File size: 9,719 Bytes
bb4d694 d5289d5 bb4d694 46d015a 107c0ba 46d015a bb4d694 46d015a bb4d694 f74ba71 965fa89 5b9d699 a9232cb 822dd63 f2a1455 4856759 7e6f17c 5fd2e6b 947e0e6 57d7b42 615327d 8476360 592ddfd d070d2a 6e04cda 3d4a694 2817498 39e2585 0f6fb74 df9e235 89660b7 4154169 23f4efe 33d76f5 6798744 68795c1 1c76e10 3c444cf d53079a 87bd3c2 54e4752 8961a70 413cf44 348c30e 473e964 52dd328 247498f 3b01e10 6cdc1c6 579ad33 4b641db c9f9113 03aedcf 9c2f6fd 824312b 62ccae4 a563c1d 5eeb21f bfcce01 5d82bd1 9a757db 45bb6e5 951b648 447efa5 ed759bf 63377db 39fabf0 caedd86 ea3db12 c9b78f9 a414648 3d586a3 5ead6da 216d016 587cd01 9c8d848 77db8d0 c8ac87a 598d510 341002d 6fdfa1b 7af14ad 2757e79 ced20a0 6b76437 239a140 2ad9748 cfb2f06 2c1623d 8ddac94 afc37f6 dc3beb4 c52249f 9d351ec e35e140 d7625f3 96b7e11 538a7d5 4891069 43cf982 4bf69f8 807f231 a61d4e7 d645b27 107c0ba 46d015a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** bit0/x_dataset_12
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5Dvth5w7eXuZNmQUXn7tn5Hr5tgUeYHYqftPHSkJbt16Daqq
### Miner Data Compliance Agreement
In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md).
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{bit02025datauniversex_dataset_12,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={bit0},
year={2025},
url={https://huggingface.co/datasets/bit0/x_dataset_12},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 45899941
- **Date Range:** 2025-03-26T00:00:00Z to 2025-04-27T00:00:00Z
- **Last Updated:** 2025-05-04T08:07:55Z
### Data Distribution
- Tweets with hashtags: 0.00%
- Tweets without hashtags: 100.00%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 45899941 | 100.00% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-04-02T08:17:00Z | 348982 | 348982 |
| 2025-04-02T16:06:18Z | 426532 | 775514 |
| 2025-04-03T00:06:21Z | 374179 | 1149693 |
| 2025-04-03T08:06:12Z | 335525 | 1485218 |
| 2025-04-03T16:06:20Z | 430392 | 1915610 |
| 2025-04-04T00:06:14Z | 371441 | 2287051 |
| 2025-04-04T08:06:14Z | 308747 | 2595798 |
| 2025-04-04T16:06:21Z | 386405 | 2982203 |
| 2025-04-05T00:06:20Z | 348960 | 3331163 |
| 2025-04-05T08:06:11Z | 315343 | 3646506 |
| 2025-04-05T16:06:16Z | 359218 | 4005724 |
| 2025-04-06T00:06:14Z | 338373 | 4344097 |
| 2025-04-06T08:06:11Z | 298001 | 4642098 |
| 2025-04-06T16:06:15Z | 348440 | 4990538 |
| 2025-04-07T00:06:10Z | 292395 | 5282933 |
| 2025-04-07T08:06:08Z | 278386 | 5561319 |
| 2025-04-07T16:06:24Z | 390353 | 5951672 |
| 2025-04-08T00:06:09Z | 288666 | 6240338 |
| 2025-04-08T08:06:10Z | 290931 | 6531269 |
| 2025-04-08T16:06:18Z | 368008 | 6899277 |
| 2025-04-09T00:06:14Z | 289612 | 7188889 |
| 2025-04-09T08:06:11Z | 281260 | 7470149 |
| 2025-04-09T16:06:22Z | 377156 | 7847305 |
| 2025-04-10T00:06:15Z | 316811 | 8164116 |
| 2025-04-10T08:06:12Z | 289066 | 8453182 |
| 2025-04-10T16:06:18Z | 368720 | 8821902 |
| 2025-04-11T00:06:16Z | 301923 | 9123825 |
| 2025-04-11T08:06:21Z | 289427 | 9413252 |
| 2025-04-11T16:06:20Z | 372292 | 9785544 |
| 2025-04-12T00:06:20Z | 315657 | 10101201 |
| 2025-04-12T08:06:14Z | 310788 | 10411989 |
| 2025-04-12T16:06:19Z | 411029 | 10823018 |
| 2025-04-13T00:06:22Z | 336217 | 11159235 |
| 2025-04-13T08:06:15Z | 319790 | 11479025 |
| 2025-04-13T16:06:12Z | 357973 | 11836998 |
| 2025-04-14T00:06:13Z | 311275 | 12148273 |
| 2025-04-14T08:06:11Z | 297002 | 12445275 |
| 2025-04-14T16:06:27Z | 392272 | 12837547 |
| 2025-04-15T00:06:19Z | 322712 | 13160259 |
| 2025-04-15T08:06:29Z | 431505 | 13591764 |
| 2025-04-15T16:06:40Z | 589356 | 14181120 |
| 2025-04-16T00:06:27Z | 477336 | 14658456 |
| 2025-04-16T08:06:31Z | 450360 | 15108816 |
| 2025-04-16T16:07:03Z | 584227 | 15693043 |
| 2025-04-17T00:06:37Z | 477590 | 16170633 |
| 2025-04-17T08:06:26Z | 438274 | 16608907 |
| 2025-04-17T16:07:50Z | 563376 | 17172283 |
| 2025-04-18T00:07:24Z | 471645 | 17643928 |
| 2025-04-18T08:07:27Z | 458183 | 18102111 |
| 2025-04-18T16:07:35Z | 587470 | 18689581 |
| 2025-04-19T00:07:34Z | 478680 | 19168261 |
| 2025-04-19T08:06:40Z | 482612 | 19650873 |
| 2025-04-19T16:06:45Z | 596703 | 20247576 |
| 2025-04-20T00:06:31Z | 459822 | 20707398 |
| 2025-04-20T08:06:31Z | 446302 | 21153700 |
| 2025-04-20T16:06:45Z | 587192 | 21740892 |
| 2025-04-21T00:06:32Z | 453702 | 22194594 |
| 2025-04-21T08:06:35Z | 418323 | 22612917 |
| 2025-04-21T16:06:41Z | 564175 | 23177092 |
| 2025-04-22T00:06:35Z | 454741 | 23631833 |
| 2025-04-22T08:06:29Z | 411206 | 24043039 |
| 2025-04-22T16:06:49Z | 586256 | 24629295 |
| 2025-04-23T00:06:31Z | 461839 | 25091134 |
| 2025-04-23T08:06:26Z | 418345 | 25509479 |
| 2025-04-23T16:06:47Z | 556921 | 26066400 |
| 2025-04-24T00:06:33Z | 458529 | 26524929 |
| 2025-04-24T08:06:31Z | 440041 | 26964970 |
| 2025-04-24T16:06:54Z | 629349 | 27594319 |
| 2025-04-25T00:06:47Z | 538049 | 28132368 |
| 2025-04-25T08:06:40Z | 516171 | 28648539 |
| 2025-04-25T16:07:01Z | 674806 | 29323345 |
| 2025-04-26T00:06:43Z | 561778 | 29885123 |
| 2025-04-26T08:06:55Z | 549853 | 30434976 |
| 2025-04-26T16:07:07Z | 714634 | 31149610 |
| 2025-04-27T00:06:57Z | 633196 | 31782806 |
| 2025-04-27T08:07:05Z | 612468 | 32395274 |
| 2025-04-27T16:07:31Z | 734027 | 33129301 |
| 2025-04-28T00:06:57Z | 580641 | 33709942 |
| 2025-04-28T08:06:59Z | 578452 | 34288394 |
| 2025-04-28T16:07:08Z | 724905 | 35013299 |
| 2025-04-29T00:06:59Z | 582591 | 35595890 |
| 2025-04-29T08:06:53Z | 553952 | 36149842 |
| 2025-04-29T16:07:08Z | 731494 | 36881336 |
| 2025-04-30T00:06:58Z | 607041 | 37488377 |
| 2025-04-30T08:07:03Z | 584573 | 38072950 |
| 2025-04-30T16:07:06Z | 735976 | 38808926 |
| 2025-05-01T00:06:56Z | 580772 | 39389698 |
| 2025-05-01T08:06:56Z | 572468 | 39962166 |
| 2025-05-01T16:07:15Z | 743190 | 40705356 |
| 2025-05-02T00:07:06Z | 659288 | 41364644 |
| 2025-05-02T08:07:01Z | 597818 | 41962462 |
| 2025-05-02T16:07:18Z | 751941 | 42714403 |
| 2025-05-03T00:07:02Z | 665673 | 43380076 |
| 2025-05-03T08:07:04Z | 568054 | 43948130 |
| 2025-05-03T16:08:04Z | 713800 | 44661930 |
| 2025-05-04T00:07:06Z | 642343 | 45304273 |
| 2025-05-04T08:07:55Z | 595668 | 45899941 |
|