File size: 9,719 Bytes
bb4d694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5289d5
 
 
 
 
bb4d694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46d015a
107c0ba
46d015a
bb4d694
 
 
 
 
 
 
 
 
 
 
 
46d015a
bb4d694
 
 
 
 
 
f74ba71
965fa89
5b9d699
a9232cb
822dd63
f2a1455
4856759
7e6f17c
5fd2e6b
947e0e6
57d7b42
615327d
8476360
592ddfd
d070d2a
6e04cda
3d4a694
2817498
39e2585
0f6fb74
df9e235
89660b7
4154169
23f4efe
33d76f5
6798744
68795c1
1c76e10
3c444cf
d53079a
87bd3c2
54e4752
8961a70
413cf44
348c30e
473e964
52dd328
247498f
3b01e10
6cdc1c6
579ad33
4b641db
c9f9113
03aedcf
9c2f6fd
824312b
62ccae4
a563c1d
5eeb21f
bfcce01
5d82bd1
9a757db
45bb6e5
951b648
447efa5
ed759bf
63377db
39fabf0
caedd86
ea3db12
c9b78f9
a414648
3d586a3
5ead6da
216d016
587cd01
9c8d848
77db8d0
c8ac87a
598d510
341002d
6fdfa1b
7af14ad
2757e79
ced20a0
6b76437
239a140
2ad9748
cfb2f06
2c1623d
8ddac94
afc37f6
dc3beb4
c52249f
9d351ec
e35e140
d7625f3
96b7e11
538a7d5
4891069
43cf982
4bf69f8
807f231
a61d4e7
d645b27
107c0ba
46d015a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 X (Twitter) Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>


## Dataset Description

- **Repository:** bit0/x_dataset_12
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5Dvth5w7eXuZNmQUXn7tn5Hr5tgUeYHYqftPHSkJbt16Daqq

### Miner Data Compliance Agreement 

In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). 


### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example: 
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single tweet with the following fields:


### Data Fields

- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{bit02025datauniversex_dataset_12,
        title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
        author={bit0},
        year={2025},
        url={https://huggingface.co/datasets/bit0/x_dataset_12},
        }
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 45899941
- **Date Range:** 2025-03-26T00:00:00Z to 2025-04-27T00:00:00Z
- **Last Updated:** 2025-05-04T08:07:55Z

### Data Distribution

- Tweets with hashtags: 0.00%
- Tweets without hashtags: 100.00%

### Top 10 Hashtags

For full statistics, please refer to the `stats.json` file in the repository.

| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 45899941 | 100.00% |


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-04-02T08:17:00Z | 348982 | 348982 |
| 2025-04-02T16:06:18Z | 426532 | 775514 |
| 2025-04-03T00:06:21Z | 374179 | 1149693 |
| 2025-04-03T08:06:12Z | 335525 | 1485218 |
| 2025-04-03T16:06:20Z | 430392 | 1915610 |
| 2025-04-04T00:06:14Z | 371441 | 2287051 |
| 2025-04-04T08:06:14Z | 308747 | 2595798 |
| 2025-04-04T16:06:21Z | 386405 | 2982203 |
| 2025-04-05T00:06:20Z | 348960 | 3331163 |
| 2025-04-05T08:06:11Z | 315343 | 3646506 |
| 2025-04-05T16:06:16Z | 359218 | 4005724 |
| 2025-04-06T00:06:14Z | 338373 | 4344097 |
| 2025-04-06T08:06:11Z | 298001 | 4642098 |
| 2025-04-06T16:06:15Z | 348440 | 4990538 |
| 2025-04-07T00:06:10Z | 292395 | 5282933 |
| 2025-04-07T08:06:08Z | 278386 | 5561319 |
| 2025-04-07T16:06:24Z | 390353 | 5951672 |
| 2025-04-08T00:06:09Z | 288666 | 6240338 |
| 2025-04-08T08:06:10Z | 290931 | 6531269 |
| 2025-04-08T16:06:18Z | 368008 | 6899277 |
| 2025-04-09T00:06:14Z | 289612 | 7188889 |
| 2025-04-09T08:06:11Z | 281260 | 7470149 |
| 2025-04-09T16:06:22Z | 377156 | 7847305 |
| 2025-04-10T00:06:15Z | 316811 | 8164116 |
| 2025-04-10T08:06:12Z | 289066 | 8453182 |
| 2025-04-10T16:06:18Z | 368720 | 8821902 |
| 2025-04-11T00:06:16Z | 301923 | 9123825 |
| 2025-04-11T08:06:21Z | 289427 | 9413252 |
| 2025-04-11T16:06:20Z | 372292 | 9785544 |
| 2025-04-12T00:06:20Z | 315657 | 10101201 |
| 2025-04-12T08:06:14Z | 310788 | 10411989 |
| 2025-04-12T16:06:19Z | 411029 | 10823018 |
| 2025-04-13T00:06:22Z | 336217 | 11159235 |
| 2025-04-13T08:06:15Z | 319790 | 11479025 |
| 2025-04-13T16:06:12Z | 357973 | 11836998 |
| 2025-04-14T00:06:13Z | 311275 | 12148273 |
| 2025-04-14T08:06:11Z | 297002 | 12445275 |
| 2025-04-14T16:06:27Z | 392272 | 12837547 |
| 2025-04-15T00:06:19Z | 322712 | 13160259 |
| 2025-04-15T08:06:29Z | 431505 | 13591764 |
| 2025-04-15T16:06:40Z | 589356 | 14181120 |
| 2025-04-16T00:06:27Z | 477336 | 14658456 |
| 2025-04-16T08:06:31Z | 450360 | 15108816 |
| 2025-04-16T16:07:03Z | 584227 | 15693043 |
| 2025-04-17T00:06:37Z | 477590 | 16170633 |
| 2025-04-17T08:06:26Z | 438274 | 16608907 |
| 2025-04-17T16:07:50Z | 563376 | 17172283 |
| 2025-04-18T00:07:24Z | 471645 | 17643928 |
| 2025-04-18T08:07:27Z | 458183 | 18102111 |
| 2025-04-18T16:07:35Z | 587470 | 18689581 |
| 2025-04-19T00:07:34Z | 478680 | 19168261 |
| 2025-04-19T08:06:40Z | 482612 | 19650873 |
| 2025-04-19T16:06:45Z | 596703 | 20247576 |
| 2025-04-20T00:06:31Z | 459822 | 20707398 |
| 2025-04-20T08:06:31Z | 446302 | 21153700 |
| 2025-04-20T16:06:45Z | 587192 | 21740892 |
| 2025-04-21T00:06:32Z | 453702 | 22194594 |
| 2025-04-21T08:06:35Z | 418323 | 22612917 |
| 2025-04-21T16:06:41Z | 564175 | 23177092 |
| 2025-04-22T00:06:35Z | 454741 | 23631833 |
| 2025-04-22T08:06:29Z | 411206 | 24043039 |
| 2025-04-22T16:06:49Z | 586256 | 24629295 |
| 2025-04-23T00:06:31Z | 461839 | 25091134 |
| 2025-04-23T08:06:26Z | 418345 | 25509479 |
| 2025-04-23T16:06:47Z | 556921 | 26066400 |
| 2025-04-24T00:06:33Z | 458529 | 26524929 |
| 2025-04-24T08:06:31Z | 440041 | 26964970 |
| 2025-04-24T16:06:54Z | 629349 | 27594319 |
| 2025-04-25T00:06:47Z | 538049 | 28132368 |
| 2025-04-25T08:06:40Z | 516171 | 28648539 |
| 2025-04-25T16:07:01Z | 674806 | 29323345 |
| 2025-04-26T00:06:43Z | 561778 | 29885123 |
| 2025-04-26T08:06:55Z | 549853 | 30434976 |
| 2025-04-26T16:07:07Z | 714634 | 31149610 |
| 2025-04-27T00:06:57Z | 633196 | 31782806 |
| 2025-04-27T08:07:05Z | 612468 | 32395274 |
| 2025-04-27T16:07:31Z | 734027 | 33129301 |
| 2025-04-28T00:06:57Z | 580641 | 33709942 |
| 2025-04-28T08:06:59Z | 578452 | 34288394 |
| 2025-04-28T16:07:08Z | 724905 | 35013299 |
| 2025-04-29T00:06:59Z | 582591 | 35595890 |
| 2025-04-29T08:06:53Z | 553952 | 36149842 |
| 2025-04-29T16:07:08Z | 731494 | 36881336 |
| 2025-04-30T00:06:58Z | 607041 | 37488377 |
| 2025-04-30T08:07:03Z | 584573 | 38072950 |
| 2025-04-30T16:07:06Z | 735976 | 38808926 |
| 2025-05-01T00:06:56Z | 580772 | 39389698 |
| 2025-05-01T08:06:56Z | 572468 | 39962166 |
| 2025-05-01T16:07:15Z | 743190 | 40705356 |
| 2025-05-02T00:07:06Z | 659288 | 41364644 |
| 2025-05-02T08:07:01Z | 597818 | 41962462 |
| 2025-05-02T16:07:18Z | 751941 | 42714403 |
| 2025-05-03T00:07:02Z | 665673 | 43380076 |
| 2025-05-03T08:07:04Z | 568054 | 43948130 |
| 2025-05-03T16:08:04Z | 713800 | 44661930 |
| 2025-05-04T00:07:06Z | 642343 | 45304273 |
| 2025-05-04T08:07:55Z | 595668 | 45899941 |