Datasets:

cpalenmichel commited on
Commit
2aa3c1d
·
1 Parent(s): 1b85bfe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -36
README.md CHANGED
@@ -2,6 +2,11 @@
2
  license: cc-by-4.0
3
  task_categories:
4
  - summarization
 
 
 
 
 
5
  language:
6
  - am
7
  - az
@@ -45,6 +50,10 @@ language:
45
  pretty_name: LR-Sum
46
  size_categories:
47
  - 100K<n<1M
 
 
 
 
48
  viewer: false
49
  ---
50
  # Dataset Card for LR-Sum
@@ -57,39 +66,37 @@ This dataset card aims to be a base template for new datasets. It has been gener
57
 
58
  ### Dataset Description
59
 
60
- <!-- Provide a longer summary of what this dataset is. -->
 
 
 
61
 
62
-
63
-
64
- - **Curated by:** [More Information Needed]
65
- - **Funded by [optional]:** [More Information Needed]
66
- - **Shared by [optional]:** [More Information Needed]
67
- - **Language(s) (NLP):** [More Information Needed]
68
- - **License:** [More Information Needed]
69
 
70
  ### Dataset Sources [optional]
71
 
72
- <!-- Provide the basic links for the dataset. -->
 
73
 
74
- - **Repository:** [More Information Needed]
75
- - **Paper [optional]:** [More Information Needed]
76
- - **Demo [optional]:** [More Information Needed]
77
 
78
  ## Uses
79
 
80
- <!-- Address questions around how the dataset is intended to be used. -->
81
 
82
  ### Direct Use
83
 
84
- <!-- This section describes suitable use cases for the dataset. -->
85
-
86
- [More Information Needed]
87
 
88
  ### Out-of-Scope Use
89
 
90
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
91
 
92
- [More Information Needed]
93
 
94
  ## Dataset Structure
95
 
@@ -155,32 +162,37 @@ This dataset card aims to be a base template for new datasets. It has been gener
155
 
156
  Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
157
 
158
- ## Citation [optional]
159
-
160
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
161
 
162
  **BibTeX:**
163
-
164
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
 
166
  **APA:**
167
 
168
- [More Information Needed]
169
-
170
- ## Glossary [optional]
171
-
172
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
173
-
174
- [More Information Needed]
175
-
176
- ## More Information [optional]
177
-
178
- [More Information Needed]
179
 
180
  ## Dataset Card Authors [optional]
181
 
182
- [More Information Needed]
183
 
184
  ## Dataset Card Contact
185
 
186
- [More Information Needed]
 
2
  license: cc-by-4.0
3
  task_categories:
4
  - summarization
5
+ - text-generation
6
+ annotations_creators:
7
+ - found
8
+ language_creators:
9
+ - found
10
  language:
11
  - am
12
  - az
 
50
  pretty_name: LR-Sum
51
  size_categories:
52
  - 100K<n<1M
53
+ multilinguality:
54
+ - multilingual
55
+ tags:
56
+ - conditional-text-generation
57
  viewer: false
58
  ---
59
  # Dataset Card for LR-Sum
 
66
 
67
  ### Dataset Description
68
 
69
+ LR-Sum is a permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.
70
+ LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced.
71
+ The data is based on the collection of the Multilingual Open Text corpus where the source data is public domain newswire collected from from Voice of America websites.
72
+ LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets.
73
 
74
+ - **Curated by:** BLT Lab: Chester Palen-Michel and Constantine Lignos
75
+ - **Shared by:** Chester Palen-Michel
76
+ - **Language(s) (NLP): Albanian, Amharic, Armenian, Azerbaijani, Bengali, Bosnian, Burmese, Chinese, English, French, Georgian, Greek, Haitian Creole, Hausa, Indonesian, Khmer, Kinyarwanda, Korean, Kurdish, Lao, Macedonian, Northern Ndebele, Pashto, Persian, Portuguese, Russian, Serbian, Shona, Somali, Spanish, Swahili, Thai, Tibetan, Tigrinya, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese
77
+ - **License:** CC-BY 4.0
 
 
 
78
 
79
  ### Dataset Sources [optional]
80
 
81
+ Multilingual Open Text v1.6
82
+ which is a collection of newswire text from Voice of America (VOA).
83
 
84
+ - **Repository:** https://github.com/bltlab/lr-sum
85
+ - **Paper:** https://aclanthology.org/2023.findings-acl.427/
 
86
 
87
  ## Uses
88
 
89
+ The dataset is intended for research in automatic summarization in various languages, especially for less resourced languages.
90
 
91
  ### Direct Use
92
 
93
+ The data can be used for training text generation models to generate short summaries of news articles in many languages.
94
+ Automatic evaluation of automatic summarization is another use case, though we encourage also conducting human evaluation of any model trained for summarization.
 
95
 
96
  ### Out-of-Scope Use
97
 
98
+ This dataset only includes newswire text, so models trained on the data may not be effective for out of domain summarization.
99
 
 
100
 
101
  ## Dataset Structure
102
 
 
162
 
163
  Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
164
 
165
+ ## Citation
 
 
166
 
167
  **BibTeX:**
168
+ ```
169
+ @inproceedings{palen-michel-lignos-2023-lr,
170
+ title = "{LR}-Sum: Summarization for Less-Resourced Languages",
171
+ author = "Palen-Michel, Chester and
172
+ Lignos, Constantine",
173
+ editor = "Rogers, Anna and
174
+ Boyd-Graber, Jordan and
175
+ Okazaki, Naoaki",
176
+ booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
177
+ month = jul,
178
+ year = "2023",
179
+ address = "Toronto, Canada",
180
+ publisher = "Association for Computational Linguistics",
181
+ url = "https://aclanthology.org/2023.findings-acl.427",
182
+ doi = "10.18653/v1/2023.findings-acl.427",
183
+ pages = "6829--6844",
184
+ abstract = "We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.",
185
+ }
186
+ ```
187
 
188
  **APA:**
189
 
190
+ Palen-Michel, C. & Lignos, C. (2023). LR-Sum: Summarization for Less-Resourced Languages. In Findings of the Association for Computational Linguistics: ACL 2023, pages 6829–6844, Toronto, Canada. Association for Computational Linguistics.
 
 
 
 
 
 
 
 
 
 
191
 
192
  ## Dataset Card Authors [optional]
193
 
194
+ Chester Palen-Michel
195
 
196
  ## Dataset Card Contact
197
 
198
+ Chester Palen-Michel