File size: 9,800 Bytes
bb4d694 9b1d0a4 28a68c4 9b1d0a4 bb4d694 9b1d0a4 bb4d694 edcd9bb 6b0fea6 ec50cca 07df7a3 f1e9d3c 1463c33 4d3032d c19cdba 87b38e4 237b398 46d5a54 2381fb4 09e2053 289ffe0 e33a4ae b6d7e0c c288f1f f92fe57 8753e23 4f7350e 5e870fa 16f646d 4d3dad8 6dd6010 37395d3 e968594 1c2fda1 79a2584 aeaff27 a3c19ba 3809601 84643f6 8c3c7e0 306224d d8d9eb5 74284b9 b8b7903 4760b88 d76facf 103d3c3 d44bb6f 9dd526f 066147a 241468b f79075c 475001d 8e2b4c8 d8b5a8b 9c728bd f737376 1a8b9f8 9cf5cf2 7de15e6 dc39a93 89ea96c 008fea8 5878733 84f10eb f4acd9a 137660d 9e54600 487f941 241ecdc 0d72e8f a37fbd8 e722fab e9901ef ac197ba 8108dc9 629fc05 f2e8e48 d7b2849 0d781c7 c221eda 4b7b5d1 775dd3d a349f38 7daf96d 67113eb 5ab18e0 4686a6b 4d2ac66 31ffb38 4c8d441 09d9458 9a0d0f6 1462c34 917d8de e9a8e91 fca8b24 6ca4d71 fcd1329 28a68c4 8018dd1 ae80059 6167c3a 3c0472d 4258acf 07dbb20 95c6cbc 0d92feb ce2f3d8 9b1d0a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** bit0/x_dataset_12
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5Dvth5w7eXuZNmQUXn7tn5Hr5tgUeYHYqftPHSkJbt16Daqq
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{bit02025datauniversex_dataset_12,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={bit0},
year={2025},
url={https://huggingface.co/datasets/bit0/x_dataset_12},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 30638940
- **Date Range:** 2025-01-12T00:00:00Z to 2025-01-16T00:00:00Z
- **Last Updated:** 2025-01-31T11:08:10Z
### Data Distribution
- Tweets with hashtags: 0.00%
- Tweets without hashtags: 100.00%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 30638940 | 100.00% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-01-27T01:35:08Z | 218850 | 218850 |
| 2025-01-27T02:07:31Z | 226831 | 445681 |
| 2025-01-27T03:07:31Z | 224919 | 670600 |
| 2025-01-27T04:07:29Z | 206544 | 877144 |
| 2025-01-27T05:07:27Z | 192521 | 1069665 |
| 2025-01-27T06:07:28Z | 195281 | 1264946 |
| 2025-01-27T07:07:31Z | 201371 | 1466317 |
| 2025-01-27T08:07:29Z | 218640 | 1684957 |
| 2025-01-27T09:07:33Z | 237412 | 1922369 |
| 2025-01-27T10:07:34Z | 245574 | 2167943 |
| 2025-01-27T11:07:35Z | 263340 | 2431283 |
| 2025-01-27T12:07:37Z | 286394 | 2717677 |
| 2025-01-27T13:07:38Z | 302893 | 3020570 |
| 2025-01-27T14:07:43Z | 309028 | 3329598 |
| 2025-01-27T15:07:41Z | 305393 | 3634991 |
| 2025-01-27T16:07:39Z | 297399 | 3932390 |
| 2025-01-27T17:07:40Z | 280906 | 4213296 |
| 2025-01-27T18:07:35Z | 257898 | 4471194 |
| 2025-01-27T19:07:37Z | 285004 | 4756198 |
| 2025-01-27T20:07:37Z | 273457 | 5029655 |
| 2025-01-27T21:07:34Z | 257777 | 5287432 |
| 2025-01-27T22:07:30Z | 216721 | 5504153 |
| 2025-01-27T23:07:32Z | 224776 | 5728929 |
| 2025-01-28T00:07:35Z | 234338 | 5963267 |
| 2025-01-28T01:07:33Z | 232653 | 6195920 |
| 2025-01-28T02:07:33Z | 234256 | 6430176 |
| 2025-01-28T03:07:35Z | 250492 | 6680668 |
| 2025-01-28T04:07:35Z | 236093 | 6916761 |
| 2025-01-28T05:07:33Z | 207700 | 7124461 |
| 2025-01-28T06:07:35Z | 222655 | 7347116 |
| 2025-01-28T07:07:37Z | 252145 | 7599261 |
| 2025-01-28T08:07:35Z | 251687 | 7850948 |
| 2025-01-28T09:07:38Z | 269138 | 8120086 |
| 2025-01-28T10:07:46Z | 286119 | 8406205 |
| 2025-01-28T11:07:47Z | 320438 | 8726643 |
| 2025-01-28T12:07:57Z | 415958 | 9142601 |
| 2025-01-28T13:07:50Z | 380518 | 9523119 |
| 2025-01-28T14:07:54Z | 366668 | 9889787 |
| 2025-01-28T15:07:49Z | 346973 | 10236760 |
| 2025-01-28T16:07:42Z | 300370 | 10537130 |
| 2025-01-28T17:07:40Z | 280207 | 10817337 |
| 2025-01-28T18:07:40Z | 260183 | 11077520 |
| 2025-01-28T19:07:39Z | 250737 | 11328257 |
| 2025-01-28T20:07:41Z | 241828 | 11570085 |
| 2025-01-28T21:07:38Z | 247788 | 11817873 |
| 2025-01-28T22:07:42Z | 257844 | 12075717 |
| 2025-01-28T23:07:39Z | 255402 | 12331119 |
| 2025-01-29T00:07:39Z | 241459 | 12572578 |
| 2025-01-29T01:07:40Z | 266312 | 12838890 |
| 2025-01-29T02:07:44Z | 288357 | 13127247 |
| 2025-01-29T03:07:44Z | 298915 | 13426162 |
| 2025-01-29T04:07:40Z | 247961 | 13674123 |
| 2025-01-29T05:07:36Z | 218011 | 13892134 |
| 2025-01-29T06:07:39Z | 219915 | 14112049 |
| 2025-01-29T07:07:39Z | 231124 | 14343173 |
| 2025-01-29T08:07:41Z | 256642 | 14599815 |
| 2025-01-29T09:07:44Z | 299274 | 14899089 |
| 2025-01-29T10:07:55Z | 331518 | 15230607 |
| 2025-01-29T11:07:53Z | 363627 | 15594234 |
| 2025-01-29T12:07:57Z | 403168 | 15997402 |
| 2025-01-29T13:07:59Z | 417519 | 16414921 |
| 2025-01-29T14:08:01Z | 406575 | 16821496 |
| 2025-01-29T15:07:59Z | 386030 | 17207526 |
| 2025-01-29T16:07:50Z | 336405 | 17543931 |
| 2025-01-29T17:07:45Z | 308792 | 17852723 |
| 2025-01-29T18:07:47Z | 287284 | 18140007 |
| 2025-01-29T19:07:58Z | 282168 | 18422175 |
| 2025-01-29T20:07:56Z | 299463 | 18721638 |
| 2025-01-29T21:07:49Z | 315694 | 19037332 |
| 2025-01-29T22:07:47Z | 295974 | 19333306 |
| 2025-01-29T23:07:46Z | 279817 | 19613123 |
| 2025-01-30T00:07:46Z | 272179 | 19885302 |
| 2025-01-30T02:12:03Z | 298659 | 20183961 |
| 2025-01-30T03:08:37Z | 320987 | 20504948 |
| 2025-01-30T04:07:47Z | 256708 | 20761656 |
| 2025-01-30T06:15:27Z | 231558 | 20993214 |
| 2025-01-30T07:07:45Z | 242181 | 21235395 |
| 2025-01-30T08:07:49Z | 278307 | 21513702 |
| 2025-01-30T09:07:53Z | 325600 | 21839302 |
| 2025-01-30T10:07:57Z | 350754 | 22190056 |
| 2025-01-30T11:08:00Z | 388434 | 22578490 |
| 2025-01-30T12:08:05Z | 429146 | 23007636 |
| 2025-01-30T13:08:09Z | 444487 | 23452123 |
| 2025-01-30T14:08:13Z | 442123 | 23894246 |
| 2025-01-30T15:08:07Z | 426613 | 24320859 |
| 2025-01-30T16:08:00Z | 367970 | 24688829 |
| 2025-01-30T17:07:54Z | 350907 | 25039736 |
| 2025-01-30T18:07:56Z | 335383 | 25375119 |
| 2025-01-30T19:08:01Z | 329010 | 25704129 |
| 2025-01-30T20:08:00Z | 357588 | 26061717 |
| 2025-01-30T21:07:58Z | 355122 | 26416839 |
| 2025-01-30T22:07:57Z | 336850 | 26753689 |
| 2025-01-30T23:07:56Z | 313904 | 27067593 |
| 2025-01-31T00:07:53Z | 301269 | 27368862 |
| 2025-01-31T01:07:56Z | 312218 | 27681080 |
| 2025-01-31T02:07:57Z | 320280 | 28001360 |
| 2025-01-31T03:07:58Z | 357646 | 28359006 |
| 2025-01-31T04:07:52Z | 284685 | 28643691 |
| 2025-01-31T05:07:53Z | 257225 | 28900916 |
| 2025-01-31T06:07:51Z | 263323 | 29164239 |
| 2025-01-31T07:07:51Z | 274071 | 29438310 |
| 2025-01-31T09:10:35Z | 364546 | 29802856 |
| 2025-01-31T10:08:05Z | 394162 | 30197018 |
| 2025-01-31T11:08:10Z | 441922 | 30638940 |
|