File size: 1,449 Bytes
7a718ee
6c1102a
7a718ee
 
 
 
 
 
 
 
 
 
 
 
6c1102a
 
7a718ee
6c1102a
 
 
 
7a718ee
6c1102a
 
 
7a718ee
6c1102a
 
 
7a718ee
 
 
 
 
 
 
 
 
 
6c1102a
7a718ee
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: cc-by-4.0
---

# DeepLoc-2.0 Training Data

Dataset from https://services.healthtech.dtu.dk/services/DeepLoc-2.0/ used to train the DeepLoc-2.0 model. 

## Data preparation
Data downloaded and processed using the following Python script:

```python
import pandas as pd

df = pd.read_csv('https://services.healthtech.dtu.dk/services/DeepLoc-2.0/data/Swissprot_Train_Validation_dataset.csv').drop(['Unnamed: 0', 'Partition'], axis=1)
df = df.melt(['Kingdom', 'ACC', 'Sequence','Membrane'], var_name='Location').query('value == 1.0').drop(labels='value', axis=1).astype({'Membrane': 'int8'})

train = df.sample(frac=0.8)
df = df.drop(train.index)
val = df.sample(frac=0.5)
test = df.drop(val.index)

train = train.reset_index(drop=True)
val = val.reset_index(drop=True)
test = test.reset_index(drop=True)

train.to_parquet('deeploc-train.parquet', index=False)
val.to_parquet('deploc-val.parquet', index=False)
test.to_parquet('deeploc-test.parquet', index=False)
```

## Citation

**DeepLoc-2.0:**

```
Vineet Thumuluri and others, DeepLoc 2.0: multi-label subcellular localization prediction using protein language models, Nucleic Acids Research, Volume 50, Issue W1, 5 July 2022, Pages W228–W234, https://doi.org/10.1093/nar/gkac278
```

The DeepLoc data is a derivative of the UniProt dataset:

**UniProt**

```
The UniProt Consortium
UniProt: the Universal Protein Knowledgebase in 2023
Nucleic Acids Res. 51:D523–D531 (2023)
```