blanchon commited on
Commit
6a77a87
·
1 Parent(s): bb68a47

🤗 Add DatasetCard

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: unknown
4
+ size_categories:
5
+ - 10K<n<100K
6
+ task_categories:
7
+ - image-classification
8
+ paperswithcode_id: eurosat
9
+ pretty_name: EuroSAT RGB
10
+ tags:
11
+ - remote-sensing
12
+ - earth-observation
13
+ - geospatial
14
+ - satellite-imagery
15
+ - land-cover-classification
16
+ - sentinel-2
17
+ ---
18
+
19
+ # EuroSAT RGB
20
+
21
+ <!-- Dataset thumbnail -->
22
+ ![EuroSAT RGB](./thumbnail.jpg)
23
+
24
+ <!-- Provide a quick summary of the dataset. -->
25
+ EUROSAT RGB is the RGB version of the EUROSAT dataset based on Sentinel-2 satellite images covering 13 spectral bands and consisting of 10 classes with 27000 labeled and geo-referenced samples.
26
+ - **Paper:** https://arxiv.org/abs/1709.00029
27
+ - **Homepage:** https://github.com/phelber/EuroSAT
28
+
29
+ ## Description
30
+
31
+ <!-- Provide a longer summary of what this dataset is. -->
32
+
33
+ The EuroSAT dataset is a comprehensive land cover classification dataset that focuses on images taken by the [ESA Sentinel-2 satellite](https://sentinel.esa.int/web/sentinel/missions/sentinel-2). It contains a total of 27,000 images, each with a resolution of 64x64 pixels. These images cover 10 distinct land cover classes and are collected from over 34 European countries.
34
+
35
+ The dataset is available in two versions: **RGB only** (this repo) and all 13 [Multispectral (MS) Sentinel-2 bands](https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial). EuroSAT is considered a relatively easy dataset, with approximately 98.6% accuracy achievable using a ResNet-50 architecture.
36
+
37
+ - **Total Number of Images**: 27000
38
+ - **Bands**: 3 (RGB)
39
+ - **Image Resolution**: 64x64m
40
+ - **Land Cover Classes**: 10
41
+ - Classes: Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial Buildings, Pasture, Permanent Crop, Residential Buildings, River, SeaLake
42
+
43
+
44
+ ## Usage
45
+
46
+ To use this dataset, simply use `datasets.load_dataset("blanchon/EuroSAT_RGB")`.
47
+ <!-- Provide any additional information on how to use this dataset. -->
48
+ ```python
49
+ from datasets import load_dataset
50
+ EuroSAT_RGB = load_dataset("blanchon/EuroSAT_RGB")
51
+ ```
52
+
53
+ ## Citation
54
+
55
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
56
+ If you use the EuroSAT dataset in your research, please consider citing the following publication:
57
+
58
+
59
+ ```bibtex
60
+ @article{helber2017eurosat,
61
+ title={EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification},
62
+ author={Helber, et al.},
63
+ journal={ArXiv preprint arXiv:1709.00029},
64
+ year={2017}
65
+ }
66
+ ```