""" Script to generate WebDataset tar shards from images. """ import argparse import pickle import json import tarfile from pathlib import Path from io import BytesIO import torch from torch.utils.data import DataLoader from torchvision.transforms import ToPILImage from PIL import Image from tqdm import tqdm from custom_datasets import OnlineFontSquare, TextSampler def parse_arguments(): """Parses command-line arguments.""" parser = argparse.ArgumentParser(description='Generate WebDataset tar shards from images') parser.add_argument('--output_dir', type=str, default='/home/vpippi/font-square-v2/tars/fine_tune', help='Output directory') parser.add_argument('--fonts', type=str, default='files/font_square/clean_fonts', help='Fonts path') parser.add_argument('--backgrounds', type=str, default='files/font_square/backgrounds', help='Backgrounds path') parser.add_argument('--renderers', type=str, help='Renderers path') parser.add_argument('--db_multiplier', type=int, default=1, help='Dataset multiplier') parser.add_argument('--dataloader_num_workers', type=int, default=15, help='Dataloader num workers') parser.add_argument('--shard_size', type=int, default=4000, help='Samples per tar shard') return parser.parse_args() def setup_dataset(args): """Initializes dataset and sampler.""" sampler = TextSampler(4, 128, (1, 32)) renderers = None if args.renderers: with open(args.renderers, 'rb') as f: renderers = pickle.load(f) dataset = OnlineFontSquare(args.fonts, args.backgrounds, sampler, renderers=renderers) dataset.length *= args.db_multiplier return dataset def add_bytes_to_tar(tar, filename, data_bytes): """Adds a file to the tar archive.""" ti = tarfile.TarInfo(name=filename) ti.size = len(data_bytes) tar.addfile(ti, BytesIO(data_bytes)) def process_samples(loader, args): """Processes dataset samples and writes them into tar shards.""" output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) to_pil = ToPILImage() shard_idx, sample_in_shard, total_samples = 0, 0, 0 tar_path = output_dir / f'{shard_idx:06d}.tar' tar = tarfile.open(tar_path, mode='w') try: for sample in tqdm(loader, desc="Processing samples"): text = sample['text'][0].strip() rgb_img_tensor = sample['img'][0] bw_img_tensor = sample['text_img'][0] writer_id = sample['writer'][0].item() key = f'{sample_in_shard:06d}' rgb_pil = to_pil((rgb_img_tensor + 1) / 2) bw_pil = to_pil((bw_img_tensor + 1) / 2) rgb_bytes_io = BytesIO() rgb_pil.save(rgb_bytes_io, format='PNG') rgb_bytes = rgb_bytes_io.getvalue() bw_bytes_io = BytesIO() bw_pil.save(bw_bytes_io, format='PNG') bw_bytes = bw_bytes_io.getvalue() metadata = json.dumps({"text": text, "writer_id": writer_id}).encode('utf-8') add_bytes_to_tar(tar, f'{key}.rgb.png', rgb_bytes) add_bytes_to_tar(tar, f'{key}.bw.png', bw_bytes) add_bytes_to_tar(tar, f'{key}.json', metadata) sample_in_shard += 1 total_samples += 1 if sample_in_shard >= args.shard_size: tar.close() shard_idx += 1 sample_in_shard = 0 tar_path = output_dir / f'{shard_idx:06d}.tar' tar = tarfile.open(tar_path, mode='w') except KeyboardInterrupt: print("Interrupted by user.") finally: tar.close() print(f"Finished writing {total_samples} samples in {shard_idx+1} tar shards into {output_dir}") def main(): args = parse_arguments() dataset = setup_dataset(args) loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=args.dataloader_num_workers) process_samples(loader, args) if __name__ == '__main__': main()