Vittorio Pippi commited on
Commit
313e268
·
1 Parent(s): f074040

Inital commit

Browse files
README.md CHANGED
@@ -1,3 +1,145 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ # Accessing the `font-square-v2` Dataset on Hugging Face
6
+
7
+ The `font-square-v2` dataset is hosted on Hugging Face at [blowing-up-groundhogs/font-square-v2](https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2). The dataset is stored in WebDataset format, with all tar files located in the `tars/` folder of the repository. Each tar file contains multiple samples; each sample includes:
8
+ - An RGB image file (with the extension `.rgb.png`)
9
+ - A black-and-white image file (with the extension `.bw.png`)
10
+ - A JSON file (`.json`) with metadata (e.g. text and writer ID)
11
+
12
+ You can access the dataset in one of two ways: by downloading it locally or by streaming it directly over HTTP.
13
+
14
+ ---
15
+
16
+ ## 1. Downloading the Dataset Locally
17
+
18
+ You can download the dataset locally using either Git LFS or the [huggingface_hub](https://huggingface.co/docs/huggingface_hub) Python library.
19
+
20
+ ### **Using Git LFS**
21
+
22
+ Clone the repository (make sure [Git LFS](https://git-lfs.github.com/) is installed):
23
+
24
+ ```bash
25
+ git lfs clone https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2
26
+ ```
27
+
28
+ This will create a local directory named `font-square-v2` that contains the `tars/` folder with all the tar shards.
29
+
30
+ ### **Using the huggingface_hub Python Library**
31
+
32
+ Alternatively, you can download a snapshot of the dataset in your Python code:
33
+
34
+ ```python
35
+ from huggingface_hub import snapshot_download
36
+
37
+ # Download the repository; the local path is returned
38
+ local_dir = snapshot_download(repo_id="blowing-up-groundhogs/font-square-v2")
39
+ print("Dataset downloaded to:", local_dir)
40
+ ```
41
+
42
+ After downloading, the tar shards are available in the `tars/` subdirectory of `local_dir`.
43
+
44
+ ### **Using WebDataset with the Local Files**
45
+
46
+ Once the dataset is downloaded locally, you can load it with [WebDataset](https://github.com/webdataset/webdataset). For example:
47
+
48
+ ```python
49
+ import webdataset as wds
50
+ import os
51
+ from pathlib import Path
52
+
53
+ # Assuming the dataset was downloaded to `local_dir` and tar shards are in the 'tars' folder
54
+ local_dir = "path/to/font-square-v2" # Update this path if necessary
55
+ tar_pattern = os.path.join(local_dir, "tars", "{000000..999999}.tar") # Adjust range to match your tar shard naming
56
+
57
+ # Create a WebDataset
58
+ dataset = wds.WebDataset(tar_pattern).decode("pil")
59
+
60
+ # Example: Iterate over a few samples
61
+ for sample in dataset:
62
+ # Access sample items
63
+ rgb_image = sample["rgb.png"] # RGB image (PIL image)
64
+ bw_image = sample["bw.png"] # BW image (PIL image)
65
+ metadata_bytes = sample["json"]
66
+
67
+ # Convert JSON metadata to dictionary
68
+ import json
69
+ metadata = json.loads(metadata_bytes.decode("utf-8"))
70
+ print("Sample metadata:", metadata)
71
+
72
+ # Process the images as needed...
73
+ break
74
+ ```
75
+
76
+ ---
77
+
78
+ ## 2. Streaming the Dataset Directly Over HTTP
79
+
80
+ If you prefer to stream the dataset directly from Hugging Face (without downloading the entire dataset), you can use the HTTP URLs provided by the Hugging Face CDN. Make sure that your tar files are public and accessible.
81
+
82
+ For example, if the tar shards are available at:
83
+
84
+ ```
85
+ https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2/resolve/main/tars/000000.tar
86
+ https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2/resolve/main/tars/000001.tar
87
+ ...
88
+ ```
89
+
90
+ you can set up your WebDataset as follows:
91
+
92
+ ```python
93
+ import webdataset as wds
94
+
95
+ # Define the URL pattern to stream the tar shards directly from Hugging Face
96
+ url_pattern = "https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2/resolve/main/tars/{000000..000010}.tar"
97
+ # Adjust the shard range (here 000000 to 000010) to cover all your tar shards.
98
+
99
+ # Create a WebDataset that streams data
100
+ dataset = wds.WebDataset(url_pattern).decode("pil")
101
+
102
+ # Iterate over a few samples from the streamed dataset
103
+ for sample in dataset:
104
+ rgb_image = sample["rgb.png"]
105
+ bw_image = sample["bw.png"]
106
+ metadata_bytes = sample["json"]
107
+
108
+ import json
109
+ metadata = json.loads(metadata_bytes.decode("utf-8"))
110
+ print("Sample metadata:", metadata)
111
+
112
+ # Process sample as needed...
113
+ break
114
+ ```
115
+
116
+ **Note:** Streaming performance depends on your network connection and the Hugging Face CDN. If you experience any slowdowns, consider downloading the dataset locally instead.
117
+
118
+ ---
119
+
120
+ ## Additional Considerations
121
+
122
+ - **Decoding:**
123
+ The `.decode("pil")` method in the WebDataset pipeline converts image bytes into PIL images. If you prefer PyTorch tensors, you can add a transformation:
124
+
125
+ ```python
126
+ import torchvision.transforms as transforms
127
+ transform = transforms.ToTensor()
128
+
129
+ dataset = (
130
+ wds.WebDataset(url_pattern)
131
+ .decode("pil")
132
+ .map(lambda sample: {
133
+ "rgb": transform(sample["rgb.png"]),
134
+ "bw": transform(sample["bw.png"]),
135
+ "metadata": sample["json"],
136
+ })
137
+ )
138
+ ```
139
+
140
+ - **Shard Naming:**
141
+ Ensure that the naming convention in your `tars/` folder matches the URL pattern used above. Adjust the pattern `{000000..000010}` accordingly if your tar files have a different naming scheme or if there are more shards.
142
+
143
+ ---
144
+
145
+ By following these instructions, you can easily load and work with the `font-square-v2` dataset from Hugging Face in your Python projects using WebDataset.
tars/000001.tar CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:386ffd7032a44854305e5a0e8c68edf5da1277d757852a952377efa8d27d94f3
3
- size 160451682
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c1e7931a0d408c5e039f4a4cfe0a7a89cd3288169d7c4b6c2cf6bcec5fca34f
3
+ size 259133440
tars/000002.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2d59cea096c53f94bcee78087b9ef17aba46b07a65440e29b66c6901e4df43a
3
+ size 255344640
tars/000003.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15ea27332693d625d47a96254c71ac865e0cf9639bfe4404edd8ab1c97a9c316
3
+ size 245145600
tars/000004.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e21acb30d2c2d0245601fe98857abb4d8c6de2358346360daa13c7ac4cad361
3
+ size 260771840
tars/000005.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8144aafcbc3b70fcb4c5d186d6720e03806ab15e8de54f160be7427b35b0384a
3
+ size 266577920
tars/000006.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acb9e0ba3141642367ac3159166aab950894bdf0c3e398a2b2b16b7a608d1914
3
+ size 254863360
tars/000007.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de2a8fd055bfdfd3e16431714300b01215d9ae39e1c8bc201612f7f271a7b8da
3
+ size 250019840
tars/000008.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0835e6efafced2c6bff96a7e909ce3e5c226a8e2a10e7fd7cf9b9426525af0e8
3
+ size 251371520
tars/000009.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fb15f6eaa804c32c9f38436d476d881ab1171a417801671c02c5dab38bf2f07
3
+ size 256402528