Commit
·
add6d58
1
Parent(s):
bb981d1
upload hubscripts/bc5cdr_hub.py to hub from bigbio repo
Browse files
bc5cdr.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
To this end, we set up a challenge task through BioCreative V to automatically
|
17 |
+
extract CDRs from the literature. More specifically, we designed two challenge
|
18 |
+
tasks: disease named entity recognition (DNER) and chemical-induced disease
|
19 |
+
(CID) relation extraction. To assist system development and assessment, we
|
20 |
+
created a large annotated text corpus that consists of human annotations of
|
21 |
+
all chemicals, diseases and their interactions in 1,500 PubMed articles.
|
22 |
+
|
23 |
+
-- 'Overview of the BioCreative V Chemical Disease Relation (CDR) Task'
|
24 |
+
"""
|
25 |
+
import collections
|
26 |
+
import itertools
|
27 |
+
import os
|
28 |
+
|
29 |
+
import datasets
|
30 |
+
from bioc import biocxml
|
31 |
+
|
32 |
+
from .bigbiohub import kb_features
|
33 |
+
from .bigbiohub import BigBioConfig
|
34 |
+
from .bigbiohub import Tasks
|
35 |
+
|
36 |
+
_LANGUAGES = ['English']
|
37 |
+
_PUBMED = True
|
38 |
+
_LOCAL = False
|
39 |
+
_CITATION = """\
|
40 |
+
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
|
41 |
+
author = {Jiao Li and
|
42 |
+
Yueping Sun and
|
43 |
+
Robin J. Johnson and
|
44 |
+
Daniela Sciaky and
|
45 |
+
Chih{-}Hsuan Wei and
|
46 |
+
Robert Leaman and
|
47 |
+
Allan Peter Davis and
|
48 |
+
Carolyn J. Mattingly and
|
49 |
+
Thomas C. Wiegers and
|
50 |
+
Zhiyong Lu},
|
51 |
+
title = {BioCreative {V} {CDR} task corpus: a resource for chemical disease
|
52 |
+
relation extraction},
|
53 |
+
journal = {Database J. Biol. Databases Curation},
|
54 |
+
volume = {2016},
|
55 |
+
year = {2016},
|
56 |
+
url = {https://doi.org/10.1093/database/baw068},
|
57 |
+
doi = {10.1093/database/baw068},
|
58 |
+
timestamp = {Thu, 13 Aug 2020 12:41:41 +0200},
|
59 |
+
biburl = {https://dblp.org/rec/journals/biodb/LiSJSWLDMWL16.bib},
|
60 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
61 |
+
}
|
62 |
+
"""
|
63 |
+
|
64 |
+
_DATASETNAME = "bc5cdr"
|
65 |
+
_DISPLAYNAME = "BC5CDR"
|
66 |
+
|
67 |
+
_DESCRIPTION = """\
|
68 |
+
The BioCreative V Chemical Disease Relation (CDR) dataset is a large annotated \
|
69 |
+
text corpus of human annotations of all chemicals, diseases and their \
|
70 |
+
interactions in 1,500 PubMed articles.
|
71 |
+
"""
|
72 |
+
|
73 |
+
_HOMEPAGE = "http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/"
|
74 |
+
|
75 |
+
_LICENSE = 'Public Domain Mark 1.0'
|
76 |
+
|
77 |
+
_URLs = {
|
78 |
+
"source": "http://www.biocreative.org/media/store/files/2016/CDR_Data.zip",
|
79 |
+
"bigbio_kb": "http://www.biocreative.org/media/store/files/2016/CDR_Data.zip",
|
80 |
+
}
|
81 |
+
|
82 |
+
_SUPPORTED_TASKS = [
|
83 |
+
Tasks.NAMED_ENTITY_RECOGNITION,
|
84 |
+
Tasks.NAMED_ENTITY_DISAMBIGUATION,
|
85 |
+
Tasks.RELATION_EXTRACTION,
|
86 |
+
]
|
87 |
+
_SOURCE_VERSION = "01.05.16"
|
88 |
+
_BIGBIO_VERSION = "1.0.0"
|
89 |
+
|
90 |
+
|
91 |
+
class Bc5cdrDataset(datasets.GeneratorBasedBuilder):
|
92 |
+
"""
|
93 |
+
BioCreative V Chemical Disease Relation (CDR) Task.
|
94 |
+
"""
|
95 |
+
|
96 |
+
DEFAULT_CONFIG_NAME = "bc5cdr_source"
|
97 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
98 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
99 |
+
|
100 |
+
BUILDER_CONFIGS = [
|
101 |
+
BigBioConfig(
|
102 |
+
name="bc5cdr_source",
|
103 |
+
version=SOURCE_VERSION,
|
104 |
+
description="BC5CDR source schema",
|
105 |
+
schema="source",
|
106 |
+
subset_id="bc5cdr",
|
107 |
+
),
|
108 |
+
BigBioConfig(
|
109 |
+
name="bc5cdr_bigbio_kb",
|
110 |
+
version=BIGBIO_VERSION,
|
111 |
+
description="BC5CDR simplified BigBio schema",
|
112 |
+
schema="bigbio_kb",
|
113 |
+
subset_id="bc5cdr",
|
114 |
+
),
|
115 |
+
]
|
116 |
+
|
117 |
+
def _info(self):
|
118 |
+
|
119 |
+
if self.config.schema == "source":
|
120 |
+
# this is a variation on the BioC format
|
121 |
+
features = datasets.Features(
|
122 |
+
{
|
123 |
+
"passages": [
|
124 |
+
{
|
125 |
+
"document_id": datasets.Value("string"),
|
126 |
+
"type": datasets.Value("string"),
|
127 |
+
"text": datasets.Value("string"),
|
128 |
+
"entities": [
|
129 |
+
{
|
130 |
+
"id": datasets.Value("string"),
|
131 |
+
"offsets": [[datasets.Value("int32")]],
|
132 |
+
"text": [datasets.Value("string")],
|
133 |
+
"type": datasets.Value("string"),
|
134 |
+
"normalized": [
|
135 |
+
{
|
136 |
+
"db_name": datasets.Value("string"),
|
137 |
+
"db_id": datasets.Value("string"),
|
138 |
+
}
|
139 |
+
],
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"relations": [
|
143 |
+
{
|
144 |
+
"id": datasets.Value("string"),
|
145 |
+
"type": datasets.Value("string"),
|
146 |
+
"arg1_id": datasets.Value("string"),
|
147 |
+
"arg2_id": datasets.Value("string"),
|
148 |
+
}
|
149 |
+
],
|
150 |
+
}
|
151 |
+
]
|
152 |
+
}
|
153 |
+
)
|
154 |
+
|
155 |
+
elif self.config.schema == "bigbio_kb":
|
156 |
+
features = kb_features
|
157 |
+
|
158 |
+
return datasets.DatasetInfo(
|
159 |
+
description=_DESCRIPTION,
|
160 |
+
features=features,
|
161 |
+
supervised_keys=None,
|
162 |
+
homepage=_HOMEPAGE,
|
163 |
+
license=str(_LICENSE),
|
164 |
+
citation=_CITATION,
|
165 |
+
)
|
166 |
+
|
167 |
+
def _split_generators(self, dl_manager):
|
168 |
+
"""Returns SplitGenerators."""
|
169 |
+
my_urls = _URLs[self.config.schema]
|
170 |
+
data_dir = dl_manager.download_and_extract(my_urls)
|
171 |
+
return [
|
172 |
+
datasets.SplitGenerator(
|
173 |
+
name=datasets.Split.TRAIN,
|
174 |
+
# These kwargs will be passed to _generate_examples
|
175 |
+
gen_kwargs={
|
176 |
+
"filepath": os.path.join(
|
177 |
+
data_dir, "CDR_Data/CDR.Corpus.v010516/CDR_TrainingSet.BioC.xml"
|
178 |
+
),
|
179 |
+
"split": "train",
|
180 |
+
},
|
181 |
+
),
|
182 |
+
datasets.SplitGenerator(
|
183 |
+
name=datasets.Split.TEST,
|
184 |
+
# These kwargs will be passed to _generate_examples
|
185 |
+
gen_kwargs={
|
186 |
+
"filepath": os.path.join(
|
187 |
+
data_dir, "CDR_Data/CDR.Corpus.v010516/CDR_TestSet.BioC.xml"
|
188 |
+
),
|
189 |
+
"split": "test",
|
190 |
+
},
|
191 |
+
),
|
192 |
+
datasets.SplitGenerator(
|
193 |
+
name=datasets.Split.VALIDATION,
|
194 |
+
# These kwargs will be passed to _generate_examples
|
195 |
+
gen_kwargs={
|
196 |
+
"filepath": os.path.join(
|
197 |
+
data_dir,
|
198 |
+
"CDR_Data/CDR.Corpus.v010516/CDR_DevelopmentSet.BioC.xml",
|
199 |
+
),
|
200 |
+
"split": "dev",
|
201 |
+
},
|
202 |
+
),
|
203 |
+
]
|
204 |
+
|
205 |
+
def _get_bioc_entity(self, span, doc_text, db_id_key="MESH"):
|
206 |
+
"""Parse BioC entity annotation.
|
207 |
+
|
208 |
+
Parameters
|
209 |
+
----------
|
210 |
+
span : BioCAnnotation
|
211 |
+
BioC entity annotation
|
212 |
+
doc_text : string
|
213 |
+
document text, required to construct text spans
|
214 |
+
db_id_key : str, optional
|
215 |
+
database name used for normalization, by default "MESH"
|
216 |
+
|
217 |
+
Returns
|
218 |
+
-------
|
219 |
+
dict
|
220 |
+
entity information
|
221 |
+
"""
|
222 |
+
# offsets = [(loc.offset, loc.offset + loc.length) for loc in span.locations]
|
223 |
+
# texts = [doc_text[i:j] for i, j in offsets]
|
224 |
+
offsets, texts = get_texts_and_offsets_from_bioc_ann(span)
|
225 |
+
db_ids = span.infons[db_id_key] if db_id_key else "-1"
|
226 |
+
|
227 |
+
# some entities are not linked and
|
228 |
+
# some entities are linked to multiple normalized ids
|
229 |
+
if db_ids == "-1":
|
230 |
+
db_ids_list = []
|
231 |
+
else:
|
232 |
+
db_ids_list = db_ids.split("|")
|
233 |
+
|
234 |
+
normalized = [{"db_name": db_id_key, "db_id": db_id} for db_id in db_ids_list]
|
235 |
+
|
236 |
+
return {
|
237 |
+
"id": span.id,
|
238 |
+
"offsets": offsets,
|
239 |
+
"text": texts,
|
240 |
+
"type": span.infons["type"],
|
241 |
+
"normalized": normalized,
|
242 |
+
}
|
243 |
+
|
244 |
+
def _get_relations(self, relations, entities):
|
245 |
+
"""
|
246 |
+
BC5CDR provides abstract-level annotations for entity-linked relation
|
247 |
+
pairs rather than materializing links between all surface form
|
248 |
+
mentions of relations. An example from train id=2670794, the relation
|
249 |
+
- (chemical, disease) (D014148, D004211)
|
250 |
+
is materialized as 6 mentions of entity pairs
|
251 |
+
- 2x ('tranexamic acid', 'intravascular coagulation')
|
252 |
+
- 4x ('AMCA', 'intravascular coagulation')
|
253 |
+
"""
|
254 |
+
# index entities by normalized id
|
255 |
+
index = collections.defaultdict(list)
|
256 |
+
for ent in entities:
|
257 |
+
for norm in ent["normalized"]:
|
258 |
+
index[norm["db_id"]].append(ent)
|
259 |
+
index = dict(index)
|
260 |
+
|
261 |
+
# transform doc-level relations to mention-level
|
262 |
+
rela_mentions = []
|
263 |
+
for rela in relations:
|
264 |
+
arg1 = rela.infons["Chemical"]
|
265 |
+
arg2 = rela.infons["Disease"]
|
266 |
+
# all mention pairs
|
267 |
+
all_pairs = itertools.product(index[arg1], index[arg2])
|
268 |
+
for a, b in all_pairs:
|
269 |
+
# create relations linked by entity ids
|
270 |
+
rela_mentions.append(
|
271 |
+
{
|
272 |
+
"id": None,
|
273 |
+
"type": rela.infons["relation"],
|
274 |
+
"arg1_id": a["id"],
|
275 |
+
"arg2_id": b["id"],
|
276 |
+
"normalized": [],
|
277 |
+
}
|
278 |
+
)
|
279 |
+
return rela_mentions
|
280 |
+
|
281 |
+
def _get_document_text(self, xdoc):
|
282 |
+
"""Build document text for unit testing entity span offsets."""
|
283 |
+
text = ""
|
284 |
+
for passage in xdoc.passages:
|
285 |
+
pad = passage.offset - len(text)
|
286 |
+
text += (" " * pad) + passage.text
|
287 |
+
return text
|
288 |
+
|
289 |
+
def _generate_examples(
|
290 |
+
self,
|
291 |
+
filepath,
|
292 |
+
split, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
293 |
+
):
|
294 |
+
"""Yields examples as (key, example) tuples."""
|
295 |
+
if self.config.schema == "source":
|
296 |
+
reader = biocxml.BioCXMLDocumentReader(str(filepath))
|
297 |
+
|
298 |
+
for uid, xdoc in enumerate(reader):
|
299 |
+
doc_text = self._get_document_text(xdoc)
|
300 |
+
yield uid, {
|
301 |
+
"passages": [
|
302 |
+
{
|
303 |
+
"document_id": xdoc.id,
|
304 |
+
"type": passage.infons["type"],
|
305 |
+
"text": passage.text,
|
306 |
+
"entities": [
|
307 |
+
self._get_bioc_entity(span, doc_text)
|
308 |
+
for span in passage.annotations
|
309 |
+
],
|
310 |
+
"relations": [
|
311 |
+
{
|
312 |
+
"id": rel.id,
|
313 |
+
"type": rel.infons["relation"],
|
314 |
+
"arg1_id": rel.infons["Chemical"],
|
315 |
+
"arg2_id": rel.infons["Disease"],
|
316 |
+
}
|
317 |
+
for rel in xdoc.relations
|
318 |
+
],
|
319 |
+
}
|
320 |
+
for passage in xdoc.passages
|
321 |
+
]
|
322 |
+
}
|
323 |
+
|
324 |
+
elif self.config.schema == "bigbio_kb":
|
325 |
+
reader = biocxml.BioCXMLDocumentReader(str(filepath))
|
326 |
+
uid = 0 # global unique id
|
327 |
+
|
328 |
+
for i, xdoc in enumerate(reader):
|
329 |
+
data = {
|
330 |
+
"id": uid,
|
331 |
+
"document_id": xdoc.id,
|
332 |
+
"passages": [],
|
333 |
+
"entities": [],
|
334 |
+
"relations": [],
|
335 |
+
"events": [],
|
336 |
+
"coreferences": [],
|
337 |
+
}
|
338 |
+
uid += 1
|
339 |
+
doc_text = self._get_document_text(xdoc)
|
340 |
+
|
341 |
+
char_start = 0
|
342 |
+
# passages must not overlap and spans must cover the entire document
|
343 |
+
for passage in xdoc.passages:
|
344 |
+
offsets = [[char_start, char_start + len(passage.text)]]
|
345 |
+
char_start = char_start + len(passage.text) + 1
|
346 |
+
data["passages"].append(
|
347 |
+
{
|
348 |
+
"id": uid,
|
349 |
+
"type": passage.infons["type"],
|
350 |
+
"text": [passage.text],
|
351 |
+
"offsets": offsets,
|
352 |
+
}
|
353 |
+
)
|
354 |
+
uid += 1
|
355 |
+
|
356 |
+
# entities
|
357 |
+
for passage in xdoc.passages:
|
358 |
+
for span in passage.annotations:
|
359 |
+
ent = self._get_bioc_entity(span, doc_text, db_id_key="MESH")
|
360 |
+
ent["id"] = uid # override BioC default id
|
361 |
+
data["entities"].append(ent)
|
362 |
+
uid += 1
|
363 |
+
|
364 |
+
# relations
|
365 |
+
relations = self._get_relations(xdoc.relations, data["entities"])
|
366 |
+
for rela in relations:
|
367 |
+
rela["id"] = uid # assign unique id
|
368 |
+
data["relations"].append(rela)
|
369 |
+
uid += 1
|
370 |
+
|
371 |
+
yield i, data
|