Vittorio Pippi commited on
Commit
036a76e
Β·
1 Parent(s): 839c964

Initial commit

Browse files
Files changed (1) hide show
  1. README.md +125 -54
README.md CHANGED
@@ -6,39 +6,106 @@ configs:
6
  - split: train
7
  path: tars/train/*.tar
8
  - split: fine_tune
9
- path: tars/train/*.tar
10
  language:
11
  - en
12
  ---
13
 
14
  # Accessing the `font-square-v2` Dataset on Hugging Face
15
 
16
- The `font-square-v2` dataset is hosted on Hugging Face at [blowing-up-groundhogs/font-square-v2](https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2). The dataset is stored in WebDataset format, with all tar files located in the `tars/` folder of the repository. Each tar file contains multiple samples; each sample includes:
17
- - An RGB image file (with the extension `.rgb.png`)
18
- - A black-and-white image file (with the extension `.bw.png`)
19
- - A JSON file (`.json`) with metadata (e.g. text and writer ID)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- You can access the dataset in one of two ways: by downloading it locally or by streaming it directly over HTTP.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  ---
24
 
25
  ## 1. Downloading the Dataset Locally
26
 
27
- You can download the dataset locally using either Git LFS or the [huggingface_hub](https://huggingface.co/docs/huggingface_hub) Python library.
28
 
29
- ### **Using Git LFS**
30
 
31
- Clone the repository (make sure [Git LFS](https://git-lfs.github.com/) is installed):
32
 
33
  ```bash
34
  git lfs clone https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2
35
  ```
36
 
37
- This will create a local directory named `font-square-v2` that contains the `tars/` folder with all the tar shards.
38
 
39
- ### **Using the huggingface_hub Python Library**
40
 
41
- Alternatively, you can download a snapshot of the dataset in your Python code:
42
 
43
  ```python
44
  from huggingface_hub import snapshot_download
@@ -48,102 +115,106 @@ local_dir = snapshot_download(repo_id="blowing-up-groundhogs/font-square-v2", re
48
  print("Dataset downloaded to:", local_dir)
49
  ```
50
 
51
- After downloading, the tar shards are available in the `tars/` subdirectory of `local_dir`.
 
 
52
 
53
- ### **Using WebDataset with the Local Files**
54
 
55
- Once the dataset is downloaded locally, you can load it with [WebDataset](https://github.com/webdataset/webdataset). For example:
56
 
57
  ```python
58
  import webdataset as wds
59
  import os
60
- from pathlib import Path
61
 
62
- # Assuming the dataset was downloaded to `local_dir` and tar shards are in the 'tars' folder
63
- local_dir = "path/to/font-square-v2" # Update this path if necessary
64
- tar_pattern = os.path.join(local_dir, "tars", "{000000..000499}.tar") # Adjust range to match your tar shard naming
65
 
66
- # Create a WebDataset
67
- dataset = wds.WebDataset(tar_pattern).decode("pil")
 
68
 
69
- # Example: Iterate over a few samples
70
- for sample in dataset:
71
- # Access sample items
72
- rgb_image = sample["rgb.png"] # RGB image (PIL image)
73
- bw_image = sample["bw.png"] # BW image (PIL image)
74
  metadata = sample["json"]
75
 
76
- print("Sample metadata:", metadata)
77
-
78
- # Process the images as needed...
79
  break
80
  ```
81
 
 
 
 
 
 
 
 
82
  ---
83
 
84
  ## 2. Streaming the Dataset Directly Over HTTP
85
 
86
- If you prefer to stream the dataset directly from Hugging Face (without downloading the entire dataset), you can use the HTTP URLs provided by the Hugging Face CDN. Make sure that your tar files are public and accessible.
87
-
88
- For example, if the tar shards are available at:
89
 
 
90
  ```
91
- https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2/resolve/main/tars/000000.tar
92
- https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2/resolve/main/tars/000001.tar
93
  ...
 
94
  ```
95
-
96
- you can set up your WebDataset as follows:
97
 
98
  ```python
99
  import webdataset as wds
100
 
101
- # Define the URL pattern to stream the tar shards directly from Hugging Face
102
- url_pattern = "https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2/resolve/main/tars/{000000..000499}.tar"
103
- # Adjust the shard range (here 000000 to 000010) to cover all your tar shards.
 
104
 
105
- # Create a WebDataset that streams data
106
  dataset = wds.WebDataset(url_pattern).decode("pil")
107
 
108
- # Iterate over a few samples from the streamed dataset
109
  for sample in dataset:
110
  rgb_image = sample["rgb.png"]
111
  bw_image = sample["bw.png"]
112
  metadata = sample["json"]
113
 
114
  print("Sample metadata:", metadata)
115
-
116
- # Process sample as needed...
117
  break
118
  ```
119
 
120
- **Note:** Streaming performance depends on your network connection and the Hugging Face CDN. If you experience any slowdowns, consider downloading the dataset locally instead.
121
 
122
  ---
123
 
124
  ## Additional Considerations
125
 
126
- - **Decoding:**
127
- The `.decode("pil")` method in the WebDataset pipeline converts image bytes into PIL images. If you prefer PyTorch tensors, you can add a transformation:
128
 
129
  ```python
130
  import torchvision.transforms as transforms
131
  transform = transforms.ToTensor()
132
-
133
  dataset = (
134
- wds.WebDataset(url_pattern)
135
  .decode("pil")
136
  .map(lambda sample: {
137
  "rgb": transform(sample["rgb.png"]),
138
  "bw": transform(sample["bw.png"]),
139
- "metadata": sample["json"],
140
  })
141
  )
142
  ```
143
 
144
- - **Shard Naming:**
145
- Ensure that the naming convention in your `tars/` folder matches the URL pattern used above. Adjust the pattern `{000000..000499}` accordingly if your tar files have a different naming scheme or if there are more shards.
146
-
147
- ---
 
 
 
 
 
 
148
 
149
- By following these instructions, you can easily load and work with the `font-square-v2` dataset from Hugging Face in your Python projects using WebDataset.
 
6
  - split: train
7
  path: tars/train/*.tar
8
  - split: fine_tune
9
+ path: tars/fine_tune/*.tar
10
  language:
11
  - en
12
  ---
13
 
14
  # Accessing the `font-square-v2` Dataset on Hugging Face
15
 
16
+ The `font-square-v2` dataset is hosted on Hugging Face at [blowing-up-groundhogs/font-square-v2](https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2). It is stored in WebDataset format, with its tar files split into two folders:
17
+
18
+ - **tars/train/**: Contains tar shards named `{000..499}.tar` for the main training split.
19
+ - **tars/fine_tune/**: Contains tar shards named `{000..049}.tar` for optional fine-tuning.
20
+
21
+ Each tar file includes multiple samples; each sample consists of:
22
+ - An **RGB** image file (`.rgb.png`)
23
+ - A **black-and-white** image file (`.bw.png`)
24
+ - A **JSON** file (`.json`) with metadata (such as text, writer ID, etc.)
25
+
26
+ You can access the dataset either by downloading it locally or by streaming it directly over HTTP.
27
+
28
+ ---
29
+
30
+ ## Table of Contents
31
+ 1. [Dataset Creation](#dataset-creation)
32
+ 2. [Downloading the Dataset Locally](#1-downloading-the-dataset-locally)
33
+ - [Using Git LFS](#using-git-lfs)
34
+ - [Using the huggingface_hub Python Library](#using-the-huggingface_hub-python-library)
35
+ - [Using WebDataset with the Local Files](#using-webdataset-with-the-local-files)
36
+ 3. [Streaming the Dataset Directly Over HTTP](#2-streaming-the-dataset-directly-over-http)
37
+ 4. [Additional Considerations](#additional-considerations)
38
+
39
+ ---
40
+
41
+ ## Dataset Creation
42
+
43
+ ### Text Content Sampling
44
+ This synthetic dataset comprises images of text lines superimposed on diverse backgrounds. First, text lines are generated by sampling sentences from multiple English corpora available via the [NLTK](https://www.nltk.org/) library (for example, `abc`, `brown`, `genesis`, `inaugural`, `state_union`, and `webtext`).
45
+
46
+ To better represent both common and rare characters, a **rarity-based weighting** strategy is used. Each word is assigned a weight based on the frequency of its individual characters (unigrams) and pairs of characters (bigrams). Words containing less frequent character patterns receive higher weights, so that they are sampled more often during dataset creation.
47
+
48
+ Below is an example Python function used to compute the weight of a word:
49
+
50
+ ```python
51
+ def word_weight(word):
52
+ # u_counts and b_counts are dictionaries storing
53
+ # unigram and bigram counts over the entire corpus.
54
+
55
+ # Compute the unigram score
56
+ u_score = 0
57
+ for c in word:
58
+ u_score += u_counts[c]
59
+ u_score /= len(word)
60
+
61
+ # Compute the bigram score
62
+ bigrams = pairwise(' ' + word + ' ')
63
+ b_score = 0
64
+ for b in bigrams:
65
+ b_score += b_counts[''.join(b)]
66
+ b_score /= len(bigrams)
67
+
68
+ # Return the average of the two scores
69
+ return (u_score + b_score) / 2
70
+ ```
71
+
72
+ By sampling words using these computed weights, the resulting text exhibits a balanced distribution of characters, allowing the model to learn from both common and rare patterns.
73
 
74
+ ### Text Line Rendering
75
+ After a sentence is sampled, the image is created in two main steps:
76
+
77
+ 1. **Text Image Generation**:
78
+ - A font is selected from a list of 100,000 fonts.
79
+ - The text is rendered on a white background to produce an initial grayscale text image.
80
+
81
+ 2. **Background and Final Image Creation**:
82
+ - A background image is chosen from a collection of realistic textures (such as paper, wood, or walls).
83
+ - A transparency value is randomly selected between 0.5 and 1.
84
+ - Random transformations (including rotation, warping, Gaussian blur, dilation, and color jitter) are applied to the text image.
85
+ - Minor transformations (such as dilation, color jitter, and random inversion) are applied to the background image.
86
+ - Finally, the processed text image is superimposed onto the background image using the chosen transparency, resulting in the final synthetic RGB image.
87
+
88
+ In total, this process yields approximately 2.2 million text images. Each image has a fixed height of 64 pixels, while the width varies in proportion to the length of the text. Metadata for each image is stored in the accompanying JSON file.
89
 
90
  ---
91
 
92
  ## 1. Downloading the Dataset Locally
93
 
94
+ You can download the dataset locally using either **Git LFS** or the [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub) Python library.
95
 
96
+ ### Using Git LFS
97
 
98
+ Clone the repository (ensure you have [Git LFS](https://git-lfs.github.com/) installed):
99
 
100
  ```bash
101
  git lfs clone https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2
102
  ```
103
 
104
+ This will create a local directory named `font-square-v2` that contains the `tars/` folder with the subdirectories `train/` and `fine_tune/`.
105
 
106
+ ### Using the huggingface_hub Python Library
107
 
108
+ Alternatively, download a snapshot of the dataset with:
109
 
110
  ```python
111
  from huggingface_hub import snapshot_download
 
115
  print("Dataset downloaded to:", local_dir)
116
  ```
117
 
118
+ After downloading, you will find the tar shards inside:
119
+ - `local_dir/tars/train/{000..499}.tar`
120
+ - `local_dir/tars/fine_tune/{000..049}.tar`
121
 
122
+ ### Using WebDataset with the Local Files
123
 
124
+ Once downloaded, you can load the dataset with [WebDataset](https://github.com/webdataset/webdataset). For example, to load the **training split**:
125
 
126
  ```python
127
  import webdataset as wds
128
  import os
 
129
 
130
+ local_dir = "path/to/font-square-v2" # Update the path if necessary
 
 
131
 
132
+ # Load all training shards (000-499)
133
+ train_pattern = os.path.join(local_dir, "tars", "train", "{000..499}.tar")
134
+ train_dataset = wds.WebDataset(train_pattern).decode("pil")
135
 
136
+ for sample in train_dataset:
137
+ rgb_image = sample["rgb.png"] # PIL image
138
+ bw_image = sample["bw.png"] # PIL image
 
 
139
  metadata = sample["json"]
140
 
141
+ print("Training sample metadata:", metadata)
 
 
142
  break
143
  ```
144
 
145
+ Similarly, load the **fine-tune** split with:
146
+
147
+ ```python
148
+ fine_tune_pattern = os.path.join(local_dir, "tars", "fine_tune", "{000..049}.tar")
149
+ fine_tune_dataset = wds.WebDataset(fine_tune_pattern).decode("pil")
150
+ ```
151
+
152
  ---
153
 
154
  ## 2. Streaming the Dataset Directly Over HTTP
155
 
156
+ If you prefer not to download all shards, you can stream them directly via HTTP using the Hugging Face CDN, provided the tar files are public.
 
 
157
 
158
+ For example, if the training tar shards are available at:
159
  ```
160
+ https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2/resolve/main/tars/train/000000.tar
 
161
  ...
162
+ https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2/resolve/main/tars/train/000499.tar
163
  ```
164
+ you can stream them as follows:
 
165
 
166
  ```python
167
  import webdataset as wds
168
 
169
+ url_pattern = (
170
+ "https://huggingface.co/datasets/blowing-up-groundhogs/font-square-v2/resolve/main"
171
+ "/tars/train/{000000..000499}.tar"
172
+ )
173
 
 
174
  dataset = wds.WebDataset(url_pattern).decode("pil")
175
 
 
176
  for sample in dataset:
177
  rgb_image = sample["rgb.png"]
178
  bw_image = sample["bw.png"]
179
  metadata = sample["json"]
180
 
181
  print("Sample metadata:", metadata)
 
 
182
  break
183
  ```
184
 
185
+ (Adjust the shard range accordingly for the fine-tune split.)
186
 
187
  ---
188
 
189
  ## Additional Considerations
190
 
191
+ - **Decoding**
192
+ The `.decode("pil")` method in WebDataset converts image bytes into PIL images. If you prefer PyTorch tensors, you can add a transformation step:
193
 
194
  ```python
195
  import torchvision.transforms as transforms
196
  transform = transforms.ToTensor()
197
+
198
  dataset = (
199
+ wds.WebDataset(train_pattern)
200
  .decode("pil")
201
  .map(lambda sample: {
202
  "rgb": transform(sample["rgb.png"]),
203
  "bw": transform(sample["bw.png"]),
204
+ "metadata": sample["json"]
205
  })
206
  )
207
  ```
208
 
209
+ - **Shard Naming**
210
+ The naming convention is now:
211
+ ```
212
+ tars/
213
+ β”œβ”€β”€ train/
214
+ β”‚ └── {000..499}.tar
215
+ └── fine_tune/
216
+ └── {000..049}.tar
217
+ ```
218
+ Ensure that your WebDataset pattern matches this folder structure and tar file naming.
219
 
220
+ By following these instructions, you can easily integrate the `font-square-v2` dataset into your project for training and fine-tuning with a diverse set of synthetic text-line images.