataset_size: 684940
57
- configs:
58
- - config_name: default
59
- data_files:
60
- - split: train
61
- path: data/train-*
62
- - split: test
63
- path: data/test-*
64
- - split: validation
65
- path: data/validation-*
66
- license: cc-by-4.0
67
- task_categories:
68
- - token-classification
69
- language:
70
- - en
71
- pretty_name: QueryNER
72
- size_categories:
73
- - 1K<n<10K
74
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ features:
4
+ - name: tokens
5
+ sequence: string
6
+ - name: ner_tags
7
+ sequence:
8
+ class_label:
9
+ names:
10
+ '0': O
11
+ '1': B-UoM
12
+ '2': I-UoM
13
+ '3': B-color
14
+ '4': I-color
15
+ '5': B-condition
16
+ '6': I-condition
17
+ '7': B-content
18
+ '8': I-content
19
+ '9': B-core_product_type
20
+ '10': I-core_product_type
21
+ '11': B-creator
22
+ '12': I-creator
23
+ '13': B-department
24
+ '14': I-department
25
+ '15': B-material
26
+ '16': I-material
27
+ '17': B-modifier
28
+ '18': I-modifier
29
+ '19': B-occasion
30
+ '20': I-occasion
31
+ '21': B-origin
32
+ '22': I-origin
33
+ '23': B-price
34
+ '24': I-price
35
+ '25': B-product_name
36
+ '26': I-product_name
37
+ '27': B-product_number
38
+ '28': I-product_number
39
+ '29': B-quantity
40
+ '30': I-quantity
41
+ '31': B-shape
42
+ '32': I-shape
43
+ '33': B-time
44
+ '34': I-time
45
+ splits:
46
+ - name: train
47
+ num_bytes: 553523
48
+ num_examples: 7841
49
+ - name: test
50
+ num_bytes: 70308
51
+ num_examples: 993
52
+ - name: validation
53
+ num_bytes: 61109
54
+ num_examples: 871
55
+ download_size: 242711
56
+ dataset_size: 684940
57
+ configs:
58
+ - config_name: default
59
+ data_files:
60
+ - split: train
61
+ path: data/train-*
62
+ - split: test
63
+ path: data/test-*
64
+ - split: validation
65
+ path: data/validation-*
66
+ license: cc-by-4.0
67
+ task_categories:
68
+ - token-classification
69
+ language:
70
+ - en
71
+ pretty_name: QueryNER
72
+ size_categories:
73
+ - 1K<n<10K
74
+ ---
75
+ # Dataset Card for QueryNER
76
+
77
+ QueryNER is a sequence labeling dataset for e-commerce query segmentation.
78
+ It has 17 different entity types. QueryNER covers nearly the entire query rather than just certain key aspects that may be covered by other aspect-value extraction systems.
79
+
80
+
81
+ ## Dataset Details
82
+
83
+ ### Dataset Description
84
+
85
+ QueryNER is a manually-annotated dataset and accompanying model for e-commerce query segmentation. Prior work in sequence labeling for e-commerce has largely addressed aspect-value extraction which focuses
86
+ on extracting portions of a product title or query for narrowly defined aspects. Our work instead focuses on the goal
87
+ of dividing a query into meaningful chunks with broadly applicable types.
88
+ QueryNER has 17 different entity types.
89
+
90
+
91
+ - **Curated by:** BLT Lab
92
+ - **Language(s) (NLP):** English
93
+ - **License:** CC-BY 4.0
94
+
95
+ ### Dataset Sources
96
+
97
+ QueryNER is annotation on a subsection of Amazon's (ESCI Shopping Queries dataset)[https://github.com/amazon-science/esci-data].
98
+
99
+
100
+ - **Repository:**
101
+ - **Paper [optional]:** [More Information Needed]
102
+ - **Demo [optional]:** [More Information Needed]
103
+
104
+ ## Uses
105
+
106
+ QueryNER is intended to be used for segmentation of e-commerce queries in English.
107
+
108
+ ### Direct Use
109
+
110
+ QueryNER can be used for research on e-commerce query segmentation.
111
+ It may also be used for e-commerce query segmentation for use in further downstream systems; however, we caution users that while the ontology is broadly applicable, using models trained on only this small public release may have suboptimal performance especially on out of domain data.
112
+
113
+ ### Out-of-Scope Use
114
+
115
+ Users would likely experience poor segmentation performance on data outside of the e-commerce domain.
116
+ Because the dataset is on the smaller side, additional annotated data on additional data using the QueryNER ontology
117
+ may be necessary to get better performance on other datasets.
118
+
119
+
120
+ ## Dataset Structure
121
+
122
+ The dataset includes the query tokens and their tags.
123
+
124
+
125
+ ## Dataset Creation
126
+ See paper.
127
+
128
+ ### Curation Rationale
129
+
130
+ The dataset was created for research and for downstream applications for e-commerce search systems to make use of segmented queries.
131
+
132
+
133
+ ### Source Data
134
+
135
+ The source data is from the Shopping Queries ESCI dataset.
136
+ (https://github.com/amazon-science/esci-data)[https://github.com/amazon-science/esci-data]
137
+ ```
138
+ @article{reddy2022shopping,
139
+ title={Shopping Queries Dataset: A Large-Scale {ESCI} Benchmark for Improving Product Search},
140
+ author={Chandan K. Reddy and Lluís Màrquez and Fran Valero and Nikhil Rao and Hugo Zaragoza and Sambaran Bandyopadhyay and Arnab Biswas and Anlu Xing and Karthik Subbian},
141
+ year={2022},
142
+ eprint={2206.06588},
143
+ archivePrefix={arXiv}
144
+ }
145
+ ```
146
+
147
+ #### Data Collection and Processing
148
+
149
+ See paper
150
+
151
+
152
+ #### Who are the source data producers?
153
+
154
+ See source data repo and paper.
155
+
156
+
157
+ ### Annotations
158
+
159
+ #### Annotation process
160
+
161
+ See paper for details.
162
+
163
+ #### Who are the annotators?
164
+
165
+ Annotators were contract workers and were paid a living wage.
166
+
167
+ #### Personal and Sensitive Information
168
+
169
+ The dataset is just user e-commerce queries and should not contain any sensitive information.
170
+
171
+
172
+ ## Bias, Risks, and Limitations
173
+
174
+ The dataset is English only for now.
175
+ Bias may be toward e-commerce queries of the source data.
176
+ There may also be annotator bias since the dataset is annotated by a single annotator for the training set and three annotators and an adjudicator for the development and test sets.
177
+
178
+
179
+ ## Citation [optional]
180
+
181
+ To appear at LREC-COLING 2024.
182
+
183
+ **BibTeX:**
184
+
185
+ Coming soon
186
+
187
+
188
+
189
+ ## Dataset Card Authors
190
+
191
+ Chester Palen-Michel @cpalenmichel
192
+
193
+ ## Dataset Card Contact
194
+
195
+ Chester Palen-Michel @cpalenmichel