ID
int64
0
2.65k
Language
stringclasses
1 value
Repository Name
stringclasses
21 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
10
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
66
1.91M
Unit Test - (Ground Truth)
stringlengths
40
32.1k
1,700
cpp
tensorflow/tensorflow
tensor_slice_writer
tensorflow/core/util/tensor_slice_writer.cc
tensorflow/core/util/tensor_slice_writer_test.cc
#ifndef TENSORFLOW_CORE_UTIL_TENSOR_SLICE_WRITER_H_ #define TENSORFLOW_CORE_UTIL_TENSOR_SLICE_WRITER_H_ #include <functional> #include <map> #include <unordered_map> #include <utility> #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_slice.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/saved_tensor_slice.pb.h" #include "tensorflow/core/util/saved_tensor_slice_util.h" namespace tensorflow { namespace checkpoint { class TensorSliceWriter { public: class Builder { public: virtual ~Builder() = default; virtual void Add(StringPiece key, StringPiece value) = 0; virtual Status Finish(int64_t* file_size) = 0; }; typedef std::function<Status(const string&, Builder**)> CreateBuilderFunction; TensorSliceWriter(const string& filename, CreateBuilderFunction create_builder); virtual ~TensorSliceWriter() = default; template <typename T> Status Add(const string& name, const TensorShape& shape, const TensorSlice& slice, const T* data); Status Finish(); template <typename T> static Status SaveData(const T* data, int64_t num_elements, SavedSlice* ss); static size_t MaxBytesPerElement(DataType dt); private: static size_t MaxBytesPerElementOrZero(DataType dt); static constexpr size_t kMaxMessageBytes = 1LL << 31; static constexpr size_t kTensorProtoHeaderBytes = 1 << 10; const string filename_; const CreateBuilderFunction create_builder_; string data_filename_; bool use_temp_file_; std::unordered_map<string, int> name_to_index_; SavedTensorSlices sts_; std::map<string, string> data_; int slices_; TensorSliceWriter(const TensorSliceWriter&) = delete; void operator=(const TensorSliceWriter&) = delete; }; template <typename T> Status TensorSliceWriter::Add(const string& name, const TensorShape& shape, const TensorSlice& slice, const T* data) { if (shape.dims() != slice.dims()) { return errors::Internal("Incompatible tensor shape and slice: ", "shape = ", shape.DebugString(), ", slice = ", slice.DebugString()); } DataType dt = DataTypeToEnum<T>::value; int index = gtl::FindWithDefault(name_to_index_, name, -1); if (index >= 0) { const SavedSliceMeta& ssm = sts_.meta().tensor(index); CHECK_EQ(name, ssm.name()) << ssm.ShortDebugString(); TensorShape ssm_shape(ssm.shape()); if (!shape.IsSameSize(ssm_shape)) { return errors::Internal( "Mismatching shapes: existing tensor = ", ssm_shape.DebugString(), ", trying to add name ", name, ", shape = ", shape.DebugString()); } if (dt != ssm.type()) { return errors::Internal( "Mismatching types: existing type = ", DataTypeString(ssm.type()), ", trying to add name ", name, ", type = ", DataTypeString(dt)); } } else { index = sts_.meta().tensor_size(); name_to_index_.insert(std::make_pair(name, index)); SavedSliceMeta* ssm = sts_.mutable_meta()->add_tensor(); ssm->set_name(name); shape.AsProto(ssm->mutable_shape()); ssm->set_type(dt); } SavedSliceMeta* ssm = sts_.mutable_meta()->mutable_tensor(index); slice.AsProto(ssm->add_slice()); { SavedTensorSlices sts; SavedSlice* ss = sts.mutable_data(); ss->set_name(name); slice.AsProto(ss->mutable_slice()); TensorShape saved_shape(ssm->shape()); TensorShape sliced_shape; TF_RETURN_IF_ERROR(slice.SliceTensorShape(saved_shape, &sliced_shape)); TF_RETURN_IF_ERROR(SaveData(data, sliced_shape.num_elements(), ss)); string key = EncodeTensorNameSlice(name, slice); std::pair<string, string> key_value(key, ""); if (!sts.AppendToString(&key_value.second)) { return errors::Internal("Error writing Tensor. Possible size overflow."); } data_.insert(key_value); } ++slices_; return absl::OkStatus(); } template <typename T> Status TensorSliceWriter::SaveData(const T* data, int64_t num_elements, SavedSlice* ss) { size_t max_bytes_per_element = MaxBytesPerElementOrZero(DataTypeToEnum<T>::value); if (max_bytes_per_element == 0) { return errors::InvalidArgument( "Tensor slice serialization not implemented for dtype ", DataTypeToEnum<T>::value); } size_t size_bound = ss->ByteSize() + kTensorProtoHeaderBytes + (max_bytes_per_element * num_elements); if (size_bound > kMaxMessageBytes) { return errors::InvalidArgument( "Tensor slice is too large to serialize (conservative estimate: ", size_bound, " bytes)"); } Fill(data, num_elements, ss->mutable_data()); DCHECK_GE(ss->ByteSize(), 0); DCHECK_LE(ss->ByteSize(), size_bound); return absl::OkStatus(); } template <> Status TensorSliceWriter::SaveData(const tstring* data, int64_t num_elements, SavedSlice* ss); Status CreateTableTensorSliceBuilder(const string& filename, TensorSliceWriter::Builder** builder); } } #endif #include "tensorflow/core/util/tensor_slice_writer.h" #include <memory> #include <utility> #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/io/table_builder.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/saved_tensor_slice_util.h" namespace tensorflow { namespace checkpoint { namespace { class TableBuilder : public TensorSliceWriter::Builder { public: TableBuilder(const string& name, WritableFile* f) : name_(name), file_(f) { table::Options option; option.compression = table::kNoCompression; builder_ = std::make_unique<table::TableBuilder>(option, f); } void Add(StringPiece key, StringPiece val) override { builder_->Add(key, val); } Status Finish(int64_t* file_size) override { *file_size = -1; Status s = builder_->Finish(); if (s.ok()) { s = file_->Close(); if (s.ok()) { *file_size = builder_->FileSize(); } } if (!s.ok()) { s = errors::Internal("Error writing (tmp) checkpoint file: ", name_, ": ", s.message()); } builder_.reset(); file_.reset(); return s; } private: string name_; std::unique_ptr<WritableFile> file_; std::unique_ptr<table::TableBuilder> builder_; }; } Status CreateTableTensorSliceBuilder(const string& name, TensorSliceWriter::Builder** builder) { *builder = nullptr; std::unique_ptr<WritableFile> f; Status s = Env::Default()->NewWritableFile(name, &f); if (s.ok()) { *builder = new TableBuilder(name, f.release()); return absl::OkStatus(); } else { return s; } } TensorSliceWriter::TensorSliceWriter(const string& filename, CreateBuilderFunction create_builder) : filename_(filename), create_builder_(std::move(create_builder)), slices_(0) { Env* env = Env::Default(); Status status = env->CanCreateTempFile(filename_, &use_temp_file_); if (!status.ok()) { LOG(ERROR) << "Failed to get CanCreateTempFile attribute: " << filename_; use_temp_file_ = true; } data_filename_ = filename_; if (use_temp_file_) { data_filename_ = strings::StrCat(filename_, ".tempstate", random::New64()); } VersionDef* versions = sts_.mutable_meta()->mutable_versions(); versions->set_producer(TF_CHECKPOINT_VERSION); versions->set_min_consumer(TF_CHECKPOINT_VERSION_MIN_CONSUMER); } Status TensorSliceWriter::Finish() { Builder* b; Status s = create_builder_(data_filename_, &b); if (!s.ok()) { delete b; return s; } std::unique_ptr<Builder> builder(b); string meta; sts_.AppendToString(&meta); builder->Add(kSavedTensorSlicesKey, meta); for (const auto& x : data_) { builder->Add(x.first, x.second); } int64_t file_size; s = builder->Finish(&file_size); if (use_temp_file_) { if (s.ok()) { s = Env::Default()->RenameFile(data_filename_, filename_); if (s.ok()) { VLOG(1) << "Written " << slices_ << " slices for " << sts_.meta().tensor_size() << " tensors (" << file_size << " bytes) to " << filename_; } else { LOG(ERROR) << "Failed to rename file " << data_filename_ << " to " << filename_; } } else { Env::Default()->DeleteFile(data_filename_).IgnoreError(); } } return s; } size_t TensorSliceWriter::MaxBytesPerElement(DataType dt) { size_t max_bytes_per_element = TensorSliceWriter::MaxBytesPerElementOrZero(dt); if (max_bytes_per_element == 0) { LOG(FATAL) << "MaxBytesPerElement not implemented for dtype: " << dt; } return max_bytes_per_element; } size_t TensorSliceWriter::MaxBytesPerElementOrZero(DataType dt) { switch (dt) { case DT_FLOAT: return 4; case DT_DOUBLE: return 8; case DT_INT32: return 10; case DT_UINT8: return 2; case DT_INT16: return 10; case DT_INT8: return 10; case DT_COMPLEX64: return 8; case DT_INT64: return 10; case DT_BOOL: return 1; case DT_QINT8: return 10; case DT_QUINT8: return 2; case DT_QINT32: return 10; case DT_QINT16: return 10; case DT_QUINT16: return 3; case DT_UINT16: return 3; case DT_COMPLEX128: return 16; case DT_HALF: return 3; case DT_INVALID: case DT_STRING: case DT_BFLOAT16: default: return 0; } } template <> Status TensorSliceWriter::SaveData(const tstring* data, int64_t num_elements, SavedSlice* ss) { size_t size_bound = ss->ByteSize() + kTensorProtoHeaderBytes + (num_elements * MaxBytesPerElement(DT_INT32)); for (int64_t i = 0; i < num_elements; ++i) { size_bound += data[i].size(); } if (size_bound > kMaxMessageBytes) { return errors::InvalidArgument( "Tensor slice is too large to serialize (conservative estimate: ", size_bound, " bytes)"); } Fill(data, num_elements, ss->mutable_data()); DCHECK_GE(ss->ByteSize(), 0); DCHECK_LE(ss->ByteSize(), size_bound); return absl::OkStatus(); } } }
#include "tensorflow/core/util/tensor_slice_writer.h" #include <algorithm> #include <array> #include <memory> #include <vector> #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/saved_tensor_slice_util.h" #include "tensorflow/core/util/tensor_slice_reader.h" namespace tensorflow { namespace checkpoint { class TensorSliceWriteTestHelper { public: static void CheckEntries(const string& fname); static void GetData(TensorSliceReader::Table* table, const string& name, const TensorSlice& slice, SavedSlice* ss); }; namespace { void ExpectIdenticalFloatArrays(const float* expected, int size, const float* actual) { for (int i = 0; i < size; ++i) { EXPECT_NEAR(expected[i], actual[i], 1e-6); } } template <typename T, typename U> void ExpectIdenticalIntArrays(const T* expected, int size, const U* actual) { for (int i = 0; i < size; ++i) { EXPECT_EQ(expected[i], static_cast<T>(actual[i])); } } template <typename T, unsigned SIZE> inline size_t ArraySize(const T (&v)[SIZE]) { return SIZE; } TEST(TensorSliceWriteTest, SimpleWrite) { const string filename = io::JoinPath(testing::TmpDir(), "checkpoint"); TensorSliceWriter writer(filename, CreateTableTensorSliceBuilder); { TensorShape shape({5, 10}); TensorSlice slice = TensorSlice::ParseOrDie("-:0,1"); const int32 data[] = {0, 1, 2, 3, 4}; TF_CHECK_OK(writer.Add("test", shape, slice, data)); } { TensorShape shape({5, 10}); TensorSlice slice = TensorSlice::ParseOrDie("-:3,1"); const int32 data[] = {10, 11, 12, 13, 14}; TF_CHECK_OK(writer.Add("test", shape, slice, data)); } { TensorShape shape({3, 2}); TensorSlice slice = TensorSlice::ParseOrDie("-:-"); const float data[] = {1.2, 1.3, 1.4, 2.1, 2.2, 2.3}; TF_CHECK_OK(writer.Add("AA", shape, slice, data)); } { TensorShape shape({5, 10}); TensorSlice slice = TensorSlice::ParseOrDie("-:3,1"); const int64_t data[] = {10, 11, 12, 13, 14}; TF_CHECK_OK(writer.Add("int64", shape, slice, data)); } { TensorShape shape({5, 10}); TensorSlice slice = TensorSlice::ParseOrDie("-:3,1"); const int16 data[] = {10, 11, 12, 13, 14}; TF_CHECK_OK(writer.Add("int16", shape, slice, data)); } TF_CHECK_OK(writer.Finish()); TensorSliceWriteTestHelper::CheckEntries(filename); } } void TensorSliceWriteTestHelper::GetData(TensorSliceReader::Table* table, const string& name, const TensorSlice& slice, SavedSlice* ss) { string key = EncodeTensorNameSlice(name, slice); string value; EXPECT_TRUE(table->Get(key, &value)); SavedTensorSlices sts; EXPECT_TRUE(ParseProtoUnlimited(&sts, value)); EXPECT_FALSE(sts.has_meta()); *ss = sts.data(); EXPECT_EQ(name, ss->name()); TensorSlice slice2(ss->slice()); EXPECT_EQ(slice.DebugString(), slice2.DebugString()); } void TensorSliceWriteTestHelper::CheckEntries(const string& fname) { TensorSliceReader::Table* tptr; TF_CHECK_OK(OpenTableTensorSliceReader(fname, &tptr)); std::unique_ptr<TensorSliceReader::Table> table(tptr); CHECK_NOTNULL(table.get()); string value; ASSERT_TRUE(table->Get(kSavedTensorSlicesKey, &value)); { SavedTensorSlices sts; EXPECT_TRUE(ParseProtoUnlimited(&sts, value)); EXPECT_TRUE(sts.has_meta()); EXPECT_EQ(4, sts.meta().tensor_size()); EXPECT_LT(0, TF_CHECKPOINT_VERSION); EXPECT_EQ(TF_CHECKPOINT_VERSION, sts.meta().versions().producer()); EXPECT_EQ(TF_CHECKPOINT_VERSION_MIN_CONSUMER, sts.meta().versions().min_consumer()); EXPECT_FALSE(sts.has_data()); { const SavedSliceMeta& ssm = sts.meta().tensor(0); EXPECT_EQ("test", ssm.name()); TensorShapeProto expected_shape_proto; protobuf::TextFormat::ParseFromString( "dim { size: 5 } " "dim { size: 10 }", &expected_shape_proto); EXPECT_EQ(ssm.shape().ShortDebugString(), expected_shape_proto.ShortDebugString()); EXPECT_EQ(DT_INT32, ssm.type()); EXPECT_EQ(2, ssm.slice_size()); TensorSlice s0(ssm.slice(0)); TensorSlice s1(ssm.slice(1)); EXPECT_EQ("-:0,1", s0.DebugString()); EXPECT_EQ("-:3,1", s1.DebugString()); } { const SavedSliceMeta& ssm = sts.meta().tensor(1); EXPECT_EQ("AA", ssm.name()); TensorShapeProto expected_shape_proto; protobuf::TextFormat::ParseFromString( "dim { size: 3 } " "dim { size: 2 }", &expected_shape_proto); EXPECT_EQ(ssm.shape().ShortDebugString(), expected_shape_proto.ShortDebugString()); EXPECT_EQ(DT_FLOAT, ssm.type()); EXPECT_EQ(1, ssm.slice_size()); TensorSlice s0(ssm.slice(0)); EXPECT_EQ("-:-", s0.DebugString()); } { const SavedSliceMeta& ssm = sts.meta().tensor(2); EXPECT_EQ("int64", ssm.name()); TensorShapeProto expected_shape_proto; protobuf::TextFormat::ParseFromString( "dim { size: 5 } " "dim { size: 10 }", &expected_shape_proto); EXPECT_EQ(ssm.shape().ShortDebugString(), expected_shape_proto.ShortDebugString()); EXPECT_EQ(DT_INT64, ssm.type()); EXPECT_EQ(1, ssm.slice_size()); TensorSlice s0(ssm.slice(0)); EXPECT_EQ("-:3,1", s0.DebugString()); } { const SavedSliceMeta& ssm = sts.meta().tensor(3); EXPECT_EQ("int16", ssm.name()); TensorShapeProto expected_shape_proto; protobuf::TextFormat::ParseFromString( "dim { size: 5 } " "dim { size: 10 }", &expected_shape_proto); EXPECT_EQ(ssm.shape().ShortDebugString(), expected_shape_proto.ShortDebugString()); EXPECT_EQ(DT_INT16, ssm.type()); EXPECT_EQ(1, ssm.slice_size()); TensorSlice s0(ssm.slice(0)); EXPECT_EQ("-:3,1", s0.DebugString()); } } { SavedSlice ss; GetData(table.get(), "AA", TensorSlice(2), &ss); const float data[] = {1.2, 1.3, 1.4, 2.1, 2.2, 2.3}; EXPECT_EQ(ArraySize(data), ss.data().float_val_size()); ExpectIdenticalFloatArrays(data, ArraySize(data), ss.data().float_val().data()); } { SavedSlice ss; GetData(table.get(), "test", TensorSlice({{0, -1}, {0, 1}}), &ss); const int32 data[] = {0, 1, 2, 3, 4}; EXPECT_EQ(ArraySize(data), ss.data().int_val_size()); ExpectIdenticalIntArrays(data, ArraySize(data), ss.data().int_val().data()); } { SavedSlice ss; GetData(table.get(), "test", TensorSlice({{0, -1}, {3, 1}}), &ss); const int32 data[] = {10, 11, 12, 13, 14}; EXPECT_EQ(ArraySize(data), ss.data().int_val_size()); ExpectIdenticalIntArrays(data, ArraySize(data), ss.data().int_val().data()); } { SavedSlice ss; GetData(table.get(), "int64", TensorSlice({{0, -1}, {3, 1}}), &ss); const int64_t data[] = {10, 11, 12, 13, 14}; EXPECT_EQ(ArraySize(data), ss.data().int64_val_size()); ExpectIdenticalIntArrays(data, ArraySize(data), ss.data().int64_val().data()); } { SavedSlice ss; GetData(table.get(), "int16", TensorSlice({{0, -1}, {3, 1}}), &ss); const int16 data[] = {10, 11, 12, 13, 14}; EXPECT_EQ(ArraySize(data), ss.data().int_val_size()); ExpectIdenticalIntArrays(data, ArraySize(data), ss.data().int_val().data()); } } template <typename DT> size_t BytesPerElementHelper(DT value) { SavedSlice ss; std::array<DT, 1> lo_data; std::fill(lo_data.begin(), lo_data.end(), value); TF_EXPECT_OK( TensorSliceWriter::SaveData(lo_data.data(), lo_data.size(), &ss)); size_t lo_byte_size = ss.ByteSizeLong(); std::array<DT, 1001> hi_data; std::fill(hi_data.begin(), hi_data.end(), value); TF_EXPECT_OK( TensorSliceWriter::SaveData(hi_data.data(), hi_data.size(), &ss)); size_t hi_byte_size = ss.ByteSizeLong(); return (hi_byte_size - lo_byte_size) / (hi_data.size() - lo_data.size()); } TEST(TensorSliceWriteTest, CheckpointSize) { EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_BOOL), BytesPerElementHelper<bool>(false)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_BOOL), BytesPerElementHelper<bool>(true)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_FLOAT), BytesPerElementHelper<float>(-1.0)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_DOUBLE), BytesPerElementHelper<double>(-1.0)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_COMPLEX64), BytesPerElementHelper<complex64>(-1.0)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_COMPLEX128), BytesPerElementHelper<complex128>(-1.0)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_INT32), BytesPerElementHelper<int32>(-1)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_INT64), BytesPerElementHelper<int64_t>(-1)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_UINT16), BytesPerElementHelper<uint16>(std::numeric_limits<uint16>::max())); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_UINT8), BytesPerElementHelper<uint8>(std::numeric_limits<uint8>::max())); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_INT8), BytesPerElementHelper<int8>(-1)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_INT16), BytesPerElementHelper<int16>(-1)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_QINT8), BytesPerElementHelper<qint8>(-1)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_QUINT8), BytesPerElementHelper<quint8>(std::numeric_limits<uint8>::max())); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_QINT32), BytesPerElementHelper<qint32>(-1)); EXPECT_EQ(TensorSliceWriter::MaxBytesPerElement(DT_HALF), BytesPerElementHelper<Eigen::half>(Eigen::half(-1.0))); } TEST(TensorSliceWriteTest, SizeErrors) { const string filename = io::JoinPath(testing::TmpDir(), "checkpoint"); TensorSliceWriter writer(filename, CreateTableTensorSliceBuilder); { TensorShape shape({300, 1000000}); TensorSlice slice = TensorSlice::ParseOrDie("-:-"); const std::vector<int8> data(300000000, -1); Status s = writer.Add("test1", shape, slice, data.data()); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_TRUE(absl::StrContains(s.message(), "Tensor slice is too large to serialize")); } { TensorShape shape({256, 1024}); TensorSlice slice = TensorSlice::ParseOrDie("-:-"); const std::vector<tstring> data(256 * 1024, std::string(8192, 'f')); Status s = writer.Add("test2", shape, slice, data.data()); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_TRUE(absl::StrContains(s.message(), "Tensor slice is too large to serialize")); } } TEST(TensorSliceWriterTest, InvalidInput) { SavedSlice ss; std::array<uint32_t, 1> data; std::fill(data.begin(), data.end(), 1234); Status s = TensorSliceWriter::SaveData(data.data(), data.size(), &ss); EXPECT_EQ(s.code(), error::INVALID_ARGUMENT); EXPECT_TRUE(absl::StrContains( s.message(), "Tensor slice serialization not implemented for dtype")); } } }
1,701
cpp
tensorflow/tensorflow
work_sharder
tensorflow/core/util/work_sharder.cc
tensorflow/core/util/work_sharder_test.cc
#ifndef TENSORFLOW_CORE_UTIL_WORK_SHARDER_H_ #define TENSORFLOW_CORE_UTIL_WORK_SHARDER_H_ #include <functional> #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { void Shard(int max_parallelism, thread::ThreadPool* workers, int64_t total, int64_t cost_per_unit, std::function<void(int64_t, int64_t)> work); void SetPerThreadMaxParallelism(int max_parallelism); int GetPerThreadMaxParallelism(); class ScopedPerThreadMaxParallelism { public: ScopedPerThreadMaxParallelism(int max_parallelism) : previous_(GetPerThreadMaxParallelism()) { SetPerThreadMaxParallelism(max_parallelism); } ~ScopedPerThreadMaxParallelism() { SetPerThreadMaxParallelism(previous_); } private: int previous_ = -1; }; class Sharder { public: typedef std::function<void()> Closure; typedef std::function<void(Closure)> Runner; typedef std::function<void(int64_t, int64_t)> Work; static void Do(int64_t total, int64_t cost_per_unit, const Work& work, const Runner& runner, int max_parallelism); }; } #endif #include "tensorflow/core/util/work_sharder.h" #include <algorithm> #include <functional> #include "xla/tsl/util/env_var.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/logging.h" #include "tsl/profiler/lib/traceme.h" namespace tensorflow { namespace { bool UseEigenParallelFor() { static bool result = []() { bool result = true; if (auto status = tsl::ReadBoolFromEnvVar("TF_USE_EIGEN_PARALLEL_FOR_IN_WORK_SHARDER", true, &result); status.ok()) { return result; } return true; }(); return result; } } thread_local int per_thread_max_parallelism = 1000000; void SetPerThreadMaxParallelism(int max_parallelism) { CHECK_LE(0, max_parallelism); per_thread_max_parallelism = max_parallelism; } int GetPerThreadMaxParallelism() { return per_thread_max_parallelism; } void Shard(int max_parallelism, thread::ThreadPool* workers, int64_t total, int64_t cost_per_unit, std::function<void(int64_t, int64_t)> work) { CHECK_GE(total, 0); if (total == 0) { return; } max_parallelism = std::min(max_parallelism, GetPerThreadMaxParallelism()); if (max_parallelism <= 1) { work(0, total); return; } if (UseEigenParallelFor() && max_parallelism >= workers->NumThreads()) { tsl::profiler::TraceMe trace_me([=, num_threads = workers->NumThreads()]() { return tsl::profiler::TraceMeEncode("ParallelFor", {{"cost_per_unit", cost_per_unit}, {"total", total}, {"max_parallelism", max_parallelism}, {"num_threads", num_threads}}); }); workers->ParallelFor(total, cost_per_unit, work); return; } Sharder::Do( total, cost_per_unit, work, [&workers](Sharder::Closure c) { workers->Schedule(c); }, max_parallelism); } void Sharder::Do(int64_t total, int64_t cost_per_unit, const Work& work, const Runner& runner, int max_parallelism) { tsl::profiler::TraceMe trace_me([=]() { return tsl::profiler::TraceMeEncode("Sharder::Do", {{"cost_per_unit", cost_per_unit}, {"total", total}, {"max_parallelism", max_parallelism}}); }); cost_per_unit = std::max(int64_t{1}, cost_per_unit); static const int64_t kMinCostPerShard = 10000; const int num_shards = std::max<int>(1, std::min(static_cast<int64_t>(max_parallelism), total * cost_per_unit / kMinCostPerShard)); const int64_t block_size = (total + num_shards - 1) / num_shards; CHECK_GT(block_size, 0); if (block_size >= total) { work(0, total); return; } const int num_shards_used = (total + block_size - 1) / block_size; BlockingCounter counter(num_shards_used - 1); for (int64_t start = block_size; start < total; start += block_size) { auto limit = std::min(start + block_size, total); runner([&work, &counter, start, limit]() { work(start, limit); counter.DecrementCount(); }); } work(0, std::min(block_size, total)); counter.Wait(); } }
#include "tensorflow/core/util/work_sharder.h" #include <algorithm> #include <atomic> #include <functional> #include <vector> #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { void RunSharding(int64_t num_workers, int64_t total, int64_t cost_per_unit, int64_t per_thread_max_parallelism, thread::ThreadPool* threads) { mutex mu; int64_t num_shards = 0; int64_t num_done_work = 0; std::vector<bool> work(total, false); Shard(num_workers, threads, total, cost_per_unit, [=, &mu, &num_shards, &num_done_work, &work](int64_t start, int64_t limit) { VLOG(1) << "Shard [" << start << "," << limit << ")"; EXPECT_GE(start, 0); EXPECT_LE(limit, total); mutex_lock l(mu); ++num_shards; for (; start < limit; ++start) { EXPECT_FALSE(work[start]); ++num_done_work; work[start] = true; } }); LOG(INFO) << num_workers << " " << total << " " << cost_per_unit << " " << num_shards; EXPECT_EQ(num_done_work, total); if (std::min(num_workers, per_thread_max_parallelism) < threads->NumThreads()) { EXPECT_LE(num_shards, 1 + per_thread_max_parallelism); } } TEST(Shard, Basic) { thread::ThreadPool threads(Env::Default(), "test", 16); for (auto workers : {0, 1, 2, 3, 5, 7, 10, 11, 15, 100, 1000}) { for (auto total : {0, 1, 7, 10, 64, 100, 256, 1000, 9999}) { for (auto cost_per_unit : {0, 1, 11, 102, 1003, 10005, 1000007}) { for (auto maxp : {1, 2, 4, 8, 100}) { ScopedPerThreadMaxParallelism s(maxp); RunSharding(workers, total, cost_per_unit, maxp, &threads); } } } } } TEST(Shard, OverflowTest) { thread::ThreadPool threads(Env::Default(), "test", 3); for (auto workers : {1, 2, 3}) { const int64_t total_elements = 1LL << 32; const int64_t cost_per_unit = 10; std::atomic<int64_t> num_elements(0); Shard(workers, &threads, total_elements, cost_per_unit, [&num_elements](int64_t start, int64_t limit) { num_elements += limit - start; }); EXPECT_EQ(num_elements.load(), total_elements); } } void BM_Sharding(::testing::benchmark::State& state) { const int arg = state.range(0); thread::ThreadPool threads(Env::Default(), "test", 16); const int64_t total = 1LL << 30; auto lambda = [](int64_t start, int64_t limit) {}; auto work = std::cref(lambda); for (auto s : state) { Shard(arg - 1, &threads, total, 1, work); } } BENCHMARK(BM_Sharding)->Range(1, 128); } }
1,702
cpp
tensorflow/tensorflow
tensor_slice_reader
tensorflow/core/util/tensor_slice_reader.cc
tensorflow/core/util/tensor_slice_reader_test.cc
#ifndef TENSORFLOW_CORE_UTIL_TENSOR_SLICE_READER_H_ #define TENSORFLOW_CORE_UTIL_TENSOR_SLICE_READER_H_ #include <functional> #include <memory> #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_slice.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/saved_tensor_slice.pb.h" #include "tensorflow/core/util/saved_tensor_slice_util.h" #include "tensorflow/core/util/tensor_slice_set.h" #include "tensorflow/core/util/tensor_slice_util.h" namespace tensorflow { namespace checkpoint { class TensorSliceReader { public: class Table { public: virtual ~Table(); virtual bool Get(const string& key, string* value) = 0; }; typedef std::function<Status(const string&, Table**)> OpenTableFunction; static constexpr int kLoadAllShards = -1; TensorSliceReader(const string& filepattern); TensorSliceReader(const string& filepattern, OpenTableFunction open_function); TensorSliceReader(const string& filepattern, OpenTableFunction open_function, int preferred_shard); virtual ~TensorSliceReader(); const string& filepattern() const { return filepattern_; } int num_files() const { return sss_.size(); } Status status() const { return status_; } bool HasTensor(const string& name, TensorShape* shape, DataType* type) const; template <typename T> bool CopySliceData(const string& name, const TensorSlice& slice, T* data) const; const std::unordered_map<string, TensorSliceSet*>& Tensors() const { return tensors_; } Status GetTensor(const string& name, std::unique_ptr<tensorflow::Tensor>* out_tensor) const; typedef std::unordered_map<string, TensorShape> VarToShapeMap; typedef std::unordered_map<string, DataType> VarToDataTypeMap; VarToShapeMap GetVariableToShapeMap() const; VarToDataTypeMap GetVariableToDataTypeMap() const; const string DebugString() const; private: friend class TensorSliceWriteTestHelper; void LoadShard(int shard) const; void LoadAllShards() const; const TensorSliceSet* FindTensorSlice( const string& name, const TensorSlice& slice, std::vector<std::pair<TensorSlice, string>>* details) const; const string filepattern_; const OpenTableFunction open_function_; std::vector<string> fnames_; std::unordered_map<string, int> fname_to_index_; mutable mutex mu_; mutable bool all_shards_loaded_ = false; mutable std::vector<std::unique_ptr<Table>> sss_; mutable std::unordered_map<string, TensorSliceSet*> tensors_; mutable Status status_; TensorSliceReader(const TensorSliceReader&) = delete; void operator=(const TensorSliceReader&) = delete; }; Status OpenTableTensorSliceReader(const string& fname, TensorSliceReader::Table** result); template <typename T> bool TensorSliceReader::CopySliceData(const string& name, const TensorSlice& slice, T* data) const { std::vector<std::pair<TensorSlice, string>> details; const TensorSliceSet* tss; { mutex_lock l(mu_); tss = FindTensorSlice(name, slice, &details); if (!tss && !all_shards_loaded_) { VLOG(1) << "Did not find slice in preferred shard, loading all shards." << name << ": " << slice.DebugString(); LoadAllShards(); tss = FindTensorSlice(name, slice, &details); } if (!tss) { return false; } } string value; for (const auto& x : details) { const TensorSlice& slice_s = x.first; const string& fname = x.second; int idx = gtl::FindWithDefault(fname_to_index_, fname, -1); CHECK_GE(idx, 0) << "Failed to find the index for filename " << fname; const string key = EncodeTensorNameSlice(name, slice_s); if (!sss_[idx]->Get(key, &value)) { VLOG(1) << "Failed to seek to the record for tensor " << name << ", slice " << slice_s.DebugString() << ": computed key = " << key; return false; } SavedTensorSlices sts; if (!ParseProtoUnlimited(&sts, value)) { VLOG(1) << "Failed to parse the record for tensor " << name << ", slice " << slice_s.DebugString() << ": computed key = " << key; return false; } TensorShape shp_s; Status s = slice_s.SliceTensorShape(tss->shape(), &shp_s); if (!s.ok()) { VLOG(1) << "Failed to slice tensor " << name << ", slice " << slice_s.DebugString() << ": " << s; return false; } if (checkpoint::TensorProtoDataSize<T>(sts.data().data()) != shp_s.num_elements()) { VLOG(1) << "Tensor " << name << ", slice " << slice_s.DebugString() << " had an unexpected amount of data: expected = " << shp_s.num_elements() << ", got = " << checkpoint::TensorProtoDataSize<T>(sts.data().data()); return false; } CopyDataFromTensorSliceToTensorSlice( tss->shape(), slice_s, slice, checkpoint::TensorProtoData<T>(sts.data().data()), data); } return true; } } } #endif #include "tensorflow/core/util/tensor_slice_reader.h" #include <climits> #include <memory> #include <utility> #include <vector> #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/versions.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/io/iterator.h" #include "tensorflow/core/lib/io/table.h" #include "tensorflow/core/lib/io/table_options.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/saved_tensor_slice_util.h" #include "tensorflow/core/util/tensor_slice_util.h" namespace tensorflow { namespace checkpoint { TensorSliceReader::Table::~Table() = default; namespace { class TensorSliceReaderTable : public TensorSliceReader::Table { public: explicit TensorSliceReaderTable(RandomAccessFile* f, table::Table* t) : file_(f), table_(t) {} ~TensorSliceReaderTable() override { delete table_; delete file_; } bool Get(const string& key, string* value) override { std::unique_ptr<table::Iterator> iter(table_->NewIterator()); iter->Seek(key); if (iter->Valid() && iter->key() == key) { StringPiece v = iter->value(); value->assign(v.data(), v.size()); return true; } else { return false; } } private: RandomAccessFile* file_; table::Table* table_; }; } Status OpenTableTensorSliceReader(const string& fname, TensorSliceReader::Table** result) { *result = nullptr; Env* env = Env::Default(); std::unique_ptr<RandomAccessFile> f; Status s = env->NewRandomAccessFile(fname, &f); if (s.ok()) { uint64 file_size; s = env->GetFileSize(fname, &file_size); if (s.ok()) { table::Options options; table::Table* table; s = table::Table::Open(options, f.get(), file_size, &table); if (s.ok()) { *result = new TensorSliceReaderTable(f.release(), table); return absl::OkStatus(); } else { s = errors::CreateWithUpdatedMessage( s, strings::StrCat(s.message(), ": perhaps your file is in a different " "file format and you need to use a " "different restore operator?")); } } } LOG(WARNING) << "Could not open " << fname << ": " << s; return s; } TensorSliceReader::TensorSliceReader(const string& filepattern) : TensorSliceReader(filepattern, OpenTableTensorSliceReader, kLoadAllShards) {} TensorSliceReader::TensorSliceReader(const string& filepattern, OpenTableFunction open_function) : TensorSliceReader(filepattern, std::move(open_function), kLoadAllShards) { } TensorSliceReader::TensorSliceReader(const string& filepattern, OpenTableFunction open_function, int preferred_shard) : filepattern_(filepattern), open_function_(std::move(open_function)) { VLOG(1) << "TensorSliceReader for " << filepattern; Status s = Env::Default()->GetMatchingPaths(filepattern, &fnames_); if (!s.ok()) { status_ = errors::InvalidArgument( "Unsuccessful TensorSliceReader constructor: " "Failed to get matching files on ", filepattern, ": ", s.ToString()); return; } if (fnames_.empty()) { status_ = errors::NotFound( "Unsuccessful TensorSliceReader constructor: " "Failed to find any matching files for ", filepattern); return; } sss_.resize(fnames_.size()); for (size_t shard = 0; shard < fnames_.size(); ++shard) { fname_to_index_.insert(std::make_pair(fnames_[shard], shard)); } if (preferred_shard == kLoadAllShards || fnames_.size() == 1 || static_cast<size_t>(preferred_shard) >= fnames_.size()) { LoadAllShards(); } else { VLOG(1) << "Loading shard " << preferred_shard << " for " << filepattern_; LoadShard(preferred_shard); } } void TensorSliceReader::LoadShard(int shard) const { CHECK_LT(shard, sss_.size()); if (sss_[shard] || !status_.ok()) { return; } string value; SavedTensorSlices sts; const string fname = fnames_[shard]; VLOG(1) << "Reading meta data from file " << fname << "..."; Table* table; Status s = open_function_(fname, &table); if (!s.ok()) { status_ = errors::DataLoss("Unable to open table file ", fname, ": ", s.ToString()); return; } sss_[shard].reset(table); if (!(table->Get(kSavedTensorSlicesKey, &value) && ParseProtoUnlimited(&sts, value))) { status_ = errors::Internal( "Failed to find the saved tensor slices at the beginning of the " "checkpoint file: ", fname); return; } status_ = CheckVersions(sts.meta().versions(), TF_CHECKPOINT_VERSION, TF_CHECKPOINT_VERSION_MIN_PRODUCER, "Checkpoint", "checkpoint"); if (!status_.ok()) return; for (const SavedSliceMeta& ssm : sts.meta().tensor()) { TensorShape ssm_shape; status_ = TensorShape::BuildTensorShapeBase(ssm.shape(), &ssm_shape); if (!status_.ok()) return; for (const TensorSliceProto& tsp : ssm.slice()) { TensorSlice ss_slice; status_ = TensorSlice::BuildTensorSlice(tsp, &ss_slice); if (!status_.ok()) return; status_ = RegisterTensorSlice(ssm.name(), ssm_shape, ssm.type(), fname, ss_slice, &tensors_); if (!status_.ok()) return; } } } void TensorSliceReader::LoadAllShards() const { VLOG(1) << "Loading all shards for " << filepattern_; for (size_t i = 0; i < fnames_.size() && status_.ok(); ++i) { LoadShard(i); } all_shards_loaded_ = true; } const TensorSliceSet* TensorSliceReader::FindTensorSlice( const string& name, const TensorSlice& slice, std::vector<std::pair<TensorSlice, string>>* details) const { const TensorSliceSet* tss = gtl::FindPtrOrNull(tensors_, name); if (tss && !tss->QueryMeta(slice, details)) { return nullptr; } return tss; } TensorSliceReader::~TensorSliceReader() { for (auto& temp : tensors_) { delete temp.second; } tensors_.clear(); } bool TensorSliceReader::HasTensor(const string& name, TensorShape* shape, DataType* type) const { mutex_lock l(mu_); const TensorSliceSet* tss = gtl::FindPtrOrNull(tensors_, name); if (!tss && !all_shards_loaded_) { VLOG(1) << "Did not find tensor in preferred shard, loading all shards: " << name; LoadAllShards(); tss = gtl::FindPtrOrNull(tensors_, name); } if (tss) { if (shape) { *shape = tss->shape(); } if (type) { *type = tss->type(); } return true; } else { return false; } } Status TensorSliceReader::GetTensor( const string& name, std::unique_ptr<tensorflow::Tensor>* out_tensor) const { DataType type; TensorShape shape; TensorSlice slice; { mutex_lock l(mu_); const TensorSliceSet* tss = gtl::FindPtrOrNull(tensors_, name); if (tss == nullptr) { return errors::NotFound(name, " not found in checkpoint file"); } if (tss->Slices().size() > 1) { return errors::Unimplemented("Sliced checkpoints are not supported"); } type = tss->type(); shape = tss->shape(); slice = tss->Slices().begin()->second.slice; } std::unique_ptr<tensorflow::Tensor> t(new tensorflow::Tensor); Status s = tensorflow::Tensor::BuildTensor(type, shape, t.get()); if (!s.ok()) return s; for (const auto d : shape.dim_sizes()) { if (d == LLONG_MAX) { return errors::InvalidArgument("Unable to read dimensions of size ", LLONG_MAX, ". Got shape: ", shape.DebugString()); } } bool success = false; #define READER_COPY(dt) \ case dt: \ success = CopySliceData(name, slice, \ t->flat<EnumToDataType<dt>::Type>().data()); \ break; switch (type) { READER_COPY(DT_FLOAT); READER_COPY(DT_DOUBLE); READER_COPY(DT_INT32); READER_COPY(DT_UINT8); READER_COPY(DT_INT16); READER_COPY(DT_INT8); READER_COPY(DT_INT64); READER_COPY(DT_STRING); READER_COPY(DT_BOOL); default: return errors::Unimplemented("Data type not supported"); } #undef READER_COPY if (!success) { return errors::NotFound(name, " not found in checkpoint file"); } std::swap(*out_tensor, t); return absl::OkStatus(); } TensorSliceReader::VarToShapeMap TensorSliceReader::GetVariableToShapeMap() const { VarToShapeMap name_to_shape; if (status().ok()) { for (auto& e : Tensors()) { name_to_shape[e.first] = e.second->shape(); } } return name_to_shape; } TensorSliceReader::VarToDataTypeMap TensorSliceReader::GetVariableToDataTypeMap() const { VarToDataTypeMap name_to_dtype; if (status().ok()) { for (auto& e : Tensors()) { name_to_dtype[e.first] = e.second->type(); } } return name_to_dtype; } const string TensorSliceReader::DebugString() const { string shape_str; if (status().ok()) { for (const auto& e : Tensors()) { strings::StrAppend(&shape_str, e.first, " (", DataType_Name(e.second->type()), ") ", e.second->shape().DebugString()); const int num_slices = e.second->Slices().size(); if (num_slices > 1) { strings::StrAppend(&shape_str, ", ", num_slices, " slices"); } strings::StrAppend(&shape_str, "\n"); } } return shape_str; } } }
#include "tensorflow/core/util/tensor_slice_reader.h" #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/io/iterator.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/io/table.h" #include "tensorflow/core/lib/io/table_builder.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/saved_tensor_slice.pb.h" #include "tensorflow/core/util/saved_tensor_slice_util.h" #include "tensorflow/core/util/tensor_slice_reader_cache.h" #include "tensorflow/core/util/tensor_slice_writer.h" namespace tensorflow { namespace checkpoint { namespace { void SimpleFloatHelper( const TensorSliceWriter::CreateBuilderFunction& create_function, TensorSliceReader::OpenTableFunction open_function) { const string fname_base = io::JoinPath(testing::TmpDir(), "float_checkpoint"); TensorShape shape({4, 5}); { const string fname = strings::StrCat(fname_base, "_0"); TensorSliceWriter writer(fname, create_function); const float data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; TensorSlice slice = TensorSlice::ParseOrDie("0,2:-"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); TF_CHECK_OK(writer.Finish()); } { const string fname = strings::StrCat(fname_base, "_1"); TensorSliceWriter writer(fname, create_function); { const float data[] = {10, 11, 12, 15, 16, 17}; TensorSlice slice = TensorSlice::ParseOrDie("2,2:0,3"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); } { const float data[] = {18, 19}; TensorSlice slice = TensorSlice::ParseOrDie("3,1:3,2"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); } TF_CHECK_OK(writer.Finish()); } const string filepattern = strings::StrCat(fname_base, "_*"); TensorSliceReader reader(filepattern, std::move(open_function)); TF_EXPECT_OK(reader.status()); EXPECT_EQ(2, reader.num_files()); { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("test", &shape, &type)); EXPECT_EQ("[4,5]", shape.DebugString()); EXPECT_EQ(DT_FLOAT, type); EXPECT_FALSE(reader.HasTensor("don't exist", nullptr, nullptr)); } { TensorSlice s = TensorSlice::ParseOrDie("0,2:-"); float expected[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; float results[10]; EXPECT_TRUE(reader.CopySliceData("test", s, results)); for (int i = 0; i < 10; ++i) { EXPECT_EQ(expected[i], results[i]); } } { TensorSlice s = TensorSlice::ParseOrDie("1,1:-"); float expected[] = {5, 6, 7, 8, 9}; float results[5]; EXPECT_TRUE(reader.CopySliceData("test", s, results)); for (int i = 0; i < 5; ++i) { EXPECT_EQ(expected[i], results[i]); } } { TensorSlice s = TensorSlice::ParseOrDie("1,2:2,3"); float results[6]; EXPECT_FALSE(reader.CopySliceData("test", s, results)); } } TEST(TensorSliceReaderTest, SimpleFloat) { SimpleFloatHelper(CreateTableTensorSliceBuilder, OpenTableTensorSliceReader); } template <typename T, typename U> void SimpleIntXHelper( const TensorSliceWriter::CreateBuilderFunction& create_function, TensorSliceReader::OpenTableFunction open_function, const string& checkpoint_file) { const string fname_base = io::JoinPath(testing::TmpDir(), checkpoint_file); TensorShape shape({4, 5}); { const string fname = strings::StrCat(fname_base, "_0"); TensorSliceWriter writer(fname, create_function); const T data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; TensorSlice slice = TensorSlice::ParseOrDie("0,2:-"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); TF_CHECK_OK(writer.Finish()); } { const string fname = strings::StrCat(fname_base, "_1"); TensorSliceWriter writer(fname, create_function); { const T data[] = {10, 11, 12, 15, 16, 17}; TensorSlice slice = TensorSlice::ParseOrDie("2,2:0,3"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); } { const T data[] = {18, 19}; TensorSlice slice = TensorSlice::ParseOrDie("3,1:3,2"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); } TF_CHECK_OK(writer.Finish()); } const string filepattern = strings::StrCat(fname_base, "_*"); TensorSliceReader reader(filepattern, std::move(open_function)); TF_EXPECT_OK(reader.status()); EXPECT_EQ(2, reader.num_files()); { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("test", &shape, &type)); EXPECT_EQ("[4,5]", shape.DebugString()); EXPECT_EQ(DataTypeToEnum<T>::v(), type); EXPECT_FALSE(reader.HasTensor("don't exist", nullptr, nullptr)); } { TensorSlice s = TensorSlice::ParseOrDie("0,2:-"); T expected[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; U results[10]; EXPECT_TRUE(reader.CopySliceData("test", s, results)); for (int i = 0; i < 10; ++i) { EXPECT_EQ(expected[i], results[i]); } } { TensorSlice s = TensorSlice::ParseOrDie("1,1:-"); T expected[] = {5, 6, 7, 8, 9}; U results[5]; EXPECT_TRUE(reader.CopySliceData("test", s, results)); for (int i = 0; i < 5; ++i) { EXPECT_EQ(expected[i], results[i]); } } { TensorSlice s = TensorSlice::ParseOrDie("1,2:2,3"); U results[6]; EXPECT_FALSE(reader.CopySliceData("test", s, results)); } } #define TEST_SIMPLE_INT(TYPE, SAVED_TYPE) \ TEST(TensorSliceReaderTest, Simple##TYPE) { \ SimpleIntXHelper<TYPE, SAVED_TYPE>(CreateTableTensorSliceBuilder, \ OpenTableTensorSliceReader, \ #TYPE "_checkpoint"); \ } TEST_SIMPLE_INT(int32, int32) TEST_SIMPLE_INT(int64_t, int64_t) TEST_SIMPLE_INT(int16, int32) TEST_SIMPLE_INT(int8, int32) TEST_SIMPLE_INT(uint8, int32) void MutateSavedTensorSlices( const std::string& fname, const std::function<std::string(SavedTensorSlices)>& mutator) { table::Options options; options.compression = table::kNoCompression; std::vector<std::pair<std::string, std::string>> entries; { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(Env::Default()->NewRandomAccessFile(fname, &file)); uint64 file_size; TF_CHECK_OK(Env::Default()->GetFileSize(fname, &file_size)); table::Table* t; TF_CHECK_OK(table::Table::Open(options, file.get(), file_size, &t)); std::unique_ptr<table::Table> table(t); std::unique_ptr<table::Iterator> it(table->NewIterator()); for (it->Seek(""); it->Valid(); it->Next()) { entries.emplace_back(it->key(), it->value()); } TF_CHECK_OK(it->status()); } { std::unique_ptr<WritableFile> file; TF_CHECK_OK(Env::Default()->NewWritableFile(fname, &file)); table::TableBuilder builder(options, file.get()); for (const auto& entry : entries) { SavedTensorSlices sts; CHECK(sts.ParseFromString(entry.second)); builder.Add(entry.first, mutator(std::move(sts))); } TF_CHECK_OK(builder.Finish()); TF_CHECK_OK(file->Close()); } } TEST(TensorSliceReaderTest, MissingTensorType) { const string fname = io::JoinPath(testing::TmpDir(), "invalid_checkpoint"); TensorSliceWriter writer(fname, CreateTableTensorSliceBuilder); const int32 data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; TensorShape shape({4, 5}); TensorSlice slice = TensorSlice::ParseOrDie("0,2:-"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); TF_CHECK_OK(writer.Finish()); MutateSavedTensorSlices(fname, [](SavedTensorSlices sts) { if (sts.has_meta()) { for (auto& tensor : *sts.mutable_meta()->mutable_tensor()) { tensor.clear_type(); } } return sts.SerializeAsString(); }); TensorSliceReader reader(fname, OpenTableTensorSliceReader); TF_CHECK_OK(reader.status()); EXPECT_TRUE(reader.HasTensor("test", nullptr, nullptr)); std::unique_ptr<Tensor> tensor; EXPECT_FALSE(reader.GetTensor("test", &tensor).ok()); } TEST(TensorSliceReaderTest, UnsupportedTensorType) { const string fname = io::JoinPath(testing::TmpDir(), "int32_ref_checkpoint"); TensorSliceWriter writer(fname, CreateTableTensorSliceBuilder); const int32 data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; TensorShape shape({4, 5}); TensorSlice slice = TensorSlice::ParseOrDie("0,2:-"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); TF_CHECK_OK(writer.Finish()); MutateSavedTensorSlices(fname, [](SavedTensorSlices sts) { if (sts.has_meta()) { for (auto& tensor : *sts.mutable_meta()->mutable_tensor()) { tensor.set_type(DT_INT32_REF); } } return sts.SerializeAsString(); }); TensorSliceReader reader(fname, OpenTableTensorSliceReader); TF_CHECK_OK(reader.status()); EXPECT_TRUE(reader.HasTensor("test", nullptr, nullptr)); std::unique_ptr<Tensor> tensor; EXPECT_FALSE(reader.GetTensor("test", &tensor).ok()); } TEST(TensorSliceReaderTest, NegativeTensorShapeDimension) { const string fname = io::JoinPath(testing::TmpDir(), "negative_dim_checkpoint"); TensorSliceWriter writer(fname, CreateTableTensorSliceBuilder); const int32 data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; TF_CHECK_OK(writer.Add("test", TensorShape({4, 5}), TensorSlice::ParseOrDie("0,2:-"), data)); TF_CHECK_OK(writer.Finish()); MutateSavedTensorSlices(fname, [](SavedTensorSlices sts) { if (sts.has_meta()) { for (auto& tensor : *sts.mutable_meta()->mutable_tensor()) { for (auto& dim : *tensor.mutable_shape()->mutable_dim()) { dim.set_size(-dim.size()); } } } return sts.SerializeAsString(); }); TensorSliceReader reader(fname, OpenTableTensorSliceReader); EXPECT_FALSE(reader.status().ok()); } TEST(TensorSliceReaderTest, InvalidTensorSlice) { const string fname = io::JoinPath(testing::TmpDir(), "invalid_slice_checkpoint"); TensorSliceWriter writer(fname, CreateTableTensorSliceBuilder); const int32 data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; TF_CHECK_OK(writer.Add("test", TensorShape({4, 5}), TensorSlice::ParseOrDie("0,2:-"), data)); TF_CHECK_OK(writer.Finish()); MutateSavedTensorSlices(fname, [](SavedTensorSlices sts) { if (sts.has_meta()) { for (auto& tensor : *sts.mutable_meta()->mutable_tensor()) { tensor.mutable_slice(0)->mutable_extent(0)->set_length(-10); } } return sts.SerializeAsString(); }); TensorSliceReader reader(fname, OpenTableTensorSliceReader); EXPECT_FALSE(reader.status().ok()); } TEST(TensorSliceReaderTest, MissingTensorData) { const string fname = io::JoinPath(testing::TmpDir(), "missing_data_checkpoint"); TensorSliceWriter writer(fname, CreateTableTensorSliceBuilder); const int32 data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; TF_ASSERT_OK(writer.Add("test", TensorShape({4, 5}), TensorSlice::ParseOrDie("0,2:-"), data)); TF_ASSERT_OK(writer.Finish()); MutateSavedTensorSlices(fname, [&](SavedTensorSlices sts) { if (sts.has_data()) { Fill(data, 4, sts.mutable_data()->mutable_data()); } return sts.SerializeAsString(); }); TensorSliceReader reader(fname, OpenTableTensorSliceReader); TF_ASSERT_OK(reader.status()); EXPECT_TRUE(reader.HasTensor("test", nullptr, nullptr)); std::unique_ptr<Tensor> tensor; EXPECT_FALSE(reader.GetTensor("test", &tensor).ok()); } void CachedTensorSliceReaderTesterHelper( const TensorSliceWriter::CreateBuilderFunction& create_function, const TensorSliceReader::OpenTableFunction& open_function) { const string fname_base = io::JoinPath(testing::TmpDir(), "float_checkpoint"); TensorShape shape({4, 5}); { const string fname = strings::StrCat(fname_base, "_0"); TensorSliceWriter writer(fname, create_function); const float data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; TensorSlice slice = TensorSlice::ParseOrDie("0,2:-"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); TF_CHECK_OK(writer.Finish()); } { const string fname = strings::StrCat(fname_base, "_1"); TensorSliceWriter writer(fname, create_function); { const float data[] = {10, 11, 12, 15, 16, 17}; TensorSlice slice = TensorSlice::ParseOrDie("2,2:0,3"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); } { const float data[] = {18, 19}; TensorSlice slice = TensorSlice::ParseOrDie("3,1:3,2"); TF_CHECK_OK(writer.Add("test", shape, slice, data)); } TF_CHECK_OK(writer.Finish()); } TensorSliceReaderCache cache; const string filepattern = strings::StrCat(fname_base, "_*"); const TensorSliceReader* reader = cache.GetReader( filepattern, open_function, TensorSliceReader::kLoadAllShards); EXPECT_TRUE(reader != nullptr); EXPECT_EQ(2, reader->num_files()); { TensorShape shape; DataType type; EXPECT_TRUE(reader->HasTensor("test", &shape, &type)); EXPECT_EQ("[4,5]", shape.DebugString()); EXPECT_EQ(DT_FLOAT, type); EXPECT_FALSE(reader->HasTensor("don't exist", nullptr, nullptr)); } const TensorSliceReader* reader2 = cache.GetReader( filepattern, open_function, TensorSliceReader::kLoadAllShards); EXPECT_EQ(reader, reader2); reader = cache.GetReader("file_does_not_exist", open_function, TensorSliceReader::kLoadAllShards); EXPECT_TRUE(reader == nullptr); } TEST(CachedTensorSliceReaderTest, SimpleFloat) { CachedTensorSliceReaderTesterHelper(CreateTableTensorSliceBuilder, OpenTableTensorSliceReader); } static void VersionTest(const VersionDef& versions, const string& error) { const string path = io::JoinPath(testing::TmpDir(), "checkpoint"); { SavedTensorSlices sts; *sts.mutable_meta()->mutable_versions() = versions; string contents; EXPECT_TRUE(sts.SerializeToString(&contents)); TensorSliceWriter::Builder* builder; TF_ASSERT_OK(CreateTableTensorSliceBuilder(path, &builder)); builder->Add(kSavedTensorSlicesKey, contents); int64_t file_size; TF_EXPECT_OK(builder->Finish(&file_size)); delete builder; } TensorSliceReader reader(path, OpenTableTensorSliceReader); EXPECT_TRUE(reader.status().code() == error::INVALID_ARGUMENT && absl::StartsWith(reader.status().message(), error)) << "Expected error starting with '" << errors::InvalidArgument(error) << "', got '" << reader.status() << "'"; } TEST(CheckpointVersionTest, MinConsumer) { VersionDef versions; versions.set_producer(TF_CHECKPOINT_VERSION + 1); versions.set_min_consumer(TF_CHECKPOINT_VERSION + 1); VersionTest( versions, strings::StrCat("Checkpoint min consumer version ", TF_CHECKPOINT_VERSION + 1, " above current version ", TF_CHECKPOINT_VERSION, " for TensorFlow")); } TEST(CheckpointVersionTest, MinProducer) { VersionDef versions; versions.set_producer(TF_CHECKPOINT_VERSION_MIN_PRODUCER - 1); VersionTest(versions, strings::StrCat("Checkpoint producer version ", TF_CHECKPOINT_VERSION_MIN_PRODUCER - 1, " below min producer ", TF_CHECKPOINT_VERSION_MIN_PRODUCER, " supported by TensorFlow")); } TEST(CheckpointVersionTest, BadConsumer) { VersionDef versions; versions.set_producer(TF_CHECKPOINT_VERSION + 1); versions.add_bad_consumers(TF_CHECKPOINT_VERSION); VersionTest( versions, strings::StrCat( "Checkpoint disallows consumer version ", TF_CHECKPOINT_VERSION, ". Please upgrade TensorFlow: this version is likely buggy.")); } } } }
1,703
cpp
tensorflow/tensorflow
events_writer
tensorflow/core/util/events_writer.cc
tensorflow/core/util/events_writer_test.cc
#ifndef TENSORFLOW_CORE_UTIL_EVENTS_WRITER_H_ #define TENSORFLOW_CORE_UTIL_EVENTS_WRITER_H_ #include <memory> #include <string> #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/event.pb.h" namespace tensorflow { class EventsWriter { public: #ifndef SWIG static constexpr const char* kVersionPrefix = "brain.Event:"; static constexpr const int kCurrentVersion = 2; static constexpr const char* kWriterSourceMetadata = "tensorflow.core.util.events_writer"; #endif explicit EventsWriter(const std::string& file_prefix); ~EventsWriter(); Status Init(); Status InitWithSuffix(const std::string& suffix); std::string FileName(); void WriteEvent(const tensorflow::Event& event); void WriteSerializedEvent(tensorflow::StringPiece event_str); Status Flush(); Status Close(); private: Status FileStillExists(); Status InitIfNeeded(); Env* env_; const std::string file_prefix_; std::string file_suffix_; std::string filename_; std::unique_ptr<WritableFile> recordio_file_; std::unique_ptr<io::RecordWriter> recordio_writer_; int num_outstanding_events_; #ifndef SWIG EventsWriter(const EventsWriter&) = delete; void operator=(const EventsWriter&) = delete; #endif }; } #endif #include "tensorflow/core/util/events_writer.h" #include <stddef.h> #include <memory> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/host_info.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/event.pb.h" namespace tensorflow { EventsWriter::EventsWriter(const string& file_prefix) : env_(Env::Default()), file_prefix_(file_prefix), num_outstanding_events_(0) {} EventsWriter::~EventsWriter() { Close().IgnoreError(); } Status EventsWriter::Init() { return InitWithSuffix(""); } Status EventsWriter::InitWithSuffix(const string& suffix) { file_suffix_ = suffix; return InitIfNeeded(); } Status EventsWriter::InitIfNeeded() { if (recordio_writer_ != nullptr) { CHECK(!filename_.empty()); if (!FileStillExists().ok()) { if (num_outstanding_events_ > 0) { LOG(WARNING) << "Re-initialization, attempting to open a new file, " << num_outstanding_events_ << " events will be lost."; } } else { return absl::OkStatus(); } } int64_t time_in_seconds = env_->NowMicros() / 1000000; filename_ = strings::Printf("%s.out.tfevents.%010lld.%s%s", file_prefix_.c_str(), static_cast<long long>(time_in_seconds), port::Hostname().c_str(), file_suffix_.c_str()); recordio_writer_.reset(); TF_RETURN_WITH_CONTEXT_IF_ERROR( env_->NewWritableFile(filename_, &recordio_file_), "Creating writable file ", filename_); recordio_writer_ = std::make_unique<io::RecordWriter>(recordio_file_.get()); if (recordio_writer_ == nullptr) { return errors::Unknown("Could not create record writer"); } num_outstanding_events_ = 0; VLOG(1) << "Successfully opened events file: " << filename_; { Event event; event.set_wall_time(time_in_seconds); event.set_file_version(strings::StrCat(kVersionPrefix, kCurrentVersion)); SourceMetadata* source_metadata = event.mutable_source_metadata(); source_metadata->set_writer(kWriterSourceMetadata); WriteEvent(event); TF_RETURN_WITH_CONTEXT_IF_ERROR(Flush(), "Flushing first event."); } return absl::OkStatus(); } string EventsWriter::FileName() { if (filename_.empty()) { InitIfNeeded().IgnoreError(); } return filename_; } void EventsWriter::WriteSerializedEvent(StringPiece event_str) { if (recordio_writer_ == nullptr) { if (!InitIfNeeded().ok()) { LOG(ERROR) << "Write failed because file could not be opened."; return; } } num_outstanding_events_++; recordio_writer_->WriteRecord(event_str).IgnoreError(); } void EventsWriter::WriteEvent(const Event& event) { string record; event.AppendToString(&record); WriteSerializedEvent(record); } Status EventsWriter::Flush() { if (num_outstanding_events_ == 0) return absl::OkStatus(); CHECK(recordio_file_ != nullptr) << "Unexpected NULL file"; TF_RETURN_WITH_CONTEXT_IF_ERROR(recordio_writer_->Flush(), "Failed to flush ", num_outstanding_events_, " events to ", filename_); TF_RETURN_WITH_CONTEXT_IF_ERROR(recordio_file_->Sync(), "Failed to sync ", num_outstanding_events_, " events to ", filename_); VLOG(1) << "Wrote " << num_outstanding_events_ << " events to disk."; num_outstanding_events_ = 0; return absl::OkStatus(); } Status EventsWriter::Close() { Status status = Flush(); if (recordio_file_ != nullptr) { Status close_status = recordio_file_->Close(); if (!close_status.ok()) { status = close_status; } recordio_writer_.reset(nullptr); recordio_file_.reset(nullptr); } num_outstanding_events_ = 0; return status; } Status EventsWriter::FileStillExists() { if (env_->FileExists(filename_).ok()) { return absl::OkStatus(); } return errors::Unknown("The events file ", filename_, " has disappeared."); } }
#include "tensorflow/core/util/events_writer.h" #include <math.h> #include <memory> #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/event.pb.h" namespace tensorflow { namespace { Env* env() { return Env::Default(); } void WriteSimpleValue(EventsWriter* writer, double wall_time, int64_t step, const string& tag, float simple_value) { Event event; event.set_wall_time(wall_time); event.set_step(step); Summary::Value* summ_val = event.mutable_summary()->add_value(); summ_val->set_tag(tag); summ_val->set_simple_value(simple_value); writer->WriteEvent(event); } void WriteFile(EventsWriter* writer) { WriteSimpleValue(writer, 1234, 34, "foo", 3.14159); WriteSimpleValue(writer, 2345, 35, "bar", -42); } static bool ReadEventProto(io::RecordReader* reader, uint64* offset, Event* proto) { tstring record; Status s = reader->ReadRecord(offset, &record); if (!s.ok()) { return false; } return ParseProtoUnlimited(proto, record); } void VerifyFile(const string& filename) { TF_CHECK_OK(env()->FileExists(filename)); std::unique_ptr<RandomAccessFile> event_file; TF_CHECK_OK(env()->NewRandomAccessFile(filename, &event_file)); io::RecordReader* reader = new io::RecordReader(event_file.get()); uint64 offset = 0; Event actual; CHECK(ReadEventProto(reader, &offset, &actual)); VLOG(1) << actual.ShortDebugString(); double current_time = env()->NowMicros() / 1000000.0; EXPECT_LT(fabs(actual.wall_time() - current_time), 5); EXPECT_EQ(actual.file_version(), strings::StrCat(EventsWriter::kVersionPrefix, EventsWriter::kCurrentVersion)); EXPECT_EQ(actual.source_metadata().writer(), EventsWriter::kWriterSourceMetadata); Event expected; CHECK(ReadEventProto(reader, &offset, &actual)); VLOG(1) << actual.ShortDebugString(); ASSERT_TRUE(protobuf::TextFormat::ParseFromString( "wall_time: 1234 step: 34 " "summary { value { tag: 'foo' simple_value: 3.14159 } }", &expected)); CHECK(ReadEventProto(reader, &offset, &actual)); VLOG(1) << actual.ShortDebugString(); ASSERT_TRUE(protobuf::TextFormat::ParseFromString( "wall_time: 2345 step: 35 " "summary { value { tag: 'bar' simple_value: -42 } }", &expected)); TF_CHECK_OK(env()->DeleteFile(filename)); delete reader; } string GetDirName(const string& suffix) { return io::JoinPath(testing::TmpDir(), suffix); } TEST(EventWriter, WriteFlush) { string file_prefix = GetDirName("/writeflush_test"); EventsWriter writer(file_prefix); WriteFile(&writer); TF_EXPECT_OK(writer.Flush()); string filename = writer.FileName(); VerifyFile(filename); } TEST(EventWriter, WriteClose) { string file_prefix = GetDirName("/writeclose_test"); EventsWriter writer(file_prefix); WriteFile(&writer); TF_EXPECT_OK(writer.Close()); string filename = writer.FileName(); VerifyFile(filename); } TEST(EventWriter, WriteDelete) { string file_prefix = GetDirName("/writedelete_test"); EventsWriter* writer = new EventsWriter(file_prefix); WriteFile(writer); string filename = writer->FileName(); delete writer; VerifyFile(filename); } TEST(EventWriter, FailFlush) { string file_prefix = GetDirName("/failflush_test"); EventsWriter writer(file_prefix); string filename = writer.FileName(); WriteFile(&writer); TF_EXPECT_OK(env()->FileExists(filename)); TF_ASSERT_OK(env()->DeleteFile(filename)); EXPECT_TRUE(writer.Flush().ok()); } TEST(EventWriter, FailClose) { string file_prefix = GetDirName("/failclose_test"); EventsWriter writer(file_prefix); string filename = writer.FileName(); WriteFile(&writer); TF_EXPECT_OK(env()->FileExists(filename)); TF_ASSERT_OK(env()->DeleteFile(filename)); EXPECT_TRUE(writer.Close().ok()); } TEST(EventWriter, InitWriteClose) { string file_prefix = GetDirName("/initwriteclose_test"); EventsWriter writer(file_prefix); TF_EXPECT_OK(writer.Init()); string filename0 = writer.FileName(); TF_EXPECT_OK(env()->FileExists(filename0)); WriteFile(&writer); TF_EXPECT_OK(writer.Close()); string filename1 = writer.FileName(); EXPECT_EQ(filename0, filename1); VerifyFile(filename1); } TEST(EventWriter, NameWriteClose) { string file_prefix = GetDirName("/namewriteclose_test"); EventsWriter writer(file_prefix); string filename = writer.FileName(); TF_EXPECT_OK(env()->FileExists(filename)); WriteFile(&writer); TF_EXPECT_OK(writer.Close()); VerifyFile(filename); } TEST(EventWriter, NameClose) { string file_prefix = GetDirName("/nameclose_test"); EventsWriter writer(file_prefix); string filename = writer.FileName(); TF_EXPECT_OK(writer.Close()); TF_EXPECT_OK(env()->FileExists(filename)); TF_ASSERT_OK(env()->DeleteFile(filename)); } TEST(EventWriter, FileDeletionBeforeWriting) { string file_prefix = GetDirName("/fdbw_test"); EventsWriter writer(file_prefix); string filename0 = writer.FileName(); TF_EXPECT_OK(env()->FileExists(filename0)); env()->SleepForMicroseconds( 2000000); TF_ASSERT_OK(env()->DeleteFile(filename0)); TF_EXPECT_OK(writer.Init()); WriteFile(&writer); TF_EXPECT_OK(writer.Flush()); string filename1 = writer.FileName(); EXPECT_NE(filename0, filename1); VerifyFile(filename1); } } }
1,704
cpp
tensorflow/tensorflow
debug_data_dumper
tensorflow/core/util/debug_data_dumper.cc
tensorflow/core/util/debug_data_dumper_test.cc
#ifndef TENSORFLOW_CORE_UTIL_DEBUG_DATA_DUMPER_H_ #define TENSORFLOW_CORE_UTIL_DEBUG_DATA_DUMPER_H_ #include <optional> #include <set> #include <string> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/mutex.h" #define DEBUG_DATA_DUMPER() ::tensorflow::DebugDataDumper::Global() inline constexpr const char* kDebugGroupMain = "main"; inline constexpr const char* kDebugGroupOpStacktrace = "op_stacktrace"; inline constexpr const char* kDebugGroupGraphOptPass = "graph_opt_pass"; inline constexpr const char* kDebugGroupBridgePhase1Clustering = "bridge_phase1_clustering"; inline constexpr const char* kDebugGroupRuntimeLowering = "runtime_lowering"; inline constexpr const char* kDebugGroupBridgePhase1ExecutorExport = "bridge_phase1_executor_export"; inline constexpr const char* kDebugGroupBridgePhase2 = "bridge_phase2"; inline constexpr const char* kDebugGroupDTensorMlir = "dtensor_mlir"; inline constexpr const char* kDebugGroupDTensorGraph = "dtensor_graph"; inline constexpr const char* kDebugGroupDTensorLayout = "dtensor_layout"; namespace tensorflow { class FunctionLibraryDefinition; class Graph; class DebugDataDumper { public: static DebugDataDumper* Global(); void LoadEnvvars(); bool ShouldDump(const std::string& name, const std::string& group) const; void DumpOpCreationStackTraces(const std::string& name, const std::string& group, const std::string& tag, const Graph* graph); void DumpGraph(const std::string& name, const std::string& group, const std::string& tag, const Graph* graph, const FunctionLibraryDefinition* func_lib_def, bool bypass_filter = false); std::string GetDumpFilename(const std::string& name, const std::string& group, const std::string& tag); private: DebugDataDumper(); int GetNextDumpId(const std::string& name) { const mutex_lock lock(lock_); return dump_order_ids_[name]++; } absl::flat_hash_map<std::string, int> dump_order_ids_; tensorflow::mutex lock_; std::optional<std::string> name_filter_; std::set<string> groups_filter_; bool dump_wrapped_; }; } #endif #include "tensorflow/core/util/debug_data_dumper.h" #include <optional> #include <set> #include <string> #include <vector> #include "absl/strings/str_format.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { DebugDataDumper* DebugDataDumper::Global() { static DebugDataDumper* global_instance_ = new DebugDataDumper(); return global_instance_; } DebugDataDumper::DebugDataDumper() { LoadEnvvars(); } void DebugDataDumper::LoadEnvvars() { const char* dump_wrapped = getenv("TF_DUMP_GRAPH_WRAPPED"); dump_wrapped_ = static_cast<bool>(dump_wrapped); const char* name_filter = getenv("TF_DUMP_GRAPH_NAME_FILTER"); name_filter_ = name_filter ? std::optional<std::string>{name_filter} : std::nullopt; const char* groups_filter = getenv("TF_DUMP_GRAPH_GROUPS"); groups_filter_ = groups_filter ? std::set<std::string>(absl::StrSplit(groups_filter, ',')) : std::set<std::string>({kDebugGroupMain}); } bool DebugDataDumper::ShouldDump(const std::string& name, const std::string& group) const { if (!dump_wrapped_ && absl::StartsWith(name, "__wrapped__")) return false; if (name_filter_ == std::nullopt) { VLOG(1) << "Skip dumping graph '" << name << "', because TF_DUMP_GRAPH_NAME_FILTER is not set"; return false; } if (!absl::EqualsIgnoreCase(*name_filter_, "*") && !absl::StrContains(name, *name_filter_)) { VLOG(1) << "Skip dumping graph '" << name << "', because TF_DUMP_GRAPH_NAME_FILTER is not '*' and " << "it is not contained by the graph name"; return false; } if (groups_filter_.find(group) == groups_filter_.end() && groups_filter_.find("*") == groups_filter_.end()) return false; return true; } void DebugDataDumper::DumpOpCreationStackTraces(const std::string& name, const std::string& group, const std::string& tag, const Graph* graph) { if (!ShouldDump(name, group)) return; std::string dump_filename = GetDumpFilename(name, group, tag); DumpToFile(dump_filename, "", ".csv", "StackTrace", [graph, &dump_filename](WritableFile* file) { auto status = file->Append("node_id,node_name,stackframes\n"); if (!status.ok()) { LOG(WARNING) << "error writing to file to " << dump_filename << ": " << status.message(); return status; } for (Node* node : graph->nodes()) { auto stack_trace = node->GetStackTrace(); if (stack_trace == nullptr) continue; int node_id = node->id(); const std::string& node_name = node->name(); std::vector<std::string> stackframes; stackframes.reserve(stack_trace->ToFrames().size()); for (auto& frame : stack_trace->ToFrames()) { stackframes.push_back( absl::StrFormat("%s(%d): %s", frame.file_name, frame.line_number, frame.function_name)); } status = file->Append( absl::StrFormat("%d,%s,%s\n", node_id, node_name, absl::StrJoin(stackframes, ";"))); if (!status.ok()) { LOG(WARNING) << "error writing to file to " << dump_filename << ": " << status.message(); return status; } } return file->Close(); }); } void DebugDataDumper::DumpGraph(const std::string& name, const std::string& group, const std::string& tag, const Graph* graph, const FunctionLibraryDefinition* func_lib_def, bool bypass_filter) { if (!ShouldDump(name, group) && !bypass_filter) return; std::string dump_filename = GetDumpFilename(name, group, tag); if (dump_filename.size() > 255) { LOG(WARNING) << "Failed to dump graph " << dump_filename << " to " << ", because the file name is longer than 255"; return; } GraphDef graph_def; graph->ToGraphDef(&graph_def); if (func_lib_def) { FunctionLibraryDefinition reachable_lib_def = func_lib_def->ReachableDefinitions(graph_def); *graph_def.mutable_library() = reachable_lib_def.ToProto(); } DumpGraphDefToFile(dump_filename, graph_def); } std::string DebugDataDumper::GetDumpFilename(const std::string& name, const std::string& group, const std::string& tag) { std::string dump_name = name.empty() ? "unknown_graph" : name; return absl::StrFormat("%s.%04d.%s.%s", dump_name, GetNextDumpId(name), group, tag); } }
#include "tensorflow/core/util/debug_data_dumper.h" #include <string> #include "absl/strings/str_format.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(DebugDataDumper, NoPrefixTest) { EXPECT_EQ(false, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupMain)); } TEST(DebugDataDumper, NoNameFilterTest) { std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(false, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupMain)); } TEST(DebugDataDumper, ShouldDumpTest) { std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(true, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupMain)); setenv("TF_DUMP_GRAPH_NAME_FILTER", "DumpGraph", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(true, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupMain)); setenv("TF_DUMP_GRAPH_NAME_FILTER", "DoNotDumpGraph", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(false, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupMain)); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(false, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupBridgePhase1Clustering)); setenv("TF_DUMP_GRAPH_GROUPS", "main,bridge_phase1_clustering", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(true, DEBUG_DATA_DUMPER()->ShouldDump("DumpGraphToFileTest", kDebugGroupBridgePhase1Clustering)); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(false, DEBUG_DATA_DUMPER()->ShouldDump( "__wrapped__DumpGraphToFileTest", kDebugGroupMain)); setenv("TF_DUMP_GRAPH_WRAPPED", "true", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); EXPECT_EQ(true, DEBUG_DATA_DUMPER()->ShouldDump( "__wrapped__DumpGraphToFileTest", kDebugGroupMain)); } TEST(DebugDataDumper, DumpFileBasenameTest) { EXPECT_EQ("DumpFileBasenameTest1.0000.main.tag1", DEBUG_DATA_DUMPER()->GetDumpFilename("DumpFileBasenameTest1", kDebugGroupMain, "tag1")); EXPECT_EQ("DumpFileBasenameTest1.0001.main.tag2", DEBUG_DATA_DUMPER()->GetDumpFilename("DumpFileBasenameTest1", kDebugGroupMain, "tag2")); EXPECT_EQ("DumpFileBasenameTest2.0000.main.tag1", DEBUG_DATA_DUMPER()->GetDumpFilename("DumpFileBasenameTest2", kDebugGroupMain, "tag1")); } TEST(DebugDataDumper, DumpGraphToFileTest) { Graph graph(OpRegistry::Global()); Node* node; TF_CHECK_OK(NodeBuilder("A", "NoOp").Finalize(&graph, &node)); std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); DEBUG_DATA_DUMPER()->DumpGraph("DumpGraphToFileTest", kDebugGroupMain, "tag", &graph, nullptr, false); std::string dumpFilename = io::JoinPath(dir, "DumpGraphToFileTest.0000.main.tag.pbtxt"); EXPECT_EQ(absl::OkStatus(), Env::Default()->FileExists(dumpFilename)); } TEST(DebugDataDumper, DumpGraphLongFileNameCrashTest) { Graph graph(OpRegistry::Global()); Node* node; TF_CHECK_OK(NodeBuilder("A", "NoOp").Finalize(&graph, &node)); std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); std::string name = std::string(256, 'x'); DEBUG_DATA_DUMPER()->DumpGraph(name, kDebugGroupMain, "tag", &graph, nullptr, false); std::string dumpFilename = io::JoinPath( dir, absl::StrFormat("%s.0000.main.tag.pbtxt", name.c_str())); EXPECT_EQ(absl::StatusCode::kNotFound, Env::Default()->FileExists(dumpFilename).code()); } TEST(DebugDataDumper, DumpOpCreationStacktracesTest) { Graph graph(OpRegistry::Global()); Node* node; TF_CHECK_OK(NodeBuilder("A", "NoOp").Finalize(&graph, &node)); std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); setenv("TF_DUMP_OP_CREATION_STACKTRACES", "1", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); DEBUG_DATA_DUMPER()->DumpOpCreationStackTraces( "DumpOpCreationStacktracesTest", kDebugGroupMain, "test", &graph); std::string dumpFilename = io::JoinPath(dir, "DumpOpCreationStacktracesTest.0000.main.test.csv"); EXPECT_EQ(absl::OkStatus(), Env::Default()->FileExists(dumpFilename)); } TEST(DebugDataDumper, NoDumpOpCreationStacktracesTest) { Graph graph(OpRegistry::Global()); Node* node; TF_CHECK_OK(NodeBuilder("A", "NoOp").Finalize(&graph, &node)); std::string dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); DEBUG_DATA_DUMPER()->DumpOpCreationStackTraces( "DumpOpCreationStacktracesTest", kDebugGroupMain, "test", &graph); std::string dumpFilename = io::JoinPath(dir, "DumpOpCreationStacktracesTest.0000.main.test.json"); EXPECT_EQ(absl::StatusCode::kNotFound, Env::Default()->FileExists(dumpFilename).code()); } } }
1,705
cpp
tensorflow/tensorflow
example_proto_helper
tensorflow/core/util/example_proto_helper.cc
tensorflow/core/util/example_proto_helper_test.cc
#ifndef TENSORFLOW_CORE_UTIL_EXAMPLE_PROTO_HELPER_H_ #define TENSORFLOW_CORE_UTIL_EXAMPLE_PROTO_HELPER_H_ #include <string> #include <unordered_set> #include <vector> #include "tensorflow/core/example/example.pb.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/sparse/sparse_tensor.h" namespace tensorflow { struct FixedLenFeature { string key; DataType dtype; TensorShape shape; Tensor default_value; string values_output_tensor_name; }; struct VarLenFeature { string key; DataType dtype; string values_output_tensor_name; string indices_output_tensor_name; string shapes_output_tensor_name; }; Status SingleExampleProtoToTensors( const Example& example, const string& name, int batch_index, const std::vector<FixedLenFeature>& fixed_len_features, const std::vector<VarLenFeature>& var_len_features, std::vector<Tensor*>* output_dense_values_tensor, std::vector<std::vector<Tensor>>* output_sparse_values_tmp); struct VarLenFeatureBatchShapes { TensorShape indices_shape; TensorShape values_shape; int max_num_features; }; Status GetSparseTensorShapes(const VarLenFeature& var_len_feature, const std::vector<Tensor>& sparse_values_tmp, int batch_size, VarLenFeatureBatchShapes* output_shapes); Status BatchExampleProtoToTensors( const std::vector<const Example*>& examples, const std::vector<string>& names, const std::vector<FixedLenFeature>& fixed_len_features, const std::vector<VarLenFeature>& var_len_features, Allocator* allocator, std::vector<Tensor>* output_dense_values_tensor, std::vector<Tensor>* output_sparse_indices_tensor, std::vector<Tensor>* output_sparse_values_tensor, std::vector<Tensor>* output_sparse_shapes_tensor); Status CheckValidType(const DataType& dtype); Status CheckTypesMatch(const Feature& feature, const DataType& dtype, bool* match); Status FeatureDenseCopy(std::size_t out_index, const string& name, const string& key, const DataType& dtype, const TensorShape& shape, const Feature& feature, Tensor* out); void RowDenseCopy(const std::size_t& out_index, const DataType& dtype, const Tensor& in, Tensor* out); Tensor FeatureSparseCopy(std::size_t batch, const string& key, const DataType& dtype, const Feature& feature); int64_t CopyIntoSparseTensor(const Tensor& in, int batch, int64_t offset, Tensor* indices, Tensor* values); Status GetDenseShapes(const std::vector<PartialTensorShape>& dense_shapes, std::vector<bool>* variable_length, std::vector<std::size_t>* elements_per_stride); struct ParseExampleAttrs { public: template <typename ContextType> Status Init(ContextType* ctx, int op_version = 1) { TF_RETURN_IF_ERROR(ctx->GetAttr("sparse_types", &sparse_types)); TF_RETURN_IF_ERROR(ctx->GetAttr("Tdense", &dense_types)); TF_RETURN_IF_ERROR(ctx->GetAttr("dense_shapes", &dense_shapes)); TF_RETURN_IF_ERROR( GetDenseShapes(dense_shapes, &variable_length, &elements_per_stride)); switch (op_version) { case 1: TF_RETURN_IF_ERROR(ctx->GetAttr("Nsparse", &num_sparse)); TF_RETURN_IF_ERROR(ctx->GetAttr("Ndense", &num_dense)); break; case 2: TF_RETURN_IF_ERROR( ctx->GetAttr("ragged_value_types", &ragged_value_types)); TF_RETURN_IF_ERROR(ctx->GetAttr("num_sparse", &num_sparse)); TF_RETURN_IF_ERROR( ctx->GetAttr("ragged_split_types", &ragged_split_types)); break; default: return errors::InvalidArgument("Unexpected op_version", op_version); } return FinishInit(op_version); } int64_t num_sparse; int64_t num_dense; int64_t num_ragged; std::vector<DataType> sparse_types; std::vector<DataType> dense_types; std::vector<DataType> ragged_value_types; std::vector<DataType> ragged_split_types; std::vector<PartialTensorShape> dense_shapes; std::vector<bool> variable_length; std::vector<std::size_t> elements_per_stride; private: Status FinishInit(int op_version); }; struct ParseSingleExampleAttrs { public: template <typename ContextType> Status Init(ContextType* ctx) { TF_RETURN_IF_ERROR(ctx->GetAttr("sparse_keys", &sparse_keys)); TF_RETURN_IF_ERROR(ctx->GetAttr("sparse_types", &sparse_types)); TF_RETURN_IF_ERROR(ctx->GetAttr("dense_keys", &dense_keys)); TF_RETURN_IF_ERROR(ctx->GetAttr("Tdense", &dense_types)); TF_RETURN_IF_ERROR(ctx->GetAttr("dense_shapes", &dense_shapes)); int num_sparse; TF_RETURN_IF_ERROR(ctx->GetAttr("num_sparse", &num_sparse)); if (num_sparse != sparse_keys.size() || num_sparse != sparse_types.size()) { return errors::InvalidArgument( "num_sparse (", num_sparse, ") must match the size of sparse_keys (", sparse_keys.size(), ") and sparse_types (", sparse_types.size(), ")"); } TF_RETURN_IF_ERROR( GetDenseShapes(dense_shapes, &variable_length, &elements_per_stride)); return FinishInit(); } std::vector<tstring> sparse_keys; std::vector<DataType> sparse_types; std::vector<tstring> dense_keys; std::vector<DataType> dense_types; std::vector<PartialTensorShape> dense_shapes; std::vector<bool> variable_length; std::vector<std::size_t> elements_per_stride; private: Status FinishInit(); }; struct ParseSequenceExampleAttrs { public: template <typename ContextType> Status Init(ContextType* ctx, int op_version = 1) { switch (op_version) { case 1: { std::vector<string> missing_empty_vector; TF_RETURN_IF_ERROR(ctx->GetAttr( "feature_list_dense_missing_assumed_empty", &missing_empty_vector)); for (const string& feature : missing_empty_vector) { feature_list_dense_missing_assumed_empty.insert(feature); } } TF_RETURN_IF_ERROR( ctx->GetAttr("context_sparse_keys", &context_sparse_keys)); TF_RETURN_IF_ERROR( ctx->GetAttr("context_dense_keys", &context_dense_keys)); TF_RETURN_IF_ERROR(ctx->GetAttr("feature_list_sparse_keys", &feature_list_sparse_keys)); TF_RETURN_IF_ERROR( ctx->GetAttr("feature_list_dense_keys", &feature_list_dense_keys)); TF_RETURN_IF_ERROR(ctx->GetAttr("Ncontext_dense", &num_context_dense)); break; case 2: TF_RETURN_IF_ERROR(ctx->GetAttr("context_ragged_value_types", &context_ragged_value_types)); TF_RETURN_IF_ERROR(ctx->GetAttr("context_ragged_split_types", &context_ragged_split_types)); TF_RETURN_IF_ERROR(ctx->GetAttr("feature_list_ragged_value_types", &feature_list_ragged_value_types)); TF_RETURN_IF_ERROR(ctx->GetAttr("feature_list_ragged_split_types", &feature_list_ragged_split_types)); break; default: return errors::InvalidArgument("Unexpected op_version", op_version); } TF_RETURN_IF_ERROR( ctx->GetAttr("context_sparse_types", &context_sparse_types)); TF_RETURN_IF_ERROR( ctx->GetAttr("Nfeature_list_dense", &num_feature_list_dense)); TF_RETURN_IF_ERROR(ctx->GetAttr("Ncontext_sparse", &num_context_sparse)); TF_RETURN_IF_ERROR(ctx->GetAttr("Tcontext_dense", &context_dense_types)); TF_RETURN_IF_ERROR( ctx->GetAttr("feature_list_sparse_types", &feature_list_sparse_types)); TF_RETURN_IF_ERROR( ctx->GetAttr("feature_list_dense_types", &feature_list_dense_types)); TF_RETURN_IF_ERROR( ctx->GetAttr("Nfeature_list_sparse", &num_feature_list_sparse)); TF_RETURN_IF_ERROR( ctx->GetAttr("context_dense_shapes", &context_dense_shapes)); TF_RETURN_IF_ERROR( ctx->GetAttr("feature_list_dense_shapes", &feature_list_dense_shapes)); return FinishInit(op_version); } std::unordered_set<string> feature_list_dense_missing_assumed_empty; int64_t num_context_sparse; int64_t num_context_dense; int64_t num_context_ragged; int64_t num_feature_list_sparse; int64_t num_feature_list_dense; int64_t num_feature_list_ragged; std::vector<tstring> context_sparse_keys; std::vector<tstring> context_dense_keys; std::vector<tstring> feature_list_sparse_keys; std::vector<tstring> feature_list_dense_keys; std::vector<DataType> context_sparse_types; std::vector<DataType> context_dense_types; std::vector<TensorShape> context_dense_shapes; std::vector<DataType> feature_list_sparse_types; std::vector<DataType> feature_list_dense_types; std::vector<TensorShape> feature_list_dense_shapes; std::vector<DataType> context_ragged_value_types; std::vector<DataType> context_ragged_split_types; std::vector<DataType> feature_list_ragged_value_types; std::vector<DataType> feature_list_ragged_split_types; private: Status FinishInit(int op_version); }; struct ParseSingleSequenceExampleAttrs { public: template <typename ContextType> Status Init(ContextType* ctx) { TF_RETURN_IF_ERROR( ctx->GetAttr("context_sparse_types", &context_sparse_types)); TF_RETURN_IF_ERROR(ctx->GetAttr("Ncontext_dense", &num_context_dense)); TF_RETURN_IF_ERROR( ctx->GetAttr("Nfeature_list_dense", &num_feature_list_dense)); TF_RETURN_IF_ERROR(ctx->GetAttr("Ncontext_sparse", &num_context_sparse)); TF_RETURN_IF_ERROR(ctx->GetAttr("Tcontext_dense", &context_dense_types)); TF_RETURN_IF_ERROR( ctx->GetAttr("feature_list_sparse_types", &feature_list_sparse_types)); TF_RETURN_IF_ERROR( ctx->GetAttr("feature_list_dense_types", &feature_list_dense_types)); TF_RETURN_IF_ERROR( ctx->GetAttr("Nfeature_list_sparse", &num_feature_list_sparse)); TF_RETURN_IF_ERROR( ctx->GetAttr("context_dense_shapes", &context_dense_shapes)); TF_RETURN_IF_ERROR( ctx->GetAttr("feature_list_dense_shapes", &feature_list_dense_shapes)); return FinishInit(); } int64_t num_context_sparse; int64_t num_context_dense; int64_t num_feature_list_sparse; int64_t num_feature_list_dense; std::vector<DataType> context_sparse_types; std::vector<DataType> context_dense_types; std::vector<TensorShape> context_dense_shapes; std::vector<DataType> feature_list_sparse_types; std::vector<DataType> feature_list_dense_types; std::vector<TensorShape> feature_list_dense_shapes; private: Status FinishInit(); }; } #endif #include "tensorflow/core/util/example_proto_helper.h" #include <algorithm> #include <limits> #include <vector> #include "tensorflow/core/example/example.pb.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/numeric_op.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/util/sparse/sparse_tensor.h" namespace tensorflow { Status CheckValidType(const DataType& dtype) { switch (dtype) { case DT_INT64: case DT_FLOAT: case DT_STRING: return absl::OkStatus(); default: return errors::InvalidArgument("Received input dtype: ", DataTypeString(dtype)); } } Status CheckTypesMatch(const Feature& feature, const DataType& dtype, bool* match) { switch (dtype) { case DT_INT64: *match = (feature.kind_case() == Feature::kInt64List); break; case DT_FLOAT: *match = (feature.kind_case() == Feature::kFloatList); break; case DT_STRING: *match = (feature.kind_case() == Feature::kBytesList); break; default: return errors::InvalidArgument("Invalid input dtype: ", DataTypeString(dtype)); } return absl::OkStatus(); } Status FeatureDenseCopy(const std::size_t out_index, const string& name, const string& key, const DataType& dtype, const TensorShape& shape, const Feature& feature, Tensor* out) { const std::size_t num_elements = shape.num_elements(); const std::size_t offset = out_index * num_elements; switch (dtype) { case DT_INT64: { const Int64List& values = feature.int64_list(); if (static_cast<size_t>(values.value_size()) != num_elements) { return errors::InvalidArgument( "Name: ", name, ", Key: ", key, ", Index: ", out_index, ". Number of int64 values != expected. " "values size: ", values.value_size(), " but output shape: ", shape.DebugString()); } auto out_p = out->flat<int64_t>().data() + offset; std::copy_n(values.value().data(), num_elements, out_p); return absl::OkStatus(); } case DT_FLOAT: { const FloatList& values = feature.float_list(); if (static_cast<size_t>(values.value_size()) != num_elements) { return errors::InvalidArgument( "Name: ", name, ", Key: ", key, ", Index: ", out_index, ". Number of float values != expected. " "values size: ", values.value_size(), " but output shape: ", shape.DebugString()); } auto out_p = out->flat<float>().data() + offset; std::copy_n(values.value().data(), num_elements, out_p); return absl::OkStatus(); } case DT_STRING: { const BytesList& values = feature.bytes_list(); if (static_cast<size_t>(values.value_size()) != num_elements) { return errors::InvalidArgument( "Name: ", name, ", Key ", key, ", Index: ", out_index, ". Number of bytes values != expected. " "Values size: ", values.value_size(), " but output shape: ", shape.DebugString()); } auto out_p = out->flat<tstring>().data() + offset; std::transform(values.value().data(), values.value().data() + num_elements, out_p, [](const string* s) { return *s; }); return absl::OkStatus(); } default: return errors::InvalidArgument("Invalid input dtype: ", DataTypeString(dtype)); } } Tensor FeatureSparseCopy(const std::size_t batch, const string& key, const DataType& dtype, const Feature& feature) { switch (dtype) { case DT_INT64: { const Int64List& values = feature.int64_list(); const int64_t num_elements = values.value_size(); Tensor out(dtype, TensorShape({num_elements})); auto out_p = out.flat<int64_t>().data(); std::copy_n(values.value().data(), num_elements, out_p); return out; } case DT_FLOAT: { const FloatList& values = feature.float_list(); const int64_t num_elements = values.value_size(); Tensor out(dtype, TensorShape({num_elements})); auto out_p = out.flat<float>().data(); std::copy_n(values.value().data(), num_elements, out_p); return out; } case DT_STRING: { const BytesList& values = feature.bytes_list(); const int64_t num_elements = values.value_size(); Tensor out(dtype, TensorShape({num_elements})); auto out_p = out.flat<tstring>().data(); std::transform(values.value().data(), values.value().data() + num_elements, out_p, [](const string* s) { return *s; }); return out; } default: LOG(FATAL) << "not supposed to be here. dtype requested: " << dtype; } } int64_t CopyIntoSparseTensor(const Tensor& in, const int batch, const int64_t offset, Tensor* indices, Tensor* values) { const int64_t num_elements = in.shape().num_elements(); const DataType& dtype = in.dtype(); CHECK_EQ(dtype, values->dtype()); if (num_elements > 0) { auto ix_t = indices->matrix<int64_t>(); int64_t* ix_p = &ix_t(offset, 0); for (int64_t i = 0; i < num_elements; ++i, ix_p += 2) { *ix_p = batch; *(ix_p + 1) = i; } } switch (dtype) { case DT_INT64: { std::copy_n(in.flat<int64_t>().data(), num_elements, values->flat<int64_t>().data() + offset); break; } case DT_FLOAT: { std::copy_n(in.flat<float>().data(), num_elements, values->flat<float>().data() + offset); break; } case DT_STRING: { std::copy_n(in.flat<tstring>().data(), num_elements, values->flat<tstring>().data() + offset); break; } default: LOG(FATAL) << "Not supposed to be here. Saw dtype: " << dtype; } return num_elements; } void RowDenseCopy(const std::size_t& out_index, const DataType& dtype, const Tensor& in, Tensor* out) { const std::size_t num_elements = in.shape().num_elements(); const std::size_t offset = out_index * num_elements; switch (dtype) { case DT_INT64: { std::copy_n(in.flat<int64_t>().data(), num_elements, out->flat<int64_t>().data() + offset); break; } case DT_FLOAT: { std::copy_n(in.flat<float>().data(), num_elements, out->flat<float>().data() + offset); break; } case DT_STRING: { std::copy_n(in.flat<tstring>().data(), num_elements, out->flat<tstring>().data() + offset); break; } default: LOG(FATAL) << "Not supposed to be here. Saw dtype: " << dtype; } } Status SingleExampleProtoToTensors( const Example& example, const string& example_name, const int batch_index, const std::vector<FixedLenFeature>& fixed_len_features, const std::vector<VarLenFeature>& var_len_features, std::vector<Tensor*>* output_dense_values_tensor, std::vector<std::vector<Tensor>>* output_sparse_values_tmp) { const Features& features = example.features(); const auto& feature_dict = features.feature(); for (size_t d = 0; d < fixed_len_features.size(); ++d) { const FixedLenFeature& feature_config = fixed_len_features[d]; const string& key = feature_config.key; const DataType& dtype = feature_config.dtype; const TensorShape& shape = feature_config.shape; const Tensor& default_value = feature_config.default_value; bool required = (default_value.NumElements() == 0); const auto& feature_found = feature_dict.find(key); const bool feature_has_data = (feature_found != feature_dict.end() && (feature_found->second.kind_case() != Feature::KIND_NOT_SET)); const bool required_ok = feature_has_data || !required; if (!required_ok) { return errors::InvalidArgument("Name: ", example_name, ", Feature: ", key, " is required but could not be found."); } if (feature_has_data) { const Feature& f = feature_found->second; bool types_match; TF_RETURN_IF_ERROR(CheckTypesMatch(f, dtype, &types_match)); if (!types_match) { return errors::InvalidArgument("Name: ", example_name, ", Feature: ", key, ". Data types don't match. ", "Expected type: ", DataTypeString(dtype), " Feature is: ", f.DebugString()); } TF_RETURN_IF_ERROR(FeatureDenseCopy(batch_index, example_name, key, dtype, shape, f, (*output_dense_values_tensor)[d])); } else { RowDenseCopy(batch_index, dtype, default_value, (*output_dense_values_tensor)[d]); } } for (size_t d = 0; d < var_len_features.size(); ++d) { const VarLenFeature& feature_config = var_len_features[d]; const string& key = feature_config.key; const DataType& dtype = feature_config.dtype; const auto& feature_found = feature_dict.find(key); const bool feature_has_data = (feature_found != feature_dict.end() && (feature_found->second.kind_case() != Feature::KIND_NOT_SET)); if (feature_has_data) { const Feature& f = feature_found->second; bool types_match; TF_RETURN_IF_ERROR(CheckTypesMatch(f, dtype, &types_match)); if (!types_match) { return errors::InvalidArgument("Name: ", example_name, ", Feature: ", key, ". Data types don't match. ", "Expected type: ", DataTypeString(dtype), " Feature is: ", f.DebugString()); } (*output_sparse_values_tmp)[d][batch_index] = FeatureSparseCopy(batch_index, key, dtype, f); } else { (*output_sparse_values_tmp)[d][batch_index] = Tensor(dtype, TensorShape({0})); } } return absl::OkStatus(); } Status GetSparseTensorShapes(const VarLenFeature& var_len_feature, const std::vector<Tensor>& sparse_values_tmp, const int batch_size, VarLenFeatureBatchShapes* output_shapes) { int64_t total_num_features = 0; int64_t max_num_features = 0; for (int b = 0; b < batch_size; ++b) { const Tensor& t = sparse_values_tmp[b]; const int64_t num_elements = t.shape().num_elements(); total_num_features += num_elements; max_num_features = std::max(max_num_features, num_elements); } output_shapes->indices_shape.AddDim(total_num_features); output_shapes->indices_shape.AddDim(2); output_shapes->values_shape.AddDim(total_num_features); output_shapes->max_num_features = max_num_features; return absl::OkStatus(); } Status BatchExampleProtoToTensors( const std::vector<const Example*>& examples, const std::vector<string>& names, const std::vector<FixedLenFeature>& fixed_len_features, const std::vector<VarLenFeature>& var_len_features, Allocator* allocator, std::vector<Tensor>* output_dense_values_tensor, std::vector<Tensor>* output_sparse_indices_tensor, std::vector<Tensor>* output_sparse_values_tensor, std::vector<Tensor>* output_sparse_shapes_tensor) { const int batch_size = examples.size(); const bool has_names = (!names.empty()); if (has_names) { if (names.size() != examples.size()) { return errors::InvalidArgument( "Expected len(names) == len(examples), but got: ", names.size(), " vs. ", examples.size()); } } std::vector<Tensor*> output_dense_values_tensor_ptrs( fixed_len_features.size()); for (size_t d = 0; d < fixed_len_features.size(); ++d) { const FixedLenFeature& config = fixed_len_features[d]; TensorShape out_shape; out_shape.AddDim(batch_size); const TensorShape& shape = config.shape; const DataType& dtype = config.dtype; for (const int dim : shape.dim_sizes()) out_shape.AddDim(dim); (*output_dense_values_tensor)[d] = Tensor(allocator, dtype, out_shape); output_dense_values_tensor_ptrs[d] = &(*output_dense_values_tensor)[d]; } std::vector<std::vector<Tensor>> sparse_values_tmp(var_len_features.size()); for (size_t d = 0; d < var_len_features.size(); ++d) { sparse_values_tmp[d] = std::vector<Tensor>(batch_size); } for (size_t b = 0; b < examples.size(); ++b) { const Example& ex = *(examples[b]); const string& example_name = (has_names) ? names[b] : "<unknown>"; TF_RETURN_IF_ERROR(SingleExampleProtoToTensors( ex, example_name, b, fixed_len_features, var_len_features, &output_dense_values_tensor_ptrs, &sparse_values_tmp)); } for (size_t d = 0; d < var_len_features.size(); ++d) { const VarLenFeature& feature_config = var_len_features[d]; const DataType& dtype = feature_config.dtype; const std::vector<Tensor>& sparse_values_tensor = sparse_values_tmp[d]; VarLenFeatureBatchShapes sparse_tensor_batch_shapes; TF_RETURN_IF_ERROR(GetSparseTensorShapes(feature_config, sparse_values_tensor, batch_size, &sparse_tensor_batch_shapes)); const TensorShape& indices_shape = sparse_tensor_batch_shapes.indices_shape; const TensorShape& values_shape = sparse_tensor_batch_shapes.values_shape; (*output_sparse_indices_tensor)[d] = Tensor(allocator, DT_INT64, indices_shape); (*output_sparse_values_tensor)[d] = Tensor(allocator, dtype, values_shape); (*output_sparse_shapes_tensor)[d] = Tensor(allocator, DT_INT64, TensorShape({2})); auto shape_t = (*output_sparse_shapes_tensor)[d].vec<int64_t>(); shape_t(0) = batch_size; shape_t(1) = sparse_tensor_batch_shapes.max_num_features; Tensor* sp_indices_d = &(*output_sparse_indices_tensor)[d]; Tensor* sp_values_d = &(*output_sparse_values_tensor)[d]; int64_t offset = 0; for (int b = 0; b < batch_size; ++b) { const int64_t num_elements = CopyIntoSparseTensor( sparse_values_tensor[b], b, offset, sp_indices_d, sp_values_d); offset += num_elements; } } return absl::OkStatus(); } Status ParseExampleAttrs::FinishInit(int op_version) { switch (op_version) { case 1: num_ragged = 0; break; case 2: num_dense = dense_types.size(); num_ragged = ragged_value_types.size(); break; default: return errors::InvalidArgument("Unexpected op_version", op_version); } if (static_cast<size_t>(num_sparse) != sparse_types.size()) { return errors::InvalidArgument("len(sparse_keys) != len(sparse_types)"); } if (static_cast<size_t>(num_dense) != dense_types.size()) { return errors::InvalidArgument("len(dense_keys) != len(dense_types)"); } if (static_cast<size_t>(num_dense) != dense_shapes.size()) { return errors::InvalidArgument("len(dense_keys) != len(dense_shapes)"); } if (static_cast<size_t>(num_ragged) != ragged_value_types.size()) {
#include "tensorflow/core/util/example_proto_helper.h" #include <cstdint> #include <vector> #include "tensorflow/core/example/example.pb.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/tstring.h" namespace tensorflow { namespace { TEST(CopyIntoSparseTensorTest, String) { Tensor in_tensor(DT_STRING, TensorShape({2})); in_tensor.flat<tstring>()(0) = "hello"; in_tensor.flat<tstring>()(1) = "world"; int n_values = 5; Tensor ix_tensor(DT_INT64, TensorShape({n_values, 2})); auto ix_matrix = ix_tensor.matrix<int64_t>(); for (int i = 0; i < n_values; ++i) { for (int j = 0; j < 2; ++j) { ix_matrix(i, j) = 0; } } Tensor value_tensor(DT_STRING, TensorShape({n_values})); int batch = 67; int64_t offset = 1; auto n_elems = CopyIntoSparseTensor(in_tensor, batch, offset, &ix_tensor, &value_tensor); EXPECT_EQ(2, n_elems); EXPECT_EQ(0, ix_matrix(0, 0)); EXPECT_EQ(0, ix_matrix(0, 1)); EXPECT_EQ(batch, ix_matrix(1, 0)); EXPECT_EQ(0, ix_matrix(1, 1)); EXPECT_EQ(batch, ix_matrix(2, 0)); EXPECT_EQ(1, ix_matrix(2, 1)); EXPECT_EQ(0, ix_matrix(3, 0)); EXPECT_EQ(0, ix_matrix(3, 1)); EXPECT_EQ(0, ix_matrix(4, 0)); EXPECT_EQ(0, ix_matrix(4, 1)); auto values = value_tensor.flat<tstring>(); EXPECT_EQ("", values(0)); EXPECT_EQ("hello", values(1)); EXPECT_EQ("world", values(2)); EXPECT_EQ("", values(3)); EXPECT_EQ("", values(4)); } constexpr char kDenseInt64Key[] = "dense_int64"; constexpr char kDenseFloatKey[] = "dense_float"; constexpr char kDenseStringKey[] = "dense_string"; constexpr char kSparseInt64Key[] = "sparse_int64"; constexpr char kSparseFloatKey[] = "sparse_float"; constexpr char kSparseStringKey[] = "sparse_string"; class SingleExampleProtoToTensorsTest : public ::testing::Test { protected: void SetUp() override { FixedLenFeature int64_dense_config; int64_dense_config.key = kDenseInt64Key; int64_dense_config.dtype = DT_INT64; int64_dense_config.shape = TensorShape({1}); int64_dense_config.default_value = Tensor(DT_INT64, TensorShape({1})); int64_dense_config.default_value.scalar<int64_t>()() = 0; dense_vec_.push_back(int64_dense_config); FixedLenFeature float_dense_config; float_dense_config.key = kDenseFloatKey; float_dense_config.dtype = DT_FLOAT; float_dense_config.shape = TensorShape({1}); float_dense_config.default_value = Tensor(DT_FLOAT, TensorShape({1})); float_dense_config.default_value.scalar<float>()() = 0.0; dense_vec_.push_back(float_dense_config); FixedLenFeature string_dense_config; string_dense_config.key = kDenseStringKey; string_dense_config.dtype = DT_STRING; string_dense_config.shape = TensorShape({1}); string_dense_config.default_value = Tensor(DT_STRING, TensorShape({1})); string_dense_config.default_value.scalar<tstring>()() = "default"; dense_vec_.push_back(string_dense_config); VarLenFeature int64_sparse_config; int64_sparse_config.key = kSparseInt64Key; int64_sparse_config.dtype = DT_INT64; sparse_vec_.push_back(int64_sparse_config); VarLenFeature float_sparse_config; float_sparse_config.key = kSparseFloatKey; float_sparse_config.dtype = DT_FLOAT; sparse_vec_.push_back(float_sparse_config); VarLenFeature string_sparse_config; string_sparse_config.key = kSparseStringKey; string_sparse_config.dtype = DT_STRING; sparse_vec_.push_back(string_sparse_config); } std::vector<FixedLenFeature> dense_vec_; std::vector<VarLenFeature> sparse_vec_; }; TEST_F(SingleExampleProtoToTensorsTest, SparseOnlyTrivial) { Example ex; (*ex.mutable_features()->mutable_feature())[kSparseInt64Key] .mutable_int64_list() ->add_value(42); (*ex.mutable_features()->mutable_feature())[kSparseFloatKey] .mutable_float_list() ->add_value(4.2); (*ex.mutable_features()->mutable_feature())[kSparseStringKey] .mutable_bytes_list() ->add_value("forty-two"); std::vector<Tensor*> output_dense_values(0); std::vector<std::vector<Tensor>> output_sparse_values_tmp(3); for (int i = 0; i < 3; ++i) { output_sparse_values_tmp[i] = std::vector<Tensor>(1); } std::vector<FixedLenFeature> empty_dense_vec; TF_EXPECT_OK(SingleExampleProtoToTensors(ex, "", 0, empty_dense_vec, sparse_vec_, &output_dense_values, &output_sparse_values_tmp)); const std::vector<Tensor>& int64_tensor_vec = output_sparse_values_tmp[0]; EXPECT_EQ(1, int64_tensor_vec.size()); EXPECT_EQ(42, int64_tensor_vec[0].vec<int64_t>()(0)); const std::vector<Tensor>& float_tensor_vec = output_sparse_values_tmp[1]; EXPECT_EQ(1, float_tensor_vec.size()); EXPECT_NEAR(4.2, float_tensor_vec[0].vec<float>()(0), 0.001); const std::vector<Tensor>& string_tensor_vec = output_sparse_values_tmp[2]; EXPECT_EQ(1, string_tensor_vec.size()); EXPECT_EQ("forty-two", string_tensor_vec[0].vec<tstring>()(0)); } TEST_F(SingleExampleProtoToTensorsTest, SparseOnlyEmpty) { Example empty; std::vector<Tensor*> output_dense_values(0); std::vector<std::vector<Tensor>> output_sparse_values_tmp(3); for (int i = 0; i < 3; ++i) { output_sparse_values_tmp[i] = std::vector<Tensor>(1); } std::vector<FixedLenFeature> empty_dense_vec; TF_EXPECT_OK(SingleExampleProtoToTensors(empty, "", 0, empty_dense_vec, sparse_vec_, &output_dense_values, &output_sparse_values_tmp)); const std::vector<Tensor>& int64_tensor_vec = output_sparse_values_tmp[0]; EXPECT_EQ(1, int64_tensor_vec.size()); EXPECT_EQ(0, int64_tensor_vec[0].vec<int64_t>().size()); const std::vector<Tensor>& float_tensor_vec = output_sparse_values_tmp[1]; EXPECT_EQ(1, float_tensor_vec.size()); EXPECT_EQ(0, float_tensor_vec[0].vec<float>().size()); const std::vector<Tensor>& string_tensor_vec = output_sparse_values_tmp[2]; EXPECT_EQ(1, string_tensor_vec.size()); EXPECT_EQ(0, string_tensor_vec[0].vec<tstring>().size()); } TEST_F(SingleExampleProtoToTensorsTest, DenseOnlyTrivial) { Example ex; (*ex.mutable_features()->mutable_feature())[kDenseInt64Key] .mutable_int64_list() ->add_value(42); (*ex.mutable_features()->mutable_feature())[kDenseFloatKey] .mutable_float_list() ->add_value(4.2); (*ex.mutable_features()->mutable_feature())[kDenseStringKey] .mutable_bytes_list() ->add_value("forty-two"); std::vector<Tensor*> output_dense_values(3); Tensor int64_dense_output(DT_INT64, TensorShape({1, 1})); output_dense_values[0] = &int64_dense_output; Tensor float_dense_output(DT_FLOAT, TensorShape({1, 1})); output_dense_values[1] = &float_dense_output; Tensor str_dense_output(DT_STRING, TensorShape({1, 1})); output_dense_values[2] = &str_dense_output; std::vector<VarLenFeature> empty_sparse_vec; std::vector<std::vector<Tensor>> output_sparse_values_tmp; TF_EXPECT_OK(SingleExampleProtoToTensors( ex, "", 0, dense_vec_, empty_sparse_vec, &output_dense_values, &output_sparse_values_tmp)); EXPECT_TRUE(output_sparse_values_tmp.empty()); EXPECT_EQ(1, int64_dense_output.matrix<int64_t>().size()); EXPECT_EQ(42, int64_dense_output.matrix<int64_t>()(0, 0)); EXPECT_EQ(1, float_dense_output.matrix<float>().size()); EXPECT_NEAR(4.2, float_dense_output.matrix<float>()(0, 0), 0.001); EXPECT_EQ(1, str_dense_output.matrix<tstring>().size()); EXPECT_EQ("forty-two", str_dense_output.matrix<tstring>()(0, 0)); } TEST_F(SingleExampleProtoToTensorsTest, DenseOnlyDefaults) { std::vector<Tensor*> output_dense_values(3); Tensor int64_dense_output(DT_INT64, TensorShape({1, 1})); output_dense_values[0] = &int64_dense_output; Tensor float_dense_output(DT_FLOAT, TensorShape({1, 1})); output_dense_values[1] = &float_dense_output; Tensor str_dense_output(DT_STRING, TensorShape({1, 1})); output_dense_values[2] = &str_dense_output; Example empty; std::vector<VarLenFeature> empty_sparse_vec; std::vector<std::vector<Tensor>> output_sparse_values_tmp; TF_EXPECT_OK(SingleExampleProtoToTensors( empty, "", 0, dense_vec_, empty_sparse_vec, &output_dense_values, &output_sparse_values_tmp)); EXPECT_EQ(1, int64_dense_output.matrix<int64_t>().size()); EXPECT_EQ(0, int64_dense_output.matrix<int64_t>()(0, 0)); EXPECT_EQ(1, float_dense_output.matrix<float>().size()); EXPECT_NEAR(0.0, float_dense_output.matrix<float>()(0, 0), 0.001); EXPECT_EQ(1, str_dense_output.matrix<tstring>().size()); EXPECT_EQ("default", str_dense_output.matrix<tstring>()(0, 0)); } } }
1,706
cpp
tensorflow/tensorflow
debug_events_writer
tensorflow/core/util/debug_events_writer.cc
tensorflow/core/util/debug_events_writer_test.cc
#ifndef TENSORFLOW_CORE_UTIL_DEBUG_EVENTS_WRITER_H_ #define TENSORFLOW_CORE_UTIL_DEBUG_EVENTS_WRITER_H_ #include <atomic> #include <deque> #include <memory> #include <unordered_map> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/debug_event.pb.h" namespace tensorflow { namespace tfdbg { enum DebugEventFileType { METADATA, SOURCE_FILES, STACK_FRAMES, GRAPHS, EXECUTION, GRAPH_EXECUTION_TRACES, }; class SingleDebugEventFileWriter { public: explicit SingleDebugEventFileWriter(const string& file_path); Status Init(); void WriteSerializedDebugEvent(tensorflow::StringPiece debug_event_str); Status Flush(); Status Close(); const string FileName(); private: Env* env_; const string file_path_; std::atomic_int_fast32_t num_outstanding_events_; std::unique_ptr<WritableFile> writable_file_; std::unique_ptr<io::RecordWriter> record_writer_ TF_PT_GUARDED_BY(writer_mu_); mutex writer_mu_; }; class DebugEventsWriter { public: #ifndef SWIG static constexpr const int64_t kDefaultCyclicBufferSize = 1000; static constexpr const char* kFileNamePrefix = "tfdbg_events"; static constexpr const char* kMetadataSuffix = "metadata"; static constexpr const char* kSourceFilesSuffix = "source_files"; static constexpr const char* kStackFramesSuffix = "stack_frames"; static constexpr const char* kGraphsSuffix = "graphs"; static constexpr const char* kExecutionSuffix = "execution"; static constexpr const char* kGraphExecutionTracesSuffix = "graph_execution_traces"; static constexpr const char* kVersionPrefix = "debug.Event:"; static constexpr const int kCurrentFormatVersion = 1; #endif static DebugEventsWriter* GetDebugEventsWriter(const string& dump_root, const string& tfdbg_run_id, int64_t circular_buffer_size); static Status LookUpDebugEventsWriter( const string& dump_root, DebugEventsWriter** debug_events_writer); ~DebugEventsWriter(); Status Init(); Status WriteSourceFile(SourceFile* source_file); Status WriteStackFrameWithId(StackFrameWithId* stack_frame_with_id); Status WriteGraphOpCreation(GraphOpCreation* graph_op_creation); Status WriteDebuggedGraph(DebuggedGraph* debugged_graph); Status WriteExecution(Execution* execution); Status WriteGraphExecutionTrace(GraphExecutionTrace* graph_execution_trace); Status WriteGraphExecutionTrace(const string& tfdbg_context_id, const string& device_name, const string& op_name, int32_t output_slot, int32_t tensor_debug_mode, const Tensor& tensor_value); void WriteSerializedNonExecutionDebugEvent(const string& debug_event_str, DebugEventFileType type); void WriteSerializedExecutionDebugEvent(const string& debug_event_str, DebugEventFileType type); int RegisterDeviceAndGetId(const string& device_name); Status FlushNonExecutionFiles(); Status FlushExecutionFiles(); Status Close(); private: static std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>* GetDebugEventsWriterMap(); static mutex factory_mu_; DebugEventsWriter(const string& dump_root, const string& tfdbg_run_id, int64_t circular_buffer_size); string FileName(DebugEventFileType type); Status InitNonMetadataFile(DebugEventFileType type); Status SerializeAndWriteDebugEvent(DebugEvent* debug_event, DebugEventFileType type); void SelectWriter(DebugEventFileType type, std::unique_ptr<SingleDebugEventFileWriter>** writer); const string GetSuffix(DebugEventFileType type); string GetFileNameInternal(DebugEventFileType type); Env* env_; const string dump_root_; const string tfdbg_run_id_; string file_prefix_; bool is_initialized_ TF_GUARDED_BY(initialization_mu_); mutex initialization_mu_; const int64_t circular_buffer_size_; std::deque<string> execution_buffer_ TF_GUARDED_BY(execution_buffer_mu_); mutex execution_buffer_mu_; std::deque<string> graph_execution_trace_buffer_ TF_GUARDED_BY(graph_execution_trace_buffer_mu_); mutex graph_execution_trace_buffer_mu_; absl::flat_hash_map<string, int> device_name_to_id_ TF_GUARDED_BY(device_mu_); mutex device_mu_; std::unique_ptr<SingleDebugEventFileWriter> metadata_writer_; std::unique_ptr<SingleDebugEventFileWriter> source_files_writer_; std::unique_ptr<SingleDebugEventFileWriter> stack_frames_writer_; std::unique_ptr<SingleDebugEventFileWriter> graphs_writer_; std::unique_ptr<SingleDebugEventFileWriter> execution_writer_; std::unique_ptr<SingleDebugEventFileWriter> graph_execution_traces_writer_; DebugEventsWriter(const DebugEventsWriter&) = delete; void operator=(const DebugEventsWriter&) = delete; friend class DebugEventsWriterTest; }; } } #endif #include "tensorflow/core/util/debug_events_writer.h" #include <deque> #include <memory> #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/host_info.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace tfdbg { namespace { void MaybeSetDebugEventTimestamp(DebugEvent* debug_event, Env* env) { if (debug_event->wall_time() == 0) { debug_event->set_wall_time(env->NowMicros() / 1e6); } } } SingleDebugEventFileWriter::SingleDebugEventFileWriter(const string& file_path) : env_(Env::Default()), file_path_(file_path), num_outstanding_events_(0), writer_mu_() {} Status SingleDebugEventFileWriter::Init() { if (record_writer_ != nullptr) { return absl::OkStatus(); } record_writer_.reset(); TF_RETURN_WITH_CONTEXT_IF_ERROR( env_->NewWritableFile(file_path_, &writable_file_), "Creating writable file ", file_path_); record_writer_ = std::make_unique<io::RecordWriter>(writable_file_.get()); if (record_writer_ == nullptr) { return errors::Unknown("Could not create record writer at path: ", file_path_); } num_outstanding_events_.store(0); VLOG(1) << "Successfully opened debug events file: " << file_path_; return absl::OkStatus(); } void SingleDebugEventFileWriter::WriteSerializedDebugEvent( StringPiece debug_event_str) { if (record_writer_ == nullptr) { if (!Init().ok()) { LOG(ERROR) << "Write failed because file could not be opened."; return; } } num_outstanding_events_.fetch_add(1); { mutex_lock l(writer_mu_); record_writer_->WriteRecord(debug_event_str).IgnoreError(); } } Status SingleDebugEventFileWriter::Flush() { const int num_outstanding = num_outstanding_events_.load(); if (num_outstanding == 0) { return absl::OkStatus(); } if (writable_file_ == nullptr) { return errors::Unknown("Unexpected NULL file for path: ", file_path_); } { mutex_lock l(writer_mu_); TF_RETURN_WITH_CONTEXT_IF_ERROR(record_writer_->Flush(), "Failed to flush ", num_outstanding, " debug events to ", file_path_); } TF_RETURN_WITH_CONTEXT_IF_ERROR(writable_file_->Sync(), "Failed to sync ", num_outstanding, " debug events to ", file_path_); num_outstanding_events_.store(0); return absl::OkStatus(); } Status SingleDebugEventFileWriter::Close() { Status status = Flush(); if (writable_file_ != nullptr) { Status close_status = writable_file_->Close(); if (!close_status.ok()) { status = close_status; } record_writer_.reset(nullptr); writable_file_.reset(nullptr); } num_outstanding_events_ = 0; return status; } const string SingleDebugEventFileWriter::FileName() { return file_path_; } mutex DebugEventsWriter::factory_mu_(LINKER_INITIALIZED); DebugEventsWriter::~DebugEventsWriter() { Close().IgnoreError(); } DebugEventsWriter* DebugEventsWriter::GetDebugEventsWriter( const string& dump_root, const string& tfdbg_run_id, int64_t circular_buffer_size) { mutex_lock l(DebugEventsWriter::factory_mu_); std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>* writer_pool = DebugEventsWriter::GetDebugEventsWriterMap(); if (writer_pool->find(dump_root) == writer_pool->end()) { std::unique_ptr<DebugEventsWriter> writer( new DebugEventsWriter(dump_root, tfdbg_run_id, circular_buffer_size)); writer_pool->insert(std::make_pair(dump_root, std::move(writer))); } return (*writer_pool)[dump_root].get(); } Status DebugEventsWriter::LookUpDebugEventsWriter( const string& dump_root, DebugEventsWriter** debug_events_writer) { mutex_lock l(DebugEventsWriter::factory_mu_); std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>* writer_pool = DebugEventsWriter::GetDebugEventsWriterMap(); if (writer_pool->find(dump_root) == writer_pool->end()) { return errors::FailedPrecondition( "No DebugEventsWriter has been created at dump root ", dump_root); } *debug_events_writer = (*writer_pool)[dump_root].get(); return absl::OkStatus(); } Status DebugEventsWriter::Init() { mutex_lock l(initialization_mu_); if (is_initialized_) { return absl::OkStatus(); } if (!env_->IsDirectory(dump_root_).ok()) { TF_RETURN_WITH_CONTEXT_IF_ERROR(env_->RecursivelyCreateDir(dump_root_), "Failed to create directory ", dump_root_); } int64_t time_in_seconds = env_->NowMicros() / 1e6; file_prefix_ = io::JoinPath( dump_root_, strings::Printf("%s.%010lld.%s", kFileNamePrefix, static_cast<long long>(time_in_seconds), port::Hostname().c_str())); TF_RETURN_IF_ERROR(InitNonMetadataFile(SOURCE_FILES)); TF_RETURN_IF_ERROR(InitNonMetadataFile(STACK_FRAMES)); TF_RETURN_IF_ERROR(InitNonMetadataFile(GRAPHS)); metadata_writer_.reset(); string metadata_filename = GetFileNameInternal(METADATA); metadata_writer_ = std::make_unique<SingleDebugEventFileWriter>(metadata_filename); if (metadata_writer_ == nullptr) { return errors::Unknown("Could not create debug event metadata file writer"); } DebugEvent debug_event; DebugMetadata* metadata = debug_event.mutable_debug_metadata(); metadata->set_tensorflow_version(TF_VERSION_STRING); metadata->set_file_version( strings::Printf("%s%d", kVersionPrefix, kCurrentFormatVersion)); metadata->set_tfdbg_run_id(tfdbg_run_id_); TF_RETURN_IF_ERROR(SerializeAndWriteDebugEvent(&debug_event, METADATA)); TF_RETURN_WITH_CONTEXT_IF_ERROR( metadata_writer_->Flush(), "Failed to flush debug event metadata writer"); TF_RETURN_IF_ERROR(InitNonMetadataFile(EXECUTION)); TF_RETURN_IF_ERROR(InitNonMetadataFile(GRAPH_EXECUTION_TRACES)); is_initialized_ = true; return absl::OkStatus(); } Status DebugEventsWriter::WriteSourceFile(SourceFile* source_file) { DebugEvent debug_event; debug_event.set_allocated_source_file(source_file); return SerializeAndWriteDebugEvent(&debug_event, SOURCE_FILES); } Status DebugEventsWriter::WriteStackFrameWithId( StackFrameWithId* stack_frame_with_id) { DebugEvent debug_event; debug_event.set_allocated_stack_frame_with_id(stack_frame_with_id); return SerializeAndWriteDebugEvent(&debug_event, STACK_FRAMES); } Status DebugEventsWriter::WriteGraphOpCreation( GraphOpCreation* graph_op_creation) { DebugEvent debug_event; debug_event.set_allocated_graph_op_creation(graph_op_creation); return SerializeAndWriteDebugEvent(&debug_event, GRAPHS); } Status DebugEventsWriter::WriteDebuggedGraph(DebuggedGraph* debugged_graph) { DebugEvent debug_event; debug_event.set_allocated_debugged_graph(debugged_graph); return SerializeAndWriteDebugEvent(&debug_event, GRAPHS); } Status DebugEventsWriter::WriteExecution(Execution* execution) { if (circular_buffer_size_ <= 0) { DebugEvent debug_event; debug_event.set_allocated_execution(execution); return SerializeAndWriteDebugEvent(&debug_event, EXECUTION); } else { DebugEvent debug_event; MaybeSetDebugEventTimestamp(&debug_event, env_); debug_event.set_allocated_execution(execution); string serialized; debug_event.SerializeToString(&serialized); mutex_lock l(execution_buffer_mu_); execution_buffer_.emplace_back(std::move(serialized)); if (execution_buffer_.size() > circular_buffer_size_) { execution_buffer_.pop_front(); } return absl::OkStatus(); } } Status DebugEventsWriter::WriteGraphExecutionTrace( GraphExecutionTrace* graph_execution_trace) { TF_RETURN_IF_ERROR(Init()); if (circular_buffer_size_ <= 0) { DebugEvent debug_event; debug_event.set_allocated_graph_execution_trace(graph_execution_trace); return SerializeAndWriteDebugEvent(&debug_event, GRAPH_EXECUTION_TRACES); } else { DebugEvent debug_event; MaybeSetDebugEventTimestamp(&debug_event, env_); debug_event.set_allocated_graph_execution_trace(graph_execution_trace); string serialized; debug_event.SerializeToString(&serialized); mutex_lock l(graph_execution_trace_buffer_mu_); graph_execution_trace_buffer_.emplace_back(std::move(serialized)); if (graph_execution_trace_buffer_.size() > circular_buffer_size_) { graph_execution_trace_buffer_.pop_front(); } return absl::OkStatus(); } } Status DebugEventsWriter::WriteGraphExecutionTrace( const string& tfdbg_context_id, const string& device_name, const string& op_name, int32_t output_slot, int32_t tensor_debug_mode, const Tensor& tensor_value) { std::unique_ptr<GraphExecutionTrace> trace(new GraphExecutionTrace()); trace->set_tfdbg_context_id(tfdbg_context_id); if (!op_name.empty()) { trace->set_op_name(op_name); } if (output_slot > 0) { trace->set_output_slot(output_slot); } if (tensor_debug_mode > 0) { trace->set_tensor_debug_mode(TensorDebugMode(tensor_debug_mode)); } trace->set_device_name(device_name); tensor_value.AsProtoTensorContent(trace->mutable_tensor_proto()); return WriteGraphExecutionTrace(trace.release()); } void DebugEventsWriter::WriteSerializedNonExecutionDebugEvent( const string& debug_event_str, DebugEventFileType type) { std::unique_ptr<SingleDebugEventFileWriter>* writer = nullptr; SelectWriter(type, &writer); (*writer)->WriteSerializedDebugEvent(debug_event_str); } void DebugEventsWriter::WriteSerializedExecutionDebugEvent( const string& debug_event_str, DebugEventFileType type) { const std::unique_ptr<SingleDebugEventFileWriter>* writer = nullptr; std::deque<string>* buffer = nullptr; mutex* mu = nullptr; switch (type) { case EXECUTION: writer = &execution_writer_; buffer = &execution_buffer_; mu = &execution_buffer_mu_; break; case GRAPH_EXECUTION_TRACES: writer = &graph_execution_traces_writer_; buffer = &graph_execution_trace_buffer_; mu = &graph_execution_trace_buffer_mu_; break; default: return; } if (circular_buffer_size_ <= 0) { (*writer)->WriteSerializedDebugEvent(debug_event_str); } else { mutex_lock l(*mu); buffer->push_back(debug_event_str); if (buffer->size() > circular_buffer_size_) { buffer->pop_front(); } } } int DebugEventsWriter::RegisterDeviceAndGetId(const string& device_name) { mutex_lock l(device_mu_); int& device_id = device_name_to_id_[device_name]; if (device_id == 0) { device_id = device_name_to_id_.size(); DebugEvent debug_event; MaybeSetDebugEventTimestamp(&debug_event, env_); DebuggedDevice* debugged_device = debug_event.mutable_debugged_device(); debugged_device->set_device_name(device_name); debugged_device->set_device_id(device_id); string serialized; debug_event.SerializeToString(&serialized); graphs_writer_->WriteSerializedDebugEvent(serialized); } return device_id; } Status DebugEventsWriter::FlushNonExecutionFiles() { TF_RETURN_IF_ERROR(Init()); if (source_files_writer_ != nullptr) { TF_RETURN_IF_ERROR(source_files_writer_->Flush()); } if (stack_frames_writer_ != nullptr) { TF_RETURN_IF_ERROR(stack_frames_writer_->Flush()); } if (graphs_writer_ != nullptr) { TF_RETURN_IF_ERROR(graphs_writer_->Flush()); } return absl::OkStatus(); } Status DebugEventsWriter::FlushExecutionFiles() { TF_RETURN_IF_ERROR(Init()); if (execution_writer_ != nullptr) { if (circular_buffer_size_ > 0) { mutex_lock l(execution_buffer_mu_); while (!execution_buffer_.empty()) { execution_writer_->WriteSerializedDebugEvent(execution_buffer_.front()); execution_buffer_.pop_front(); } } TF_RETURN_IF_ERROR(execution_writer_->Flush()); } if (graph_execution_traces_writer_ != nullptr) { if (circular_buffer_size_ > 0) { mutex_lock l(graph_execution_trace_buffer_mu_); while (!graph_execution_trace_buffer_.empty()) { graph_execution_traces_writer_->WriteSerializedDebugEvent( graph_execution_trace_buffer_.front()); graph_execution_trace_buffer_.pop_front(); } } TF_RETURN_IF_ERROR(graph_execution_traces_writer_->Flush()); } return absl::OkStatus(); } string DebugEventsWriter::FileName(DebugEventFileType type) { if (file_prefix_.empty()) { Init().IgnoreError(); } return GetFileNameInternal(type); } Status DebugEventsWriter::Close() { { mutex_lock l(initialization_mu_); if (!is_initialized_) { return absl::OkStatus(); } } std::vector<string> failed_to_close_files; if (metadata_writer_ != nullptr) { if (!metadata_writer_->Close().ok()) { failed_to_close_files.push_back(metadata_writer_->FileName()); } metadata_writer_.reset(nullptr); } TF_RETURN_IF_ERROR(FlushNonExecutionFiles()); if (source_files_writer_ != nullptr) { if (!source_files_writer_->Close().ok()) { failed_to_close_files.push_back(source_files_writer_->FileName()); } source_files_writer_.reset(nullptr); } if (stack_frames_writer_ != nullptr) { if (!stack_frames_writer_->Close().ok()) { failed_to_close_files.push_back(stack_frames_writer_->FileName()); } stack_frames_writer_.reset(nullptr); } if (graphs_writer_ != nullptr) { if (!graphs_writer_->Close().ok()) { failed_to_close_files.push_back(graphs_writer_->FileName()); } graphs_writer_.reset(nullptr); } TF_RETURN_IF_ERROR(FlushExecutionFiles()); if (execution_writer_ != nullptr) { if (!execution_writer_->Close().ok()) { failed_to_close_files.push_back(execution_writer_->FileName()); } execution_writer_.reset(nullptr); } if (graph_execution_traces_writer_ != nullptr) { if (!graph_execution_traces_writer_->Close().ok()) { failed_to_close_files.push_back( graph_execution_traces_writer_->FileName()); } graph_execution_traces_writer_.reset(nullptr); } if (failed_to_close_files.empty()) { return absl::OkStatus(); } else { return errors::FailedPrecondition( "Failed to close %d debug-events files associated with tfdbg", failed_to_close_files.size()); } } std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>* DebugEventsWriter::GetDebugEventsWriterMap() { static std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>* writer_pool = new std::unordered_map<string, std::unique_ptr<DebugEventsWriter>>(); return writer_pool; } DebugEventsWriter::DebugEventsWriter(const string& dump_root, const string& tfdbg_run_id, int64_t circular_buffer_size) : env_(Env::Default()), dump_root_(dump_root), tfdbg_run_id_(tfdbg_run_id), is_initialized_(false), initialization_mu_(), circular_buffer_size_(circular_buffer_size), execution_buffer_(), execution_buffer_mu_(), graph_execution_trace_buffer_(), graph_execution_trace_buffer_mu_(), device_name_to_id_(), device_mu_() {} Status DebugEventsWriter::InitNonMetadataFile(DebugEventFileType type) { std::unique_ptr<SingleDebugEventFileWriter>* writer = nullptr; SelectWriter(type, &writer); const string filename = GetFileNameInternal(type); writer->reset(); *writer = std::make_unique<SingleDebugEventFileWriter>(filename); if (*writer == nullptr) { return errors::Unknown("Could not create debug event file writer for ", filename); } TF_RETURN_WITH_CONTEXT_IF_ERROR( (*writer)->Init(), "Initializing debug event writer at path ", filename); VLOG(1) << "Successfully opened debug event file: " << filename; return absl::OkStatus(); } Status DebugEventsWriter::SerializeAndWriteDebugEvent(DebugEvent* debug_event, DebugEventFileType type) { std::unique_ptr<SingleDebugEventFileWriter>* writer = nullptr; SelectWriter(type, &writer); if (writer != nullptr) { MaybeSetDebugEventTimestamp(debug_event, env_); string str; debug_event->AppendToString(&str); (*writer)->WriteSerializedDebugEvent(str); return absl::OkStatus(); } else { return errors::Internal( "Unable to find debug events file writer for DebugEventsFileType ", type); } } void DebugEventsWriter::SelectWriter( DebugEventFileType type, std::unique_ptr<SingleDebugEventFileWriter>** writer) { switch (type) { case METADATA: *writer = &metadata_writer_; break; case SOURCE_FILES: *writer = &source_files_writer_; break; case STACK_FRAMES: *writer = &stack_frames_writer_; break; case GRAPHS: *writer = &graphs_writer_; break; case EXECUTION: *writer = &execution_writer_; break; case GRAPH_EXECUTION_TRACES: *writer = &graph_execution_traces_writer_; break; } } const string DebugEventsWriter::GetSuffix(DebugEventFileType type) { switch (type) { case METADATA: return kMetadataSuffix; case SOURCE_FILES: return kSourceFilesSuffix; case STACK_FRAMES: return kStackFramesSuffix; case GRAPHS: return kGraphsSuffix; case EXECUTION: return kExecutionSuffix; case GRAPH_EXECUTION_TRACES: return kGraphExecutionTracesSuffix; default: string suffix; return suffix; } } string DebugEventsWriter::GetFileNameInternal(DebugEventFileType type) { const string suffix = GetSuffix(type); return strings::StrCat(file_prefix_, ".", suffix); } } }
#include "tensorflow/core/util/debug_events_writer.h" #include <algorithm> #include <atomic> #include <memory> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace tfdbg { Env* env() { return Env::Default(); } class DebugEventsWriterTest : public ::testing::Test { public: static string GetDebugEventFileName(DebugEventsWriter* writer, DebugEventFileType type) { return writer->FileName(type); } static void ReadDebugEventProtos(DebugEventsWriter* writer, DebugEventFileType type, std::vector<DebugEvent>* protos) { protos->clear(); const string filename = writer->FileName(type); std::unique_ptr<RandomAccessFile> debug_events_file; TF_CHECK_OK(env()->NewRandomAccessFile(filename, &debug_events_file)); io::RecordReader* reader = new io::RecordReader(debug_events_file.get()); uint64 offset = 0; DebugEvent actual; while (ReadDebugEventProto(reader, &offset, &actual)) { protos->push_back(actual); } delete reader; } static bool ReadDebugEventProto(io::RecordReader* reader, uint64* offset, DebugEvent* proto) { tstring record; Status s = reader->ReadRecord(offset, &record); if (!s.ok()) { return false; } return ParseProtoUnlimited(proto, record); } void SetUp() override { dump_root_ = io::JoinPath( testing::TmpDir(), strings::Printf("%010lld", static_cast<long long>(env()->NowMicros()))); tfdbg_run_id_ = "test_tfdbg_run_id"; } void TearDown() override { if (env()->IsDirectory(dump_root_).ok()) { int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; TF_ASSERT_OK(env()->DeleteRecursively(dump_root_, &undeleted_files, &undeleted_dirs)); ASSERT_EQ(0, undeleted_files); ASSERT_EQ(0, undeleted_dirs); } } string dump_root_; string tfdbg_run_id_; }; TEST_F(DebugEventsWriterTest, GetDebugEventsWriterSameRootGivesSameObject) { DebugEventsWriter* writer_1 = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); DebugEventsWriter* writer_2 = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); EXPECT_EQ(writer_1, writer_2); } TEST_F(DebugEventsWriterTest, ConcurrentGetDebugEventsWriterSameDumpRoot) { thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 4); std::vector<DebugEventsWriter*> writers; mutex mu; auto fn = [this, &writers, &mu]() { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); { mutex_lock l(mu); writers.push_back(writer); } }; for (size_t i = 0; i < 4; ++i) { thread_pool->Schedule(fn); } delete thread_pool; EXPECT_EQ(writers.size(), 4); EXPECT_EQ(writers[0], writers[1]); EXPECT_EQ(writers[1], writers[2]); EXPECT_EQ(writers[2], writers[3]); } TEST_F(DebugEventsWriterTest, ConcurrentGetDebugEventsWriterDiffDumpRoots) { thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 3); std::atomic_int_fast64_t counter(0); std::vector<DebugEventsWriter*> writers; mutex mu; auto fn = [this, &counter, &writers, &mu]() { const string new_dump_root = io::JoinPath(dump_root_, strings::Printf("%ld", counter.fetch_add(1))); DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( new_dump_root, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); { mutex_lock l(mu); writers.push_back(writer); } }; for (size_t i = 0; i < 3; ++i) { thread_pool->Schedule(fn); } delete thread_pool; EXPECT_EQ(writers.size(), 3); EXPECT_NE(writers[0], writers[1]); EXPECT_NE(writers[0], writers[2]); EXPECT_NE(writers[1], writers[2]); } TEST_F(DebugEventsWriterTest, GetDebugEventsWriterDifferentRoots) { DebugEventsWriter* writer_1 = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); const string dump_root_2 = io::JoinPath(dump_root_, "subdirectory"); DebugEventsWriter* writer_2 = DebugEventsWriter::GetDebugEventsWriter( dump_root_2, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); EXPECT_NE(writer_1, writer_2); } TEST_F(DebugEventsWriterTest, GetAndInitDebugEventsWriter) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::METADATA, &actuals); EXPECT_EQ(actuals.size(), 1); EXPECT_GT(actuals[0].debug_metadata().tensorflow_version().length(), 0); const string file_version = actuals[0].debug_metadata().file_version(); EXPECT_EQ(file_version.find(DebugEventsWriter::kVersionPrefix), 0); EXPECT_GT(file_version.size(), strlen(DebugEventsWriter::kVersionPrefix)); EXPECT_EQ(actuals[0].debug_metadata().tfdbg_run_id(), "test_tfdbg_run_id"); ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); } TEST_F(DebugEventsWriterTest, CallingCloseWithoutInitIsOkay) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Close()); } TEST_F(DebugEventsWriterTest, CallingCloseTwiceIsOkay) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Close()); TF_ASSERT_OK(writer->Close()); } TEST_F(DebugEventsWriterTest, ConcurrentInitCalls) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 4); auto fn = [&writer]() { TF_ASSERT_OK(writer->Init()); }; for (size_t i = 0; i < 3; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::METADATA, &actuals); EXPECT_EQ(actuals.size(), 1); EXPECT_GT(actuals[0].debug_metadata().tensorflow_version().length(), 0); const string file_version = actuals[0].debug_metadata().file_version(); EXPECT_EQ(file_version.find(DebugEventsWriter::kVersionPrefix), 0); EXPECT_GT(file_version.size(), strlen(DebugEventsWriter::kVersionPrefix)); EXPECT_EQ(actuals[0].debug_metadata().tfdbg_run_id(), "test_tfdbg_run_id"); ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); } TEST_F(DebugEventsWriterTest, InitTwiceDoesNotCreateNewMetadataFile) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::METADATA, &actuals); EXPECT_EQ(actuals.size(), 1); EXPECT_GT(actuals[0].debug_metadata().tensorflow_version().length(), 0); EXPECT_EQ(actuals[0].debug_metadata().tfdbg_run_id(), "test_tfdbg_run_id"); EXPECT_GE(actuals[0].debug_metadata().file_version().size(), 0); string metadata_path_1 = GetDebugEventFileName(writer, DebugEventFileType::METADATA); TF_ASSERT_OK(writer->Init()); EXPECT_EQ(GetDebugEventFileName(writer, DebugEventFileType::METADATA), metadata_path_1); TF_ASSERT_OK(writer->Close()); ReadDebugEventProtos(writer, DebugEventFileType::METADATA, &actuals); EXPECT_EQ(actuals.size(), 1); EXPECT_GT(actuals[0].debug_metadata().tensorflow_version().length(), 0); EXPECT_EQ(actuals[0].debug_metadata().tfdbg_run_id(), "test_tfdbg_run_id"); EXPECT_GE(actuals[0].debug_metadata().file_version().size(), 0); } TEST_F(DebugEventsWriterTest, WriteSourceFile) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); SourceFile* source_file_1 = new SourceFile(); source_file_1->set_file_path("/home/tf_programs/main.py"); source_file_1->set_host_name("localhost.localdomain"); source_file_1->add_lines("import tensorflow as tf"); source_file_1->add_lines(""); source_file_1->add_lines("print(tf.constant([42.0]))"); source_file_1->add_lines(""); TF_ASSERT_OK(writer->WriteSourceFile(source_file_1)); SourceFile* source_file_2 = new SourceFile(); source_file_2->set_file_path("/home/tf_programs/train.py"); source_file_2->set_host_name("localhost.localdomain"); source_file_2->add_lines("import tensorflow.keras as keras"); source_file_2->add_lines(""); source_file_2->add_lines("model = keras.Sequential()"); TF_ASSERT_OK(writer->WriteSourceFile(source_file_2)); TF_ASSERT_OK(writer->FlushNonExecutionFiles()); TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), 2); EXPECT_GT(actuals[0].wall_time(), 0); EXPECT_GT(actuals[1].wall_time(), actuals[0].wall_time()); SourceFile actual_source_file_1 = actuals[0].source_file(); EXPECT_EQ(actual_source_file_1.file_path(), "/home/tf_programs/main.py"); EXPECT_EQ(actual_source_file_1.host_name(), "localhost.localdomain"); EXPECT_EQ(actual_source_file_1.lines().size(), 4); EXPECT_EQ(actual_source_file_1.lines()[0], "import tensorflow as tf"); EXPECT_EQ(actual_source_file_1.lines()[1], ""); EXPECT_EQ(actual_source_file_1.lines()[2], "print(tf.constant([42.0]))"); EXPECT_EQ(actual_source_file_1.lines()[3], ""); SourceFile actual_source_file_2 = actuals[1].source_file(); EXPECT_EQ(actual_source_file_2.file_path(), "/home/tf_programs/train.py"); EXPECT_EQ(actual_source_file_2.host_name(), "localhost.localdomain"); EXPECT_EQ(actual_source_file_2.lines().size(), 3); EXPECT_EQ(actual_source_file_2.lines()[0], "import tensorflow.keras as keras"); EXPECT_EQ(actual_source_file_2.lines()[1], ""); EXPECT_EQ(actual_source_file_2.lines()[2], "model = keras.Sequential()"); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::EXECUTION, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), 0); } TEST_F(DebugEventsWriterTest, WriteStackFramesFile) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); StackFrameWithId* stack_frame_1 = new StackFrameWithId(); stack_frame_1->set_id("deadbeaf"); GraphDebugInfo::FileLineCol* file_line_col = stack_frame_1->mutable_file_line_col(); file_line_col->set_file_index(12); file_line_col->set_line(20); file_line_col->set_col(2); file_line_col->set_func("my_func"); file_line_col->set_code(" x = y + z"); StackFrameWithId* stack_frame_2 = new StackFrameWithId(); stack_frame_2->set_id("eeeeeeec"); file_line_col = stack_frame_2->mutable_file_line_col(); file_line_col->set_file_index(12); file_line_col->set_line(21); file_line_col->set_col(4); file_line_col->set_func("my_func"); file_line_col->set_code(" x = x ** 2.0"); TF_ASSERT_OK(writer->WriteStackFrameWithId(stack_frame_1)); TF_ASSERT_OK(writer->WriteStackFrameWithId(stack_frame_2)); TF_ASSERT_OK(writer->FlushNonExecutionFiles()); TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), 2); EXPECT_GT(actuals[0].wall_time(), 0); EXPECT_GT(actuals[1].wall_time(), actuals[0].wall_time()); StackFrameWithId actual_stack_frame_1 = actuals[0].stack_frame_with_id(); EXPECT_EQ(actual_stack_frame_1.id(), "deadbeaf"); GraphDebugInfo::FileLineCol file_line_col_1 = actual_stack_frame_1.file_line_col(); EXPECT_EQ(file_line_col_1.file_index(), 12); EXPECT_EQ(file_line_col_1.line(), 20); EXPECT_EQ(file_line_col_1.col(), 2); EXPECT_EQ(file_line_col_1.func(), "my_func"); EXPECT_EQ(file_line_col_1.code(), " x = y + z"); StackFrameWithId actual_stack_frame_2 = actuals[1].stack_frame_with_id(); EXPECT_EQ(actual_stack_frame_2.id(), "eeeeeeec"); GraphDebugInfo::FileLineCol file_line_col_2 = actual_stack_frame_2.file_line_col(); EXPECT_EQ(file_line_col_2.file_index(), 12); EXPECT_EQ(file_line_col_2.line(), 21); EXPECT_EQ(file_line_col_2.col(), 4); EXPECT_EQ(file_line_col_2.func(), "my_func"); EXPECT_EQ(file_line_col_2.code(), " x = x ** 2.0"); ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), 0); } TEST_F(DebugEventsWriterTest, WriteGraphOpCreationAndDebuggedGraph) { DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); GraphOpCreation* graph_op_creation = new GraphOpCreation(); graph_op_creation->set_op_type("MatMul"); graph_op_creation->set_op_name("Dense_1/MatMul"); TF_ASSERT_OK(writer->WriteGraphOpCreation(graph_op_creation)); DebuggedGraph* debugged_graph = new DebuggedGraph(); debugged_graph->set_graph_id("deadbeaf"); debugged_graph->set_graph_name("my_func_graph"); TF_ASSERT_OK(writer->WriteDebuggedGraph(debugged_graph)); TF_ASSERT_OK(writer->FlushNonExecutionFiles()); TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), 2); EXPECT_GT(actuals[0].wall_time(), 0); EXPECT_GT(actuals[1].wall_time(), actuals[0].wall_time()); GraphOpCreation actual_op_creation = actuals[0].graph_op_creation(); EXPECT_EQ(actual_op_creation.op_type(), "MatMul"); EXPECT_EQ(actual_op_creation.op_name(), "Dense_1/MatMul"); DebuggedGraph actual_debugged_graph = actuals[1].debugged_graph(); EXPECT_EQ(actual_debugged_graph.graph_id(), "deadbeaf"); EXPECT_EQ(actual_debugged_graph.graph_name(), "my_func_graph"); ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), 0); } TEST_F(DebugEventsWriterTest, ConcurrentWriteCallsToTheSameFile) { const size_t kConcurrentWrites = 100; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 8); std::atomic_int_fast64_t counter(0); auto fn = [&writer, &counter]() { const string file_path = strings::Printf( "/home/tf_programs/program_%.3ld.py", counter.fetch_add(1)); SourceFile* source_file = new SourceFile(); source_file->set_file_path(file_path); source_file->set_host_name("localhost.localdomain"); TF_ASSERT_OK(writer->WriteSourceFile(source_file)); }; for (size_t i = 0; i < kConcurrentWrites; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), kConcurrentWrites); std::vector<string> file_paths; std::vector<string> host_names; for (size_t i = 0; i < kConcurrentWrites; ++i) { file_paths.push_back(actuals[i].source_file().file_path()); host_names.push_back(actuals[i].source_file().host_name()); } std::sort(file_paths.begin(), file_paths.end()); for (size_t i = 0; i < kConcurrentWrites; ++i) { EXPECT_EQ(file_paths[i], strings::Printf("/home/tf_programs/program_%.3ld.py", i)); EXPECT_EQ(host_names[i], "localhost.localdomain"); } } TEST_F(DebugEventsWriterTest, ConcurrentWriteAndFlushCallsToTheSameFile) { const size_t kConcurrentWrites = 100; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 8); std::atomic_int_fast64_t counter(0); auto fn = [&writer, &counter]() { const string file_path = strings::Printf( "/home/tf_programs/program_%.3ld.py", counter.fetch_add(1)); SourceFile* source_file = new SourceFile(); source_file->set_file_path(file_path); source_file->set_host_name("localhost.localdomain"); TF_ASSERT_OK(writer->WriteSourceFile(source_file)); TF_ASSERT_OK(writer->FlushNonExecutionFiles()); }; for (size_t i = 0; i < kConcurrentWrites; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), kConcurrentWrites); std::vector<string> file_paths; std::vector<string> host_names; for (size_t i = 0; i < kConcurrentWrites; ++i) { file_paths.push_back(actuals[i].source_file().file_path()); host_names.push_back(actuals[i].source_file().host_name()); } std::sort(file_paths.begin(), file_paths.end()); for (size_t i = 0; i < kConcurrentWrites; ++i) { EXPECT_EQ(file_paths[i], strings::Printf("/home/tf_programs/program_%.3ld.py", i)); EXPECT_EQ(host_names[i], "localhost.localdomain"); } } TEST_F(DebugEventsWriterTest, ConcurrentWriteCallsToTheDifferentFiles) { const int32_t kConcurrentWrites = 30; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, DebugEventsWriter::kDefaultCyclicBufferSize); TF_ASSERT_OK(writer->Init()); thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 10); std::atomic_int_fast32_t counter(0); auto fn = [&writer, &counter]() { const int32_t index = counter.fetch_add(1); if (index % 3 == 0) { SourceFile* source_file = new SourceFile(); source_file->set_file_path( strings::Printf("/home/tf_programs/program_%.2d.py", index)); source_file->set_host_name("localhost.localdomain"); TF_ASSERT_OK(writer->WriteSourceFile(source_file)); } else if (index % 3 == 1) { StackFrameWithId* stack_frame = new StackFrameWithId(); stack_frame->set_id(strings::Printf("e%.2d", index)); TF_ASSERT_OK(writer->WriteStackFrameWithId(stack_frame)); } else { GraphOpCreation* op_creation = new GraphOpCreation(); op_creation->set_op_type("Log"); op_creation->set_op_name(strings::Printf("Log_%.2d", index)); TF_ASSERT_OK(writer->WriteGraphOpCreation(op_creation)); } }; for (size_t i = 0; i < kConcurrentWrites; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), kConcurrentWrites / 3); std::vector<string> file_paths; std::vector<string> host_names; for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { file_paths.push_back(actuals[i].source_file().file_path()); host_names.push_back(actuals[i].source_file().host_name()); } std::sort(file_paths.begin(), file_paths.end()); for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { EXPECT_EQ(file_paths[i], strings::Printf("/home/tf_programs/program_%.2d.py", i * 3)); EXPECT_EQ(host_names[i], "localhost.localdomain"); } ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), kConcurrentWrites / 3); std::vector<string> stack_frame_ids; for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { stack_frame_ids.push_back(actuals[i].stack_frame_with_id().id()); } std::sort(stack_frame_ids.begin(), stack_frame_ids.end()); for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { EXPECT_EQ(stack_frame_ids[i], strings::Printf("e%.2d", i * 3 + 1)); } ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), kConcurrentWrites / 3); std::vector<string> op_types; std::vector<string> op_names; for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { op_types.push_back(actuals[i].graph_op_creation().op_type()); op_names.push_back(actuals[i].graph_op_creation().op_name()); } std::sort(op_names.begin(), op_names.end()); for (int32_t i = 0; i < kConcurrentWrites / 3; ++i) { EXPECT_EQ(op_types[i], "Log"); EXPECT_EQ(op_names[i], strings::Printf("Log_%.2d", i * 3 + 2)); } } TEST_F(DebugEventsWriterTest, WriteExecutionWithCyclicBufferNoFlush) { const size_t kCyclicBufferSize = 10; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); TF_ASSERT_OK(writer->Init()); for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { Execution* execution = new Execution(); execution->set_op_type("Log"); execution->add_input_tensor_ids(i); TF_ASSERT_OK(writer->WriteExecution(execution)); } std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::EXECUTION, &actuals); EXPECT_EQ(actuals.size(), 0); TF_ASSERT_OK(writer->Close()); } TEST_F(DebugEventsWriterTest, WriteExecutionWithCyclicBufferFlush) { const size_t kCyclicBufferSize = 10; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); TF_ASSERT_OK(writer->Init()); for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { Execution* execution = new Execution(); execution->set_op_type("Log"); execution->add_input_tensor_ids(i); TF_ASSERT_OK(writer->WriteExecution(execution)); } TF_ASSERT_OK(writer->FlushExecutionFiles()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::EXECUTION, &actuals); EXPECT_EQ(actuals.size(), kCyclicBufferSize); for (size_t i = 0; i < kCyclicBufferSize; ++i) { EXPECT_EQ(actuals[i].execution().op_type(), "Log"); EXPECT_EQ(actuals[i].execution().input_tensor_ids().size(), 1); EXPECT_EQ(actuals[i].execution().input_tensor_ids()[0], kCyclicBufferSize + i); } thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 8); std::atomic_int_fast64_t counter(0); auto fn = [&writer, &counter]() { Execution* execution = new Execution(); execution->set_op_type("Abs"); execution->add_input_tensor_ids(counter.fetch_add(1)); TF_ASSERT_OK(writer->WriteExecution(execution)); }; for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); ReadDebugEventProtos(writer, DebugEventFileType::EXECUTION, &actuals); EXPECT_EQ(actuals.size(), kCyclicBufferSize * 2); for (size_t i = 0; i < kCyclicBufferSize; ++i) { const size_t index = i + kCyclicBufferSize; EXPECT_EQ(actuals[index].execution().op_type(), "Abs"); EXPECT_EQ(actuals[index].execution().input_tensor_ids().size(), 1); EXPECT_GE(actuals[index].execution().input_tensor_ids()[0], 0); EXPECT_LE(actuals[index].execution().input_tensor_ids()[0], kCyclicBufferSize * 2); } ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), 0); } TEST_F(DebugEventsWriterTest, WriteGrahExecutionTraceWithCyclicBufferNoFlush) { const size_t kCyclicBufferSize = 10; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); TF_ASSERT_OK(writer->Init()); for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { GraphExecutionTrace* trace = new GraphExecutionTrace(); trace->set_tfdbg_context_id(strings::Printf("graph_%.2ld", i)); TF_ASSERT_OK(writer->WriteGraphExecutionTrace(trace)); } std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), 0); TF_ASSERT_OK(writer->Close()); } TEST_F(DebugEventsWriterTest, WriteGrahExecutionTraceWithoutPreviousInitCall) { const size_t kCyclicBufferSize = -1; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); GraphExecutionTrace* trace = new GraphExecutionTrace(); trace->set_tfdbg_context_id(strings::Printf("graph_0")); TF_ASSERT_OK(writer->WriteGraphExecutionTrace(trace)); TF_ASSERT_OK(writer->FlushExecutionFiles()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), 1); EXPECT_EQ(actuals[0].graph_execution_trace().tfdbg_context_id(), "graph_0"); TF_ASSERT_OK(writer->Close()); } TEST_F(DebugEventsWriterTest, WriteGrahExecutionTraceWithCyclicBufferFlush) { const size_t kCyclicBufferSize = 10; DebugEventsWriter* writer = DebugEventsWriter::GetDebugEventsWriter( dump_root_, tfdbg_run_id_, kCyclicBufferSize); TF_ASSERT_OK(writer->Init()); for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { GraphExecutionTrace* trace = new GraphExecutionTrace(); trace->set_tfdbg_context_id(strings::Printf("graph_%.2ld", i)); TF_ASSERT_OK(writer->WriteGraphExecutionTrace(trace)); } TF_ASSERT_OK(writer->FlushExecutionFiles()); std::vector<DebugEvent> actuals; ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), kCyclicBufferSize); for (size_t i = 0; i < kCyclicBufferSize; ++i) { EXPECT_EQ(actuals[i].graph_execution_trace().tfdbg_context_id(), strings::Printf("graph_%.2ld", i + kCyclicBufferSize)); } thread::ThreadPool* thread_pool = new thread::ThreadPool(Env::Default(), "test_pool", 8); std::atomic_int_fast64_t counter(0); auto fn = [&writer, &counter]() { GraphExecutionTrace* trace = new GraphExecutionTrace(); trace->set_tfdbg_context_id( strings::Printf("new_graph_%.2ld", counter.fetch_add(1))); TF_ASSERT_OK(writer->WriteGraphExecutionTrace(trace)); }; for (size_t i = 0; i < kCyclicBufferSize * 2; ++i) { thread_pool->Schedule(fn); } delete thread_pool; TF_ASSERT_OK(writer->Close()); ReadDebugEventProtos(writer, DebugEventFileType::GRAPH_EXECUTION_TRACES, &actuals); EXPECT_EQ(actuals.size(), kCyclicBufferSize * 2); for (size_t i = 0; i < kCyclicBufferSize; ++i) { const size_t index = i + kCyclicBufferSize; EXPECT_EQ(actuals[index].graph_execution_trace().tfdbg_context_id().find( "new_graph_"), 0); } ReadDebugEventProtos(writer, DebugEventFileType::SOURCE_FILES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::STACK_FRAMES, &actuals); EXPECT_EQ(actuals.size(), 0); ReadDebugEventProtos(writer, DebugEventFileType::GRAPHS, &actuals); EXPECT_EQ(a
1,707
cpp
tensorflow/tensorflow
tensor_format
tensorflow/core/util/tensor_format.cc
tensorflow/core/util/tensor_format_test.cc
#ifndef TENSORFLOW_CORE_UTIL_TENSOR_FORMAT_H_ #define TENSORFLOW_CORE_UTIL_TENSOR_FORMAT_H_ #include <array> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { enum TensorFormat { FORMAT_NHWC = 0, FORMAT_NCHW = 1, FORMAT_NCHW_VECT_C = 2, FORMAT_NHWC_VECT_W = 3, FORMAT_HWNC = 4, FORMAT_HWCN = 5, }; enum FilterTensorFormat { FORMAT_HWIO = 0, FORMAT_OIHW = 1, FORMAT_OHWI = 2, FORMAT_OIHW_VECT_I = 3, }; bool FormatFromString(absl::string_view format_str, TensorFormat* format); bool FilterFormatFromString(absl::string_view format_str, FilterTensorFormat* format); std::string ToString(TensorFormat format); std::string ToString(FilterTensorFormat format); inline int GetTensorSpatialDims(int num_dims, TensorFormat format) { switch (format) { case FORMAT_NHWC: case FORMAT_NCHW: case FORMAT_HWNC: case FORMAT_HWCN: return num_dims - 2; case FORMAT_NCHW_VECT_C: case FORMAT_NHWC_VECT_W: return num_dims - 3; default: LOG(FATAL) << "Unknown format " << format; return -1; } } inline int GetFilterTensorSpatialDims(int num_dims, FilterTensorFormat format) { if (format == FORMAT_OIHW_VECT_I) { return num_dims - 3; } else { return num_dims - 2; } } inline int GetTensorDimsFromSpatialDims(int num_spatial_dims, TensorFormat format) { switch (format) { case FORMAT_NHWC: case FORMAT_NCHW: case FORMAT_HWNC: case FORMAT_HWCN: return num_spatial_dims + 2; case FORMAT_NCHW_VECT_C: case FORMAT_NHWC_VECT_W: return num_spatial_dims + 3; default: LOG(FATAL) << "Unknown format " << format; return -1; } } inline int GetFilterTensorDimsFromSpatialDims(int num_spatial_dims, FilterTensorFormat format) { if (format == FORMAT_OIHW_VECT_I) { return num_spatial_dims + 3; } else { return num_spatial_dims + 2; } } inline int GetTensorBatchDimIndex(int num_dims, TensorFormat format) { switch (format) { case FORMAT_NHWC: case FORMAT_NCHW: case FORMAT_NCHW_VECT_C: case FORMAT_NHWC_VECT_W: return 0; case FORMAT_HWNC: return num_dims - 2; case FORMAT_HWCN: return num_dims - 1; default: LOG(FATAL) << "Unknown format " << format; return -1; } } inline int GetTensorFeatureDimIndex(int num_dims, TensorFormat format) { switch (format) { case FORMAT_NHWC: case FORMAT_HWNC: return num_dims - 1; case FORMAT_NHWC_VECT_W: case FORMAT_HWCN: return num_dims - 2; case FORMAT_NCHW: case FORMAT_NCHW_VECT_C: return 1; default: LOG(FATAL) << "Unknown format " << format; return -1; } } inline int GetTensorInnerFeatureDimIndex(int num_dims, TensorFormat format) { DCHECK_EQ(format, FORMAT_NCHW_VECT_C); return num_dims - 1; } inline int GetTensorInnerWidthDimIndex(int num_dims, TensorFormat format) { DCHECK_EQ(format, FORMAT_NHWC_VECT_W); return num_dims - 1; } inline int GetTensorSpatialDimIndex(int num_dims, TensorFormat format, int spatial_dim) { CHECK(spatial_dim >= 0 && spatial_dim < GetTensorSpatialDims(num_dims, format)) << spatial_dim << " " << num_dims << " " << ToString(format); switch (format) { case FORMAT_NHWC: case FORMAT_NHWC_VECT_W: return spatial_dim + 1; case FORMAT_NCHW: case FORMAT_NCHW_VECT_C: return spatial_dim + 2; case FORMAT_HWNC: case FORMAT_HWCN: return spatial_dim; default: LOG(FATAL) << "Unknown format " << format; return -1; } } inline int GetFilterTensorSpatialDimIndex(int num_dims, FilterTensorFormat format, int dim) { CHECK(dim >= 0 && dim < GetFilterTensorSpatialDims(num_dims, format)) << dim << " " << num_dims << " " << ToString(format); switch (format) { case FORMAT_HWIO: return dim; case FORMAT_OIHW: case FORMAT_OIHW_VECT_I: return dim + 2; default: LOG(FATAL) << "Unknown format " << format; return -1; } } inline int GetFilterTensorInnerInputChannelsDimIndex( int num_dims, FilterTensorFormat format) { DCHECK_EQ(format, FORMAT_OIHW_VECT_I); return num_dims - 1; } inline int GetFilterTensorInputChannelsDimIndex(int num_dims, FilterTensorFormat format) { switch (format) { case FORMAT_HWIO: return num_dims - 2; case FORMAT_OIHW: case FORMAT_OIHW_VECT_I: return 1; default: LOG(FATAL) << "Unknown format " << format; return -1; } } inline int GetFilterTensorOutputChannelsDimIndex(int num_dims, FilterTensorFormat format) { switch (format) { case FORMAT_HWIO: return num_dims - 1; case FORMAT_OIHW: case FORMAT_OIHW_VECT_I: return 0; default: LOG(FATAL) << "Unknown format " << format; return -1; } } template <int NUM_SPATIAL_DIMS> inline int32 GetTensorDimIndex(TensorFormat format, char dimension) { if (format == FORMAT_NHWC || format == FORMAT_NHWC_VECT_W) { switch (dimension) { case 'N': return 0; case '0': return 1; case '1': return 2; case '2': return 3; case 'H': return NUM_SPATIAL_DIMS - 1; case 'W': return NUM_SPATIAL_DIMS; case 'C': return NUM_SPATIAL_DIMS + 1; default: LOG(FATAL) << "Invalid dimension: " << dimension; return -1; } } else if (format == FORMAT_NCHW || format == FORMAT_NCHW_VECT_C) { switch (dimension) { case 'N': return 0; case 'C': return 1; case '0': return 2; case '1': return 3; case '2': return 4; case 'H': return NUM_SPATIAL_DIMS; case 'W': return NUM_SPATIAL_DIMS + 1; default: LOG(FATAL) << "Invalid dimension: " << dimension; return -1; } } else if (format == FORMAT_HWNC) { switch (dimension) { case '0': return 0; case '1': return 1; case '2': return 2; case 'H': return NUM_SPATIAL_DIMS - 2; case 'W': return NUM_SPATIAL_DIMS - 1; case 'N': return NUM_SPATIAL_DIMS; case 'C': return NUM_SPATIAL_DIMS + 1; default: LOG(FATAL) << "Invalid dimension: " << dimension; return -1; } } else if (format == FORMAT_HWCN) { switch (dimension) { case '0': return 0; case '1': return 1; case '2': return 2; case 'H': return NUM_SPATIAL_DIMS - 2; case 'W': return NUM_SPATIAL_DIMS - 1; case 'C': return NUM_SPATIAL_DIMS; case 'N': return NUM_SPATIAL_DIMS + 1; default: LOG(FATAL) << "Invalid dimension: " << dimension; return -1; } } else { LOG(FATAL) << "Invalid format: " << static_cast<int>(format); return -1; } } template <int NUM_SPATIAL_DIMS> inline int GetFilterDimIndex(FilterTensorFormat filter_tensor_format, char dimension) { if (filter_tensor_format == FORMAT_HWIO) { switch (dimension) { case '0': return 0; case '1': return 1; case '2': return 2; case 'H': return NUM_SPATIAL_DIMS - 2; case 'W': return NUM_SPATIAL_DIMS - 1; case 'I': return NUM_SPATIAL_DIMS; case 'O': return NUM_SPATIAL_DIMS + 1; default: LOG(FATAL) << "Invalid dimension: " << dimension; return -1; } } else if (filter_tensor_format == FORMAT_OIHW || filter_tensor_format == FORMAT_OIHW_VECT_I) { switch (dimension) { case 'O': return 0; case 'I': return 1; case '0': return 2; case '1': return 3; case '2': return 4; case 'H': return NUM_SPATIAL_DIMS; case 'W': return NUM_SPATIAL_DIMS + 1; default: LOG(FATAL) << "Invalid dimension: " << dimension; return -1; } } else { LOG(FATAL) << "Invalid format: " << static_cast<int>(filter_tensor_format); return -1; } } inline int32 GetTensorDimIndex(TensorFormat format, char dimension) { return GetTensorDimIndex<2>(format, dimension); } inline int32 GetTensorDimIndex(TensorFormat format, char dimension, int num_total_dims) { int32_t index = (GetTensorSpatialDims(num_total_dims, format) == 3) ? GetTensorDimIndex<3>(format, dimension) : GetTensorDimIndex<2>(format, dimension); CHECK(index >= 0 && index < num_total_dims) << "Invalid index from the dimension: " << index << ", " << format << ", " << dimension; return index; } template <typename T> T GetTensorDim(gtl::ArraySlice<T> dimension_attributes, TensorFormat tensor_format, char dimension) { int index = GetTensorDimIndex(tensor_format, dimension, dimension_attributes.size()); return dimension_attributes[index]; } template <typename T> T GetFilterDim(gtl::ArraySlice<T> dimension_attribute, FilterTensorFormat filter_tensor_format, char dimension) { int index = (GetFilterTensorSpatialDims(dimension_attribute.size(), filter_tensor_format) == 3) ? GetFilterDimIndex<3>(filter_tensor_format, dimension) : GetFilterDimIndex<2>(filter_tensor_format, dimension); using size_type = typename gtl::ArraySlice<T>::size_type; CHECK(index >= 0 && static_cast<size_type>(index) < dimension_attribute.size()) << "Invalid index from the dimension: " << index << ", " << filter_tensor_format << ", " << dimension; return dimension_attribute[index]; } template <typename T> T GetTensorDim(const std::vector<T>& attributes, TensorFormat format, char dimension) { return GetTensorDim(gtl::ArraySlice<T>(attributes), format, dimension); } inline int64_t GetTensorDim(const TensorShape& tensor_shape, TensorFormat tensor_format, char dimension) { return GetTensorDim(absl::Span<const int64_t>(tensor_shape.dim_sizes()), tensor_format, dimension); } inline int64_t GetFilterDim(const TensorShape& tensor_shape, FilterTensorFormat tensor_filter_format, char dimension) { return GetFilterDim(absl::Span<const int64_t>(tensor_shape.dim_sizes()), tensor_filter_format, dimension); } inline int64_t GetTensorDim(const Tensor& tensor, TensorFormat tensor_format, char dimension) { return GetTensorDim(tensor.shape(), tensor_format, dimension); } inline int64_t GetFilterDim(const Tensor& tensor, FilterTensorFormat filter_tensor_format, char dimension) { return GetFilterDim(tensor.shape(), filter_tensor_format, dimension); } inline void GetExplicitPaddingForDim( const std::vector<int64_t>& explicit_paddings, TensorFormat tensor_format, char dimension, int64_t* padding_before, int64_t* padding_after) { int index = GetTensorDimIndex(tensor_format, dimension, explicit_paddings.size() / 2); *padding_before = explicit_paddings[2 * index]; *padding_after = explicit_paddings[2 * index + 1]; } std::string GetConvnetDataFormatAttrString(); std::string GetConvnet3dDataFormatAttrString(); std::string GetConvnetFilterFormatAttrString(); std::string GetConvnet3dFilterFormatAttrString(); std::string GetConvnetDataFormat2D3DAttrString(); inline Status ShapeFromFormatWithStatus(TensorFormat format, int64_t N, absl::Span<const int64_t> spatial, int64_t C, TensorShape* shape) { const int dims = GetTensorDimsFromSpatialDims(spatial.size(), format); absl::InlinedVector<int64_t, 6UL> dim_sizes(dims); dim_sizes[GetTensorBatchDimIndex(dims, format)] = N; for (int dim = 0; static_cast<size_t>(dim) < spatial.size(); dim++) { auto dim_size = spatial[dim]; if (format == FORMAT_NHWC_VECT_W && static_cast<size_t>(dim) == spatial.size() - 1) { CHECK_EQ(0, dim_size % 4) << "FORMAT_NHWC_VECT_W requires W to be a multiple of 4, but W=" << dim_size; dim_sizes[GetTensorInnerWidthDimIndex(dims, format)] = 4; dim_size /= 4; } dim_sizes[GetTensorSpatialDimIndex(dims, format, dim)] = dim_size; } int feature_index = GetTensorFeatureDimIndex(dims, format); if (format == FORMAT_NCHW_VECT_C) { CHECK_EQ(0, C % 4) << "NCHW_VECT_C requires C to be a multiple of 4, but C=" << C; C /= 4; dim_sizes[GetTensorInnerFeatureDimIndex(dims, format)] = 4; } dim_sizes[feature_index] = C; return TensorShapeUtils::MakeShape(dim_sizes, shape); } inline TensorShape ShapeFromFormat(TensorFormat format, int64_t N, absl::Span<const int64_t> spatial, int64_t C) { TensorShape shape; TF_CHECK_OK(ShapeFromFormatWithStatus(format, N, spatial, C, &shape)); return shape; } inline TensorShape ShapeFromFilterTensorFormat( FilterTensorFormat format, absl::Span<const int64_t> spatial, int64_t I, int64_t O) { const int dims = GetFilterTensorDimsFromSpatialDims(spatial.size(), format); absl::InlinedVector<int64_t, 6UL> dim_sizes(dims); dim_sizes[GetFilterTensorOutputChannelsDimIndex(dims, format)] = O; for (int dim = 0; static_cast<size_t>(dim) < spatial.size(); dim++) { dim_sizes[GetFilterTensorSpatialDimIndex(dims, format, dim)] = spatial[dim]; } if (format == FORMAT_OIHW_VECT_I) { CHECK_EQ(0, I % 4) << "OIHW_VECT_I requires I to be a multiple of 4, but I=" << I; I /= 4; dim_sizes[GetFilterTensorInnerInputChannelsDimIndex(dims, format)] = 4; } dim_sizes[GetFilterTensorInputChannelsDimIndex(dims, format)] = I; return TensorShape(dim_sizes); } inline Status ShapeFromFormatWithStatus(TensorFormat format, int64_t N, int64_t H, int64_t W, int64_t C, TensorShape* shape) { return ShapeFromFormatWithStatus(format, N, {H, W}, C, shape); } inline TensorShape ShapeFromFormat(TensorFormat format, int64_t N, int64_t H, int64_t W, int64_t C) { TensorShape shape; TF_CHECK_OK(ShapeFromFormatWithStatus(format, N, {H, W}, C, &shape)); return shape; } inline TensorShape ShapeFromFilterTensorFormat(FilterTensorFormat format, int64_t H, int64_t W, int64_t I, int64_t O) { return ShapeFromFilterTensorFormat(format, {H, W}, I, O); } inline Status ShapeFromFormatWithStatus(TensorFormat dst_format, const TensorShape& src_shape, TensorFormat src_format, TensorShape* shape) { if (src_format == dst_format) { *shape = src_shape; return absl::OkStatus(); } const int64_t batch = GetTensorDim(src_shape, src_format, 'N'); const int64_t channels = GetTensorDim(src_shape, src_format, 'C') * (src_format == FORMAT_NCHW_VECT_C ? 4 : 1); const int num_src_spatial_dims = GetTensorSpatialDims(src_shape.dims(), src_format); std::vector<int64_t> spatial_dims(num_src_spatial_dims); for (int spatial_dim = 0; spatial_dim < num_src_spatial_dims; ++spatial_dim) { spatial_dims[spatial_dim] = absl::Span<const int64_t>( src_shape.dim_sizes())[GetTensorSpatialDimIndex( src_shape.dims(), src_format, spatial_dim)]; } if (src_format == FORMAT_NHWC_VECT_W) { spatial_dims[num_src_spatial_dims - 1] *= 4; } return ShapeFromFormatWithStatus(dst_format, batch, {spatial_dims}, channels, shape); } inline TensorShape ShapeFromFormat(TensorFormat dst_format, const TensorShape& src_shape, TensorFormat src_format) { TensorShape shape; TF_CHECK_OK( ShapeFromFormatWithStatus(dst_format, src_shape, src_format, &shape)); return shape; } inline TensorShape ShapeFromFilterFormat(FilterTensorFormat dst_filter_format, const TensorShape& src_shape, FilterTensorFormat src_filter_format) { if (src_filter_format == dst_filter_format) { return src_shape; } const int64_t output_channels = GetFilterDim(src_shape, src_filter_format, 'O'); const int64_t input_channels = GetFilterDim(src_shape, src_filter_format, 'I') * (src_filter_format == FORMAT_OIHW_VECT_I ? 4 : 1); if (GetFilterTensorSpatialDims(src_shape.dims(), src_filter_format) == 3) { return ShapeFromFilterTensorFormat( dst_filter_format, {{GetFilterDim(src_shape, src_filter_format, '0'), GetFilterDim(src_shape, src_filter_format, '1'), GetFilterDim(src_shape, src_filter_format, '2')}}, input_channels, output_channels); } return ShapeFromFilterTensorFormat( dst_filter_format, {{GetFilterDim(src_shape, src_filter_format, 'H'), GetFilterDim(src_shape, src_filter_format, 'W')}}, input_channels, output_channels); } } #endif #include "tensorflow/core/util/tensor_format.h" namespace tensorflow { string GetConvnetDataFormatAttrString() { return "data_format: { 'NHWC', 'NCHW' } = 'NHWC' "; } string GetConvnet3dDataFormatAttrString() { return "data_format: { 'NDHWC', 'NCDHW' } = 'NDHWC' "; } string GetConvnetDataFormat2D3DAttrString() { return "data_format: { 'NHWC', 'NCHW', 'NDHWC', 'NCDHW' } = 'NHWC' "; } string GetConvnetFilterFormatAttrString() { return "filter_format: { 'HWIO', 'OIHW' } = 'HWIO' "; } string GetConvnet3dFilterFormatAttrString() { return "filter_format: { 'DHWIO', 'OIDHW' } = 'DHWIO' "; } string ToString(TensorFormat format) { switch (format) { case FORMAT_NHWC: return "NHWC"; case FORMAT_NCHW: return "NCHW"; case FORMAT_NCHW_VECT_C: return "NCHW_VECT_C"; case FORMAT_NHWC_VECT_W: return "NHWC_VECT_W"; case FORMAT_HWNC: return "HWNC"; case FORMAT_HWCN: return "HWCN"; default: LOG(FATAL) << "Invalid Format: " << static_cast<int32>(format); return "INVALID_FORMAT"; } } string ToString(FilterTensorFormat format) { switch (format) { case FORMAT_HWIO: return "HWIO"; case FORMAT_OIHW: return "OIHW"; case FORMAT_OHWI: return "OHWI"; case FORMAT_OIHW_VECT_I: return "OIHW_VECT_I"; default: LOG(FATAL) << "Invalid Filter Format: " << static_cast<int32>(format); return "INVALID_FORMAT"; } } bool FormatFromString(absl::string_view format_str, TensorFormat* format) { if (format_str == "NHWC" || format_str == "NDHWC") { *format = FORMAT_NHWC; return true; } if (format_str == "NCHW" || format_str == "NCDHW") { *format = FORMAT_NCHW; return true; } if (format_str == "NCHW_VECT_C") { *format = FORMAT_NCHW_VECT_C; return true; } if (format_str == "NHWC_VECT_W") { *format = FORMAT_NHWC_VECT_W; return true; } if (format_str == "HWNC") { *format = FORMAT_HWNC; return true; } if (format_str == "HWCN") { *format = FORMAT_HWCN; return true; } return false; } bool FilterFormatFromString(absl::string_view format_str, FilterTensorFormat* format) { if (format_str == "HWIO" || format_str == "DHWIO") { *format = FORMAT_HWIO; return true; } if (format_str == "OIHW" || format_str == "OIDHW") { *format = FORMAT_OIHW; return true; } if (format_str == "OIHW_VECT_I") { *format = FORMAT_OIHW_VECT_I; return true; } return false; } }
#include <utility> #include "tensorflow/core/util/tensor_format.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { #define EnumStringPair(val) \ { val, #val } std::pair<TensorFormat, const char*> test_data_formats[] = { EnumStringPair(FORMAT_NHWC), EnumStringPair(FORMAT_NCHW), EnumStringPair(FORMAT_NCHW_VECT_C), EnumStringPair(FORMAT_NHWC_VECT_W), EnumStringPair(FORMAT_HWNC), EnumStringPair(FORMAT_HWCN), }; std::pair<FilterTensorFormat, const char*> test_filter_formats[] = { EnumStringPair(FORMAT_HWIO), EnumStringPair(FORMAT_OIHW), EnumStringPair(FORMAT_OIHW_VECT_I), }; struct TensorDimMap { int n() const { return dim_n; } int h() const { return dim_h; } int w() const { return dim_w; } int c() const { return dim_c; } int spatial(int spatial_index) const { return spatial_dim[spatial_index]; } int dim_n, dim_h, dim_w, dim_c; int spatial_dim[3]; }; struct FilterDimMap { int h() const { return dim_h; } int w() const { return dim_w; } int i() const { return dim_i; } int o() const { return dim_o; } int spatial(int spatial_index) const { return spatial_dim[spatial_index]; } int dim_h, dim_w, dim_i, dim_o; int spatial_dim[3]; }; struct DimMaps { #define StaCoExTensorDm static constexpr TensorDimMap StaCoExTensorDm kTdmInvalid = { -1, -1, -1, -1, { -1, -1, -1 } }; StaCoExTensorDm kTdmNHWC[4] = { kTdmInvalid, { 0, -1, 1, 2, { 1, -1, -1 } }, { 0, 1, 2, 3, { 1, 2, -1 } }, { 0, 2, 3, 4, { 1, 2, 3 } } }; StaCoExTensorDm kTdmNCHW[4] = { kTdmInvalid, { 0, -1, 2, 1, { 2, -1, -1 } }, { 0, 2, 3, 1, { 2, 3, -1 } }, { 0, 3, 4, 1, { 2, 3, 4 } } }; StaCoExTensorDm kTdmHWNC[4] = { kTdmInvalid, { 1, -1, 0, 2, { 0, -1, -1 } }, { 2, 0, 1, 3, { 0, 1, -1 } }, { 3, 1, 2, 4, { 0, 1, 2 } } }; StaCoExTensorDm kTdmHWCN[4] = { kTdmInvalid, { 2, -1, 0, 1, { 0, -1, -1 } }, { 3, 0, 1, 2, { 0, 1, -1 } }, { 4, 1, 2, 3, { 0, 1, 2 } } }; #undef StaCoExTensorDm #define StaCoExFilterDm static constexpr FilterDimMap StaCoExFilterDm kFdmInvalid = { -1, -1, -1, -1, { -1, -1, -1 } }; StaCoExFilterDm kFdmHWIO[4] = { kFdmInvalid, { -1, 0, 1, 2, { 0, -1, -1 } }, { 0, 1, 2, 3, { 0, 1, -1 } }, { 1, 2, 3, 4, { 0, 1, 2 } } }; StaCoExFilterDm kFdmOIHW[4] = { kFdmInvalid, { -1, 2, 1, 0, { 2, -1, -1 } }, { 2, 3, 1, 0, { 2, 3, -1 } }, { 3, 4, 1, 0, { 2, 3, 4 } } }; #undef StaCoExFilterDm }; inline constexpr const TensorDimMap& GetTensorDimMap(const int num_spatial_dims, const TensorFormat format) { return (format == FORMAT_NHWC || format == FORMAT_NHWC_VECT_W) ? DimMaps::kTdmNHWC[num_spatial_dims] : (format == FORMAT_NCHW || format == FORMAT_NCHW_VECT_C) ? DimMaps::kTdmNCHW[num_spatial_dims] : (format == FORMAT_HWNC) ? DimMaps::kTdmHWNC[num_spatial_dims] : (format == FORMAT_HWCN) ? DimMaps::kTdmHWCN[num_spatial_dims] : DimMaps::kTdmInvalid; } inline constexpr const FilterDimMap& GetFilterDimMap(const int num_spatial_dims, const FilterTensorFormat format) { return (format == FORMAT_HWIO) ? DimMaps::kFdmHWIO[num_spatial_dims] : (format == FORMAT_OIHW || format == FORMAT_OIHW_VECT_I) ? DimMaps::kFdmOIHW[num_spatial_dims] : DimMaps::kFdmInvalid; } constexpr TensorDimMap DimMaps::kTdmInvalid; constexpr TensorDimMap DimMaps::kTdmNHWC[4]; constexpr TensorDimMap DimMaps::kTdmNCHW[4]; constexpr TensorDimMap DimMaps::kTdmHWNC[4]; constexpr TensorDimMap DimMaps::kTdmHWCN[4]; constexpr FilterDimMap DimMaps::kFdmInvalid; constexpr FilterDimMap DimMaps::kFdmHWIO[4]; constexpr FilterDimMap DimMaps::kFdmOIHW[4]; TEST(TensorFormatTest, FormatEnumsAndStrings) { const string prefix = "FORMAT_"; for (auto& test_data_format : test_data_formats) { const char* stringified_format_enum = test_data_format.second; LOG(INFO) << stringified_format_enum << " = " << test_data_format.first; string expected_format_str = &stringified_format_enum[prefix.size()]; TensorFormat format; EXPECT_TRUE(FormatFromString(expected_format_str, &format)); string format_str = ToString(format); EXPECT_EQ(expected_format_str, format_str); EXPECT_EQ(test_data_format.first, format); } for (auto& test_filter_format : test_filter_formats) { const char* stringified_format_enum = test_filter_format.second; LOG(INFO) << stringified_format_enum << " = " << test_filter_format.first; string expected_format_str = &stringified_format_enum[prefix.size()]; FilterTensorFormat format; EXPECT_TRUE(FilterFormatFromString(expected_format_str, &format)); string format_str = ToString(format); EXPECT_EQ(expected_format_str, format_str); EXPECT_EQ(test_filter_format.first, format); } } template <int num_spatial_dims> void RunDimensionIndexesTest() { for (auto& test_data_format : test_data_formats) { TensorFormat format = test_data_format.first; auto& tdm = GetTensorDimMap(num_spatial_dims, format); int num_dims = GetTensorDimsFromSpatialDims(num_spatial_dims, format); LOG(INFO) << ToString(format) << ", num_spatial_dims=" << num_spatial_dims << ", num_dims=" << num_dims; EXPECT_EQ(GetTensorBatchDimIndex(num_dims, format), tdm.n()); EXPECT_EQ(GetTensorDimIndex<num_spatial_dims>(format, 'N'), tdm.n()); EXPECT_EQ(GetTensorFeatureDimIndex(num_dims, format), tdm.c()); EXPECT_EQ(GetTensorDimIndex<num_spatial_dims>(format, 'C'), tdm.c()); for (int i = 0; i < num_spatial_dims; ++i) { EXPECT_EQ(GetTensorSpatialDimIndex(num_dims, format, i), tdm.spatial(i)); EXPECT_EQ(GetTensorDimIndex<num_spatial_dims>(format, '0' + i), tdm.spatial(i)); } } for (auto& test_filter_format : test_filter_formats) { FilterTensorFormat format = test_filter_format.first; auto& fdm = GetFilterDimMap(num_spatial_dims, format); int num_dims = GetFilterTensorDimsFromSpatialDims(num_spatial_dims, format); LOG(INFO) << ToString(format) << ", num_spatial_dims=" << num_spatial_dims << ", num_dims=" << num_dims; EXPECT_EQ(GetFilterTensorOutputChannelsDimIndex(num_dims, format), fdm.o()); EXPECT_EQ(GetFilterDimIndex<num_spatial_dims>(format, 'O'), fdm.o()); EXPECT_EQ(GetFilterTensorInputChannelsDimIndex(num_dims, format), fdm.i()); EXPECT_EQ(GetFilterDimIndex<num_spatial_dims>(format, 'I'), fdm.i()); for (int i = 0; i < num_spatial_dims; ++i) { EXPECT_EQ(GetFilterTensorSpatialDimIndex(num_dims, format, i), fdm.spatial(i)); EXPECT_EQ(GetFilterDimIndex<num_spatial_dims>(format, '0' + i), fdm.spatial(i)); } } } TEST(TensorFormatTest, DimensionIndexes) { RunDimensionIndexesTest<1>(); RunDimensionIndexesTest<2>(); RunDimensionIndexesTest<3>(); } }
1,708
cpp
tensorflow/tensorflow
bad_indices_policy
tensorflow/core/util/bad_indices_policy.cc
tensorflow/core/util/bad_indices_policy_test.cc
#ifndef TENSORFLOW_CORE_UTIL_BAD_INDICES_POLICY_H_ #define TENSORFLOW_CORE_UTIL_BAD_INDICES_POLICY_H_ #include "absl/status/statusor.h" #include "absl/strings/string_view.h" namespace tensorflow { enum class BadIndicesPolicy { kDefault, kError, kIgnore, }; absl::StatusOr<BadIndicesPolicy> BadIndicesPolicyFromString( absl::string_view str); } #endif #include "tensorflow/core/util/bad_indices_policy.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace tensorflow { constexpr char kDefault[] = "DEFAULT"; constexpr char kErrorStr[] = "ERROR"; constexpr char kIgnoreStr[] = "IGNORE"; absl::StatusOr<BadIndicesPolicy> BadIndicesPolicyFromString( absl::string_view str) { if (str.empty()) return BadIndicesPolicy::kDefault; if (str == kDefault) return BadIndicesPolicy::kDefault; if (str == kErrorStr) return BadIndicesPolicy::kError; if (str == kIgnoreStr) return BadIndicesPolicy::kIgnore; return absl::InvalidArgumentError( absl::StrCat("Unknown bad indices handling attribute: ", str)); } }
#include "tensorflow/core/util/bad_indices_policy.h" #include <gmock/gmock.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { constexpr absl::string_view kDefault = "DEFAULT"; constexpr absl::string_view kErrorStr = "ERROR"; constexpr absl::string_view kIgnoreStr = "IGNORE"; class BadIndicesPolicyFromStringTest : public ::testing::Test { protected: void TestValidInput(absl::string_view input, BadIndicesPolicy expected) { absl::StatusOr<BadIndicesPolicy> result = BadIndicesPolicyFromString(input); ASSERT_TRUE(result.ok()); EXPECT_EQ(result.value(), expected); } }; TEST_F(BadIndicesPolicyFromStringTest, EmptyString) { TestValidInput("", BadIndicesPolicy::kDefault); } TEST_F(BadIndicesPolicyFromStringTest, DefaultKeyword) { TestValidInput(kDefault, BadIndicesPolicy::kDefault); } TEST_F(BadIndicesPolicyFromStringTest, ErrorKeyword) { TestValidInput(kErrorStr, BadIndicesPolicy::kError); } TEST_F(BadIndicesPolicyFromStringTest, IgnoreKeyword) { TestValidInput(kIgnoreStr, BadIndicesPolicy::kIgnore); } TEST_F(BadIndicesPolicyFromStringTest, InvalidInput) { absl::StatusOr<BadIndicesPolicy> result = BadIndicesPolicyFromString("unknown"); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("Unknown bad indices handling attribute")); } } }
1,709
cpp
tensorflow/tensorflow
equal_graph_def
tensorflow/core/util/equal_graph_def.cc
tensorflow/core/util/equal_graph_def_test.cc
#ifndef TENSORFLOW_CORE_UTIL_EQUAL_GRAPH_DEF_H_ #define TENSORFLOW_CORE_UTIL_EQUAL_GRAPH_DEF_H_ #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { class GraphDef; class NodeDef; struct EqualGraphDefOptions { bool ignore_internal_attrs = true; }; bool EqualGraphDef(const GraphDef& actual, const GraphDef& expected, string* diff, const EqualGraphDefOptions& options = {}); uint64 GraphDefHash(const GraphDef& gdef, const EqualGraphDefOptions& options = {}); bool EqualNodeDef(const NodeDef& actual, const NodeDef& expected, string* diff, const EqualGraphDefOptions& options = {}); uint64 NodeDefHash(const NodeDef& ndef, const EqualGraphDefOptions& options = {}); bool EqualRepeatedNodeDef(const protobuf::RepeatedPtrField<NodeDef>& actual, const protobuf::RepeatedPtrField<NodeDef>& expected, string* diff, const EqualGraphDefOptions& options = {}); uint64 RepeatedNodeDefHash(const protobuf::RepeatedPtrField<NodeDef>& ndefs, const EqualGraphDefOptions& options = {}); #define TF_EXPECT_GRAPH_EQ(expected, actual) \ do { \ string diff; \ EXPECT_TRUE(EqualGraphDef(actual, expected, &diff)) \ << diff << "\nExpected:\n" \ << SummarizeGraphDef(expected) << "\nActual:\n" \ << SummarizeGraphDef(actual); \ } while (false) } #endif #include "tensorflow/core/util/equal_graph_def.h" #include <map> #include <set> #include <unordered_map> #include <unordered_set> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { bool EqualGraphDef(const GraphDef& actual, const GraphDef& expected, string* diff, const EqualGraphDefOptions& options) { return EqualRepeatedNodeDef(actual.node(), expected.node(), diff, options); } uint64 GraphDefHash(const GraphDef& gdef, const EqualGraphDefOptions& options) { return RepeatedNodeDefHash(gdef.node(), options); } bool EqualRepeatedNodeDef(const protobuf::RepeatedPtrField<NodeDef>& actual, const protobuf::RepeatedPtrField<NodeDef>& expected, string* diff, const EqualGraphDefOptions& options) { std::unordered_map<string, const NodeDef*> actual_index; for (const NodeDef& node : actual) { actual_index[node.name()] = &node; } for (const NodeDef& expected_node : expected) { auto actual_iter = actual_index.find(expected_node.name()); if (actual_iter == actual_index.end()) { if (diff != nullptr) { *diff = strings::StrCat("Did not find expected node '", SummarizeNodeDef(expected_node), "'"); } return false; } if (!EqualNodeDef(*actual_iter->second, expected_node, diff, options)) { return false; } actual_index.erase(actual_iter); } if (!actual_index.empty()) { if (diff != nullptr) { *diff = strings::StrCat("Found unexpected node '", SummarizeNodeDef(*actual_index.begin()->second), "'"); } return false; } return true; } uint64 RepeatedNodeDefHash(const protobuf::RepeatedPtrField<NodeDef>& ndefs, const EqualGraphDefOptions& options) { uint64 h = 0xDECAFCAFFE; std::map<string, const NodeDef*> nodes; for (const NodeDef& node : ndefs) { nodes[node.name()] = &node; } for (const auto& pair : nodes) { h = Hash64(pair.first.data(), pair.first.size(), h); h = Hash64Combine(NodeDefHash(*pair.second, options), h); } return h; } namespace { string JoinStringField(const protobuf::RepeatedPtrField<string>& f) { string ret; for (int i = 0; i < f.size(); ++i) { if (i > 0) strings::StrAppend(&ret, ", "); strings::StrAppend(&ret, f.Get(i)); } return ret; } } bool EqualNodeDef(const NodeDef& actual, const NodeDef& expected, string* diff, const EqualGraphDefOptions& options) { if (actual.name() != expected.name()) { if (diff != nullptr) { *diff = strings::StrCat("Actual node name '", actual.name(), "' is not expected '", expected.name(), "'"); } return false; } if (actual.op() != expected.op()) { if (diff != nullptr) { *diff = strings::StrCat("Node named '", actual.name(), "' has op '", actual.op(), "' that is not expected '", expected.op(), "'"); } return false; } if (actual.device() != expected.device()) { if (diff != nullptr) { *diff = strings::StrCat("Node named '", actual.name(), "' has device '", actual.device(), "' that is not expected '", expected.device(), "'"); } return false; } if (actual.input_size() != expected.input_size()) { if (diff != nullptr) { *diff = strings::StrCat("Node named '", actual.name(), "' has inputs '", JoinStringField(actual.input()), "' that don't match expected '", JoinStringField(expected.input()), "'"); } return false; } int first_control_input = actual.input_size(); for (int i = 0; i < actual.input_size(); ++i) { if (absl::StartsWith(actual.input(i), "^")) { first_control_input = i; break; } if (actual.input(i) != expected.input(i) && actual.input(i) != strings::StrCat(expected.input(i), ":0") && strings::StrCat(actual.input(i), ":0") != expected.input(i)) { if (diff != nullptr) { *diff = strings::StrCat("Node named '", actual.name(), "' has input ", i, " '", actual.input(i), "' that doesn't match expected '", expected.input(i), "'"); } return false; } } std::unordered_set<string> actual_control; std::unordered_set<string> expected_control; for (int i = first_control_input; i < actual.input_size(); ++i) { actual_control.insert(actual.input(i)); expected_control.insert(expected.input(i)); } for (const auto& e : expected_control) { if (actual_control.erase(e) == 0) { if (diff != nullptr) { *diff = strings::StrCat("Node named '", actual.name(), "' missing expected control input '", e, "'"); } return false; } } if (!actual_control.empty()) { if (diff != nullptr) { *diff = strings::StrCat("Node named '", actual.name(), "' has unexpected control input '", *actual_control.begin(), "'"); } return false; } std::unordered_set<string> actual_attr; for (const auto& a : actual.attr()) { if (options.ignore_internal_attrs && !a.first.empty() && a.first[0] == '_') { continue; } actual_attr.insert(a.first); } for (const auto& e : expected.attr()) { if (options.ignore_internal_attrs && !e.first.empty() && e.first[0] == '_') { continue; } if (actual_attr.erase(e.first) == 0) { if (diff != nullptr) { *diff = strings::StrCat("Node named '", actual.name(), "' missing expected attr '", e.first, "' with value: ", SummarizeAttrValue(e.second)); } return false; } auto iter = actual.attr().find(e.first); if (!AreAttrValuesEqual(e.second, iter->second)) { if (diff != nullptr) { *diff = strings::StrCat( "Node named '", actual.name(), "' has attr '", e.first, "' with value: ", SummarizeAttrValue(iter->second), " that does not match expected: ", SummarizeAttrValue(e.second)); } return false; } } if (!actual_attr.empty()) { if (diff != nullptr) { *diff = strings::StrCat( "Node named '", actual.name(), "' has unexpected attr '", *actual_attr.begin(), "' with value: ", SummarizeAttrValue(actual.attr().find(*actual_attr.begin())->second)); } return false; } return true; } uint64 NodeDefHash(const NodeDef& ndef, const EqualGraphDefOptions& options) { uint64 h = Hash64(ndef.name()); h = Hash64(ndef.op().data(), ndef.op().size(), h); h = Hash64(ndef.device().data(), ndef.device().size(), h); int first_control_input = ndef.input_size(); for (int i = 0; i < ndef.input_size(); ++i) { if (absl::StartsWith(ndef.input(i), "^")) { first_control_input = i; break; } h = Hash64(ndef.input(i).data(), ndef.input(i).size(), h); } std::set<string> ndef_control; for (int i = first_control_input; i < ndef.input_size(); ++i) { ndef_control.insert(ndef.input(i)); } for (const string& s : ndef_control) { h = Hash64(s.data(), s.size(), h); } std::map<string, AttrValue> ndef_attr; for (const auto& a : ndef.attr()) { if (options.ignore_internal_attrs && !a.first.empty() && a.first[0] == '_') { continue; } ndef_attr[a.first] = a.second; } for (const auto& a : ndef_attr) { h = Hash64(a.first.data(), a.first.size(), h); h = Hash64Combine(AttrValueHash(a.second), h); } return h; } }
#include <utility> #include "tensorflow/core/util/equal_graph_def.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { REGISTER_OP("Input").Output("o: float"); REGISTER_OP("Alternate").Output("o: float"); REGISTER_OP("Combine").Input("a: float").Input("b: float").Output("o: float"); Node* Input(const GraphDefBuilder::Options& opts) { return ops::SourceOp("Input", opts); } Node* Alternate(const GraphDefBuilder::Options& opts) { return ops::SourceOp("Alternate", opts); } Node* Combine(ops::NodeOut a, ops::NodeOut b, const GraphDefBuilder::Options& opts) { return ops::BinaryOp("Combine", std::move(a), std::move(b), opts); } class EqualGraphDefTest : public ::testing::Test { protected: EqualGraphDefTest() : e_(GraphDefBuilder::kFailImmediately), a_(GraphDefBuilder::kFailImmediately) {} bool Match() { GraphDef expected; TF_EXPECT_OK(e_.ToGraphDef(&expected)); GraphDef actual; TF_EXPECT_OK(a_.ToGraphDef(&actual)); bool match = EqualGraphDef(actual, expected, &diff_); if (match) { EXPECT_EQ(GraphDefHash(expected), GraphDefHash(actual)); } else { EXPECT_NE(GraphDefHash(expected), GraphDefHash(actual)); } return match; } GraphDefBuilder e_; GraphDefBuilder a_; string diff_; }; TEST_F(EqualGraphDefTest, Match) { Input(e_.opts().WithName("A")); Input(a_.opts().WithName("A")); EXPECT_TRUE(Match()) << diff_; } TEST_F(EqualGraphDefTest, NoMatch) { Input(e_.opts().WithName("A")); Input(a_.opts().WithName("B")); EXPECT_FALSE(Match()); EXPECT_EQ("Did not find expected node '{{node A}} = Input[]()'", diff_); } TEST_F(EqualGraphDefTest, MissingNode) { Input(e_.opts().WithName("A")); Input(e_.opts().WithName("B")); Input(a_.opts().WithName("A")); EXPECT_FALSE(Match()); EXPECT_EQ("Did not find expected node '{{node B}} = Input[]()'", diff_); } TEST_F(EqualGraphDefTest, ExtraNode) { Input(e_.opts().WithName("A")); Input(a_.opts().WithName("A")); Input(a_.opts().WithName("B")); EXPECT_FALSE(Match()); EXPECT_EQ("Found unexpected node '{{node B}} = Input[]()'", diff_); } TEST_F(EqualGraphDefTest, NodeOrder) { Node* a = Input(e_.opts().WithName("A")); Node* b = Input(e_.opts().WithName("B")); Combine(a, b, e_.opts().WithName("C")); b = Input(a_.opts().WithName("B")); a = Input(a_.opts().WithName("A")); Combine(a, b, a_.opts().WithName("C")); EXPECT_TRUE(Match()) << diff_; } TEST_F(EqualGraphDefTest, NameMismatch) { Node* a = Input(e_.opts().WithName("A")); Node* b = Input(e_.opts().WithName("B")); EXPECT_FALSE(EqualNodeDef(a->def(), b->def(), &diff_)); EXPECT_EQ("Actual node name 'A' is not expected 'B'", diff_); } TEST_F(EqualGraphDefTest, OpMismatch) { Input(e_.opts().WithName("A")); Alternate(a_.opts().WithName("A")); EXPECT_FALSE(Match()); EXPECT_EQ("Node named 'A' has op 'Alternate' that is not expected 'Input'", diff_); } TEST_F(EqualGraphDefTest, DeviceMatch) { Input(e_.opts().WithName("A").WithDevice("/cpu:0")); Input(a_.opts().WithName("A").WithDevice("/cpu:0")); EXPECT_TRUE(Match()) << diff_; } TEST_F(EqualGraphDefTest, DeviceMismatch) { Input(e_.opts().WithName("A").WithDevice("/cpu:0")); Input(a_.opts().WithName("A").WithDevice("/cpu:1")); EXPECT_FALSE(Match()); EXPECT_EQ("Node named 'A' has device '/cpu:1' that is not expected '/cpu:0'", diff_); } TEST_F(EqualGraphDefTest, InputMismatch) { Node* a = Input(e_.opts().WithName("A")); Node* b = Input(e_.opts().WithName("B")); Combine(a, a, e_.opts().WithName("C")); a = Input(a_.opts().WithName("A")); b = Input(a_.opts().WithName("B")); Combine(b, b, a_.opts().WithName("C")); EXPECT_FALSE(Match()); EXPECT_EQ("Node named 'C' has input 0 'B' that doesn't match expected 'A'", diff_); } TEST_F(EqualGraphDefTest, InputOrderMismatch) { Node* a = Input(e_.opts().WithName("A")); Node* b = Input(e_.opts().WithName("B")); Combine(a, b, e_.opts().WithName("C")); a = Input(a_.opts().WithName("A")); b = Input(a_.opts().WithName("B")); Combine(b, a, a_.opts().WithName("C")); EXPECT_FALSE(Match()); EXPECT_EQ("Node named 'C' has input 0 'B' that doesn't match expected 'A'", diff_); } TEST_F(EqualGraphDefTest, ControlInputOrder) { Node* a = Input(e_.opts().WithName("A")); Node* b = Input(e_.opts().WithName("B")); Node* c = Input(e_.opts().WithName("C")); Node* d = Input(e_.opts().WithName("D")); Combine(a, a, e_.opts() .WithName("E") .WithControlInput(b) .WithControlInput(c) .WithControlInput(d)); a = Input(a_.opts().WithName("A")); b = Input(a_.opts().WithName("B")); c = Input(a_.opts().WithName("C")); d = Input(a_.opts().WithName("D")); Combine(a, a, a_.opts() .WithName("E") .WithControlInput(c) .WithControlInput(d) .WithControlInput(b)); EXPECT_TRUE(Match()) << diff_; } TEST_F(EqualGraphDefTest, ControlInputMismatch) { Node* a = Input(e_.opts().WithName("A")); Node* b = Input(e_.opts().WithName("B")); Node* c = Input(e_.opts().WithName("C")); Node* d = Input(e_.opts().WithName("D")); Combine(a, a, e_.opts().WithName("E").WithControlInput(b).WithControlInput(c)); a = Input(a_.opts().WithName("A")); b = Input(a_.opts().WithName("B")); c = Input(a_.opts().WithName("C")); d = Input(a_.opts().WithName("D")); Combine(a, a, a_.opts().WithName("E").WithControlInput(b).WithControlInput(d)); EXPECT_FALSE(Match()); EXPECT_EQ("Node named 'E' missing expected control input '^C'", diff_); } TEST_F(EqualGraphDefTest, ControlInputAdded) { Node* a = Input(e_.opts().WithName("A")); Node* b = Input(e_.opts().WithName("B")); Node* c = Input(e_.opts().WithName("C")); Combine(a, a, e_.opts().WithName("D").WithControlInput(b)); a = Input(a_.opts().WithName("A")); b = Input(a_.opts().WithName("B")); c = Input(a_.opts().WithName("C")); Combine(a, a, a_.opts().WithName("D").WithControlInput(b).WithControlInput(c)); EXPECT_FALSE(Match()); EXPECT_EQ( "Node named 'D' has inputs 'A, A, ^B, ^C' that don't match " "expected 'A, A, ^B'", diff_); } TEST_F(EqualGraphDefTest, ControlInputRemoved) { Node* a = Input(e_.opts().WithName("A")); Node* b = Input(e_.opts().WithName("B")); Node* c = Input(e_.opts().WithName("C")); Combine(a, a, e_.opts().WithName("D").WithControlInput(b).WithControlInput(c)); a = Input(a_.opts().WithName("A")); b = Input(a_.opts().WithName("B")); c = Input(a_.opts().WithName("C")); Combine(a, a, a_.opts().WithName("D").WithControlInput(b)); EXPECT_FALSE(Match()); EXPECT_EQ( "Node named 'D' has inputs 'A, A, ^B' that don't match " "expected 'A, A, ^B, ^C'", diff_); } TEST_F(EqualGraphDefTest, Attr) { Node* a = Input(e_.opts().WithName("A")); NodeDef same(a->def()); AddNodeAttr("foo", "bar", &same); EXPECT_TRUE(EqualNodeDef(same, same, &diff_)) << diff_; } TEST_F(EqualGraphDefTest, AttrAdded) { Node* a = Input(e_.opts().WithName("A")); NodeDef actual(a->def()); AddNodeAttr("foo", "bar", &actual); EXPECT_FALSE(EqualNodeDef(actual, a->def(), &diff_)); EXPECT_EQ("Node named 'A' has unexpected attr 'foo' with value: \"bar\"", diff_); } TEST_F(EqualGraphDefTest, AttrRemoved) { Node* a = Input(e_.opts().WithName("A")); NodeDef expected(a->def()); AddNodeAttr("foo", "bar", &expected); EXPECT_FALSE(EqualNodeDef(a->def(), expected, &diff_)); EXPECT_EQ("Node named 'A' missing expected attr 'foo' with value: \"bar\"", diff_); } TEST_F(EqualGraphDefTest, AttrOrder) { Node* a = Input(e_.opts().WithName("A")); NodeDef actual(a->def()); AddNodeAttr("foo", "bar", &actual); AddNodeAttr("baz", 42, &actual); NodeDef expected(a->def()); AddNodeAttr("baz", 42, &expected); AddNodeAttr("foo", "bar", &expected); EXPECT_TRUE(EqualNodeDef(actual, expected, &diff_)) << diff_; } TEST_F(EqualGraphDefTest, AttrMismatch) { Node* a = Input(e_.opts().WithName("A")); NodeDef actual(a->def()); AddNodeAttr("foo", "bar", &actual); AddNodeAttr("baz", 5, &actual); NodeDef expected(a->def()); AddNodeAttr("baz", 42, &expected); AddNodeAttr("foo", "bar", &expected); EXPECT_FALSE(EqualNodeDef(actual, expected, &diff_)); EXPECT_EQ( "Node named 'A' has attr 'baz' with value: 5 that does not match " "expected: 42", diff_); } TEST_F(EqualGraphDefTest, IgnoreInternalAttrs) { Node* a = Input(e_.opts().WithName("A")); NodeDef actual(a->def()); AddNodeAttr("foo", "bar", &actual); AddNodeAttr("_class", 5, &actual); NodeDef expected(a->def()); AddNodeAttr("foo", "bar", &expected); AddNodeAttr("_kernel", "eigen", &actual); EXPECT_TRUE(EqualNodeDef(actual, expected, &diff_)); } } }
1,710
cpp
tensorflow/tensorflow
stat_summarizer
tensorflow/core/util/stat_summarizer.cc
tensorflow/core/util/stat_summarizer_test.cc
#ifndef TENSORFLOW_CORE_UTIL_STAT_SUMMARIZER_H_ #define TENSORFLOW_CORE_UTIL_STAT_SUMMARIZER_H_ #include <stdlib.h> #include <cmath> #include <limits> #include <map> #include <memory> #include <sstream> #include <string> #include <vector> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/stat_summarizer_options.h" #include "tensorflow/core/util/stats_calculator.h" namespace tensorflow { class GraphDef; class StepStats; class NodeExecStats; class StatSummarizer { public: explicit StatSummarizer(const StatSummarizerOptions& options); explicit StatSummarizer(const tensorflow::GraphDef& tensorflow_graph); ~StatSummarizer(); void ProcessStepStats(const StepStats& step_stats); std::string GetOutputString() const { return stats_calculator_->GetOutputString(); } std::string ShortSummary() const { return stats_calculator_->GetShortSummary(); } void PrintStepStats() const; void PrintOutputs() const; void ComputeStatsByType( std::map<std::string, int64_t>* node_type_map_count, std::map<std::string, int64_t>* node_type_map_time, std::map<std::string, int64_t>* node_type_map_memory, std::map<std::string, int64_t>* node_type_map_times_called, int64_t* accumulated_us) const { stats_calculator_->ComputeStatsByType( node_type_map_count, node_type_map_time, node_type_map_memory, node_type_map_times_called, accumulated_us); } std::string GetStatsByNodeType() const { return stats_calculator_->GetStatsByNodeType(); } std::string GetStatsByMetric(const string& title, StatsCalculator::SortingMetric sorting_metric, int num_stats) const { return stats_calculator_->GetStatsByMetric(title, sorting_metric, num_stats); } int num_runs() const { return stats_calculator_->num_runs(); } const Stat<int64_t>& run_total_us() const { return stats_calculator_->run_total_us(); } private: void Validate(const std::vector<TensorDescription>* outputs, const NodeExecStats& ns) const; std::map<std::string, std::vector<TensorDescription> > outputs_; std::unique_ptr<StatsCalculator> stats_calculator_; }; } #endif #include "tensorflow/core/util/stat_summarizer.h" #include <iomanip> #include <map> #include <queue> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/strings/match.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor_description.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { using Detail = StatsCalculator::Detail; StatSummarizer::StatSummarizer(const StatSummarizerOptions& options) : stats_calculator_(new StatsCalculator(options)) {} StatSummarizer::StatSummarizer(const tensorflow::GraphDef& tensorflow_graph) : stats_calculator_(new StatsCalculator(StatSummarizerOptions())) {} StatSummarizer::~StatSummarizer() = default; void StatSummarizer::Validate(const std::vector<TensorDescription>* outputs, const NodeExecStats& ns) const { if (outputs->size() != ns.output_size()) { LOG(WARNING) << "Number of outputs changed between runs for '" << ns.node_name() << "' - was " << outputs->size() << ", now " << ns.output_size(); } else { for (const auto& output : ns.output()) { const int32_t slot = output.slot(); if ((slot < 0) || (slot >= ns.output_size())) { continue; } const auto& stored = (*outputs)[slot]; const auto& current = output.tensor_description(); bool do_tensors_match = (stored.dtype() == current.dtype()) && (stored.shape().dim_size() == current.shape().dim_size()); if (do_tensors_match) { for (int i = 0; i < stored.shape().dim_size(); ++i) { if (stored.shape().dim(i).size() != current.shape().dim(i).size()) { do_tensors_match = false; break; } } } if (!do_tensors_match) { LOG(WARNING) << "Output tensor changed between runs for '" << ns.node_name(); } } } } void StatSummarizer::PrintStepStats() const { string output = GetOutputString(); std::istringstream iss(output); for (std::string line; std::getline(iss, line);) { LOG(INFO) << line; } } namespace { std::string OpType(const DeviceStepStats& ds, const NodeExecStats& ns) { if (absl::StrContains(ds.device(), "/stream") || absl::StrContains(ds.device(), "/memcpy")) { return "<>"; } const std::string sep(" = "); const std::string& label = ns.timeline_label(); std::string::size_type start = label.find(sep); if (start == std::string::npos) return "<>"; start += sep.size(); std::string::size_type end = label.find('(', start); if (end == std::string::npos) return "<>"; return label.substr(start, end - start); } } void StatSummarizer::ProcessStepStats(const StepStats& step_stats) { int64_t curr_total_us = 0; int64_t mem_total = 0; int node_num = 0; for (const auto& ds : step_stats.dev_stats()) { for (const auto& ns : ds.node_stats()) { if (absl::StrContains(ds.device(), "/stream") && !absl::StrContains(ds.device(), "/stream:all")) { continue; } if (absl::StrContains(ds.device(), "/host:CPU")) { continue; } std::string name = ns.node_name(); std::string op_type = "<>"; if (absl::StrContains(ds.device(), "/stream")) { auto parts = str_util::Split(ns.node_name(), ':'); if (parts.size() == 2) { name = parts[0] + " [Kernel]"; op_type = "gpu:" + parts[1]; } } else if (absl::StrContains(ds.device(), "/memcpy")) { auto parts = str_util::Split(ns.node_name(), ':'); if (parts.size() == 2 || parts.size() == 3) { name = parts.front() + " [MemCpy]"; op_type = "gpu:" + parts.back(); } } else { op_type = OpType(ds, ns); } ++node_num; const int64_t curr_time = ns.all_end_rel_micros(); curr_total_us += curr_time; auto output_result = outputs_.emplace(name, std::vector<TensorDescription>()); std::vector<TensorDescription>* outputs = &(output_result.first->second); int64_t rel_end_us = curr_time; if (output_result.second) { outputs->resize(ns.output_size()); for (const auto& output : ns.output()) { const int32_t slot = output.slot(); if ((slot < 0) || (slot >= ns.output_size())) { continue; } (*outputs)[slot] = output.tensor_description(); } } int64_t curr_node_mem = 0; for (const auto& mem : ns.memory()) { const int64_t mem_usage = mem.total_bytes(); curr_node_mem += mem_usage; } stats_calculator_->AddNodeStats(name, op_type, node_num, rel_end_us, curr_node_mem); mem_total += curr_node_mem; Validate(outputs, ns); } } stats_calculator_->UpdateRunTotalUs(curr_total_us); stats_calculator_->UpdateMemoryUsed(mem_total); } void StatSummarizer::PrintOutputs() const { std::priority_queue< std::pair<int64_t, const std::pair<const std::string, Detail>*>> timings; for (const auto& entry : stats_calculator_->GetDetails()) { timings.emplace(-entry.second.run_order, &entry); } LOG(INFO) << "============ Node output tensor sizes in run order ========"; while (!timings.empty()) { auto entry = timings.top(); timings.pop(); std::stringstream stream; const auto detail_outputs = outputs_.at(entry.second->first); stream << entry.second->first << "\t" << detail_outputs.size(); for (const auto& tensor : detail_outputs) { stream << "\t" << DataTypeString(tensor.dtype()); stream << "\t" << tensor.shape().dim_size(); for (const auto& d : tensor.shape().dim()) { stream << "\t" << d.size(); } } LOG(INFO) << stream.str(); } } }
#include "tensorflow/core/util/stat_summarizer.h" #include <memory> #include <string> #include <vector> #include "absl/strings/match.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { TEST(StatSummarizerTest, ExtractsOpTypes) { const std::string graph_def_str(R"EOF( node { name: "myconstant" op: "Const" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "value" value { tensor { dtype: DT_FLOAT tensor_shape { } float_val: 1.0 } } } } versions { producer: 21 } )EOF"); GraphDef graph_def; ASSERT_TRUE(protobuf::TextFormat::ParseFromString(graph_def_str, &graph_def)); std::unique_ptr<Session> session(NewSession(SessionOptions())); ASSERT_TRUE(session != nullptr); TF_ASSERT_OK(session->Create(graph_def)); RunOptions run_options; run_options.set_trace_level(RunOptions::FULL_TRACE); RunMetadata run_metadata; std::vector<Tensor> outputs; TF_ASSERT_OK(session->Run(run_options, {}, {"myconstant:0"}, {}, &outputs, &run_metadata)); StatSummarizer stats(graph_def); stats.ProcessStepStats(run_metadata.step_stats()); const std::string output = stats.GetOutputString(); const std::string by_node_type = stats.GetStatsByNodeType(); ASSERT_TRUE(absl::StrContains(output, "Const")) << output; ASSERT_TRUE(absl::StrContains(output, "myconstant")) << output; ASSERT_TRUE(absl::StrContains(by_node_type, "Const")) << by_node_type; } } }
1,711
cpp
tensorflow/tensorflow
saved_tensor_slice_util
tensorflow/core/util/saved_tensor_slice_util.cc
tensorflow/core/util/saved_tensor_slice_util_test.cc
#ifndef TENSORFLOW_CORE_UTIL_SAVED_TENSOR_SLICE_UTIL_H_ #define TENSORFLOW_CORE_UTIL_SAVED_TENSOR_SLICE_UTIL_H_ #include <string> #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_slice.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace checkpoint { extern const char kSavedTensorSlicesKey[]; string EncodeTensorNameSlice(const string& name, const tensorflow::TensorSlice& slice); Status DecodeTensorNameSlice(const string& code, string* name, tensorflow::TensorSlice* slice); Status ParseShapeAndSlice(const string& shape_and_slice, TensorShape* shape, TensorSlice* slice, TensorShape* shape_slice); template <typename T> struct SaveTypeTraits; template <typename T> int TensorProtoDataSize(const TensorProto& t); template <typename T> const typename SaveTypeTraits<T>::SavedType* TensorProtoData( const TensorProto& t); template <typename T> typename SaveTypeTraits<T>::RepeatedField* MutableTensorProtoData( TensorProto* t); template <typename T> void Fill(T* data, size_t n, TensorProto* t); #define TENSOR_PROTO_EXTRACT_TYPE_HELPER(TYPE, FIELD, FTYPE, STYPE) \ template <> \ struct SaveTypeTraits<TYPE> { \ static constexpr bool supported = true; \ typedef STYPE SavedType; \ typedef protobuf::RepeatedField<FTYPE> RepeatedField; \ }; \ template <> \ inline const STYPE* TensorProtoData<TYPE>(const TensorProto& t) { \ static_assert(SaveTypeTraits<TYPE>::supported, \ "Specified type " #TYPE " not supported for Restore"); \ return reinterpret_cast<const STYPE*>(t.FIELD##_val().data()); \ } \ template <> \ inline protobuf::RepeatedField<FTYPE>* MutableTensorProtoData<TYPE>( \ TensorProto * t) { \ static_assert(SaveTypeTraits<TYPE>::supported, \ "Specified type " #TYPE " not supported for Save"); \ return reinterpret_cast<protobuf::RepeatedField<FTYPE>*>( \ t->mutable_##FIELD##_val()); \ } #define TENSOR_PROTO_EXTRACT_TYPE(TYPE, FIELD, FTYPE) \ TENSOR_PROTO_EXTRACT_TYPE_HELPER(TYPE, FIELD, FTYPE, FTYPE) \ template <> \ inline int TensorProtoDataSize<TYPE>(const TensorProto& t) { \ return t.FIELD##_val_size(); \ } \ template <> \ inline void Fill(const TYPE* data, size_t n, TensorProto* t) { \ typename protobuf::RepeatedField<FTYPE> copy(data, data + n); \ t->mutable_##FIELD##_val()->Swap(&copy); \ } #define TENSOR_PROTO_EXTRACT_TYPE_COMPLEX(TYPE, FIELD, FTYPE) \ TENSOR_PROTO_EXTRACT_TYPE_HELPER(TYPE, FIELD, FTYPE, TYPE) \ template <> \ inline int TensorProtoDataSize<TYPE>(const TensorProto& t) { \ return t.FIELD##_val_size() / 2; \ } \ template <> \ inline void Fill(const TYPE* data, size_t n, TensorProto* t) { \ const FTYPE* sub = reinterpret_cast<const FTYPE*>(data); \ typename protobuf::RepeatedField<FTYPE> copy(sub, sub + 2 * n); \ t->mutable_##FIELD##_val()->Swap(&copy); \ } TENSOR_PROTO_EXTRACT_TYPE(bool, bool, bool); TENSOR_PROTO_EXTRACT_TYPE(float, float, float); TENSOR_PROTO_EXTRACT_TYPE(double, double, double); TENSOR_PROTO_EXTRACT_TYPE_COMPLEX(complex64, scomplex, float); TENSOR_PROTO_EXTRACT_TYPE_COMPLEX(complex128, dcomplex, double); TENSOR_PROTO_EXTRACT_TYPE(int32, int, int32); TENSOR_PROTO_EXTRACT_TYPE(uint32, uint32, uint32); TENSOR_PROTO_EXTRACT_TYPE(int64_t, int64, protobuf_int64); TENSOR_PROTO_EXTRACT_TYPE(uint64, uint64, protobuf_uint64); TENSOR_PROTO_EXTRACT_TYPE(uint16, int, int32); TENSOR_PROTO_EXTRACT_TYPE(uint8, int, int32); TENSOR_PROTO_EXTRACT_TYPE(int8, int, int32); TENSOR_PROTO_EXTRACT_TYPE(int16, int, int32); TENSOR_PROTO_EXTRACT_TYPE(qint8, int, int32); TENSOR_PROTO_EXTRACT_TYPE(quint8, int, int32); TENSOR_PROTO_EXTRACT_TYPE(quint16, int, int32); #undef TENSOR_PROTO_EXTRACT_TYPE_COMPLEX #undef TENSOR_PROTO_EXTRACT_TYPE_HELPER #undef TENSOR_PROTO_EXTRACT_TYPE template <> struct SaveTypeTraits<qint32> : SaveTypeTraits<int32> {}; template <> inline int TensorProtoDataSize<qint32>(const TensorProto& t) { return t.int_val_size(); } template <> inline const int32* TensorProtoData<qint32>(const TensorProto& t) { static_assert(SaveTypeTraits<qint32>::supported, "Specified type qint32 not supported for Restore"); return reinterpret_cast<const int32*>(t.int_val().data()); } inline void Fill(const qint32* data, size_t n, TensorProto* t) { const int32* p = reinterpret_cast<const int32*>(data); typename protobuf::RepeatedField<int32> copy(p, p + n); t->mutable_int_val()->Swap(&copy); } template <> struct SaveTypeTraits<Eigen::half> { static constexpr bool supported = true; typedef int SavedType; typedef protobuf::RepeatedField<int32> RepeatedField; }; template <> inline int TensorProtoDataSize<Eigen::half>(const TensorProto& t) { return t.half_val_size(); } template <> inline const int* TensorProtoData<Eigen::half>(const TensorProto& t) { return t.half_val().data(); } template <> inline protobuf::RepeatedField<int32>* MutableTensorProtoData<Eigen::half>( TensorProto* t) { return t->mutable_half_val(); } template <> inline void Fill(const Eigen::half* data, size_t n, TensorProto* t) { typename protobuf::RepeatedField<int32>* val = t->mutable_half_val(); val->Resize(n, 0); for (size_t i = 0; i < n; ++i) { val->Set(i, Eigen::numext::bit_cast<uint16>(data[i])); } } template <> struct SaveTypeTraits<tstring> { static constexpr bool supported = true; typedef const string* SavedType; typedef protobuf::RepeatedPtrField<string> RepeatedField; }; template <> inline int TensorProtoDataSize<tstring>(const TensorProto& t) { return t.string_val_size(); } template <> inline const string* const* TensorProtoData<tstring>(const TensorProto& t) { static_assert(SaveTypeTraits<tstring>::supported, "Specified type tstring not supported for Restore"); return t.string_val().data(); } template <> inline protobuf::RepeatedPtrField<string>* MutableTensorProtoData<tstring>( TensorProto* t) { static_assert(SaveTypeTraits<tstring>::supported, "Specified type tstring not supported for Save"); return t->mutable_string_val(); } template <> inline void Fill(const tstring* data, size_t n, TensorProto* t) { typename protobuf::RepeatedPtrField<string> copy(data, data + n); t->mutable_string_val()->Swap(&copy); } } } #endif #include "tensorflow/core/util/saved_tensor_slice_util.h" #include <vector> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/ordered_code.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { namespace checkpoint { const char kSavedTensorSlicesKey[] = ""; string EncodeTensorNameSlice(const string& name, const TensorSlice& slice) { string buffer; tensorflow::strings::OrderedCode::WriteNumIncreasing(&buffer, 0); tensorflow::strings::OrderedCode::WriteString(&buffer, name); tensorflow::strings::OrderedCode::WriteNumIncreasing(&buffer, slice.dims()); for (int d = 0; d < slice.dims(); ++d) { tensorflow::strings::OrderedCode::WriteSignedNumIncreasing(&buffer, slice.start(d)); tensorflow::strings::OrderedCode::WriteSignedNumIncreasing(&buffer, slice.length(d)); } return buffer; } Status DecodeTensorNameSlice(const string& code, string* name, tensorflow::TensorSlice* slice) { StringPiece src(code); uint64 x; if (!tensorflow::strings::OrderedCode::ReadNumIncreasing(&src, &x)) { return errors::Internal("Failed to parse the leading number: src = ", src); } if (x != 0) { return errors::Internal( "The leading number should always be 0 for any valid key: src = ", src); } if (!tensorflow::strings::OrderedCode::ReadString(&src, name)) { return errors::Internal("Failed to parse the tensor name: src = ", src); } if (!tensorflow::strings::OrderedCode::ReadNumIncreasing(&src, &x)) { return errors::Internal("Failed to parse the tensor rank: src = ", src); } if (x == 0) { return errors::Internal("Expecting positive rank of the tensor, got ", x, ", src = ", src); } if (x >= kint32max) { return errors::Internal("Too many elements ", x); } slice->SetFullSlice(x); for (int d = 0; d < static_cast<int32>(x); ++d) { int64_t start, length; if (!tensorflow::strings::OrderedCode::ReadSignedNumIncreasing(&src, &start)) { return errors::Internal("Failed to parse start: src = ", src); } if (!tensorflow::strings::OrderedCode::ReadSignedNumIncreasing(&src, &length)) { return errors::Internal("Failed to parse length: src = ", src); } if (length >= 0) { slice->set_start(d, start); slice->set_length(d, length); } } return absl::OkStatus(); } Status ParseShapeAndSlice(const string& shape_and_slice, TensorShape* shape, TensorSlice* slice, TensorShape* shape_slice) { CHECK(!shape_and_slice.empty()); std::vector<string> splits = str_util::Split(shape_and_slice, ' '); if (splits.size() < 2) { return errors::InvalidArgument( "Need least two elements in shape_and_slice specification: ", shape_and_slice); } slice->Clear(); auto status = slice->Parse(splits.back(), slice); if (!status.ok()) return status; splits.pop_back(); shape->Clear(); for (const auto& s : splits) { int64_t dim; if (!strings::safe_strto64(s, &dim)) { return errors::InvalidArgument( "Non numerical dimension in shape_and_slice: ", shape_and_slice); } shape->AddDim(dim); } return slice->SliceTensorShape(*shape, shape_slice); } } }
#include "tensorflow/core/util/saved_tensor_slice_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace checkpoint { namespace { TEST(TensorShapeUtilTest, TensorNameSliceToOrderedCode) { { TensorSlice s = TensorSlice::ParseOrDie("-:-:1,3:4,5"); string buffer = EncodeTensorNameSlice("foo", s); string name; s.Clear(); TF_CHECK_OK(DecodeTensorNameSlice(buffer, &name, &s)); EXPECT_EQ("foo", name); EXPECT_EQ("-:-:1,3:4,5", s.DebugString()); } } } } }
1,712
cpp
tensorflow/tensorflow
bcast
tensorflow/core/util/bcast.cc
tensorflow/core/util/bcast_test.cc
#ifndef TENSORFLOW_CORE_UTIL_BCAST_H_ #define TENSORFLOW_CORE_UTIL_BCAST_H_ #include <algorithm> #include <vector> #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { inline void ComputeBatchIndices( const int64_t output_batch_size, const absl::InlinedVector<int64_t, 4UL>& reshape, const absl::InlinedVector<int64_t, 4UL>& bcast, std::vector<int64_t>* out_indices) { out_indices->resize(output_batch_size); int64_t num_output_elements = 1; int64_t num_input_elements = 1; for (int64_t i = reshape.size() - 1; i >= 0; --i) { const int64_t dim = std::max(reshape[i], bcast[i]); const int64_t incr = bcast[i] > 1 ? 0 : num_input_elements; for (int64_t k = 0; k < (dim - 1) * num_output_elements; ++k) { (*out_indices)[num_output_elements + k] = (*out_indices)[k] + incr; } num_output_elements *= dim; num_input_elements *= reshape[i]; } } template <int N> class BCastList { public: typedef absl::InlinedVector<int64_t, 4UL> Vec; explicit BCastList(const Vec (&x)[N], bool fewer_dims_optimization = true, bool return_flattened_batch_indices = false); ~BCastList() = default; bool IsValid() const { return valid_; } bool IsBroadcastingRequired() const { return broadcasting_required_; } const Vec& reshape(int i) const { return reshape_[i]; } const Vec& bcast(int i) const { return bcast_[i]; } const Vec& result_shape() const { return result_; } const Vec& output_shape() const { return output_; } const Vec& grad_reduce_idx(int i) const { return grad_reduce_idx_[i]; } int64_t output_batch_size() const { return output_batch_size_; } const std::vector<int64_t>& batch_indices(int i) const { return batch_indices_[i]; } protected: bool valid_ = true; bool broadcasting_required_ = true; Vec reshape_[N]; Vec bcast_[N]; Vec result_; Vec output_; Vec grad_reduce_idx_[N]; int64_t output_batch_size_; std::vector<int64_t> batch_indices_[N]; static void Reverse(Vec* shape) { std::reverse(shape->begin(), shape->end()); } BCastList(const BCastList&) = delete; void operator=(const BCastList&) = delete; }; template <int N> BCastList<N>::BCastList(const BCastList::Vec (&x)[N], const bool fewer_dims_optimization, const bool return_flattened_batch_indices) { typedef BCastList::Vec Vec; auto mul_dims = [](int64_t dim1, int64_t dim2) -> int64_t { return dim1 != 0 && dim2 != 0 && (dim1 < 0 || dim2 < 0) ? -1 : dim1 * dim2; }; bool all_equal = true; size_t largest_rank = 0; output_batch_size_ = 1; for (int i = 0; i < N; ++i) { if (x[i] != x[0]) { all_equal = false; } if (x[i].size() > largest_rank) { largest_rank = x[i].size(); } } if (all_equal) { broadcasting_required_ = false; } if (all_equal && TF_PREDICT_TRUE(fewer_dims_optimization)) { int64_t elements = 1; const int rank = x[0].size(); output_.resize(rank); for (int i = 0; i < rank; i++) { const int64_t dim = x[0][i]; elements = mul_dims(elements, dim); output_[i] = dim; } result_.push_back(elements); output_batch_size_ = elements; for (int i = 0; i < N; ++i) { reshape_[i].push_back(elements); bcast_[i].push_back(1); } return; } Vec copy[N]; for (int i = 0; i < N; ++i) { copy[i] = x[i]; Reverse(&copy[i]); } for (int i = 0; i < N; ++i) { if (copy[i].size() < largest_rank) { copy[i].resize(largest_rank, 1); } } bool prev_is_one[N]; bool current_is_one[N]; for (int i = 0; i < N; ++i) { prev_is_one[i] = false; current_is_one[i] = false; } Vec output; bool output_dim_set = false; int64_t output_dim = -1; bool none_is_one = true; bool set_one = false; for (int j = 0; j < largest_rank; ++j) { output_dim = -1; output_dim_set = false; none_is_one = true; for (int i = 0; i < N; ++i) { if (copy[i][j] == 1) { current_is_one[i] = true; none_is_one = false; } else { current_is_one[i] = false; if (!output_dim_set || copy[i][j] == output_dim) { output_dim = copy[i][j]; output_dim_set = true; } else { valid_ = false; return; } } } output_.push_back(output_dim_set ? output_dim : 1); output_batch_size_ = mul_dims(output_batch_size_, output_.back()); if (!output_dim_set) { if (!TF_PREDICT_TRUE(fewer_dims_optimization)) { for (int i = 0; i < N; ++i) { bcast_[i].push_back(1); reshape_[i].push_back(1); } result_.push_back(1); } for (int i = 0; i < N; ++i) { grad_reduce_idx_[i].push_back(largest_rank - 1 - j); } continue; } else if (TF_PREDICT_TRUE(fewer_dims_optimization) && std::equal(current_is_one, current_is_one + N, prev_is_one) && set_one) { result_.back() = mul_dims(result_.back(), output_dim); for (int i = 0; i < N; ++i) { reshape_[i].back() = mul_dims(reshape_[i].back(), copy[i][j]); bcast_[i].back() = mul_dims(bcast_[i].back(), current_is_one[i] ? output_dim : 1); if (current_is_one[i] && !none_is_one) { grad_reduce_idx_[i].push_back(largest_rank - 1 - j); } } } else { result_.push_back(output_dim); for (int i = 0; i < N; ++i) { reshape_[i].push_back(copy[i][j]); bcast_[i].push_back(current_is_one[i] ? output_dim : 1); if (current_is_one[i] && !none_is_one) { grad_reduce_idx_[i].push_back(largest_rank - 1 - j); } } } set_one = true; for (int i = 0; i < N; ++i) { prev_is_one[i] = current_is_one[i]; } } if (result_.empty()) { result_.push_back(1); for (int i = 0; i < N; ++i) { reshape_[i].push_back(1); bcast_[i].push_back(1); } } for (int i = 0; i < N; ++i) { Reverse(&reshape_[i]); Reverse(&bcast_[i]); Reverse(&grad_reduce_idx_[i]); } Reverse(&result_); Reverse(&output_); if (return_flattened_batch_indices && broadcasting_required_ && output_batch_size_ > 0) { for (int i = 0; i < N; ++i) { ComputeBatchIndices(output_batch_size_, reshape_[i], bcast_[i], &batch_indices_[i]); } } } class BCast : public BCastList<2> { public: typedef absl::InlinedVector<int64_t, 4UL> Vec; BCast(const Vec& x, const Vec& y, const bool fewer_dims_optimization = true, const bool return_flattened_batch_indices = false) : BCastList<2>({x, y}, fewer_dims_optimization, return_flattened_batch_indices) {} ~BCast() = default; const Vec& x_reshape() const { return reshape_[0]; } const Vec& x_bcast() const { return bcast_[0]; } const Vec& y_reshape() const { return reshape_[1]; } const Vec& y_bcast() const { return bcast_[1]; } const Vec& result_shape() const { return result_; } const Vec& output_shape() const { return output_; } const Vec& grad_x_reduce_idx() const { return grad_reduce_idx_[0]; } const Vec& grad_y_reduce_idx() const { return grad_reduce_idx_[1]; } const std::vector<int64_t>& x_batch_indices() const { return batch_indices_[0]; } const std::vector<int64_t>& y_batch_indices() const { return batch_indices_[1]; } template <typename IndexType, int NDIMS> static Eigen::array<IndexType, NDIMS> ToIndexArrayType( const BCast::Vec& vec) { CHECK_EQ(vec.size(), NDIMS); Eigen::array<IndexType, NDIMS> ret; for (int i = 0; i < NDIMS; ++i) ret[i] = vec[i]; return ret; } template <int NDIMS> static Eigen::array<Eigen::DenseIndex, NDIMS> ToIndexArray( const BCast::Vec& vec) { return ToIndexArrayType<Eigen::DenseIndex, NDIMS>(vec); } static Vec FromShape(const TensorShape& shape); static TensorShape ToShape(const Vec& vec); private: BCast(const BCast&) = delete; void operator=(const BCast&) = delete; }; } #endif #include "tensorflow/core/util/bcast.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { BCast::Vec BCast::FromShape(const TensorShape& shape) { const int N = shape.dims(); BCastList::Vec ret(N); for (int i = 0; i < N; ++i) { ret[i] = shape.dim_size(i); } return ret; } TensorShape BCast::ToShape(const BCastList::Vec& vec) { TensorShape shape(vec); return shape; } }
#include "tensorflow/core/util/bcast.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { string BCast(const tensorflow::BCast::Vec& x, const tensorflow::BCast::Vec& y, const bool fewer_dims_optimization = true) { tensorflow::BCast b(x, y, fewer_dims_optimization); if (!b.IsValid()) { return "invalid"; } string ret; strings::StrAppend(&ret, "[", absl::StrJoin(b.x_reshape(), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.x_bcast(), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.y_reshape(), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.y_bcast(), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.result_shape(), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.output_shape(), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.grad_x_reduce_idx(), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.grad_y_reduce_idx(), ","), "]"); return ret; } string BCastBatchIndices(const tensorflow::BCast::Vec& x, const tensorflow::BCast::Vec& y, const bool fewer_dims_optimization = true) { tensorflow::BCast b(x, y, fewer_dims_optimization, true); string ret; strings::StrAppend(&ret, "[", absl::StrJoin(b.x_batch_indices(), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.y_batch_indices(), ","), "]"); return ret; } string BCastList3(const tensorflow::BCast::Vec& x, const tensorflow::BCast::Vec& y, const tensorflow::BCast::Vec& z, const bool fewer_dims_optimization = true) { tensorflow::BCastList<3> b({x, y, z}, fewer_dims_optimization); if (!b.IsValid()) { return "invalid"; } string ret; strings::StrAppend(&ret, "[", absl::StrJoin(b.reshape(0), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.bcast(0), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.reshape(1), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.bcast(1), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.reshape(2), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.bcast(2), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.result_shape(), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.output_shape(), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.grad_reduce_idx(0), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.grad_reduce_idx(1), ","), "]"); strings::StrAppend(&ret, "[", absl::StrJoin(b.grad_reduce_idx(2), ","), "]"); return ret; } TEST(BCastTest, Invalid) { for (const bool use_optimization : {true, false}) { EXPECT_EQ("invalid", BCast({5, 3, 2}, {3}, use_optimization)); EXPECT_EQ("invalid", BCast({5, 3, 2}, {2, 2}, use_optimization)); EXPECT_EQ("invalid", BCast({5, 3, 2}, {10, 1, 1}, use_optimization)); EXPECT_EQ("invalid", BCast({1, 2, 1, 2, 1, 2}, {2, 4, 2, 1, 2, 1}, use_optimization)); } } TEST(BCastListTest, Invalid) { for (const bool use_optimization : {true, false}) { EXPECT_EQ("invalid", BCastList3({5, 3, 2}, {3}, {1}, use_optimization)); EXPECT_EQ("invalid", BCastList3({5, 3, 2}, {2, 2}, {1}, use_optimization)); EXPECT_EQ("invalid", BCastList3({5, 3, 2}, {10, 1, 1}, {1}, use_optimization)); EXPECT_EQ("invalid", BCastList3({1, 2, 1, 2, 1, 2}, {2, 4, 2, 1, 2, 1}, {1}, use_optimization)); EXPECT_EQ("invalid", BCastList3({5, 3, 2}, {1}, {3}, use_optimization)); EXPECT_EQ("invalid", BCastList3({5, 3, 2}, {1}, {2, 2}, use_optimization)); EXPECT_EQ("invalid", BCastList3({5, 3, 2}, {1}, {10, 1, 1}, use_optimization)); EXPECT_EQ("invalid", BCastList3({1}, {5, 3, 2}, {3}, use_optimization)); EXPECT_EQ("invalid", BCastList3({1}, {5, 3, 2}, {2, 2}, use_optimization)); EXPECT_EQ("invalid", BCastList3({1}, {5, 3, 2}, {10, 1, 1}, use_optimization)); } } TEST(BCastTest, Basic_SameShape) { EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {11, 7, 5, 3, 2}), "[2310][1][2310][1]" "[2310]" "[11,7,5,3,2]" "[][]"); EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {11, 7, 5, 3, 2}, false), "[11,7,5,3,2][1,1,1,1,1][11,7,5,3,2][1,1,1,1,1]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[][]"); } TEST(BCastListTest, Basic_SameShape) { EXPECT_EQ(BCastList3({11, 7, 5, 3, 2}, {11, 7, 5, 3, 2}, {11, 7, 5, 3, 2}), "[2310][1][2310][1][2310][1]" "[2310]" "[11,7,5,3,2]" "[][][]"); EXPECT_EQ( BCastList3({11, 7, 5, 3, 2}, {11, 7, 5, 3, 2}, {11, 7, 5, 3, 2}, false), "[11,7,5,3,2][1,1,1,1,1][11,7,5,3,2][1,1,1,1,1][11,7,5,3,2][1,1,1,1,1]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[][][]"); } TEST(BCastTest, Basic_SameShapeWithZeroDim) { EXPECT_EQ(BCast({11, 7, 0, 3, 2}, {11, 7, 0, 3, 2}), "[0][1][0][1]" "[0]" "[11,7,0,3,2]" "[][]"); EXPECT_EQ(BCast({11, 7, 0, 3, 2}, {11, 7, 0, 3, 2}, false), "[11,7,0,3,2][1,1,1,1,1][11,7,0,3,2][1,1,1,1,1]" "[11,7,0,3,2]" "[11,7,0,3,2]" "[][]"); } TEST(BCastListTest, Basic_SameShapeWithZeroDim) { EXPECT_EQ(BCastList3({11, 7, 0, 3, 2}, {11, 7, 0, 3, 2}, {11, 7, 0, 3, 2}), "[0][1][0][1][0][1]" "[0]" "[11,7,0,3,2]" "[][][]"); EXPECT_EQ( BCastList3({11, 7, 0, 3, 2}, {11, 7, 0, 3, 2}, {11, 7, 0, 3, 2}, false), "[11,7,0,3,2][1,1,1,1,1][11,7,0,3,2][1,1,1,1,1][11,7,0,3,2][1,1,1,1,1]" "[11,7,0,3,2]" "[11,7,0,3,2]" "[][][]"); } TEST(BCastTest, Basic_Scalar_Scalar) { EXPECT_EQ(BCast({1, 1}, {}), "[1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1]"); EXPECT_EQ(BCast({1, 1}, {1}), "[1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1]"); EXPECT_EQ(BCast({1, 1}, {1}, false), "[1,1][1,1][1,1][1,1]" "[1,1]" "[1,1]" "[0,1][0,1]"); EXPECT_EQ(BCast({1}, {1, 1}), "[1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1]"); EXPECT_EQ(BCast({1}, {1, 1}, false), "[1,1][1,1][1,1][1,1]" "[1,1]" "[1,1]" "[0,1][0,1]"); } TEST(BCastTest, Basic_TrueScalar_Scalar) { EXPECT_EQ(BCast({}, {}), "[1][1][1][1]" "[1]" "[]" "[][]"); EXPECT_EQ(BCast({}, {1}), "[1][1][1][1]" "[1]" "[1]" "[0][0]"); EXPECT_EQ(BCast({}, {1}, false), "[1][1][1][1]" "[1]" "[1]" "[0][0]"); EXPECT_EQ(BCast({}, {1, 1}), "[1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1]"); EXPECT_EQ(BCast({}, {1, 1}, false), "[1,1][1,1][1,1][1,1]" "[1,1]" "[1,1]" "[0,1][0,1]"); EXPECT_EQ(BCast({1}, {}), "[1][1][1][1]" "[1]" "[1]" "[0][0]"); EXPECT_EQ(BCast({1}, {}, false), "[1][1][1][1]" "[1]" "[1]" "[0][0]"); EXPECT_EQ(BCast({1, 1}, {}), "[1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1]"); EXPECT_EQ(BCast({1, 1}, {}, false), "[1,1][1,1][1,1][1,1]" "[1,1]" "[1,1]" "[0,1][0,1]"); } TEST(BCastListTest, Basic_Scalar_Scalar_Scalar) { EXPECT_EQ(BCastList3({1, 1}, {1}, {1}), "[1][1][1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1][0,1]"); EXPECT_EQ(BCastList3({1, 1}, {1}, {1}, false), "[1,1][1,1][1,1][1,1][1,1][1,1]" "[1,1]" "[1,1]" "[0,1][0,1][0,1]"); EXPECT_EQ(BCastList3({1}, {1, 1}, {1}), "[1][1][1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1][0,1]"); EXPECT_EQ(BCastList3({1}, {1, 1}, {1}, false), "[1,1][1,1][1,1][1,1][1,1][1,1]" "[1,1]" "[1,1]" "[0,1][0,1][0,1]"); EXPECT_EQ(BCastList3({1}, {1}, {1, 1}), "[1][1][1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1][0,1]"); EXPECT_EQ(BCastList3({1}, {1}, {1, 1}, false), "[1,1][1,1][1,1][1,1][1,1][1,1]" "[1,1]" "[1,1]" "[0,1][0,1][0,1]"); } TEST(BCastListTest, Basic_TrueScalar_Scalar_Scalar) { EXPECT_EQ(BCastList3({1, 1}, {1}, {}), "[1][1][1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1][0,1]"); EXPECT_EQ(BCastList3({1, 1}, {1}, {}, false), "[1,1][1,1][1,1][1,1][1,1][1,1]" "[1,1]" "[1,1]" "[0,1][0,1][0,1]"); EXPECT_EQ(BCastList3({}, {1, 1}, {1}), "[1][1][1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1][0,1]"); EXPECT_EQ(BCastList3({}, {1, 1}, {1}, false), "[1,1][1,1][1,1][1,1][1,1][1,1]" "[1,1]" "[1,1]" "[0,1][0,1][0,1]"); EXPECT_EQ(BCastList3({1}, {}, {1, 1}), "[1][1][1][1][1][1]" "[1]" "[1,1]" "[0,1][0,1][0,1]"); EXPECT_EQ(BCastList3({1}, {}, {1, 1}, false), "[1,1][1,1][1,1][1,1][1,1][1,1]" "[1,1]" "[1,1]" "[0,1][0,1][0,1]"); } TEST(BCastTest, Basic_Tensor_Scalar) { EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {1}), "[2310][1][1][2310]" "[2310]" "[11,7,5,3,2]" "[][0,1,2,3,4]"); EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {1}, false), "[11,7,5,3,2][1,1,1,1,1][1,1,1,1,1][11,7,5,3,2]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[][0,1,2,3,4]"); EXPECT_EQ(BCast({1}, {11, 7, 5, 3, 2}), "[1][2310][2310][1]" "[2310]" "[11,7,5,3,2]" "[0,1,2,3,4][]"); EXPECT_EQ(BCast({1}, {11, 7, 5, 3, 2}, false), "[1,1,1,1,1][11,7,5,3,2][11,7,5,3,2][1,1,1,1,1]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[0,1,2,3,4][]"); EXPECT_EQ(BCast({1, 2147483648}, {1}), "[2147483648][1][1][2147483648]" "[2147483648]" "[1,2147483648]" "[0][0,1]"); } TEST(BCastTest, Basic_Tensor_With_DimSize_1_Scalar) { EXPECT_EQ(BCast({11, 7, 5, 3, 2, 1}, {1}), "[2310][1][1][2310]" "[2310]" "[11,7,5,3,2,1]" "[5][0,1,2,3,4,5]"); EXPECT_EQ(BCast({11, 7, 5, 3, 2, 1}, {1}, false), "[11,7,5,3,2,1][1,1,1,1,1,1][1,1,1,1,1,1][11,7,5,3,2,1]" "[11,7,5,3,2,1]" "[11,7,5,3,2,1]" "[5][0,1,2,3,4,5]"); EXPECT_EQ(BCast({1}, {11, 7, 5, 3, 2, 1}), "[1][2310][2310][1]" "[2310]" "[11,7,5,3,2,1]" "[0,1,2,3,4,5][5]"); EXPECT_EQ(BCast({1}, {11, 7, 5, 3, 2, 1}, false), "[1,1,1,1,1,1][11,7,5,3,2,1][11,7,5,3,2,1][1,1,1,1,1,1]" "[11,7,5,3,2,1]" "[11,7,5,3,2,1]" "[0,1,2,3,4,5][5]"); EXPECT_EQ(BCast({11, 7, 5, 1, 1, 3, 2, 1, 1}, {1}), "[2310][1][1][2310]" "[2310]" "[11,7,5,1,1,3,2,1,1]" "[3,4,7,8][0,1,2,3,4,5,6,7,8]"); EXPECT_EQ(BCast({11, 7, 5, 1, 1, 3, 2, 1, 1}, {1}, false), "[11,7,5,1,1,3,2,1,1][1,1,1,1,1,1,1,1,1]" "[1,1,1,1,1,1,1,1,1][11,7,5,1,1,3,2,1,1]" "[11,7,5,1,1,3,2,1,1]" "[11,7,5,1,1,3,2,1,1]" "[3,4,7,8][0,1,2,3,4,5,6,7,8]"); EXPECT_EQ(BCast({1}, {11, 7, 5, 1, 1, 3, 2, 1, 1}), "[1][2310][2310][1]" "[2310]" "[11,7,5,1,1,3,2,1,1]" "[0,1,2,3,4,5,6,7,8][3,4,7,8]"); EXPECT_EQ(BCast({1}, {11, 7, 5, 1, 1, 3, 2, 1, 1}, false), "[1,1,1,1,1,1,1,1,1][11,7,5,1,1,3,2,1,1]" "[11,7,5,1,1,3,2,1,1][1,1,1,1,1,1,1,1,1]" "[11,7,5,1,1,3,2,1,1]" "[11,7,5,1,1,3,2,1,1]" "[0,1,2,3,4,5,6,7,8][3,4,7,8]"); } TEST(BCastTest, Basic_Tensor_Vector) { EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {2}), "[1155,2][1,1][1,2][1155,1]" "[1155,2]" "[11,7,5,3,2]" "[][0,1,2,3]"); EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {2}, false), "[11,7,5,3,2][1,1,1,1,1][1,1,1,1,2][11,7,5,3,1]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[][0,1,2,3]"); EXPECT_EQ(BCast({2}, {11, 7, 5, 3, 2}), "[1,2][1155,1][1155,2][1,1]" "[1155,2]" "[11,7,5,3,2]" "[0,1,2,3][]"); EXPECT_EQ(BCast({2}, {11, 7, 5, 3, 2}, false), "[1,1,1,1,2][11,7,5,3,1][11,7,5,3,2][1,1,1,1,1]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[0,1,2,3][]"); } TEST(BCastTest, Basic_Tensor_Matrix) { EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {3, 2}), "[385,6][1,1][1,6][385,1]" "[385,6]" "[11,7,5,3,2]" "[][0,1,2]"); EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {3, 2}, false), "[11,7,5,3,2][1,1,1,1,1][1,1,1,3,2][11,7,5,1,1]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[][0,1,2]"); EXPECT_EQ(BCast({3, 2}, {11, 7, 5, 3, 2}), "[1,6][385,1][385,6][1,1]" "[385,6]" "[11,7,5,3,2]" "[0,1,2][]"); EXPECT_EQ(BCast({3, 2}, {11, 7, 5, 3, 2}, false), "[1,1,1,3,2][11,7,5,1,1][11,7,5,3,2][1,1,1,1,1]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[0,1,2][]"); } TEST(BCastTest, Basic_Tensor_Matrix_Column) { EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {3, 1}), "[385,3,2][1,1,1][1,3,1][385,1,2]" "[385,3,2]" "[11,7,5,3,2]" "[][0,1,2,4]"); EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {3, 1}, false), "[11,7,5,3,2][1,1,1,1,1][1,1,1,3,1][11,7,5,1,2]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[][0,1,2,4]"); EXPECT_EQ(BCast({3, 1}, {11, 7, 5, 3, 2}), "[1,3,1][385,1,2][385,3,2][1,1,1]" "[385,3,2]" "[11,7,5,3,2]" "[0,1,2,4][]"); EXPECT_EQ(BCast({3, 1}, {11, 7, 5, 3, 2}, false), "[1,1,1,3,1][11,7,5,1,2][11,7,5,3,2][1,1,1,1,1]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[0,1,2,4][]"); } TEST(BCastTest, Basic_Tensor_Matrix_As_Tensor) { EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {7, 5, 1, 1}), "[11,35,6][1,1,1][1,35,1][11,1,6]" "[11,35,6]" "[11,7,5,3,2]" "[][0,3,4]"); EXPECT_EQ(BCast({11, 7, 5, 3, 2}, {7, 5, 1, 1}, false), "[11,7,5,3,2][1,1,1,1,1][1,7,5,1,1][11,1,1,3,2]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[][0,3,4]"); EXPECT_EQ(BCast({7, 5, 1, 1}, {11, 7, 5, 3, 2}), "[1,35,1][11,1,6][11,35,6][1,1,1]" "[11,35,6]" "[11,7,5,3,2]" "[0,3,4][]"); EXPECT_EQ(BCast({7, 5, 1, 1}, {11, 7, 5, 3, 2}, false), "[1,7,5,1,1][11,1,1,3,2][11,7,5,3,2][1,1,1,1,1]" "[11,7,5,3,2][11,7,5,3,2]" "[0,3,4][]"); } TEST(BCastTest, Basic_SymbolicShape) { constexpr int64_t kSymDim1 = -10'000'000'000; constexpr int64_t kSymDim2 = -10'000'000'001; const tensorflow::BCast bcast({10, kSymDim1, kSymDim2}, {10, 1, 1}, false); EXPECT_TRUE(bcast.IsValid()); EXPECT_EQ(bcast.output_batch_size(), -1); } TEST(BCastTest, Complex_BCast_To_Each_Other) { string truth = "[11,1,5,1,2][1,7,1,3,1][1,7,1,3,1][11,1,5,1,2]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[1,3][0,2,4]"; EXPECT_EQ(BCast({11, 1, 5, 1, 2}, {7, 1, 3, 1}), truth); EXPECT_EQ(BCast({11, 1, 5, 1, 2}, {7, 1, 3, 1}, false), truth); } TEST(BCastListTest, Complex_BCast_To_Each_Other) { string truth = "[11,1,1,1,2][1,7,5,3,1]" "[1,7,1,3,1][11,1,5,1,2]" "[1,1,5,1,1][11,7,1,3,2]" "[11,7,5,3,2]" "[11,7,5,3,2]" "[1,2,3][0,2,4][0,1,3,4]"; EXPECT_EQ(BCastList3({11, 1, 1, 1, 2}, {7, 1, 3, 1}, {5, 1, 1}), truth); EXPECT_EQ(BCastList3({11, 1, 1, 1, 2}, {7, 1, 3, 1}, {5, 1, 1}, false), truth); } TEST(BCastTest, TestZeroDimensionShape) { EXPECT_EQ(BCast({2, 0, 5}, {5}), "[0,5][1,1][1,5][0,1]" "[0,5]" "[2,0,5]" "[][0,1]"); EXPECT_EQ(BCast({5}, {2, 0, 5}), "[1,5][0,1][0,5][1,1]" "[0,5]" "[2,0,5]" "[0,1][]"); EXPECT_EQ(BCast({2, 0, 5}, {5}, false), "[2,0,5][1,1,1][1,1,5][2,0,1]" "[2,0,5]" "[2,0,5]" "[][0,1]"); EXPECT_EQ(BCast({5}, {2, 0, 5}, false), "[1,1,5][2,0,1][2,0,5][1,1,1]" "[2,0,5]" "[2,0,5]" "[0,1][]"); EXPECT_EQ(BCast({2, 0, 3, 0, 5}, {5}), "[0,5][1,1][1,5][0,1]" "[0,5]" "[2,0,3,0,5]" "[][0,1,2,3]"); EXPECT_EQ(BCast({5}, {2, 0, 3, 0, 5}), "[1,5][0,1][0,5][1,1]" "[0,5]" "[2,0,3,0,5]" "[0,1,2,3][]"); EXPECT_EQ(BCast({2, 0, 3, 0, 5}, {5}, false), "[2,0,3,0,5][1,1,1,1,1][1,1,1,1,5][2,0,3,0,1]" "[2,0,3,0,5]" "[2,0,3,0,5]" "[][0,1,2,3]"); EXPECT_EQ(BCast({5}, {2, 0, 3, 0, 5}, false), "[1,1,1,1,5][2,0,3,0,1][2,0,3,0,5][1,1,1,1,1]" "[2,0,3,0,5]" "[2,0,3,0,5]" "[0,1,2,3][]"); EXPECT_EQ(BCast({2, 0, 3, 0, 5}, {3, 1, 5}), "[0,3,0,5][1,1,1,1][1,3,1,5][0,1,0,1]" "[0,3,0,5]" "[2,0,3,0,5]" "[][0,1,3]"); EXPECT_EQ(BCast({3, 1, 5}, {2, 0, 3, 0, 5}), "[1,3,1,5][0,1,0,1][0,3,0,5][1,1,1,1]" "[0,3,0,5]" "[2,0,3,0,5]" "[0,1,3][]"); EXPECT_EQ(BCast({2, 0, 3, 0, 5}, {3, 1, 5}, false), "[2,0,3,0,5][1,1,1,1,1][1,1,3,1,5][2,0,1,0,1]" "[2,0,3,0,5]" "[2,0,3,0,5]" "[][0,1,3]"); EXPECT_EQ(BCast({3, 1, 5}, {2, 0, 3, 0, 5}, false), "[1,1,3,1,5][2,0,1,0,1][2,0,3,0,5][1,1,1,1,1]" "[2,0,3,0,5]" "[2,0,3,0,5]" "[0,1,3][]"); } TEST(BCastTest, BatchIndices) { EXPECT_EQ("[0,0,0,0][0,1,2,3]", BCastBatchIndices({1}, {4})); EXPECT_EQ("[][]", BCastBatchIndices({5}, {7})); EXPECT_EQ("[][]", BCastBatchIndices({2, 4, 6}, {2, 4, 6})); EXPECT_EQ("[0,0,0,0,1,1,1,1,2,2,2,2][0,1,2,3,0,1,2,3,0,1,2,3]", BCastBatchIndices({3, 1}, {1, 4})); EXPECT_EQ("[0,0,1,1,2,2,0,0,1,1,2,2][0,1,0,1,0,1,2,3,2,3,2,3]", BCastBatchIndices({3, 1}, {2, 1, 2})); } void BM_BCastSetup(::testing::benchmark::State& state) { const int same_shape = state.range(0); if (same_shape) { state.SetLabel("same_shapes"); for (auto s : state) { class BCast b({1000, 100}, {1000, 100}); } } else { state.SetLabel("different_shapes"); for (auto s : state) { class BCast b({3, 1, 5}, {2, 0, 3, 0, 5}); } } } BENCHMARK(BM_BCastSetup)->Arg(0)->Arg(1); } }
1,713
cpp
tensorflow/tensorflow
batch_util
tensorflow/core/util/batch_util.cc
tensorflow/core/framework/batch_util_test.cc
#ifndef TENSORFLOW_CORE_UTIL_BATCH_UTIL_H_ #define TENSORFLOW_CORE_UTIL_BATCH_UTIL_H_ #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { namespace batch_util { Status CopyElementToSlice(Tensor element, Tensor* parent, int64_t index); Status CopySliceToElement(const Tensor& parent, Tensor* element, int64_t index); Status CopyContiguousSlices(const Tensor& src, int64_t src_offset, int64_t dst_offset, int64_t num_slices, Tensor* dst); Status MaybeMoveSliceToElement(Tensor* parent, Tensor* element, int64_t index); Status MaybeMoveContiguousSlices(Tensor& src, int64_t src_offset, int64_t dst_offset, int64_t num_slices, Tensor* dst); Status SetElementZero(Tensor* element, const Tensor& padding); Status CopyElementToLargerSlice(const Tensor& element, Tensor* parent, int index); } } #endif #include "tensorflow/core/util/batch_util.h" #include <algorithm> #include <utility> #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/tstring.h" #define TF_CALL_DATASET_TYPES(m) TF_CALL_ALL_TYPES(m) TF_CALL_QUANTIZED_TYPES(m) namespace tensorflow { namespace batch_util { namespace { Status ValidateInput(const Tensor& parent, const Tensor& element, int64_t index) { DCHECK_NE(parent.dim_size(0), 0); DCHECK_GE(index, 0); if (element.NumElements() != (parent.NumElements() / parent.dim_size(0))) { TensorShape chip_shape = parent.shape(); chip_shape.RemoveDim(0); return errors::Internal( "ValidateInput Cannot perform copy: number of elements does not match. " " Shapes are: [element]: ", element.shape().DebugString(), ", [parent slice]: ", chip_shape.DebugString()); } return absl::OkStatus(); } template <typename T> Status HandleElementToSlice(const Tensor& , T* src, T* dest, int64_t num_values) { static_assert(tsl::is_simple_type<T>::value, "Memcpy requires a simple type."); memcpy(dest, src, num_values * sizeof(T)); return absl::OkStatus(); } template <> Status HandleElementToSlice<tstring>(const Tensor& element, tstring* src, tstring* dest, int64_t num_values) { if (element.RefCountIsOne()) { for (int64_t i = 0; i < num_values; ++i) { *dest++ = std::move(*src++); } } else { std::copy_n(src, num_values, dest); } return absl::OkStatus(); } template <> Status HandleElementToSlice<Variant>(const Tensor& element, Variant* src, Variant* dest, int64_t num_values) { if (element.RefCountIsOne()) { for (int64_t i = 0; i < num_values; ++i) { *dest++ = std::move(*src++); } } else { std::copy_n(src, num_values, dest); } return absl::OkStatus(); } template <> Status HandleElementToSlice<ResourceHandle>(const Tensor& , ResourceHandle* src, ResourceHandle* dest, int64_t num_values) { std::copy_n(src, num_values, dest); return absl::OkStatus(); } template <> Status HandleElementToSlice<Eigen::half>(const Tensor& , Eigen::half* src, Eigen::half* dest, int64_t num_values) { std::copy_n(src, num_values, dest); return absl::OkStatus(); } template <typename T> void HandleSliceToElement(const T* src, T* dest, int64_t num_values) { static_assert(tsl::is_simple_type<T>::value, "Memcpy requires a simple type."); memcpy(dest, src, num_values * sizeof(T)); } template <> void HandleSliceToElement<tstring>(const tstring* src, tstring* dest, int64_t num_values) { std::copy_n(src, num_values, dest); } template <> void HandleSliceToElement<Variant>(const Variant* src, Variant* dest, int64_t num_values) { std::copy_n(src, num_values, dest); } template <> void HandleSliceToElement<ResourceHandle>(const ResourceHandle* src, ResourceHandle* dest, int64_t num_values) { std::copy_n(src, num_values, dest); } template <> void HandleSliceToElement<Eigen::half>(const Eigen::half* src, Eigen::half* dest, int64_t num_values) { std::copy_n(src, num_values, dest); } template <typename T> void HandleSliceToElement(Tensor* parent, T* src, T* dest, int64_t num_values) { static_assert(tsl::is_simple_type<T>::value, "Memcpy requires a simple type."); memcpy(dest, src, num_values * sizeof(T)); } template <> void HandleSliceToElement<tstring>(Tensor* parent, tstring* src, tstring* dest, int64_t num_values) { if (parent->RefCountIsOne()) { for (int64_t i = 0; i < num_values; ++i) { dest[i] = std::move(src[i]); } } else { std::copy_n(src, num_values, dest); } } template <> void HandleSliceToElement<Variant>(Tensor* parent, Variant* src, Variant* dest, int64_t num_values) { if (parent->RefCountIsOne()) { for (int64_t i = 0; i < num_values; ++i) { dest[i] = std::move(src[i]); } } else { std::copy_n(src, num_values, dest); } } template <> void HandleSliceToElement<ResourceHandle>(Tensor* parent, ResourceHandle* src, ResourceHandle* dest, int64_t num_values) { std::copy_n(src, num_values, dest); } template <> void HandleSliceToElement<Eigen::half>(Tensor* parent, Eigen::half* src, Eigen::half* dest, int64_t num_values) { std::copy_n(src, num_values, dest); } } Status CopyElementToSlice(Tensor element, Tensor* parent, int64_t index) { TF_RETURN_IF_ERROR(ValidateInput(*parent, element, index)); const int64_t num_values = element.NumElements(); #define HANDLE_TYPE(T) \ case DataTypeToEnum<T>::value: { \ T* src = element.base<T>(); \ T* dest = parent->base<T>() + (num_values * index); \ return HandleElementToSlice<T>(element, src, dest, num_values); \ } switch (element.dtype()) { TF_CALL_ALL_TYPES(HANDLE_TYPE); TF_CALL_QUANTIZED_TYPES(HANDLE_TYPE); #undef HANDLE_TYPE default: return errors::Unimplemented("CopyElementToSlice Unhandled data type: ", element.dtype()); } } Status CopySliceToElement(const Tensor& parent, Tensor* element, int64_t index) { TF_RETURN_IF_ERROR(ValidateInput(parent, *element, index)); const int64_t num_values = element->NumElements(); #define HANDLE_TYPE(T) \ case DataTypeToEnum<T>::value: { \ const T* src = parent.base<T>() + (num_values * index); \ T* dest = element->base<T>(); \ HandleSliceToElement<T>(src, dest, num_values); \ return OkStatus(); \ } switch (parent.dtype()) { TF_CALL_ALL_TYPES(HANDLE_TYPE); TF_CALL_QUANTIZED_TYPES(HANDLE_TYPE); #undef HANDLE_TYPE default: return errors::Unimplemented("CopySliceToElement Unhandled data type: ", element->dtype()); } } Status MaybeMoveContiguousSlices(Tensor& src, int64_t src_offset, int64_t dst_offset, int64_t num_slices, Tensor* dst) { if (src.dtype() != dst->dtype()) { return absl::FailedPreconditionError(absl::StrCat( "MaybeMoveContiguousSlices cannot perform copy: src and dst have " "different " "dtypes. Source dtype: ", src.dtype(), " dstination dtype: ", dst->dtype(), ".")); } if (src.dims() < 1) { return absl::FailedPreconditionError(absl::StrCat( "MaybeMoveContiguousSlices cannot perform copy: src has to be a tensor " "with " "rank >= 1. Source shape: ", src.shape().DebugString())); } if (dst->dims() < 1) { return absl::FailedPreconditionError(absl::StrCat( "MaybeMoveContiguousSlices cannot perform copy: dst has to be a tensor " "with rank >= 1. Dest shape: ", dst->shape().DebugString())); } const int64_t src_dim0 = src.dim_size(0); const int64_t dst_dim0 = dst->dim_size(0); int64_t src_chip_size = 1; int64_t dst_chip_size = 1; for (int i = 1; i < src.dims(); ++i) { src_chip_size *= src.dim_size(i); } for (int i = 1; i < dst->dims(); ++i) { dst_chip_size *= dst->dim_size(i); } if (src_chip_size != dst_chip_size) { return absl::FailedPreconditionError(absl::StrCat( "MaybeMoveContiguousSlices cannot perform copy: source and dst shapes " "are" "not compatible. Source shape: ", src.shape().DebugString(), ", dst shape: ", dst->shape().DebugString())); } if (src_chip_size == 0 && dst_chip_size == 0) { return absl::OkStatus(); } if (src_offset < 0 || src_offset + num_slices > src_dim0 || dst_offset < 0 || dst_offset + num_slices > dst_dim0) { return absl::FailedPreconditionError(absl::StrCat( "MaybeMoveContiguousSlices cannot perform copy: index out of range. " "src_offset: ", src_offset, ", num_slices: ", num_slices, ", src_dim0: ", src_dim0, ", dst_offset: ", dst_offset, ", dst_dim0: ", dst_dim0, ".")); } #define HANDLE_TYPE(T) \ case DataTypeToEnum<T>::value: { \ T* src_p = src.base<T>() + (src_chip_size * src_offset); \ T* dst_p = dst->base<T>() + (dst_chip_size * dst_offset); \ HandleSliceToElement<T>(&src, src_p, dst_p, src_chip_size * num_slices); \ return OkStatus(); \ } switch (src.dtype()) { TF_CALL_ALL_TYPES(HANDLE_TYPE); TF_CALL_QUANTIZED_TYPES(HANDLE_TYPE); #undef HANDLE_TYPE default: return absl::FailedPreconditionError(absl::StrCat( "MaybeMoveContiguousSlices unhandled data type: ", src.dtype())); } } Status CopyContiguousSlices(const Tensor& src, int64_t src_offset, int64_t dst_offset, int64_t num_slices, Tensor* dst) { if (src.dtype() != dst->dtype()) { return errors::FailedPrecondition( "CopyContiguousSlices cannot perform copy: src and dst have different " "dtypes. Source dtype: ", src.dtype(), " dstination dtype: ", dst->dtype(), "."); } if (src.dims() < 1) { return errors::FailedPrecondition( "CopyContiguousSlices cannot perform copy: src has to be a tensor with " "rank >= 1. Source shape: ", src.shape().DebugString()); } if (dst->dims() < 1) { return errors::FailedPrecondition( "CopyContiguousSlices cannot perform copy: dst has to be a tensor " "with rank >= 1. Dest shape: ", dst->shape().DebugString()); } const int64_t src_dim0 = src.dim_size(0); const int64_t dst_dim0 = dst->dim_size(0); int64_t src_chip_size = 1; int64_t dst_chip_size = 1; for (int i = 1; i < src.dims(); ++i) { src_chip_size *= src.dim_size(i); } for (int i = 1; i < dst->dims(); ++i) { dst_chip_size *= dst->dim_size(i); } if (src_chip_size != dst_chip_size) { return errors::FailedPrecondition( "CopyContiguousSlices cannot perform copy: source and dst shapes are" "not compatible. Source shape: ", src.shape().DebugString(), ", dst shape: ", dst->shape().DebugString()); } if (src_chip_size == 0 && dst_chip_size == 0) { return absl::OkStatus(); } if (src_offset < 0 || src_offset + num_slices > src_dim0 || dst_offset < 0 || dst_offset + num_slices > dst_dim0) { return errors::FailedPrecondition( "CopyContiguousSlices cannot perform copy: index out of range. " "src_offset: ", src_offset, ", num_slices: ", num_slices, ", src_dim0: ", src_dim0, ", dst_offset: ", dst_offset, ", dst_dim0: ", dst_dim0, "."); } #define HANDLE_TYPE(T) \ case DataTypeToEnum<T>::value: { \ const T* src_p = src.base<T>() + (src_chip_size * src_offset); \ T* dst_p = dst->base<T>() + (dst_chip_size * dst_offset); \ HandleSliceToElement<T>(src_p, dst_p, src_chip_size * num_slices); \ return OkStatus(); \ } switch (src.dtype()) { TF_CALL_ALL_TYPES(HANDLE_TYPE); TF_CALL_QUANTIZED_TYPES(HANDLE_TYPE); #undef HANDLE_TYPE default: return errors::Unimplemented("CopyContiguousSlices unhandled data type: ", src.dtype()); } } Status MaybeMoveSliceToElement(Tensor* parent, Tensor* element, int64_t index) { TF_RETURN_IF_ERROR(ValidateInput(*parent, *element, index)); const int64_t num_values = element->NumElements(); #define HANDLE_TYPE(T) \ case DataTypeToEnum<T>::value: { \ T* src = parent->base<T>() + (num_values * index); \ T* dest = element->base<T>(); \ HandleSliceToElement<T>(parent, src, dest, num_values); \ return OkStatus(); \ } switch (parent->dtype()) { TF_CALL_ALL_TYPES(HANDLE_TYPE); TF_CALL_QUANTIZED_TYPES(HANDLE_TYPE); #undef HANDLE_TYPE default: return errors::Unimplemented( "MaybeMoveSliceToElement Unhandled data type: ", element->dtype()); } } Status ValidateElementToLargerSlice(const Tensor& element, Tensor* parent) { DCHECK_NE(parent->dim_size(0), 0); if (element.NumElements() > (parent->NumElements() / parent->dim_size(0))) { TensorShape chip_shape = parent->shape(); chip_shape.RemoveDim(0); return errors::Internal( "HandleElementToLargerSlice Cannot copy slice: number of entries in " "element is greater than number of elements in parent slice. ", "Shapes are: [element]: ", element.shape().DebugString(), ", [parent slice]: ", chip_shape.DebugString()); } return absl::OkStatus(); } template <typename T, int NDIMS> Status HandleElementToLargerSlice(const Tensor& element, Tensor* parent, int index) { TF_RETURN_IF_ERROR(ValidateElementToLargerSlice(element, parent)); if (element.NumElements() == 0) { return absl::OkStatus(); } auto element_t = element.tensor<T, NDIMS>(); auto parent_t = parent->tensor<T, NDIMS + 1>(); Eigen::DSizes<Eigen::DenseIndex, NDIMS + 1> slice_indices; slice_indices[0] = index; Eigen::DSizes<Eigen::DenseIndex, NDIMS + 1> slice_size; slice_size[0] = 1; for (size_t i = 1; i < slice_size.size(); ++i) { slice_size[i] = element_t.dimension(i - 1); } parent_t.slice(slice_indices, slice_size) = element_t.reshape(slice_size); return absl::OkStatus(); } template <int NDIMS> Status HandleElementToLargerSliceWithRank(const Tensor& element, Tensor* parent, int index) { #define HANDLE_TYPE(T) \ case DataTypeToEnum<T>::value: { \ return HandleElementToLargerSlice<T, NDIMS>(element, parent, index); \ } switch (element.dtype()) { TF_CALL_DATASET_TYPES(HANDLE_TYPE); #undef HANDLE_TYPE default: return errors::Unimplemented( "HandleElementToLargerSliceWithRank Unhandled data type: ", element.dtype()); } } Status CopyElementToLargerSlice(const Tensor& element, Tensor* parent, int index) { if (parent->dims() != element.dims() + 1) { return errors::Internal( "Mismatched ranks. Element's rank is: ", element.dims(), " but element is meant to be a slice in output Tensor having rank: ", parent->dims(), " (should be: ", element.dims() + 1, ")"); } #define HANDLE_DIMS(NDIMS) \ case NDIMS: { \ TF_RETURN_IF_ERROR( \ HandleElementToLargerSliceWithRank<NDIMS>(element, parent, index)); \ return OkStatus(); \ } switch (element.dims()) { HANDLE_DIMS(0); HANDLE_DIMS(1); HANDLE_DIMS(2); HANDLE_DIMS(3); HANDLE_DIMS(4); HANDLE_DIMS(5); #undef HANDLE_DIMS default: return errors::Unimplemented("CopyElementToLargerSlice Unhandled rank: ", element.dims()); } } Status SetElementZero(Tensor* element, const Tensor& padding) { #define HANDLE_TYPE(T) \ if (element->dtype() == DataTypeToEnum<T>::value) { \ element->flat<T>().setConstant(padding.scalar<T>()()); \ return OkStatus(); \ } TF_CALL_DATASET_TYPES(HANDLE_TYPE); #undef HANDLE_TYPE return errors::Unimplemented("SetElementZero Unhandled data type: ", element->dtype()); } } }
#include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(CopyContiguousSlicesTest, CompatibleShape) { Tensor src(DT_FLOAT, {7, 1, 2}); Tensor dst(DT_FLOAT, {9, 2, 1}); auto s = batch_util::CopyContiguousSlices( src, 2, 0, 5, &dst); ASSERT_EQ(error::OK, s.code()); } TEST(CopyContiguousSlicesTest, SourceOffsetOutOfRange) { Tensor src(DT_FLOAT, {7, 1, 2}); Tensor dst(DT_FLOAT, {9, 2, 1}); auto s = batch_util::CopyContiguousSlices( src, 7, 0, 5, &dst); ASSERT_EQ(error::FAILED_PRECONDITION, s.code()); } TEST(CopyContiguousSlicesTest, DstOffsetOutOfRange) { Tensor src(DT_FLOAT, {7, 1, 2}); Tensor dst(DT_FLOAT, {9, 2, 1}); auto s = batch_util::CopyContiguousSlices( src, 0, 0, 8, &dst); ASSERT_EQ(error::FAILED_PRECONDITION, s.code()); } TEST(CopyContiguousSlicesTest, CheckDstWithExpectedValues) { auto src = test::AsTensor<float>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, TensorShape({5, 2})); Tensor dst(DT_FLOAT, {9, 2, 1}); auto s = batch_util::CopyContiguousSlices( src, 1, 5, 3, &dst); ASSERT_EQ(error::OK, s.code()); test::ExpectTensorEqual<float>( test::AsTensor<float>({2, 3, 4, 5, 6, 7}, TensorShape({3, 2, 1})), dst.Slice(5, 8)); } } }
1,714
cpp
tensorflow/tensorflow
port
third_party/xla/third_party/tsl/tsl/platform/windows/port.cc
third_party/xla/third_party/tsl/tsl/platform/port_test.cc
#ifndef XLA_STREAM_EXECUTOR_PLATFORM_PORT_H_ #define XLA_STREAM_EXECUTOR_PLATFORM_PORT_H_ #include "tsl/platform/macros.h" #include "tsl/platform/types.h" namespace stream_executor { using tsl::int16; using tsl::int32; using tsl::int8; using tsl::uint16; using tsl::uint32; using tsl::uint64; using tsl::uint8; #if !defined(PLATFORM_GOOGLE) using std::string; #endif #define SE_FALLTHROUGH_INTENDED TF_FALLTHROUGH_INTENDED } #define SE_DISALLOW_COPY_AND_ASSIGN TF_DISALLOW_COPY_AND_ASSIGN #define SE_MUST_USE_RESULT TF_MUST_USE_RESULT #define SE_PREDICT_TRUE TF_PREDICT_TRUE #define SE_PREDICT_FALSE TF_PREDICT_FALSE #endif #include "absl/base/internal/sysinfo.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/host_info.h" #include "tsl/platform/logging.h" #include "tsl/platform/mem.h" #include "tsl/platform/numa.h" #include "tsl/platform/profile_utils/cpu_utils.h" #include "tsl/platform/snappy.h" #include "tsl/platform/types.h" #if defined(__linux__) #include <sched.h> #include <sys/sysinfo.h> #else #include <sys/syscall.h> #endif #if (__x86_64__ || __i386__) #include <cpuid.h> #endif #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #ifdef TF_USE_SNAPPY #include "snappy.h" #endif #if (defined(__APPLE__) && defined(__MACH__)) || defined(__FreeBSD__) || \ defined(__HAIKU__) #include <thread> #endif #if TENSORFLOW_USE_NUMA #include "hwloc.h" #endif #if defined(__ANDROID__) && (defined(__i386__) || defined(__x86_64__)) #define TENSORFLOW_HAS_CXA_DEMANGLE 0 #elif (__GNUC__ >= 4 || (__GNUC__ >= 3 && __GNUC_MINOR__ >= 4)) && \ !defined(__mips__) #define TENSORFLOW_HAS_CXA_DEMANGLE 1 #elif defined(__clang__) && !defined(_MSC_VER) #define TENSORFLOW_HAS_CXA_DEMANGLE 1 #else #define TENSORFLOW_HAS_CXA_DEMANGLE 0 #endif #if TENSORFLOW_HAS_CXA_DEMANGLE #include <cxxabi.h> #endif namespace tsl { namespace port { void InitMain(const char* usage, int* argc, char*** argv) {} string Hostname() { char hostname[1024]; gethostname(hostname, sizeof hostname); hostname[sizeof hostname - 1] = 0; return string(hostname); } string JobName() { const char* job_name_cs = std::getenv("TF_JOB_NAME"); if (job_name_cs != nullptr) { return string(job_name_cs); } return ""; } int64_t JobUid() { return -1; } int64_t TaskId() { return -1; } int NumSchedulableCPUs() { #if defined(__linux__) for (int ncpus = 1024; ncpus < std::numeric_limits<int>::max() / 2; ncpus *= 2) { size_t setsize = CPU_ALLOC_SIZE(ncpus); cpu_set_t* mask = CPU_ALLOC(ncpus); if (!mask) break; if (sched_getaffinity(0, setsize, mask) == 0) { int result = CPU_COUNT_S(setsize, mask); CPU_FREE(mask); return result; } CPU_FREE(mask); if (errno != EINVAL) break; } perror("sched_getaffinity"); #endif #if (defined(__APPLE__) && defined(__MACH__)) || defined(__FreeBSD__) || \ defined(__HAIKU__) unsigned int count = std::thread::hardware_concurrency(); if (count > 0) return static_cast<int>(count); #endif const int kDefaultCores = 4; fprintf(stderr, "can't determine number of CPU cores: assuming %d\n", kDefaultCores); return kDefaultCores; } int MaxParallelism() { return NumSchedulableCPUs(); } int MaxParallelism(int numa_node) { if (numa_node != port::kNUMANoAffinity) { return NumSchedulableCPUs() / port::NUMANumNodes(); } return NumSchedulableCPUs(); } int NumTotalCPUs() { int count = absl::base_internal::NumCPUs(); return (count <= 0) ? kUnknownCPU : count; } int GetCurrentCPU() { #if defined(__EMSCRIPTEN__) return sched_getcpu(); #elif defined(__linux__) return sched_getcpu(); #elif defined(__cpuid) && !defined(__APPLE__) uint32_t eax = 0; uint32_t ebx = 0; uint32_t ecx = 0; uint32_t edx = 0; __cpuid(1, eax, ebx, ecx, edx); if ((edx & (1 << 9)) != 0) { return (ebx & 0xFF) >> 24; } #elif defined(__NR_getcpu) unsigned int cpu; if (syscall(__NR_getcpu, &cpu, NULL, NULL) < 0) { return kUnknownCPU; } else { return static_cast<int>(cpu); } #endif return kUnknownCPU; } int NumHyperthreadsPerCore() { static const int ht_per_core = tsl::port::CPUIDNumSMT(); return (ht_per_core > 0) ? ht_per_core : 1; } #ifdef TENSORFLOW_USE_NUMA namespace { static hwloc_topology_t hwloc_topology_handle; bool HaveHWLocTopology() { static bool init = []() { if (hwloc_topology_init(&hwloc_topology_handle)) { LOG(ERROR) << "Call to hwloc_topology_init() failed"; return false; } if (hwloc_topology_load(hwloc_topology_handle)) { LOG(ERROR) << "Call to hwloc_topology_load() failed"; return false; } return true; }(); return init; } hwloc_obj_t GetHWLocTypeIndex(hwloc_obj_type_t tp, int index) { hwloc_obj_t obj = nullptr; if (index >= 0) { while ((obj = hwloc_get_next_obj_by_type(hwloc_topology_handle, tp, obj)) != nullptr) { if (obj->os_index == index) break; } } return obj; } } #endif bool NUMAEnabled() { return (NUMANumNodes() > 1); } int NUMANumNodes() { #ifdef TENSORFLOW_USE_NUMA if (HaveHWLocTopology()) { int num_numanodes = hwloc_get_nbobjs_by_type(hwloc_topology_handle, HWLOC_OBJ_NUMANODE); return std::max(1, num_numanodes); } else { return 1; } #else return 1; #endif } void NUMASetThreadNodeAffinity(int node) { #ifdef TENSORFLOW_USE_NUMA if (HaveHWLocTopology()) { hwloc_obj_t obj = GetHWLocTypeIndex(HWLOC_OBJ_NUMANODE, node); if (obj) { hwloc_set_cpubind(hwloc_topology_handle, obj->cpuset, HWLOC_CPUBIND_THREAD | HWLOC_CPUBIND_STRICT); } else { LOG(ERROR) << "Could not find hwloc NUMA node " << node; } } #endif } int NUMAGetThreadNodeAffinity() { int node_index = kNUMANoAffinity; #ifdef TENSORFLOW_USE_NUMA if (HaveHWLocTopology()) { hwloc_cpuset_t thread_cpuset = hwloc_bitmap_alloc(); hwloc_get_cpubind(hwloc_topology_handle, thread_cpuset, HWLOC_CPUBIND_THREAD); hwloc_obj_t obj = nullptr; while ((obj = hwloc_get_next_obj_by_type( hwloc_topology_handle, HWLOC_OBJ_NUMANODE, obj)) != nullptr) { if (hwloc_bitmap_isincluded(thread_cpuset, obj->cpuset)) { node_index = obj->os_index; break; } } hwloc_bitmap_free(thread_cpuset); } #endif return node_index; } void* NUMAMalloc(int node, size_t size, int minimum_alignment) { #ifdef TENSORFLOW_USE_NUMA if (HaveHWLocTopology()) { hwloc_obj_t numa_node = GetHWLocTypeIndex(HWLOC_OBJ_NUMANODE, node); if (numa_node) { return hwloc_alloc_membind(hwloc_topology_handle, size, numa_node->nodeset, HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET); } else { LOG(ERROR) << "Failed to find hwloc NUMA node " << node; } } #endif return tsl::port::AlignedMalloc(size, minimum_alignment); } void NUMAFree(void* ptr, size_t size) { #ifdef TENSORFLOW_USE_NUMA if (HaveHWLocTopology()) { hwloc_free(hwloc_topology_handle, ptr, size); return; } #endif tsl::port::Free(ptr); } int NUMAGetMemAffinity(const void* addr) { int node = kNUMANoAffinity; #ifdef TENSORFLOW_USE_NUMA if (HaveHWLocTopology() && addr) { hwloc_nodeset_t nodeset = hwloc_bitmap_alloc(); if (!hwloc_get_area_memlocation(hwloc_topology_handle, addr, 4, nodeset, HWLOC_MEMBIND_BYNODESET)) { hwloc_obj_t obj = nullptr; while ((obj = hwloc_get_next_obj_by_type( hwloc_topology_handle, HWLOC_OBJ_NUMANODE, obj)) != nullptr) { if (hwloc_bitmap_isincluded(nodeset, obj->nodeset)) { node = obj->os_index; break; } } hwloc_bitmap_free(nodeset); } else { LOG(ERROR) << "Failed call to hwloc_get_area_memlocation."; } } #endif return node; } bool Snappy_Compress(const char* input, size_t length, string* output) { #ifdef TF_USE_SNAPPY output->resize(snappy::MaxCompressedLength(length)); size_t outlen; snappy::RawCompress(input, length, &(*output)[0], &outlen); output->resize(outlen); return true; #else return false; #endif } bool Snappy_CompressFromIOVec(const struct iovec* iov, size_t uncompressed_length, string* output) { #ifdef TF_USE_SNAPPY output->resize(snappy::MaxCompressedLength(uncompressed_length)); size_t outlen; snappy::RawCompressFromIOVec(iov, uncompressed_length, &(*output)[0], &outlen); output->resize(outlen); return true; #else return false; #endif } bool Snappy_GetUncompressedLength(const char* input, size_t length, size_t* result) { #ifdef TF_USE_SNAPPY return snappy::GetUncompressedLength(input, length, result); #else return false; #endif } bool Snappy_Uncompress(const char* input, size_t length, char* output) { #ifdef TF_USE_SNAPPY return snappy::RawUncompress(input, length, output); #else return false; #endif } bool Snappy_UncompressToIOVec(const char* compressed, size_t compressed_length, const struct iovec* iov, size_t iov_cnt) { #ifdef TF_USE_SNAPPY return snappy::RawUncompressToIOVec(compressed, compressed_length, iov, iov_cnt); #else return false; #endif } static void DemangleToString(const char* mangled, string* out) { int status = 0; char* demangled = nullptr; #if TENSORFLOW_HAS_CXA_DEMANGLE demangled = abi::__cxa_demangle(mangled, nullptr, nullptr, &status); #endif if (status == 0 && demangled != nullptr) { out->append(demangled); free(demangled); } else { out->append(mangled); } } string Demangle(const char* mangled) { string demangled; DemangleToString(mangled, &demangled); return demangled; } double NominalCPUFrequency() { return tsl::profile_utils::CpuUtils::GetCycleCounterFrequency(); } } } namespace tsl { namespace port { void* AlignedMalloc(size_t size, int minimum_alignment) { #if defined(__ANDROID__) return memalign(minimum_alignment, size); #else void* ptr = nullptr; const int required_alignment = sizeof(void*); if (minimum_alignment < required_alignment) return Malloc(size); int err = posix_memalign(&ptr, minimum_alignment, size); if (err != 0) { return nullptr; } else { return ptr; } #endif } void AlignedFree(void* aligned_memory) { Free(aligned_memory); } void* Malloc(size_t size) { return malloc(size); } void* Realloc(void* ptr, size_t size) { return realloc(ptr, size); } void Free(void* ptr) { free(ptr); } void MallocExtension_ReleaseToSystem(std::size_t num_bytes) { } std::size_t MallocExtension_GetAllocatedSize(const void* p) { #if !defined(__ANDROID__) return 0; #else return malloc_usable_size(p); #endif } MemoryInfo GetMemoryInfo() { MemoryInfo mem_info = {INT64_MAX, INT64_MAX}; #if defined(__linux__) struct sysinfo info; int err = sysinfo(&info); if (err == 0) { mem_info.free = info.freeram; mem_info.total = info.totalram; } #endif return mem_info; } MemoryBandwidthInfo GetMemoryBandwidthInfo() { MemoryBandwidthInfo membw_info = {INT64_MAX}; return membw_info; } IOStatistics GetIOStatistics() { return IOStatistics(); } } }
#include <condition_variable> #include "tsl/platform/cpu_info.h" #include "tsl/platform/env_time.h" #include "tsl/platform/mem.h" #include "tsl/platform/mutex.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tsl { namespace port { TEST(Port, AlignedMalloc) { for (size_t alignment = 1; alignment <= 1 << 20; alignment <<= 1) { void* p = AlignedMalloc(1, alignment); ASSERT_TRUE(p != nullptr) << "AlignedMalloc(1, " << alignment << ")"; uintptr_t pval = reinterpret_cast<uintptr_t>(p); EXPECT_EQ(pval % alignment, 0); AlignedFree(p); } } TEST(Port, GetCurrentCPU) { const int cpu = GetCurrentCPU(); #if !defined(__APPLE__) EXPECT_GE(cpu, 0); EXPECT_LT(cpu, NumTotalCPUs()); #endif } TEST(ConditionVariable, WaitForMilliseconds_Timeout) { mutex m; mutex_lock l(m); condition_variable cv; ConditionResult result = tsl::kCond_MaybeNotified; time_t start = time(nullptr); while (result == tsl::kCond_MaybeNotified) { result = WaitForMilliseconds(&l, &cv, 3000); } EXPECT_EQ(result, tsl::kCond_Timeout); time_t finish = time(nullptr); EXPECT_GE(finish - start, 3); } TEST(ConditionVariable, WaitForMilliseconds_Signalled) { thread::ThreadPool pool(Env::Default(), "test", 1); mutex m; mutex_lock l(m); condition_variable cv; time_t start = time(nullptr); pool.Schedule([&m, &cv]() { Env::Default()->SleepForMicroseconds(1 * 1000 * 1000); mutex_lock l(m); cv.notify_all(); }); EXPECT_EQ(WaitForMilliseconds(&l, &cv, 3000), tsl::kCond_MaybeNotified); time_t finish = time(nullptr); EXPECT_LT(finish - start, 3); } TEST(ConditionalCriticalSections, AwaitWithDeadline_Timeout) { bool always_false = false; mutex m; m.lock(); time_t start = time(nullptr); bool result = m.AwaitWithDeadline(Condition(&always_false), EnvTime::NowNanos() + 3 * EnvTime::kSecondsToNanos); time_t finish = time(nullptr); m.unlock(); EXPECT_EQ(result, false); EXPECT_GE(finish - start, 3); } TEST(ConditionalCriticalSections, AwaitWithDeadline_Woken) { thread::ThreadPool pool(Env::Default(), "test", 1); bool woken = false; mutex m; m.lock(); time_t start = time(nullptr); pool.Schedule([&m, &woken]() { Env::Default()->SleepForMicroseconds(1 * 1000 * 1000); m.lock(); woken = true; m.unlock(); }); bool result = m.AwaitWithDeadline( Condition(&woken), EnvTime::NowNanos() + 3 * EnvTime::kSecondsToNanos); time_t finish = time(nullptr); m.unlock(); EXPECT_EQ(result, true); EXPECT_LT(finish - start, 3); } static bool Invert(bool* b) { return !*b; } class InvertClass { public: explicit InvertClass(bool* value) : value_(value) {} bool Value() { return !*this->value_; } private: InvertClass(); bool* value_; }; TEST(ConditionalCriticalSections, Await_PingPong) { thread::ThreadPool pool(Env::Default(), "test", 1); bool ping_pong = false; bool done = false; mutex m; pool.Schedule([&m, &ping_pong, &done]() { m.lock(); for (int i = 0; i != 1000; i++) { m.Await(Condition(&ping_pong)); ping_pong = false; } done = true; m.unlock(); }); m.lock(); InvertClass invert(&ping_pong); for (int i = 0; i != 1000; i++) { m.Await(Condition(&Invert, &ping_pong)); ping_pong = true; } m.Await(Condition(&done)); m.unlock(); } TEST(ConditionalCriticalSections, Await_PingPongMethod) { thread::ThreadPool pool(Env::Default(), "test", 1); bool ping_pong = false; bool done = false; mutex m; pool.Schedule([&m, &ping_pong, &done]() { m.lock(); for (int i = 0; i != 1000; i++) { m.Await(Condition(&ping_pong)); ping_pong = false; } done = true; m.unlock(); }); m.lock(); InvertClass invert(&ping_pong); for (int i = 0; i != 1000; i++) { m.Await(Condition(&invert, &InvertClass::Value)); ping_pong = true; } m.Await(Condition(&done)); m.unlock(); } TEST(TestCPUFeature, TestFeature) { const bool has_avx = TestCPUFeature(CPUFeature::AVX); LOG(INFO) << "has_avx = " << has_avx; const bool has_avx2 = TestCPUFeature(CPUFeature::AVX2); LOG(INFO) << "has_avx2 = " << has_avx2; } } }
1,715
cpp
tensorflow/tensorflow
incremental_barrier
tensorflow/core/util/incremental_barrier.cc
tensorflow/core/util/incremental_barrier_test.cc
#ifndef TENSORFLOW_CORE_UTIL_INCREMENTAL_BARRIER_H_ #define TENSORFLOW_CORE_UTIL_INCREMENTAL_BARRIER_H_ #include <atomic> #include <functional> namespace tensorflow { class InternalIncrementalBarrier; class IncrementalBarrier { public: typedef std::function<void()> DoneCallback; typedef std::function<void()> BarrierCallback; explicit IncrementalBarrier(DoneCallback callback); ~IncrementalBarrier(); BarrierCallback Inc(); private: InternalIncrementalBarrier* internal_barrier_; }; } #endif #include "tensorflow/core/util/incremental_barrier.h" #include <atomic> #include <functional> #include <utility> #include "absl/functional/bind_front.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { class InternalIncrementalBarrier { public: explicit InternalIncrementalBarrier(IncrementalBarrier::DoneCallback callback) : left_(1), done_callback_(std::move(callback)) {} void operator()() { DCHECK_GE(left_.load(std::memory_order_relaxed), 0); if (left_.fetch_sub(1, std::memory_order_acq_rel) - 1 == 0) { IncrementalBarrier::DoneCallback done_callback = std::move(done_callback_); delete this; done_callback(); } } IncrementalBarrier::BarrierCallback Inc() { left_.fetch_add(1, std::memory_order_acq_rel); return absl::bind_front(&InternalIncrementalBarrier::operator(), this); } private: std::atomic<int> left_; IncrementalBarrier::DoneCallback done_callback_; }; IncrementalBarrier::IncrementalBarrier(DoneCallback done_callback) : internal_barrier_( new InternalIncrementalBarrier(std::move(done_callback))) {} IncrementalBarrier::~IncrementalBarrier() { (*internal_barrier_)(); } IncrementalBarrier::BarrierCallback IncrementalBarrier::Inc() { return internal_barrier_->Inc(); } }
#include "tensorflow/core/util/incremental_barrier.h" #include <atomic> #include "absl/functional/bind_front.h" #include "absl/time/time.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/platform.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/threadpool.h" namespace tensorflow { namespace { class Counter { public: void Increment() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); ++count_; } int GetCount() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return count_; } private: mutex mu_; int count_ = 0; }; TEST(IncrementalBarrierTest, RunInstantlyWhenZeroClosure) { Counter counter; EXPECT_EQ(counter.GetCount(), 0); { IncrementalBarrier::DoneCallback done_callback = absl::bind_front(&Counter::Increment, &counter); IncrementalBarrier barrier(done_callback); EXPECT_EQ(counter.GetCount(), 0); } EXPECT_EQ(counter.GetCount(), 1); } TEST(IncrementalBarrierTest, RunAfterNumClosuresOneNowTwoLater) { Counter counter; IncrementalBarrier::BarrierCallback bc1, bc2; { IncrementalBarrier::DoneCallback done_callback = absl::bind_front(&Counter::Increment, &counter); IncrementalBarrier barrier(done_callback); CHECK_EQ(counter.GetCount(), 0); bc1 = barrier.Inc(); bc2 = barrier.Inc(); IncrementalBarrier::BarrierCallback bc3 = barrier.Inc(); bc3(); CHECK_EQ(counter.GetCount(), 0); } CHECK_EQ(counter.GetCount(), 0); bc1(); CHECK_EQ(counter.GetCount(), 0); bc2(); CHECK_EQ(counter.GetCount(), 1); } TEST(IncrementalBarrierTest, RunAfterNumClosuresConcurrency) { const int num_closure = 100, num_thread = 2; std::atomic<int> schedule_count{0}; Counter counter; { IncrementalBarrier::DoneCallback done_callback = absl::bind_front(&Counter::Increment, &counter); IncrementalBarrier barrier(done_callback); CHECK_EQ(counter.GetCount(), 0); tensorflow::thread::ThreadPool pool(tensorflow::Env::Default(), "BarrierClosure", num_thread); for (int i = 0; i < num_closure; ++i) { pool.Schedule([&barrier, &schedule_count]() { schedule_count.fetch_add(1); IncrementalBarrier::BarrierCallback bc = barrier.Inc(); Env::Default()->SleepForMicroseconds(100); bc(); }); } CHECK_EQ(counter.GetCount(), 0); } CHECK_EQ(schedule_count.load(std::memory_order_relaxed), 100); CHECK_EQ(counter.GetCount(), 1); } #if defined(PLATFORM_GOOGLE) void BM_FunctionInc(benchmark::State& state) { IncrementalBarrier barrier([] {}); for (auto _ : state) { barrier.Inc()(); } } BENCHMARK(BM_FunctionInc); #endif } }
1,716
cpp
tensorflow/tensorflow
ragged_to_dense_util
tensorflow/core/util/ragged_to_dense_util.cc
tensorflow/core/util/ragged_to_dense_util_test.cc
#ifndef TENSORFLOW_CORE_UTIL_RAGGED_TO_DENSE_UTIL_H_ #define TENSORFLOW_CORE_UTIL_RAGGED_TO_DENSE_UTIL_H_ #include <vector> #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/util/ragged_to_dense_util_common.h" namespace tensorflow { string RowPartitionTypeToString(RowPartitionType row_partition_type); Status GetRowPartitionTypesHelper( const std::vector<string>& row_partition_type_strings, std::vector<RowPartitionType>* row_partition_types); template <typename ContextType> Status GetRowPartitionTypes( ContextType* context, std::vector<RowPartitionType>* row_partition_types) { std::vector<string> row_partition_type_strings; TF_RETURN_IF_ERROR( context->GetAttr("row_partition_types", &row_partition_type_strings)); return GetRowPartitionTypesHelper(row_partition_type_strings, row_partition_types); } Status GetRowPartitionTypesHelper( const std::vector<string>& row_partition_type_strings, std::vector<RowPartitionType>* row_partition_types); Status CombineRaggedTensorToTensorShapes(int ragged_rank, const TensorShapeProto& shape, const TensorShapeProto& value_shape, TensorShapeProto* output_shape); int GetRaggedRank(const std::vector<RowPartitionType>& row_partition_types); Status ValidateDefaultValueShape(const TensorShapeProto& default_value_shape, const TensorShapeProto& value_shape); } #endif #include "tensorflow/core/util/ragged_to_dense_util.h" #include <algorithm> #include <vector> #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" namespace tensorflow { using errors::InvalidArgument; tensorflow::Status GetRowPartitionTypesHelper( const std::vector<string>& row_partition_type_strings, std::vector<RowPartitionType>* row_partition_types) { *row_partition_types = GetRowPartitionTypesHelper(row_partition_type_strings); if (row_partition_types->size() != row_partition_type_strings.size()) { return InvalidArgument( "Unknown string for partition info type: ", row_partition_type_strings.at(row_partition_types->size())); } return absl::OkStatus(); } tensorflow::Status CombineRaggedTensorToTensorShapes( int ragged_rank, const TensorShapeProto& shape, const TensorShapeProto& value_shape, TensorShapeProto* output_shape) { if (value_shape.unknown_rank() && shape.unknown_rank()) { output_shape->Clear(); output_shape->set_unknown_rank(true); return absl::OkStatus(); } if (shape.unknown_rank()) { while (output_shape->dim_size() < ragged_rank + value_shape.dim_size()) { output_shape->add_dim()->set_size(-1); } } else { *output_shape = shape; } if (value_shape.unknown_rank()) { return absl::OkStatus(); } if (ragged_rank + value_shape.dim_size() != output_shape->dim_size()) { return InvalidArgument( "rt_input.shape and shape=", TensorShape::DebugString(shape), " are incompatible: rt_input.rank = ", ragged_rank + value_shape.dim_size(), " but shape.rank = ", output_shape->dim_size()); } for (int i = 1; i < value_shape.dim_size(); ++i) { const TensorShapeProto::Dim& value_dim = value_shape.dim(i); TensorShapeProto::Dim* output_shape_dim = output_shape->mutable_dim( output_shape->dim_size() - value_shape.dim_size() + i); if (value_dim.size() >= 0) { if (output_shape_dim->size() >= 0) { if (output_shape_dim->size() != value_dim.size()) { return InvalidArgument( "rt_input.shape and shape=", TensorShape::DebugString(shape), " are incompatible: rt_input.shape[", i + ragged_rank, "] = ", value_dim.size(), " but shape[", i + ragged_rank, "] = ", output_shape_dim->size()); } } else { output_shape_dim->set_size(value_dim.size()); } } } return absl::OkStatus(); } tensorflow::Status ValidateDefaultValueShape( const TensorShapeProto& default_value_shape, const TensorShapeProto& value_shape) { if (default_value_shape.unknown_rank() || value_shape.unknown_rank()) { return absl::OkStatus(); } int default_ndims = default_value_shape.dim_size(); int values_ndims = value_shape.dim_size(); if (default_ndims >= values_ndims) { return InvalidArgument( "default_value.shape=", TensorShape::DebugString(default_value_shape), " and rt_input.flat_values.shape=", TensorShape::DebugString(value_shape), " are incompatible: default_value.rank = ", default_ndims, " must be less than rt_input.flat_values.rank = ", values_ndims); } for (int i = 0; i < std::min(default_ndims, values_ndims - 1); ++i) { int default_dim = default_value_shape.dim(i).size(); int value_dim = value_shape.dim(i + 1).size(); if (default_dim >= 0 && value_dim >= 0 && default_dim != 1 && default_dim != value_dim) { return InvalidArgument( "default_value.shape=", TensorShape::DebugString(default_value_shape), " and rt_input.flat_values.shape=", TensorShape::DebugString(value_shape), " are incompatible: default_value.shape[", i - default_value_shape.dim_size(), "] = ", default_dim, " but rt_input.flat_values.shape[", i - default_value_shape.dim_size(), "] = ", value_dim); } } return absl::OkStatus(); } }
#include "tensorflow/core/util/ragged_to_dense_util.h" #include <vector> #include <gmock/gmock.h> #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(CombineRaggedTensorToTensorShapes, UnknownShapeUnknownValue) { TensorShapeProto shape_proto; shape_proto.set_unknown_rank(true); TensorShapeProto value_shape_proto; value_shape_proto.set_unknown_rank(true); int ragged_rank = 1; TensorShapeProto actual_output_shape_proto; TF_ASSERT_OK(CombineRaggedTensorToTensorShapes( ragged_rank, shape_proto, value_shape_proto, &actual_output_shape_proto)); EXPECT_EQ(true, actual_output_shape_proto.unknown_rank()); } TEST(CombineRaggedTensorToTensorShapes, UnknownShape) { TensorShapeProto shape_proto; shape_proto.set_unknown_rank(true); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(6); int ragged_rank = 1; TensorShapeProto actual_output_shape_proto; TF_ASSERT_OK(CombineRaggedTensorToTensorShapes( ragged_rank, shape_proto, value_shape_proto, &actual_output_shape_proto)); ASSERT_EQ(actual_output_shape_proto.dim_size(), 2); EXPECT_EQ(actual_output_shape_proto.dim(0).size(), -1); EXPECT_EQ(actual_output_shape_proto.dim(1).size(), -1); } TEST(CombineRaggedTensorToTensorShapes, UnknownShapeDenseValue) { TensorShapeProto shape_proto; shape_proto.set_unknown_rank(true); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(6); value_shape_proto.add_dim()->set_size(3); int ragged_rank = 1; TensorShapeProto actual_output_shape_proto; TF_ASSERT_OK(CombineRaggedTensorToTensorShapes( ragged_rank, shape_proto, value_shape_proto, &actual_output_shape_proto)); ASSERT_EQ(actual_output_shape_proto.dim_size(), 3); EXPECT_EQ(actual_output_shape_proto.dim(0).size(), -1); EXPECT_EQ(actual_output_shape_proto.dim(1).size(), -1); EXPECT_EQ(actual_output_shape_proto.dim(2).size(), 3); } TEST(GetRowPartitionTypesHelper, BasicTest) { const std::vector<string> row_partition_type_strings = { "FIRST_DIM_SIZE", "VALUE_ROWIDS", "ROW_SPLITS"}; std::vector<RowPartitionType> row_partition_types; TF_ASSERT_OK(GetRowPartitionTypesHelper(row_partition_type_strings, &row_partition_types)); EXPECT_THAT(row_partition_types, ::testing::ElementsAre(RowPartitionType::FIRST_DIM_SIZE, RowPartitionType::VALUE_ROWIDS, RowPartitionType::ROW_SPLITS)); } TEST(RowPartitionTypeToString, BasicTest) { EXPECT_EQ("FIRST_DIM_SIZE", RowPartitionTypeToString(RowPartitionType::FIRST_DIM_SIZE)); EXPECT_EQ("VALUE_ROWIDS", RowPartitionTypeToString(RowPartitionType::VALUE_ROWIDS)); EXPECT_EQ("ROW_SPLITS", RowPartitionTypeToString(RowPartitionType::ROW_SPLITS)); } TEST(ValidateDefaultValueShape, UnknownDefaultValueShape) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.set_unknown_rank(true); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(6); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, UnknownValueShape) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(5); TensorShapeProto value_shape_proto; value_shape_proto.set_unknown_rank(true); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, ScalarShape) { TensorShapeProto default_value_shape_proto; TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, TensorShapeEqual) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(2); default_value_shape_proto.add_dim()->set_size(3); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(2); value_shape_proto.add_dim()->set_size(3); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, TensorDimensionUnknown) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(-1); default_value_shape_proto.add_dim()->set_size(3); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(2); value_shape_proto.add_dim()->set_size(3); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, TensorDimensionUnknownForValue) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(2); default_value_shape_proto.add_dim()->set_size(3); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(-1); value_shape_proto.add_dim()->set_size(3); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, TensorDimensionFewDims) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(3); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(-1); value_shape_proto.add_dim()->set_size(3); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } TEST(ValidateDefaultValueShape, WrongNumberOfDimensions) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(-1); default_value_shape_proto.add_dim()->set_size(-1); default_value_shape_proto.add_dim()->set_size(-1); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(-1); value_shape_proto.add_dim()->set_size(-1); EXPECT_FALSE( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto) .ok()); } TEST(ValidateDefaultValueShape, WrongDimensionSize) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(3); default_value_shape_proto.add_dim()->set_size(-1); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(6); value_shape_proto.add_dim()->set_size(-1); EXPECT_FALSE( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto) .ok()); } TEST(ValidateDefaultValueShape, WrongDimensionSizeBut1) { TensorShapeProto default_value_shape_proto; default_value_shape_proto.add_dim()->set_size(3); default_value_shape_proto.add_dim()->set_size(1); TensorShapeProto value_shape_proto; value_shape_proto.add_dim()->set_size(5); value_shape_proto.add_dim()->set_size(3); value_shape_proto.add_dim()->set_size(7); TF_EXPECT_OK( ValidateDefaultValueShape(default_value_shape_proto, value_shape_proto)); } } }
1,717
cpp
tensorflow/tensorflow
autotune_serialize
tensorflow/core/util/autotune_maps/autotune_serialize.cc
tensorflow/core/util/autotune_maps/autotune_serialize_test.cc
#ifndef TENSORFLOW_CORE_UTIL_AUTOTUNE_MAPS_AUTOTUNE_SERIALIZE_H_ #define TENSORFLOW_CORE_UTIL_AUTOTUNE_MAPS_AUTOTUNE_SERIALIZE_H_ #include <string> #include "tensorflow/core/platform/status.h" namespace tensorflow { Status LoadSerializedAutotuneMaps(absl::string_view s); Status SerializeAutotuneMaps(std::string* output); void ResetAutotuneMaps(); } #endif #include "tensorflow/core/util/autotune_maps/autotune_serialize.h" #include <map> #include <string> #include <unordered_map> #include <vector> #include "xla/status_macros.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/platform_manager.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/util/activation_mode.h" #include "tensorflow/core/util/autotune_maps/autotune_map.pb.h" #include "tensorflow/core/util/autotune_maps/conv_autotune_maps.h" #include "tensorflow/core/util/autotune_maps/conv_parameters.h" #include "tensorflow/core/util/autotune_maps/conv_parameters.pb.h" #include "tsl/lib/strings/proto_serialization.h" #include "tsl/protobuf/dnn.pb.h" namespace tensorflow { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM namespace { using stream_executor::dnn::AlgorithmConfig; using stream_executor::dnn::AlgorithmConfigProto; using stream_executor::dnn::AlgorithmDesc; using stream_executor::dnn::AlgorithmProto; template <typename Op> StatusOr<ConvMapProto> ConvMapToProto( const AutotuneMap<ConvParameters, AutotuneEntry<Op>> &autotune_map) { ConvMapProto proto; std::map<string, ConvMapProto::Entry> sorted_map; for (auto const &p : autotune_map.GetMap()) { const ConvParameters &params = p.first; const ConvParametersProto &params_proto = params.proto(); VLOG(1) << "Reading: " << params.ToString(); ConvMapProto::Entry kv; *kv.mutable_key() = params_proto; if (p.second.is_algorithm_config()) { *kv.mutable_value() = p.second.GetAlgorithmConfig().ToProto(); } else { const auto &runners = p.second.GetOpRunners(); *kv.mutable_value()->mutable_algorithm() = runners.primary->ToAlgorithmDesc().ToProto(); if (runners.no_scratch_fallback) { *kv.mutable_value()->mutable_algorithm_no_scratch() = runners.no_scratch_fallback->ToAlgorithmDesc().ToProto(); } } std::string serialized_params; TF_RET_CHECK( tsl::SerializeToStringDeterministic(params_proto, &serialized_params)); sorted_map.insert(std::make_pair(std::move(serialized_params), kv)); } for (auto const &p : sorted_map) { ConvMapProto::Entry *kv = proto.add_kv_pairs(); *kv = p.second; } return proto; } template <typename Op> Status PopulateConvMap( const ConvMapProto &m, AutotuneMap<ConvParameters, AutotuneEntry<Op>> *autotune_map) { if (m.kv_pairs().size() == 0) { return OkStatus(); } TF_ASSIGN_OR_RETURN( se::Platform * platform, se::PlatformManager::PlatformWithName(se::GpuPlatformName())); std::vector<std::string> device_descs; for (int i = 0; i < platform->VisibleDeviceCount(); i++) { TF_ASSIGN_OR_RETURN(std::unique_ptr<se::DeviceDescription> device_desc, platform->DescriptionForDevice(i)); device_descs.push_back(device_desc->model_str()); } std::set<std::string> unmatched_device_descs; for (const ConvMapProto::Entry &kv : m.kv_pairs()) { const ConvParametersProto &params_proto = kv.key(); if (params_proto.version() != ConvParameters::kVersion) { VLOG(1) << "ConvParametersProto with the incompatible version:" << params_proto.DebugString(); return errors::Aborted( "Aborted because the loaded autotune results for convolution " "operations have a version different " "from runtime's version. Expected version: ", ConvParameters::kVersion, ". Actual version: ", params_proto.version()); } const AlgorithmConfigProto &algorithm_config_proto = kv.value(); const AlgorithmDesc primary(algorithm_config_proto.algorithm()); const absl::optional<AlgorithmDesc> fallback = algorithm_config_proto.has_algorithm_no_scratch() ? absl::optional<AlgorithmDesc>( AlgorithmDesc(algorithm_config_proto.algorithm_no_scratch())) : absl::nullopt; bool devices_matched = false; for (int ordinal = 0; ordinal < device_descs.size(); ordinal++) { const std::string &desc_str = device_descs[ordinal]; if (desc_str != params_proto.device_identifier()) { continue; } devices_matched = true; AutotuneEntry<Op> entry; #if TENSORFLOW_USE_ROCM entry = AutotuneEntry<Op>(AlgorithmConfig(algorithm_config_proto)); #else entry = AutotuneEntry<Op>(primary, fallback); #endif autotune_map->Insert(ConvParameters(ordinal, params_proto), entry); } if (!devices_matched) { unmatched_device_descs.insert(params_proto.device_identifier()); } } if (!unmatched_device_descs.empty()) { LOG(WARNING) << "Unmatched device id's from AoT autotuning data: " << str_util::Join(unmatched_device_descs, ", ") << "; existing devices: " << str_util::Join(device_descs, ", "); } return OkStatus(); } } #endif Status SerializeAutotuneMaps(std::string *output) { AutotuneMapsProto proto; #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM TF_ASSIGN_OR_RETURN(*proto.mutable_conv_map(), ConvMapToProto(*ConvAutotuneMap::GetInstance())); TF_ASSIGN_OR_RETURN(*proto.mutable_fused_conv_map(), ConvMapToProto(*FusedConvAutotuneMap::GetInstance())); #endif TF_RET_CHECK(tsl::SerializeToStringDeterministic(proto, output)); return absl::OkStatus(); } Status LoadSerializedAutotuneMaps(absl::string_view s) { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM AutotuneMapsProto proto; if (!proto.ParseFromString(string(s))) { return errors::InvalidArgument( "Failed to parse the autotune maps from string."); } TF_RETURN_IF_ERROR( PopulateConvMap(proto.conv_map(), ConvAutotuneMap::GetInstance())); TF_RETURN_IF_ERROR(PopulateConvMap(proto.fused_conv_map(), FusedConvAutotuneMap::GetInstance())); #endif return absl::OkStatus(); } void ResetAutotuneMaps() { #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM ConvAutotuneMap::GetInstance()->ClearMap(); FusedConvAutotuneMap::GetInstance()->ClearMap(); #endif } }
#include "xla/stream_executor/platform_manager.h" #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "tensorflow/core/util/autotune_maps/autotune_serialize.h" #include "xla/stream_executor/gpu/gpu_driver.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/autotune_maps/conv_autotune_maps.h" #include "tensorflow/core/util/autotune_maps/conv_parameters.h" #include "tensorflow/core/util/autotune_maps/conv_parameters.pb.h" #include "tensorflow/core/util/tensor_format.h" namespace tensorflow { namespace { using stream_executor::dnn::AlgorithmConfig; using stream_executor::dnn::AlgorithmDesc; using stream_executor::gpu::GpuDriver; using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; se::StreamExecutor* GetStreamExec() { se::Platform* platform = se::PlatformManager::PlatformWithName(se::GpuPlatformName()).value(); CHECK_GT(platform->VisibleDeviceCount(), 0); return platform->ExecutorForDevice(0).value(); } TEST(AutotuneSerializeTest, Empty) { TF_CHECK_OK(GpuDriver::Init()); ResetAutotuneMaps(); std::string output; TF_CHECK_OK(SerializeAutotuneMaps(&output)); TF_CHECK_OK(LoadSerializedAutotuneMaps(output)); EXPECT_EQ(ConvAutotuneMap::GetInstance()->GetMap().size(), 0); } TEST(AutotuneSerializeTest, Consistency) { TF_CHECK_OK(GpuDriver::Init()); ResetAutotuneMaps(); ConvParameters conv_params_example_a = { GetStreamExec(), 1, 1, {{1, 1}}, TensorFormat::FORMAT_NCHW, 1, {{1, 1}}, {{1, 1}}, {{1, 1}}, {{1, 1}}, DataType::DT_INT8, 1}; ConvParameters fused_params_example_a = { GetStreamExec(), 1, 1, {{1, 1}}, TensorFormat::FORMAT_NCHW, 1, {{1, 1}}, {{1, 1}}, {{1, 1}}, {{1, 1}}, DataType::DT_INT8, 1, ConvParameters::FusionInfo{1.0, 0., 0., se::dnn::ActivationMode::kNone, false}, }; ConvParameters contrib_fused_params_example_a = { GetStreamExec(), 1, 1, {{1, 1}}, TensorFormat::FORMAT_NCHW, 1, {{1, 1}}, {{1, 1}}, {{1, 1}}, {{1, 1}}, DataType::DT_INT8, 1, ConvParameters::FusionInfo{1.0, 0., 0., se::dnn::ActivationMode::kRelu, true}}; AlgorithmDesc algorithm(1, true); AlgorithmDesc algorithm_no_scratch(1, true); AutotuneEntry<se::dnn::ConvOp> example_a(algorithm, algorithm_no_scratch); ConvAutotuneMap::GetInstance()->Insert(conv_params_example_a, example_a); ConvAutotuneMap::GetInstance()->Insert(fused_params_example_a, example_a); ConvAutotuneMap::GetInstance()->Insert(contrib_fused_params_example_a, example_a); std::string serialized_string; TF_CHECK_OK(SerializeAutotuneMaps(&serialized_string)); ResetAutotuneMaps(); TF_CHECK_OK(LoadSerializedAutotuneMaps(serialized_string)); EXPECT_EQ(ConvAutotuneMap::GetInstance()->GetMap().size(), 3); AutotuneEntry<se::dnn::ConvOp> entry; EXPECT_TRUE( ConvAutotuneMap::GetInstance()->Find(conv_params_example_a, &entry)); EXPECT_EQ(entry, example_a); EXPECT_TRUE( ConvAutotuneMap::GetInstance()->Find(fused_params_example_a, &entry)); EXPECT_EQ(entry, example_a); EXPECT_TRUE(ConvAutotuneMap::GetInstance()->Find( contrib_fused_params_example_a, &entry)); EXPECT_EQ(entry, example_a); } TEST(AutotuneSerializeTest, VersionControl) { TF_CHECK_OK(GpuDriver::Init()); ResetAutotuneMaps(); ConvParameters fused_params_example_a = { GetStreamExec(), 1, 1, {{1, 1}}, TensorFormat::FORMAT_NCHW, 1, {{1, 1}}, {{1, 1}}, {{1, 1}}, {{1, 1}}, DataType::DT_INT8, 1, ConvParameters::FusionInfo{1.0, 0., 0., se::dnn::ActivationMode::kNone, false}, ConvParameters::kVersion - 1}; AlgorithmDesc algorithm(1, true); AlgorithmDesc algorithm_no_scratch(1, true); AlgorithmConfig algorithm_config_example_a(algorithm, 1, algorithm_no_scratch); ConvAutotuneMap::GetInstance()->Insert( fused_params_example_a, AutotuneEntry<se::dnn::ConvOp>(algorithm_config_example_a)); std::string serialized_string; TF_CHECK_OK(SerializeAutotuneMaps(&serialized_string)); ResetAutotuneMaps(); EXPECT_THAT( LoadSerializedAutotuneMaps(serialized_string), StatusIs(error::ABORTED, HasSubstr("Aborted because the loaded autotune results"))); EXPECT_EQ(ConvAutotuneMap::GetInstance()->GetMap().size(), 0); } } } #endif
1,718
cpp
tensorflow/tensorflow
descriptor_pool_registry
tensorflow/core/util/proto/descriptor_pool_registry.cc
tensorflow/core/util/proto/descriptor_pool_registry_test.cc
#ifndef TENSORFLOW_CORE_UTIL_PROTO_DESCRIPTOR_POOL_REGISTRY_H_ #define TENSORFLOW_CORE_UTIL_PROTO_DESCRIPTOR_POOL_REGISTRY_H_ #include <functional> #include <memory> #include <string> #include <unordered_map> #include <utility> #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { class DescriptorPoolRegistry { public: typedef std::function<Status( tensorflow::protobuf::DescriptorPool const** desc_pool, std::unique_ptr<tensorflow::protobuf::DescriptorPool>* owned_desc_pool)> DescriptorPoolFn; static DescriptorPoolRegistry* Global(); DescriptorPoolFn* Get(const string& source); void Register(const string& source, const DescriptorPoolFn& pool_fn); private: std::map<string, DescriptorPoolFn> fns_; }; namespace descriptor_pool_registration { class DescriptorPoolRegistration { public: DescriptorPoolRegistration( const string& source, const DescriptorPoolRegistry::DescriptorPoolFn& pool_fn) { DescriptorPoolRegistry::Global()->Register(source, pool_fn); } }; } #define REGISTER_DESCRIPTOR_POOL(source, pool_fn) \ REGISTER_DESCRIPTOR_POOL_UNIQ_HELPER(__COUNTER__, source, pool_fn) #define REGISTER_DESCRIPTOR_POOL_UNIQ_HELPER(ctr, source, pool_fn) \ REGISTER_DESCRIPTOR_POOL_UNIQ(ctr, source, pool_fn) #define REGISTER_DESCRIPTOR_POOL_UNIQ(ctr, source, pool_fn) \ static descriptor_pool_registration::DescriptorPoolRegistration \ descriptor_pool_registration_fn_##ctr(source, pool_fn) } #endif #include <string> #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/proto/descriptor_pool_registry.h" namespace tensorflow { DescriptorPoolRegistry* DescriptorPoolRegistry::Global() { static DescriptorPoolRegistry* registry = new DescriptorPoolRegistry; return registry; } DescriptorPoolRegistry::DescriptorPoolFn* DescriptorPoolRegistry::Get( const string& source) { auto found = fns_.find(source); if (found == fns_.end()) return nullptr; return &found->second; } void DescriptorPoolRegistry::Register( const string& source, const DescriptorPoolRegistry::DescriptorPoolFn& pool_fn) { auto existing = Get(source); CHECK_EQ(existing, nullptr) << "descriptor pool for source: " << source << " already registered"; fns_.insert(std::pair<const string&, DescriptorPoolFn>(source, pool_fn)); } }
#include "tensorflow/core/util/proto/descriptor_pool_registry.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { struct Value { static Status Function( tensorflow::protobuf::DescriptorPool const** desc_pool, std::unique_ptr<tensorflow::protobuf::DescriptorPool>* owned_desc_pool) { return absl::OkStatus(); } }; REGISTER_DESCRIPTOR_POOL("TEST POOL 1", Value::Function); REGISTER_DESCRIPTOR_POOL("TEST POOL 2", Value::Function); } TEST(DescriptorPoolRegistryTest, TestBasic) { EXPECT_EQ(DescriptorPoolRegistry::Global()->Get("NON-EXISTENT"), nullptr); auto pool1 = DescriptorPoolRegistry::Global()->Get("TEST POOL 1"); EXPECT_NE(pool1, nullptr); auto pool2 = DescriptorPoolRegistry::Global()->Get("TEST POOL 2"); EXPECT_NE(pool2, nullptr); } }
1,719
cpp
tensorflow/tensorflow
proto_utils
tensorflow/core/util/proto/proto_utils.cc
tensorflow/core/util/proto/proto_utils_test.cc
#ifndef XLA_TSL_UTIL_PROTO_PROTO_UTILS_H_ #define XLA_TSL_UTIL_PROTO_PROTO_UTILS_H_ #include "google/protobuf/duration.pb.h" #include "absl/time/time.h" namespace tsl { namespace proto_utils { inline google::protobuf::Duration ToDurationProto(absl::Duration duration) { google::protobuf::Duration proto; proto.set_seconds(absl::IDivDuration(duration, absl::Seconds(1), &duration)); proto.set_nanos( absl::IDivDuration(duration, absl::Nanoseconds(1), &duration)); return proto; } inline absl::Duration FromDurationProto(google::protobuf::Duration proto) { return absl::Seconds(proto.seconds()) + absl::Nanoseconds(proto.nanos()); } } } #endif #include "tensorflow/core/util/proto/proto_utils.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace proto_utils { using tensorflow::protobuf::FieldDescriptor; using tensorflow::protobuf::internal::WireFormatLite; bool IsCompatibleType(FieldDescriptor::Type field_type, DataType dtype) { switch (field_type) { case WireFormatLite::TYPE_DOUBLE: return dtype == tensorflow::DT_DOUBLE; case WireFormatLite::TYPE_FLOAT: return dtype == tensorflow::DT_FLOAT || dtype == tensorflow::DT_DOUBLE; case WireFormatLite::TYPE_INT64: return dtype == tensorflow::DT_INT64; case WireFormatLite::TYPE_UINT64: return dtype == tensorflow::DT_UINT64; case WireFormatLite::TYPE_INT32: return dtype == tensorflow::DT_INT32 || dtype == tensorflow::DT_INT64; case WireFormatLite::TYPE_FIXED64: return dtype == tensorflow::DT_UINT64; case WireFormatLite::TYPE_FIXED32: return dtype == tensorflow::DT_UINT32 || dtype == tensorflow::DT_UINT64; case WireFormatLite::TYPE_BOOL: return dtype == tensorflow::DT_BOOL; case WireFormatLite::TYPE_STRING: return dtype == tensorflow::DT_STRING; case WireFormatLite::TYPE_GROUP: return dtype == tensorflow::DT_STRING; case WireFormatLite::TYPE_MESSAGE: return dtype == tensorflow::DT_STRING; case WireFormatLite::TYPE_BYTES: return dtype == tensorflow::DT_STRING; case WireFormatLite::TYPE_UINT32: return dtype == tensorflow::DT_UINT32 || dtype == tensorflow::DT_UINT64; case WireFormatLite::TYPE_ENUM: return dtype == tensorflow::DT_INT32; case WireFormatLite::TYPE_SFIXED32: return dtype == tensorflow::DT_INT32 || dtype == tensorflow::DT_INT64; case WireFormatLite::TYPE_SFIXED64: return dtype == tensorflow::DT_INT64; case WireFormatLite::TYPE_SINT32: return dtype == tensorflow::DT_INT32 || dtype == tensorflow::DT_INT64; case WireFormatLite::TYPE_SINT64: return dtype == tensorflow::DT_INT64; } } Status ParseTextFormatFromString(absl::string_view input, protobuf::Message* output) { DCHECK(output != nullptr) << "output must be non NULL"; if (output == nullptr) { LOG(ERROR) << "output must be non NULL"; return Status(absl::StatusCode::kInvalidArgument, "output must be non NULL"); } string err; StringErrorCollector err_collector(&err, true); protobuf::TextFormat::Parser parser; parser.RecordErrorsTo(&err_collector); if (!parser.ParseFromString(string(input), output)) { return Status(absl::StatusCode::kInvalidArgument, err); } return absl::OkStatus(); } StringErrorCollector::StringErrorCollector(string* error_text) : StringErrorCollector(error_text, false) {} StringErrorCollector::StringErrorCollector(string* error_text, bool one_indexing) : error_text_(error_text), index_offset_(one_indexing ? 1 : 0) { DCHECK(error_text_ != nullptr) << "error_text must be non NULL"; if (error_text_ == nullptr) { LOG(ERROR) << "error_text must be non NULL"; } } void StringErrorCollector::AddError(int line, int column, const string& message) { if (error_text_ != nullptr) { absl::SubstituteAndAppend(error_text_, "$0($1): $2\n", line + index_offset_, column + index_offset_, message); } } void StringErrorCollector::AddWarning(int line, int column, const string& message) { AddError(line, column, message); } } }
#include "tensorflow/core/util/proto/proto_utils.h" #include <gmock/gmock.h> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { using proto_utils::ParseTextFormatFromString; using proto_utils::StringErrorCollector; using ::testing::ContainsRegex; TEST(ParseTextFormatFromStringTest, Success) { protobuf::DescriptorProto output; TF_ASSERT_OK(ParseTextFormatFromString("name: \"foo\"", &output)); EXPECT_EQ(output.name(), "foo"); } TEST(ParseTextFormatFromStringTest, ErrorOnInvalidSyntax) { protobuf::DescriptorProto output; Status status = ParseTextFormatFromString("name: foo", &output); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); EXPECT_THAT(status.message(), ContainsRegex("foo")); EXPECT_FALSE(output.has_name()); } TEST(ParseTextFormatFromStringTest, ErrorOnUnknownFieldName) { protobuf::DescriptorProto output; Status status = ParseTextFormatFromString("badname: \"foo\"", &output); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); EXPECT_THAT(status.message(), ContainsRegex("badname")); EXPECT_FALSE(output.has_name()); } TEST(ParseTextFormatFromStringTest, DiesOnNullOutputPointer) { #ifndef NDEBUG ASSERT_DEATH(ParseTextFormatFromString("foo", nullptr).IgnoreError(), "output.*non NULL"); #else Status status = ParseTextFormatFromString("foo", nullptr); EXPECT_EQ(status.code(), error::INVALID_ARGUMENT); EXPECT_THAT(status.message(), ContainsRegex("output.*non NULL")); #endif } TEST(StringErrorCollectorTest, AppendsError) { string err; StringErrorCollector collector(&err); collector.AddError(1, 2, "foo"); EXPECT_EQ("1(2): foo\n", err); } TEST(StringErrorCollectorTest, AppendsWarning) { string err; StringErrorCollector collector(&err); collector.AddWarning(1, 2, "foo"); EXPECT_EQ("1(2): foo\n", err); } TEST(StringErrorCollectorTest, AppendsMultipleError) { string err; StringErrorCollector collector(&err); collector.AddError(1, 2, "foo"); collector.AddError(3, 4, "bar"); EXPECT_EQ("1(2): foo\n3(4): bar\n", err); } TEST(StringErrorCollectorTest, AppendsMultipleWarning) { string err; StringErrorCollector collector(&err); collector.AddWarning(1, 2, "foo"); collector.AddWarning(3, 4, "bar"); EXPECT_EQ("1(2): foo\n3(4): bar\n", err); } TEST(StringErrorCollectorTest, OffsetWorks) { string err; StringErrorCollector collector(&err, true); collector.AddError(1, 2, "foo"); collector.AddWarning(3, 4, "bar"); EXPECT_EQ("2(3): foo\n4(5): bar\n", err); } TEST(StringErrorCollectorTest, DiesOnNullErrorText) { #ifndef NDEBUG ASSERT_DEATH(StringErrorCollector(nullptr), "error_text.*non NULL"); #else StringErrorCollector collector(nullptr); collector.AddError(1, 2, "foo"); collector.AddWarning(3, 4, "bar"); #endif } }
1,720
cpp
tensorflow/tensorflow
tensor_bundle
tensorflow/core/util/tensor_bundle/tensor_bundle.cc
tensorflow/core/util/tensor_bundle/tensor_bundle_test.cc
#ifndef TENSORFLOW_CORE_UTIL_TENSOR_BUNDLE_TENSOR_BUNDLE_H_ #define TENSORFLOW_CORE_UTIL_TENSOR_BUNDLE_TENSOR_BUNDLE_H_ #include <cstdint> #include <map> #include <memory> #include <string> #include <unordered_map> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/function_ref.h" #include "absl/strings/string_view.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_slice.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/lib/io/cache.h" #include "tensorflow/core/lib/io/inputbuffer.h" #include "tensorflow/core/lib/io/iterator.h" #include "tensorflow/core/lib/io/table.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/protobuf/tensor_bundle.pb.h" #include "tensorflow/core/util/tensor_slice_set.h" #include "tsl/lib/io/buffered_file.h" #include "tsl/platform/errors.h" namespace tensorflow { extern const int kTensorBundleMinProducer; extern const int kTensorBundleMinConsumer; extern const int kTensorBundleVersion; extern const char* const kHeaderEntryKey; class BundleWriter { public: struct Options { Options() {} int data_alignment{1}; }; BundleWriter(Env* env, absl::string_view prefix, const Options& options = Options()); Status Add(absl::string_view key, const Tensor& val); Status AddSlice(absl::string_view full_tensor_key, const TensorShape& full_tensor_shape, const TensorSlice& slice_spec, const Tensor& slice_tensor); Status Finish() TF_MUST_USE_RESULT; Status status() const { return status_; } private: Env* const env_; const Options options_; const std::string prefix_; std::string metadata_path_; std::string data_path_; bool use_temp_file_; std::unique_ptr<tsl::BufferedWritableFile> out_; int64_t size_; std::map<std::string, BundleEntryProto> entries_; Status status_; BundleWriter(const BundleWriter&) = delete; void operator=(const BundleWriter&) = delete; }; Status MergeBundles(Env* env, absl::Span<const tstring> prefixes, absl::string_view merged_prefix, bool allow_missing_files = false); class BundleCache; class BundleReader { public: BundleReader(Env* const env, absl::string_view prefix, bool enable_multi_threading_for_testing = false); struct Options { BundleCache* cache = nullptr; bool enable_multi_threading_for_testing = false; }; BundleReader(Env* env, absl::string_view prefix, Options options); ~BundleReader(); Status status() const { return status_; } bool Contains(absl::string_view key); template <class T> Status SortForSequentialAccess( std::vector<T>& container, absl::FunctionRef<std::string(const T&)> get_key); Status LookupDtypeAndShape(absl::string_view key, DataType* dtype, TensorShape* shape) TF_MUST_USE_RESULT; Status LookupTensorShape(absl::string_view key, TensorShape* shape) TF_MUST_USE_RESULT; Status Lookup(absl::string_view key, Tensor* val) TF_MUST_USE_RESULT; Status ReadCurrent(Tensor* val) TF_MUST_USE_RESULT; Status LookupTensorSlices(absl::string_view key, std::vector<TensorSlice>* slices) TF_MUST_USE_RESULT; Status LookupSlice(absl::string_view full_tensor_key, const TensorSlice& slice_spec, Tensor* val) TF_MUST_USE_RESULT; void Seek(absl::string_view key) { return iter_->Seek(key); } void Next() const { iter_->Next(); } bool Valid() const { return iter_->Valid(); } absl::string_view key() const { return iter_->key(); } absl::string_view value() const { return iter_->value(); } std::string DebugString(); private: Status GetBundleEntryProto(absl::string_view key, BundleEntryProto* entry) TF_MUST_USE_RESULT; Status GetValue(const BundleEntryProto& entry, Tensor* val) TF_MUST_USE_RESULT; Status GetSliceValue(absl::string_view full_tensor_key, const BundleEntryProto& full_tensor_entry, const TensorSlice& slice_spec, Tensor* val) TF_MUST_USE_RESULT; Env* env_; const std::string prefix_; std::unique_ptr<BundleCache> owned_cache_; BundleCache* cache_; Status status_; RandomAccessFile* metadata_; table::Table* table_; table::Cache* index_cache_; table::Iterator* iter_; std::unordered_map<int32_t, io::InputBuffer*> data_; std::unordered_map<std::string, checkpoint::TensorSliceSet*> tensor_slices_; int num_shards_; bool need_to_swap_bytes_; friend class TensorBundleAlignmentTest; bool enable_multi_threading_for_testing_ = false; BundleReader(const BundleReader&) = delete; void operator=(const BundleReader&) = delete; }; template <class T> Status BundleReader::SortForSequentialAccess( std::vector<T>& container, absl::FunctionRef<std::string(const T&)> get_key) { struct FileOffset { int32_t shard_id; int64_t offset; }; absl::flat_hash_map<std::string, FileOffset> file_offsets; for (const T& element : container) { BundleEntryProto entry; TF_RETURN_IF_ERROR(GetBundleEntryProto(get_key(element), &entry)); file_offsets[get_key(element)] = {entry.shard_id(), entry.offset()}; } absl::c_sort(container, [&get_key, &file_offsets](const T& a, const T& b) { const FileOffset& file_offset_a = file_offsets[get_key(a)]; const FileOffset& file_offset_b = file_offsets[get_key(b)]; if (file_offset_a.shard_id == file_offset_b.shard_id) { return file_offset_a.offset < file_offset_b.offset; } else { return file_offset_a.shard_id < file_offset_b.shard_id; } }); return absl::OkStatus(); } class BundleCache { public: explicit BundleCache(Env* env); Status GetFile(const std::string& fname, RandomAccessFile** file); private: struct FileState { absl::once_flag once; std::unique_ptr<RandomAccessFile> file; Status open_status; }; FileState* EnsureOpened(std::string name); Env* const env_; absl::Mutex mu_; absl::flat_hash_map<std::string, std::unique_ptr<FileState>> opened_files_ TF_GUARDED_BY(mu_); }; } #endif #include "tensorflow/core/util/tensor_bundle/tensor_bundle.h" #include <cstdlib> #include <cstring> #include <memory> #include <utility> #include "absl/base/call_once.h" #include "absl/synchronization/mutex.h" #include "xla/tsl/util/byte_swap_array.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/framework/versions.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/coding.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/hash/crc32c.h" #include "tensorflow/core/lib/io/table_builder.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/bfloat16.h" #include "tensorflow/core/platform/cord.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/stringprintf.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/util/env_var.h" #include "tensorflow/core/util/saved_tensor_slice_util.h" #include "tensorflow/core/util/tensor_bundle/byte_swap_tensor.h" #include "tensorflow/core/util/tensor_bundle/naming.h" #include "tensorflow/core/util/tensor_slice_util.h" #include "tsl/lib/io/buffered_file.h" #ifdef PLATFORM_WINDOWS #undef DeleteFile #endif namespace tensorflow { const int kTensorBundleMinProducer = 0; const int kTensorBundleMinConsumer = 0; const int kTensorBundleVersion = 1; static const int kBufferSize = 1024 * 1024; const char* const kHeaderEntryKey = ""; const int64_t kLargeTensorThreshold = static_cast<int64_t>(1) << 32; const int kMaxFileReadThreads = 8; const int64_t kMinSectionSize = static_cast<int64_t>(1) << 31; namespace { Status ReadStringTensor(io::InputBuffer* buffered_file, size_t num_elements, size_t offset, size_t size, tstring* destination, uint32* actual_crc32c, bool need_to_swap_bytes) { if (size == 0) return absl::OkStatus(); CHECK_GT(size, 0); TF_RETURN_IF_ERROR(buffered_file->Seek(offset)); TF_RETURN_IF_ERROR(buffered_file->Hint(size)); std::vector<uint64> string_lengths(num_elements); for (size_t i = 0; i < num_elements; ++i) { TF_RETURN_IF_ERROR(buffered_file->ReadVarint64(&string_lengths[i])); if (string_lengths[i] <= UINT32_MAX) { uint32 elem_size_uint32 = static_cast<uint32>(string_lengths[i]); if (need_to_swap_bytes) { elem_size_uint32 = BYTE_SWAP_32(elem_size_uint32); } *actual_crc32c = crc32c::Extend( *actual_crc32c, reinterpret_cast<const char*>(&elem_size_uint32), sizeof(uint32)); } else { uint64 length = string_lengths[i]; if (need_to_swap_bytes) { length = BYTE_SWAP_64(length); } *actual_crc32c = crc32c::Extend(*actual_crc32c, reinterpret_cast<const char*>(&length), sizeof(uint64)); } } if (offset + size < buffered_file->Tell()) { return errors::DataLoss("String lengths longer than expected offset ", offset + size); } uint32 raw_length_checksum = 0; uint32 length_checksum = 0; size_t unused_bytes_read = 0; TF_RETURN_IF_ERROR(buffered_file->ReadNBytes( sizeof(uint32), reinterpret_cast<char*>(&raw_length_checksum), &unused_bytes_read)); length_checksum = need_to_swap_bytes ? BYTE_SWAP_32(raw_length_checksum) : raw_length_checksum; if (crc32c::Unmask(length_checksum) != *actual_crc32c) { return errors::DataLoss( "The length checksum does not match: expected ", strings::Printf("%08u", crc32c::Unmask(length_checksum)), " but actual is ", strings::Printf("%08u", *actual_crc32c)); } *actual_crc32c = crc32c::Extend(*actual_crc32c, reinterpret_cast<char*>(&raw_length_checksum), sizeof(uint32)); for (size_t i = 0; i < num_elements; ++i) { const uint64 string_length = string_lengths[i]; tstring* buffer = &destination[i]; buffer->resize(string_length); size_t bytes_read = 0; TF_RETURN_IF_ERROR( buffered_file->ReadNBytes(string_length, &(*buffer)[0], &bytes_read)); *actual_crc32c = crc32c::Extend(*actual_crc32c, buffer->data(), bytes_read); } return absl::OkStatus(); } Status ReadVariantTensor(io::InputBuffer* buffered_file, Tensor* ret, size_t offset, size_t size, uint32* actual_crc32c) { if (size == 0) return absl::OkStatus(); size_t num_elements = ret->NumElements(); TF_RETURN_IF_ERROR(buffered_file->Seek(offset)); TF_RETURN_IF_ERROR(buffered_file->Hint(size)); for (size_t i = 0; i < num_elements; ++i) { uint64 string_length = 0; TF_RETURN_IF_ERROR(buffered_file->ReadVarint64(&string_length)); *actual_crc32c = crc32c::Extend( *actual_crc32c, reinterpret_cast<const char*>(&string_length), sizeof(uint64)); string buffer; buffer.resize(string_length); size_t bytes_read = 0; TF_RETURN_IF_ERROR( buffered_file->ReadNBytes(string_length, &buffer[0], &bytes_read)); *actual_crc32c = crc32c::Extend(*actual_crc32c, buffer.data(), bytes_read); VariantTensorDataProto proto; if (!proto.ParseFromString(buffer)) { return errors::DataLoss("Unable to parse VariantTensorDataProto from ", "buffer of size ", string_length, ". ", "Bundle entry offset: ", offset, " size: ", size); } Variant v = proto; if (!DecodeUnaryVariant(&v)) { return errors::Internal("Could not decode variant with type_name: \"", v.TypeName(), "\". Perhaps you forgot to ", "register a decoder via ", "REGISTER_UNARY_VARIANT_DECODE_FUNCTION?"); } uint32 checksum = 0; size_t unused_bytes_read = 0; TF_RETURN_IF_ERROR(buffered_file->ReadNBytes( sizeof(uint32), reinterpret_cast<char*>(&checksum), &unused_bytes_read)); if (crc32c::Unmask(checksum) != *actual_crc32c) { return errors::DataLoss( "The checksum after Variant ", i, " does not match.", " Expected: ", strings::Printf("%08u", crc32c::Unmask(checksum)), " Actual: ", strings::Printf("%08u", *actual_crc32c)); } *actual_crc32c = crc32c::Extend( *actual_crc32c, reinterpret_cast<char*>(&checksum), sizeof(uint32)); ret->flat<Variant>()(i) = std::move(v); } return absl::OkStatus(); } char* GetBackingBuffer(const Tensor& val) { CHECK(DataTypeCanUseMemcpy(val.dtype())) << val.dtype(); return const_cast<char*>(val.tensor_data().data()); } tstring* GetStringBackingBuffer(const Tensor& val) { CHECK_EQ(DT_STRING, val.dtype()); return const_cast<tstring*>(val.flat<tstring>().data()); } Status ParseEntryProto(StringPiece key, StringPiece value, protobuf::MessageLite* out) { if (!out->ParseFromArray(value.data(), value.size())) { return errors::DataLoss("Entry for key ", key, " not parseable."); } return absl::OkStatus(); } Status WriteTensor(const Tensor& val, tsl::BufferedWritableFile* out, size_t* bytes_written) { DCHECK_NE(val.dtype(), DT_STRING); DCHECK_NE(val.dtype(), DT_VARIANT); *bytes_written = val.TotalBytes(); char* buf = GetBackingBuffer(val); VLOG(1) << "Appending " << *bytes_written << " bytes to file"; return out->Append(StringPiece(buf, *bytes_written)); } Status WriteStringTensor(const Tensor& val, tsl::BufferedWritableFile* out, size_t* bytes_written, uint32* crc32c) { DCHECK_EQ(val.dtype(), DT_STRING); const tstring* strings = GetStringBackingBuffer(val); string lengths; lengths.reserve(val.NumElements()); *crc32c = 0; for (int64_t i = 0; i < val.NumElements(); ++i) { const tstring* elem = &strings[i]; DCHECK_EQ(elem->size(), static_cast<uint64>(elem->size())); const uint64 elem_size = static_cast<uint64>(elem->size()); core::PutVarint64(&lengths, elem_size); if (elem_size <= UINT32_MAX) { const uint32 elem_size_uint32 = static_cast<uint32>(elem_size); *crc32c = crc32c::Extend(*crc32c, reinterpret_cast<const char*>(&elem_size_uint32), sizeof(uint32)); } else { *crc32c = crc32c::Extend( *crc32c, reinterpret_cast<const char*>(&elem_size), sizeof(uint64)); } } TF_RETURN_IF_ERROR(out->Append(lengths)); *bytes_written = lengths.size(); const uint32 length_checksum = crc32c::Mask(*crc32c); TF_RETURN_IF_ERROR(out->Append(StringPiece( reinterpret_cast<const char*>(&length_checksum), sizeof(uint32)))); *crc32c = crc32c::Extend( *crc32c, reinterpret_cast<const char*>(&length_checksum), sizeof(uint32)); *bytes_written += sizeof(uint32); for (int64_t i = 0; i < val.NumElements(); ++i) { const tstring* string = &strings[i]; TF_RETURN_IF_ERROR(out->Append(*string)); *bytes_written += string->size(); *crc32c = crc32c::Extend(*crc32c, string->data(), string->size()); } return absl::OkStatus(); } Status WriteVariantTensor(const Tensor& val, tsl::BufferedWritableFile* out, size_t* bytes_written, uint32* crc32c) { DCHECK_EQ(val.dtype(), DT_VARIANT); *crc32c = 0; *bytes_written = 0; for (int64_t i = 0; i < val.NumElements(); ++i) { VariantTensorData data; val.flat<Variant>()(i).Encode(&data); VariantTensorDataProto proto; data.ToProto(&proto); string elem; if (!proto.SerializeToString(&elem)) { return errors::Unknown( "Failed to serialize tensor data of size ", proto.ByteSizeLong(), ". Tensor: ", val.flat<Variant>()(i).DebugString()); } DCHECK_EQ(elem.size(), static_cast<uint64>(elem.size())); const auto elem_size = static_cast<uint64>(elem.size()); string len; core::PutVarint64(&len, elem_size); TF_RETURN_IF_ERROR(out->Append(len)); *crc32c = crc32c::Extend(*crc32c, reinterpret_cast<const char*>(&elem_size), sizeof(uint64)); *bytes_written += len.size(); TF_RETURN_IF_ERROR(out->Append(elem)); *crc32c = crc32c::Extend(*crc32c, elem.data(), elem.size()); *bytes_written += elem.size(); const uint32 length_checksum = crc32c::Mask(*crc32c); TF_RETURN_IF_ERROR(out->Append(StringPiece( reinterpret_cast<const char*>(&length_checksum), sizeof(uint32)))); *crc32c = crc32c::Extend(*crc32c, reinterpret_cast<const char*>(&length_checksum), sizeof(uint32)); *bytes_written += sizeof(uint32); } return absl::OkStatus(); } bool IsFullSlice(const TensorSlice& slice_spec, const TensorShape& full_tensor_shape) { if (slice_spec.IsFull()) { return true; } else { TensorShape sliced_shape; slice_spec.SliceTensorShape(full_tensor_shape, &sliced_shape).IgnoreError(); return sliced_shape == full_tensor_shape; } } Status CorruptFileError(const Status& in_status, const string& filename, const string& detail) { if (in_status.ok()) { return errors::Internal("Unable to read file (", filename, "). Perhaps the file is corrupt or was produced by " "a newer version of TensorFlow with format changes " "(", detail, ")"); } return Status( in_status.code(), strings::StrCat("Unable to read file (", filename, "). Perhaps the file is corrupt or was produced by a
#include "tensorflow/core/util/tensor_bundle/tensor_bundle.h" #include <random> #include <string> #include <vector> #if defined(_WIN32) #include <windows.h> #endif #include "absl/status/status.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/io/table_builder.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/tensor_bundle.pb.h" #include "tensorflow/core/util/tensor_bundle/byte_swap_tensor.h" #include "tensorflow/core/util/tensor_bundle/naming.h" #include "tsl/platform/errors.h" namespace tensorflow { using ::testing::ElementsAre; namespace { string Prefix(const string& prefix) { return strings::StrCat(testing::TmpDir(), "/", prefix); } string TestdataPrefix(const string& prefix) { return strings::StrCat(testing::TensorFlowSrcRoot(), "/core/util/tensor_bundle/testdata/", prefix); } template <typename T> Tensor Constant(T v, TensorShape shape) { Tensor ret(DataTypeToEnum<T>::value, shape); ret.flat<T>().setConstant(v); return ret; } template <typename T> Tensor Constant_2x3(T v) { return Constant(v, TensorShape({2, 3})); } template <typename T> Tensor Constant_100x100(T v) { return Constant(v, TensorShape({100, 100})); } Tensor ByteSwap(Tensor t) { Tensor ret = tensor::DeepCopy(t); TF_EXPECT_OK(ByteSwapTensor(&ret)); return ret; } template <typename T> void Expect(BundleReader* reader, const string& key, const Tensor& expected_val) { EXPECT_TRUE(reader->Contains(key)); DataType dtype; TensorShape shape; TF_ASSERT_OK(reader->LookupDtypeAndShape(key, &dtype, &shape)); EXPECT_EQ(expected_val.dtype(), dtype); EXPECT_EQ(expected_val.shape(), shape); Tensor val(expected_val.dtype(), shape); TF_ASSERT_OK(reader->Lookup(key, &val)); test::ExpectTensorEqual<T>(val, expected_val); } template <class T> void ExpectVariant(BundleReader* reader, const string& key, const Tensor& expected_t) { EXPECT_TRUE(reader->Contains(key)); DataType dtype; TensorShape shape; TF_ASSERT_OK(reader->LookupDtypeAndShape(key, &dtype, &shape)); EXPECT_EQ(expected_t.dtype(), dtype); EXPECT_EQ(expected_t.shape(), shape); Tensor actual_t(dtype, shape); TF_ASSERT_OK(reader->Lookup(key, &actual_t)); for (int i = 0; i < expected_t.NumElements(); i++) { Variant actual_var = actual_t.flat<Variant>()(i); Variant expected_var = expected_t.flat<Variant>()(i); EXPECT_EQ(actual_var.TypeName(), expected_var.TypeName()); auto* actual_val = actual_var.get<T>(); auto* expected_val = expected_var.get<T>(); EXPECT_EQ(*expected_val, *actual_val); } } template <typename T> void ExpectNext(BundleReader* reader, const Tensor& expected_val) { EXPECT_TRUE(reader->Valid()); reader->Next(); TF_ASSERT_OK(reader->status()); Tensor val; TF_ASSERT_OK(reader->ReadCurrent(&val)); test::ExpectTensorEqual<T>(val, expected_val); } std::vector<string> AllTensorKeys(BundleReader* reader) { std::vector<string> ret; reader->Seek(kHeaderEntryKey); reader->Next(); for (; reader->Valid(); reader->Next()) { ret.emplace_back(reader->key()); } return ret; } Status FlipEndiannessBit(const string& prefix) { Env* env = Env::Default(); const string metadata_tmp_path = Prefix("some_tmp_path"); std::unique_ptr<WritableFile> metadata_file; TF_RETURN_IF_ERROR(env->NewWritableFile(metadata_tmp_path, &metadata_file)); std::unique_ptr<table::TableBuilder> builder; { const string filename = MetaFilename(prefix); uint64 file_size; TF_RETURN_IF_ERROR(env->GetFileSize(filename, &file_size)); std::unique_ptr<RandomAccessFile> file; TF_RETURN_IF_ERROR(env->NewRandomAccessFile(filename, &file)); table::Table* table = nullptr; TF_RETURN_IF_ERROR( table::Table::Open(table::Options(), file.get(), file_size, &table)); std::unique_ptr<table::Table> table_deleter(table); std::unique_ptr<table::Iterator> iter(table->NewIterator()); iter->Seek(kHeaderEntryKey); CHECK(iter->Valid()); BundleHeaderProto header; CHECK(header.ParseFromArray(iter->value().data(), iter->value().size())); if (header.endianness() == BundleHeaderProto::LITTLE) { header.set_endianness(BundleHeaderProto::BIG); } else { header.set_endianness(BundleHeaderProto::LITTLE); } builder.reset( new table::TableBuilder(table::Options(), metadata_file.get())); builder->Add(iter->key(), header.SerializeAsString()); iter->Next(); for (; iter->Valid(); iter->Next()) builder->Add(iter->key(), iter->value()); } TF_RETURN_IF_ERROR(builder->Finish()); TF_RETURN_IF_ERROR(env->RenameFile(metadata_tmp_path, MetaFilename(prefix))); return metadata_file->Close(); } template <typename T> void TestBasic() { { BundleWriter writer(Env::Default(), Prefix("foo")); TF_EXPECT_OK(writer.Add("foo_003", Constant_2x3(T(3)))); TF_EXPECT_OK(writer.Add("foo_000", Constant_2x3(T(0)))); TF_EXPECT_OK(writer.Add("foo_002", Constant_2x3(T(2)))); TF_EXPECT_OK(writer.Add("foo_001", Constant_2x3(T(1)))); TF_ASSERT_OK(writer.Finish()); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); EXPECT_EQ( AllTensorKeys(&reader), std::vector<string>({"foo_000", "foo_001", "foo_002", "foo_003"})); Expect<T>(&reader, "foo_000", Constant_2x3(T(0))); Expect<T>(&reader, "foo_001", Constant_2x3(T(1))); Expect<T>(&reader, "foo_002", Constant_2x3(T(2))); Expect<T>(&reader, "foo_003", Constant_2x3(T(3))); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); ExpectNext<T>(&reader, Constant_2x3(T(0))); ExpectNext<T>(&reader, Constant_2x3(T(1))); ExpectNext<T>(&reader, Constant_2x3(T(2))); ExpectNext<T>(&reader, Constant_2x3(T(3))); EXPECT_TRUE(reader.Valid()); reader.Next(); EXPECT_FALSE(reader.Valid()); } { BundleWriter writer(Env::Default(), Prefix("bar")); TF_EXPECT_OK(writer.Add("bar_003", Constant_2x3(T(3)))); TF_EXPECT_OK(writer.Add("bar_000", Constant_2x3(T(0)))); TF_EXPECT_OK(writer.Add("bar_002", Constant_2x3(T(2)))); TF_EXPECT_OK(writer.Add("bar_001", Constant_2x3(T(1)))); TF_ASSERT_OK(writer.Finish()); } { BundleReader reader(Env::Default(), Prefix("bar")); TF_ASSERT_OK(reader.status()); EXPECT_EQ( AllTensorKeys(&reader), std::vector<string>({"bar_000", "bar_001", "bar_002", "bar_003"})); Expect<T>(&reader, "bar_003", Constant_2x3(T(3))); Expect<T>(&reader, "bar_002", Constant_2x3(T(2))); Expect<T>(&reader, "bar_001", Constant_2x3(T(1))); Expect<T>(&reader, "bar_000", Constant_2x3(T(0))); } { BundleReader reader(Env::Default(), Prefix("bar")); TF_ASSERT_OK(reader.status()); ExpectNext<T>(&reader, Constant_2x3(T(0))); ExpectNext<T>(&reader, Constant_2x3(T(1))); ExpectNext<T>(&reader, Constant_2x3(T(2))); ExpectNext<T>(&reader, Constant_2x3(T(3))); EXPECT_TRUE(reader.Valid()); reader.Next(); EXPECT_FALSE(reader.Valid()); } TF_ASSERT_OK(MergeBundles(Env::Default(), {Prefix("foo"), Prefix("bar")}, Prefix("merged"))); { BundleReader reader(Env::Default(), Prefix("merged")); TF_ASSERT_OK(reader.status()); EXPECT_EQ( AllTensorKeys(&reader), std::vector<string>({"bar_000", "bar_001", "bar_002", "bar_003", "foo_000", "foo_001", "foo_002", "foo_003"})); Expect<T>(&reader, "bar_000", Constant_2x3(T(0))); Expect<T>(&reader, "bar_001", Constant_2x3(T(1))); Expect<T>(&reader, "bar_002", Constant_2x3(T(2))); Expect<T>(&reader, "bar_003", Constant_2x3(T(3))); Expect<T>(&reader, "foo_000", Constant_2x3(T(0))); Expect<T>(&reader, "foo_001", Constant_2x3(T(1))); Expect<T>(&reader, "foo_002", Constant_2x3(T(2))); Expect<T>(&reader, "foo_003", Constant_2x3(T(3))); } { BundleReader reader(Env::Default(), Prefix("merged")); TF_ASSERT_OK(reader.status()); ExpectNext<T>(&reader, Constant_2x3(T(0))); ExpectNext<T>(&reader, Constant_2x3(T(1))); ExpectNext<T>(&reader, Constant_2x3(T(2))); ExpectNext<T>(&reader, Constant_2x3(T(3))); ExpectNext<T>(&reader, Constant_2x3(T(0))); ExpectNext<T>(&reader, Constant_2x3(T(1))); ExpectNext<T>(&reader, Constant_2x3(T(2))); ExpectNext<T>(&reader, Constant_2x3(T(3))); EXPECT_TRUE(reader.Valid()); reader.Next(); EXPECT_FALSE(reader.Valid()); } } template <typename T> void TestByteSwap(const T* forward, const T* swapped, int array_len) { auto bytes_per_elem = sizeof(T); std::unique_ptr<T[]> forward_copy(new T[array_len]); std::memcpy(forward_copy.get(), forward, array_len * bytes_per_elem); TF_EXPECT_OK(ByteSwapArray(reinterpret_cast<char*>(forward_copy.get()), bytes_per_elem, array_len)); for (int i = 0; i < array_len; i++) { EXPECT_EQ(forward_copy.get()[i], swapped[i]); } auto shape = TensorShape({array_len}); auto dtype = DataTypeToEnum<T>::value; Tensor forward_tensor(dtype, shape); Tensor swapped_tensor(dtype, shape); std::memcpy(const_cast<char*>(forward_tensor.tensor_data().data()), forward, array_len * bytes_per_elem); std::memcpy(const_cast<char*>(swapped_tensor.tensor_data().data()), swapped, array_len * bytes_per_elem); TF_EXPECT_OK(ByteSwapTensor(&forward_tensor)); test::ExpectTensorEqual<T>(forward_tensor, swapped_tensor); } TEST(TensorBundleTest, SwapBytes) { ByteSwap(Constant_2x3<int>(42)); EXPECT_NE(absl::OkStatus(), FlipEndiannessBit(Prefix("not_a_valid_prefix"))); const int arr_len_16 = 4; const uint16_t forward_16[] = {0x1de5, 0xd017, 0xf1ea, 0xc0a1}; const uint16_t swapped_16[] = {0xe51d, 0x17d0, 0xeaf1, 0xa1c0}; const int arr_len_32 = 2; const uint32_t forward_32[] = {0x0ddba115, 0xf01dab1e}; const uint32_t swapped_32[] = {0x15a1db0d, 0x1eab1df0}; const int arr_len_64 = 2; const uint64_t forward_64[] = {0xf005ba11caba1000, 0x5ca1ab1ecab005e5}; const uint64_t swapped_64[] = {0x0010baca11ba05f0, 0xe505b0ca1eaba15c}; TestByteSwap(forward_16, swapped_16, arr_len_16); TestByteSwap(reinterpret_cast<const int16_t*>(forward_16), reinterpret_cast<const int16_t*>(swapped_16), arr_len_16); TestByteSwap(reinterpret_cast<const bfloat16*>(forward_16), reinterpret_cast<const bfloat16*>(swapped_16), arr_len_16); TestByteSwap(forward_32, swapped_32, arr_len_32); TestByteSwap(reinterpret_cast<const int32_t*>(forward_32), reinterpret_cast<const int32_t*>(swapped_32), arr_len_32); TestByteSwap(reinterpret_cast<const float*>(forward_32), reinterpret_cast<const float*>(swapped_32), arr_len_32); TestByteSwap(reinterpret_cast<const uint64*>(forward_64), reinterpret_cast<const uint64*>(swapped_64), arr_len_64); TestByteSwap(reinterpret_cast<const int64_t*>(forward_64), reinterpret_cast<const int64_t*>(swapped_64), arr_len_64); TestByteSwap(reinterpret_cast<const double*>(forward_64), reinterpret_cast<const double*>(swapped_64), arr_len_64); const float* forward_float = reinterpret_cast<const float*>(forward_32); const float* swapped_float = reinterpret_cast<const float*>(swapped_32); const double* forward_double = reinterpret_cast<const double*>(forward_64); const double* swapped_double = reinterpret_cast<const double*>(swapped_64); Tensor forward_complex64 = Constant_2x3<complex64>( std::complex<float>(forward_float[0], forward_float[1])); Tensor swapped_complex64 = Constant_2x3<complex64>( std::complex<float>(swapped_float[0], swapped_float[1])); Tensor forward_complex128 = Constant_2x3<complex128>( std::complex<double>(forward_double[0], forward_double[1])); Tensor swapped_complex128 = Constant_2x3<complex128>( std::complex<double>(swapped_double[0], swapped_double[1])); TF_EXPECT_OK(ByteSwapTensor(&forward_complex64)); test::ExpectTensorEqual<complex64>(forward_complex64, swapped_complex64); TF_EXPECT_OK(ByteSwapTensor(&forward_complex128)); test::ExpectTensorEqual<complex128>(forward_complex128, swapped_complex128); } template <typename T> void TestEndianness() { { BundleWriter writer(Env::Default(), Prefix("foo")); TF_EXPECT_OK(writer.Add("foo_003", ByteSwap(Constant_2x3<T>(T(3))))); TF_EXPECT_OK(writer.Add("foo_000", ByteSwap(Constant_2x3<T>(T(0))))); TF_EXPECT_OK(writer.Add("foo_002", ByteSwap(Constant_2x3<T>(T(2))))); TF_EXPECT_OK(writer.Add("foo_001", ByteSwap(Constant_2x3<T>(T(1))))); TF_ASSERT_OK(writer.Finish()); TF_ASSERT_OK(FlipEndiannessBit(Prefix("foo"))); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); EXPECT_EQ( AllTensorKeys(&reader), std::vector<string>({"foo_000", "foo_001", "foo_002", "foo_003"})); Expect<T>(&reader, "foo_000", Constant_2x3<T>(T(0))); Expect<T>(&reader, "foo_001", Constant_2x3<T>(T(1))); Expect<T>(&reader, "foo_002", Constant_2x3<T>(T(2))); Expect<T>(&reader, "foo_003", Constant_2x3<T>(T(3))); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); ExpectNext<T>(&reader, Constant_2x3<T>(T(0))); ExpectNext<T>(&reader, Constant_2x3<T>(T(1))); ExpectNext<T>(&reader, Constant_2x3<T>(T(2))); ExpectNext<T>(&reader, Constant_2x3<T>(T(3))); EXPECT_TRUE(reader.Valid()); reader.Next(); EXPECT_FALSE(reader.Valid()); } { BundleWriter writer(Env::Default(), Prefix("bar")); TF_EXPECT_OK(writer.Add("bar_003", ByteSwap(Constant_2x3<T>(T(3))))); TF_EXPECT_OK(writer.Add("bar_000", ByteSwap(Constant_2x3<T>(T(0))))); TF_EXPECT_OK(writer.Add("bar_002", ByteSwap(Constant_2x3<T>(T(2))))); TF_EXPECT_OK(writer.Add("bar_001", ByteSwap(Constant_2x3<T>(T(1))))); TF_ASSERT_OK(writer.Finish()); TF_ASSERT_OK(FlipEndiannessBit(Prefix("bar"))); } { BundleReader reader(Env::Default(), Prefix("bar")); TF_ASSERT_OK(reader.status()); EXPECT_EQ( AllTensorKeys(&reader), std::vector<string>({"bar_000", "bar_001", "bar_002", "bar_003"})); Expect<T>(&reader, "bar_003", Constant_2x3<T>(T(3))); Expect<T>(&reader, "bar_002", Constant_2x3<T>(T(2))); Expect<T>(&reader, "bar_001", Constant_2x3<T>(T(1))); Expect<T>(&reader, "bar_000", Constant_2x3<T>(T(0))); } { BundleReader reader(Env::Default(), Prefix("bar")); TF_ASSERT_OK(reader.status()); ExpectNext<T>(&reader, Constant_2x3<T>(T(0))); ExpectNext<T>(&reader, Constant_2x3<T>(T(1))); ExpectNext<T>(&reader, Constant_2x3<T>(T(2))); ExpectNext<T>(&reader, Constant_2x3<T>(T(3))); EXPECT_TRUE(reader.Valid()); reader.Next(); EXPECT_FALSE(reader.Valid()); } TF_ASSERT_OK(MergeBundles(Env::Default(), {Prefix("foo"), Prefix("bar")}, Prefix("merged"))); { BundleReader reader(Env::Default(), Prefix("merged")); TF_ASSERT_OK(reader.status()); EXPECT_EQ( AllTensorKeys(&reader), std::vector<string>({"bar_000", "bar_001", "bar_002", "bar_003", "foo_000", "foo_001", "foo_002", "foo_003"})); Expect<T>(&reader, "bar_000", Constant_2x3<T>(T(0))); Expect<T>(&reader, "bar_001", Constant_2x3<T>(T(1))); Expect<T>(&reader, "bar_002", Constant_2x3<T>(T(2))); Expect<T>(&reader, "bar_003", Constant_2x3<T>(T(3))); Expect<T>(&reader, "foo_000", Constant_2x3<T>(T(0))); Expect<T>(&reader, "foo_001", Constant_2x3<T>(T(1))); Expect<T>(&reader, "foo_002", Constant_2x3<T>(T(2))); Expect<T>(&reader, "foo_003", Constant_2x3<T>(T(3))); } { BundleReader reader(Env::Default(), Prefix("merged")); TF_ASSERT_OK(reader.status()); ExpectNext<T>(&reader, Constant_2x3<T>(T(0))); ExpectNext<T>(&reader, Constant_2x3<T>(T(1))); ExpectNext<T>(&reader, Constant_2x3<T>(T(2))); ExpectNext<T>(&reader, Constant_2x3<T>(T(3))); ExpectNext<T>(&reader, Constant_2x3<T>(T(0))); ExpectNext<T>(&reader, Constant_2x3<T>(T(1))); ExpectNext<T>(&reader, Constant_2x3<T>(T(2))); ExpectNext<T>(&reader, Constant_2x3<T>(T(3))); EXPECT_TRUE(reader.Valid()); reader.Next(); EXPECT_FALSE(reader.Valid()); } } template <typename T> void TestNonStandardShapes() { { BundleWriter writer(Env::Default(), Prefix("nonstandard")); TF_EXPECT_OK(writer.Add("scalar", Constant(T(0), TensorShape()))); TF_EXPECT_OK( writer.Add("non_standard0", Constant(T(0), TensorShape({0, 1618})))); TF_EXPECT_OK( writer.Add("non_standard1", Constant(T(0), TensorShape({16, 0, 18})))); TF_ASSERT_OK(writer.Finish()); } { BundleReader reader(Env::Default(), Prefix("nonstandard")); TF_ASSERT_OK(reader.status()); Expect<T>(&reader, "scalar", Constant(T(0), TensorShape())); Expect<T>(&reader, "non_standard0", Constant(T(0), TensorShape({0, 1618}))); Expect<T>(&reader, "non_standard1", Constant(T(0), TensorShape({16, 0, 18}))); } } void VersionTest(const VersionDef& version, StringPiece expected_error) { const string path = Prefix("version_test"); { BundleHeaderProto header; *header.mutable_version() = version; std::unique_ptr<WritableFile> file; TF_ASSERT_OK(Env::Default()->NewWritableFile(MetaFilename(path), &file)); table::TableBuilder builder(table::Options(), file.get()); builder.Add(kHeaderEntryKey, header.SerializeAsString()); TF_ASSERT_OK(builder.Finish()); } BundleReader reader(Env::Default(), path); EXPECT_TRUE(errors::IsInvalidArgument(reader.status())); EXPECT_TRUE(absl::StartsWith(reader.status().message(), expected_error)); } } TEST(TensorBundleTest, Basic) { TestBasic<float>(); TestBasic<double>(); TestBasic<int32>(); TestBasic<uint8>(); TestBasic<int16>(); TestBasic<int8>(); TestBasic<complex64>(); TestBasic<complex128>(); TestBasic<int64_t>(); TestBasic<bool>(); TestBasic<qint32>(); TestBasic<quint8>(); TestBasic<qint8>(); TestBasic<bfloat16>(); } TEST(TensorBundleTest, Endianness) { TestEndianness<float>(); TestEndianness<double>(); TestEndianness<int32>(); TestEndianness<uint8>(); TestEndianness<int16>(); TestEndianness<int8>(); TestEndianness<complex64>(); TestEndianness<complex128>(); TestEndianness<int64_t>(); TestEndianness<bool>(); TestEndianness<qint32>(); TestEndianness<quint8>(); TestEndianness<qint8>(); TestEndianness<bfloat16>(); } TEST(TensorBundleTest, PartitionedVariables) { const TensorShape kFullShape({5, 10}); TensorSlice slice1 = TensorSlice::ParseOrDie("-:0,1"); TensorSlice slice2 = TensorSlice::ParseOrDie("-:1,9"); { BundleWriter writer(Env::Default(), Prefix("foo")); TF_ASSERT_OK(writer.AddSlice("foo", kFullShape, slice1, Constant<float>(0., TensorShape({5, 1})))); TF_ASSERT_OK(writer.AddSlice("foo", kFullShape, slice2, Constant<float>(1., TensorShape({5, 9})))); TF_ASSERT_OK(writer.Finish()); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); Tensor expected_val(DT_FLOAT, kFullShape); test::FillFn<float>(&expected_val, [](int offset) -> float { if (offset % 10 == 0) { return 0; } return 1; }); Tensor val(DT_FLOAT, kFullShape); TF_ASSERT_OK(reader.Lookup("foo", &val)); test::ExpectTensorEqual<float>(val, expected_val); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); std::vector<TensorSlice> slices; TF_ASSERT_OK(reader.LookupTensorSlices("foo", &slices)); EXPECT_EQ(2, slices.size()); EXPECT_EQ(slice1.DebugString(), slices[0].DebugString()); EXPECT_EQ(slice2.DebugString(), slices[1].DebugString()); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); const TensorSlice distinct_slice = TensorSlice::ParseOrDie("-:0,2"); Tensor expected_val(DT_FLOAT, TensorShape({5, 2})); test::FillFn<float>(&expected_val, [](int offset) -> float { if (offset % 2 == 0) { return 0; } return 1; }); Tensor val(DT_FLOAT, TensorShape({5, 2})); TF_ASSERT_OK(reader.LookupSlice("foo", distinct_slice, &val)); test::ExpectTensorEqual<float>(val, expected_val); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); const TensorSlice distinct_slice = TensorSlice::ParseOrDie("-:2,2"); Tensor val(DT_FLOAT, TensorShape({5, 2})); TF_ASSERT_OK(reader.LookupSlice("foo", distinct_slice, &val)); test::ExpectTensorEqual<float>(val, Constant<float>(1., TensorShape({5, 2}))); } } TEST(TensorBundleTest, EquivalentSliceTest) { const TensorShape kFullShape({5, 10}); const Tensor kExpected(Constant<float>(1., kFullShape)); { BundleWriter writer(Env::Default(), Prefix("foo")); TF_ASSERT_OK(writer.AddSlice("no_extents", kFullShape, TensorSlice::ParseOrDie("-:-"), kExpected)); TF_ASSERT_OK(writer.AddSlice("both_extents", kFullShape, TensorSlice::ParseOrDie("0,5:0,10"), kExpected)); TF_ASSERT_OK(writer.Finish()); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); const TensorSlice slice = TensorSlice::ParseOrDie("-:-"); Tensor val(DT_FLOAT, TensorShape(kFullShape)); TF_ASSERT_OK(reader.LookupSlice("no_extents", slice, &val)); test::ExpectTensorEqual<float>(val, kExpected); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); const TensorSlice slice = TensorSlice::ParseOrDie("0,5:0,10"); Tensor val(DT_FLOAT, TensorShape(kFullShape)); TF_ASSERT_OK(reader.LookupSlice("both_extents", slice, &val)); test::ExpectTensorEqual<float>(val, kExpected); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); const TensorSlice slice = TensorSlice::ParseOrDie("0,5:0,10"); Tensor val(DT_FLOAT, TensorShape(kFullShape)); TF_ASSERT_OK(reader.LookupSlice("no_extents", slice, &val)); test::ExpectTensorEqual<float>(val, kExpected); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); const TensorSlice slice = TensorSlice::ParseOrDie("-:-"); Tensor val(DT_FLOAT, TensorShape(kFullShape)); TF_ASSERT_OK(reader.LookupSlice("both_extents", slice, &val)); test::ExpectTensorEqual<float>(val, kExpected); } } TEST(TensorBundleTest, NonStandardShapes) { TestNonStandardShapes<float>(); TestNonStandardShapes<double>(); TestNonStandardShapes<int32>(); TestNonStandardShapes<uint8>(); TestNonStandardShapes<int16>(); TestNonStandardShapes<int8>(); TestNonStandardShapes<complex64>(); TestNonStandardShapes<complex128>(); TestNonStandardShapes<int64_t>(); TestNonStandardShapes<bool>(); TestNonStandardShapes<qint32>(); TestNonStandardShapes<quint8>(); TestNonStandardShapes<qint8>(); TestNonStandardShapes<bfloat16>(); } TEST(TensorBundleTest, StringTensorsOldFormat) { BundleReader reader(Env::Default(), TestdataPrefix("old_string_tensors/foo")); TF_ASSERT_OK(reader.status()); EXPECT_EQ(AllTensorKeys(&reader), std::vector<string>({"floats", "scalar", "string_tensor", "strs"})); Expect<tstring>(&reader, "string_tensor", Tensor(DT_STRING, TensorShape({1}))); Expect<tstring>(&reader, "scalar", test::AsTensor<tstring>({"hello"})); Expect<tstring>( &reader, "strs", test::AsTensor<tstring>({"hello", "", "x01", string(1 << 10, 'c')})); Expect<float>(&reader, "floats", Constant_2x3<float>(16.18)); } size_t GetPageSize() { #ifdef _WIN32 SYSTEM_INFO system_info; GetSystemInfo(&system_info); return std::max(system_info.dwPageSize, system_info.dwAllocationGranularity); #elif defined(__wasm__) || defined(__asmjs__) return getpagesize(); #else return sysconf(_SC_PAGESIZE); #endif } TEST(TensorBundleTest, StringTensors) { constexpr size_t kLongLength = static_cast<size_t>(UINT32_MAX) + 1; Tensor long_string_tensor(DT_STRING, TensorShape({1})); { BundleWriter writer(Env::Default(), Prefix("foo")); TF_EXPECT_OK(writer.Add("string_tensor", Tensor(DT_STRING, TensorShape({1})))); TF_EXPECT_OK(writer.Add("scalar", test::AsTensor<tstring>({"hello"}))); TF_EXPECT_OK(writer.Add( "strs", test::AsTensor<tstring>({"hello", "", "x01", string(1 << 25, 'c')}))); tstring* backing_string = long_string_tensor.flat<tstring>().data(); backing_string->resize_uninitialized(kLongLength); std::char_traits<char>::assign(backing_string->data(), kLongLength, 'd'); TF_EXPECT_OK(writer.Add("long_scalar", long_string_tensor)); TF_EXPECT_OK(writer.Add("floats", Constant_2x3<float>(16.18))); TF_ASSERT_OK(writer.Finish()); } { BundleReader reader(Env::Default(), Prefix("foo")); TF_ASSERT_OK(reader.status()); EXPECT_EQ(AllTensorKeys(&reader), std::vector<string>({"floats", "long_scalar", "scalar", "string_tensor", "strs"})); Expect<tstring>(&reader, "string_tensor", Tensor(DT_STRING, TensorShape({1}))); Expect<tstring>(&reader, "scalar", test::AsTensor<tstring>({"hello"})); Expect<tstring>( &reader, "strs", test::AsTensor<tstring>({"hello", "", "x01", string(1 << 25, 'c')})); Expect<float>(&reader, "floats", Constant_2x3<float>(16.18)); EXPECT_TRUE(reader.Contains("long_scalar")); DataType dtype; TensorShape shape; TF_ASSERT_OK(reader.LookupDtypeAndShape("long_scalar", &dtype, &shape)); EXPECT_EQ(DT_STRING, dtype); EXPECT_EQ(TensorShape({1}), shape); tstring* backing_string = long_string_tensor.flat<tstring>().data(); std::char_traits<char>::assign(backing_string->data(), kLongLength, 'e'); TF_ASSERT_OK(reader.Lookup("long_scalar", &long_string_tensor)); ASSERT_EQ(backing_string, long_string_tensor.flat<tstring>().data()); EXPECT_EQ(kLongLength, backing_string->length()); const size_t kPageSize = GetPageSize(); char* testblock = new char[kPageSize]; memset(testblock, 'd', sizeof(char) * kPageSize); for (size_t i = 0; i < kLongLength; i += kPageSize) { if (memcmp(testblock, backing_string->data() + i, kPageSize) != 0) { FAIL() << "long_scalar is not full of 'd's as expected."; break; } } delete[] testblock; } } class VariantObject { public: VariantObject() {} VariantObject(const string& metadata, int64_t value) : metadata_(metadata), value_(value) {} string TypeName() const { return "TEST VariantObject"; } void Encode(VariantTensorData* data) const { data->set_type_name(TypeName()); data->set_metadata(metadata_); Tensor val_t = Tensor(DT_INT64, TensorShape({})); val_t.scalar<int64_t>()() = value_; *(data->add_tensors()) = val_t; } bool Decode(const VariantTensorData& data) { EXPECT_EQ(data.type_name(), TypeName()); data.get_metadata(&metadata_); EXPECT_EQ(data.te
1,721
cpp
tensorflow/tensorflow
uniform_quant_ops_params
tensorflow/core/util/quantization/uniform_quant_ops_params.cc
tensorflow/core/util/quantization/uniform_quant_ops_params_test.cc
#ifndef TENSORFLOW_CORE_UTIL_QUANTIZATION_UNIFORM_QUANT_OPS_PARAMS_H_ #define TENSORFLOW_CORE_UTIL_QUANTIZATION_UNIFORM_QUANT_OPS_PARAMS_H_ #include <string> #include <vector> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/quantization/uniform_quant_ops_attr.pb.h" namespace tensorflow { class UniformQuantizedConvolutionParams { public: UniformQuantizedConvolutionParams() = default; UniformQuantizedConvolutionParams( const std::vector<int>& window_strides, const std::vector<int>& lhs_dilation, const std::vector<int>& rhs_dilation, const UniformQuantizedConvolutionDimensionNumbersAttr& dimension_numbers, int feature_group_count, int batch_group_count, const std::string& padding, const std::vector<int>& padding_list = {}) : window_strides_(window_strides), lhs_dilation_(lhs_dilation), rhs_dilation_(rhs_dilation), dimension_numbers_(dimension_numbers), feature_group_count_(feature_group_count), batch_group_count_(batch_group_count), padding_(padding), padding_list_(padding_list) {} const std::vector<int>& window_strides() const { return window_strides_; } const std::vector<int>& lhs_dilation() const { return lhs_dilation_; } const std::vector<int>& rhs_dilation() const { return rhs_dilation_; } const UniformQuantizedConvolutionDimensionNumbersAttr& dimension_numbers() const { return dimension_numbers_; } int batch_group_count() const { return batch_group_count_; } const std::vector<int>& padding_list() const { return padding_list_; } int feature_group_count() const { return feature_group_count_; } Status LoadFromAttrs(const OpKernelConstruction& context); Status LoadFromAttrs(const shape_inference::InferenceContext& context); Status ValidateOrFillParamsAndValidateShape(const TensorShape& lhs_shape, const TensorShape& rhs_shape); absl::StatusOr<TensorShape> CalculateOutputShape( const TensorShape& lhs_shape, const TensorShape& rhs_shape) const; inline static int64_t DilatedSize(int64_t size, int dilation) { return size == 0 ? 0 : size + (dilation - 1) * (size - 1); } private: template <typename ContextT> Status LoadFromAttrsInternal(const ContextT& context); Status ValidateShape(const TensorShape& lhs_shape, const TensorShape& rhs_shape); Status ValidateOrFillPaddingList(const TensorShape& lhs_shape, const TensorShape& rhs_shape); std::vector<int> window_strides_; std::vector<int> lhs_dilation_; std::vector<int> rhs_dilation_; UniformQuantizedConvolutionDimensionNumbersAttr dimension_numbers_; int feature_group_count_; int batch_group_count_; std::string padding_; std::vector<int> padding_list_; }; } #endif #include "tensorflow/core/util/quantization/uniform_quant_ops_params.h" #include <algorithm> #include <cmath> #include <cstdint> #include <string> #include <vector> #include "absl/algorithm/container.h" namespace tensorflow { namespace { using tensorflow::errors::InvalidArgument; Status ValidDim(int64_t dims, int64_t dim) { if (dim < 0 || dim >= dims) { return InvalidArgument( "Each dimension number must be in region [0, rank). Given rank ", dims, " and dimension number value ", dim); } return absl::OkStatus(); } Status ValidSpatialDimensions( int64_t dims, const protobuf::RepeatedField<int64_t>& spatial_dimensions) { if (spatial_dimensions.size() != dims - 2) { return InvalidArgument( "Spatial dimensions size must be rank - 2. Given rank ", dims, " and spatial dimensions size ", spatial_dimensions.size()); } for (int i = 0; i < spatial_dimensions.size(); ++i) { TF_RETURN_IF_ERROR(ValidDim(dims, spatial_dimensions.Get(i))); } return absl::OkStatus(); } } Status UniformQuantizedConvolutionParams::LoadFromAttrs( const OpKernelConstruction& context) { return LoadFromAttrsInternal(context); } Status UniformQuantizedConvolutionParams::LoadFromAttrs( const shape_inference::InferenceContext& context) { return LoadFromAttrsInternal(context); } Status UniformQuantizedConvolutionParams::ValidateOrFillParamsAndValidateShape( const TensorShape& lhs_shape, const TensorShape& rhs_shape) { if (lhs_shape.dims() != rhs_shape.dims()) { return InvalidArgument( "lhs and rhs must have same dims. Given lhs and rhs of shapes: ", lhs_shape.DebugString(), rhs_shape.DebugString()); } const int64_t dims = lhs_shape.dims(); if (dims <= 2) { return InvalidArgument("lhs and rhs shape dims must be at least 3. Given: ", dims); } const int64_t num_spatial_dims = dims - 2; if (window_strides_.empty()) { window_strides_.resize(num_spatial_dims, 1); } else if (window_strides_.size() != num_spatial_dims) { return InvalidArgument("Size of window_strides Attr must be dims - 2."); } else if (!absl::c_all_of(window_strides_, [](int stride) { return stride >= 1; })) { return InvalidArgument( "All elements of window_strides must be >= 1. Given ", absl::StrJoin(window_strides_, ", ")); } if (lhs_dilation_.empty()) { lhs_dilation_.resize(num_spatial_dims, 1); } else if (lhs_dilation_.size() != num_spatial_dims) { return InvalidArgument("Size of lhs_dilation Attr must be dims - 2."); } else if (!absl::c_all_of(lhs_dilation_, [](const int dilation) { return dilation >= 1; })) { return InvalidArgument("All elements of lhs_dilation must be >= 1. Given ", absl::StrJoin(lhs_dilation_, ", ")); } if (rhs_dilation_.empty()) { rhs_dilation_.resize(num_spatial_dims, 1); } else if (rhs_dilation_.size() != num_spatial_dims) { return InvalidArgument("Size of rhs_dilation Attr must be dims - 2."); } else if (!absl::c_all_of(rhs_dilation_, [](const int dilation) { return dilation >= 1; })) { return InvalidArgument("All elements of rhs_dilation must be >= 1. Given ", absl::StrJoin(rhs_dilation_, ", ")); } if (dimension_numbers_.input_spatial_dimensions_size() == 0) { dimension_numbers_.set_input_batch_dimension(0); dimension_numbers_.set_input_feature_dimension(1); for (int64_t i = 0; i < num_spatial_dims; ++i) { dimension_numbers_.add_input_spatial_dimensions(2 + i); } dimension_numbers_.set_kernel_output_feature_dimension(0); dimension_numbers_.set_kernel_input_feature_dimension(1); for (int64_t i = 0; i < num_spatial_dims; ++i) { dimension_numbers_.add_kernel_spatial_dimensions(2 + i); } dimension_numbers_.set_output_batch_dimension(0); dimension_numbers_.set_output_feature_dimension(1); for (int64_t i = 0; i < num_spatial_dims; ++i) { dimension_numbers_.add_output_spatial_dimensions(2 + i); } } else { TF_RETURN_IF_ERROR( ValidDim(dims, dimension_numbers_.input_batch_dimension())); TF_RETURN_IF_ERROR( ValidDim(dims, dimension_numbers_.input_feature_dimension())); TF_RETURN_IF_ERROR(ValidSpatialDimensions( dims, dimension_numbers_.input_spatial_dimensions())); TF_RETURN_IF_ERROR( ValidDim(dims, dimension_numbers_.kernel_input_feature_dimension())); TF_RETURN_IF_ERROR( ValidDim(dims, dimension_numbers_.kernel_output_feature_dimension())); TF_RETURN_IF_ERROR(ValidSpatialDimensions( dims, dimension_numbers_.kernel_spatial_dimensions())); TF_RETURN_IF_ERROR( ValidDim(dims, dimension_numbers_.output_batch_dimension())); TF_RETURN_IF_ERROR( ValidDim(dims, dimension_numbers_.output_batch_dimension())); TF_RETURN_IF_ERROR(ValidSpatialDimensions( dims, dimension_numbers_.output_spatial_dimensions())); } if (feature_group_count_ <= 0) { return InvalidArgument( "feature_group_count must be a positive integer, given: ", feature_group_count_); } const int64_t lhs_feature_count = lhs_shape.dim_size(dimension_numbers_.input_feature_dimension()); if (lhs_feature_count % feature_group_count_) { return InvalidArgument( "feature_group_count must divide lhs feature dimension size, but ", feature_group_count_, " does not divide ", lhs_feature_count); } const int64_t rhs_input_feature_count = rhs_shape.dim_size(dimension_numbers_.kernel_input_feature_dimension()); if (lhs_feature_count % rhs_input_feature_count) { return InvalidArgument( "rhs input feature dimension must divide lhs feature dimension " "size, but ", rhs_input_feature_count, " does not divide ", lhs_feature_count); } if (lhs_feature_count / feature_group_count_ != rhs_input_feature_count) { return InvalidArgument( "lhs feature dimension size divided by feature_group_count must equal " "the rhs input feature dimension size, but ", lhs_feature_count, " / ", feature_group_count_, " != ", rhs_input_feature_count); } const int64_t rhs_output_feature_count = rhs_shape.dim_size(dimension_numbers_.kernel_output_feature_dimension()); if (rhs_output_feature_count % feature_group_count_) { return InvalidArgument( "rhs output dimension size must be a multiple of feature_group_count, " "but ", rhs_output_feature_count, " is not a multiple of ", feature_group_count_); } if (batch_group_count_ <= 0) { return InvalidArgument( "batch_group_count Attr must be a positive integer. Given: ", batch_group_count_); } const int64_t lhs_batch_count = lhs_shape.dim_size(dimension_numbers_.input_batch_dimension()); if (lhs_batch_count % batch_group_count_) { return InvalidArgument( "batch_group_count must divide lhs batch dimension size, but ", batch_group_count_, " does not divide ", lhs_batch_count); } if (rhs_output_feature_count % batch_group_count_) { return InvalidArgument( "rhs output dimension size must be a multiple of batch_group_count, " "but ", rhs_output_feature_count, " is not a multiple of ", batch_group_count_); } return ValidateOrFillPaddingList(lhs_shape, rhs_shape); } absl::StatusOr<TensorShape> UniformQuantizedConvolutionParams::CalculateOutputShape( const TensorShape& lhs_shape, const TensorShape& rhs_shape) const { std::vector<int64_t> output_shape_buf(lhs_shape.dims()); output_shape_buf[dimension_numbers_.output_batch_dimension()] = lhs_shape.dim_size(dimension_numbers_.input_batch_dimension()) / batch_group_count_; output_shape_buf[dimension_numbers_.output_feature_dimension()] = rhs_shape.dim_size(dimension_numbers_.kernel_output_feature_dimension()); for (int i = 0; i < dimension_numbers_.input_spatial_dimensions_size(); ++i) { const int64_t lhs_size_dilated = DilatedSize( lhs_shape.dim_size(dimension_numbers_.input_spatial_dimensions(i)), lhs_dilation_[i]); const int64_t rhs_size_dilated = DilatedSize( rhs_shape.dim_size(dimension_numbers_.kernel_spatial_dimensions(i)), rhs_dilation_[i]); const int64_t output_size_numerator = lhs_size_dilated + padding_list_[2 * i] + padding_list_[2 * i + 1] - rhs_size_dilated + 1; const int64_t output_size_denominator = window_strides_[i]; output_shape_buf[dimension_numbers_.output_spatial_dimensions(i)] = (output_size_numerator + output_size_denominator - 1) / output_size_denominator; } TensorShape output_shape; TF_RETURN_IF_ERROR( TensorShape::BuildTensorShape(output_shape_buf, &output_shape)); return output_shape; } template <typename ContextT> Status UniformQuantizedConvolutionParams::LoadFromAttrsInternal( const ContextT& context) { TF_RETURN_IF_ERROR(context.GetAttr("window_strides", &window_strides_)); TF_RETURN_IF_ERROR(context.GetAttr("lhs_dilation", &lhs_dilation_)); TF_RETURN_IF_ERROR(context.GetAttr("rhs_dilation", &rhs_dilation_)); TF_RETURN_IF_ERROR(context.GetAttr("batch_group_count", &batch_group_count_)); TF_RETURN_IF_ERROR( context.GetAttr("feature_group_count", &feature_group_count_)); TF_RETURN_IF_ERROR(context.GetAttr("padding", &padding_)); TF_RETURN_IF_ERROR(context.GetAttr("explicit_padding", &padding_list_)); if (padding_ != "EXPLICIT" && padding_ != "SAME" && padding_ != "VALID") { return InvalidArgument( "padding Attr must be one of [EXPLICIT | SAME | VALID], but given: ", padding_); } else if (padding_ != "EXPLICIT" && !padding_list_.empty()) { return InvalidArgument( "If padding Attr is not 'EXPLICIT', explicit_padding Attr must be " "empty. Given padding ", padding_, " and explicit_padding of size ", padding_list_.size()); } std::string dimension_numbers_str; TF_RETURN_IF_ERROR( context.GetAttr("dimension_numbers", &dimension_numbers_str)); if (dimension_numbers_str.empty()) { dimension_numbers_.Clear(); } else if (!dimension_numbers_.ParseFromString(dimension_numbers_str)) { return InvalidArgument("Error parsing convolution dimension numbers."); } return absl::OkStatus(); } Status UniformQuantizedConvolutionParams::ValidateOrFillPaddingList( const TensorShape& lhs_shape, const TensorShape& rhs_shape) { const int64_t dims = lhs_shape.dims(); const int64_t padding_list_size = 2 * (dims - 2); if (padding_ == "EXPLICIT") { if (padding_list_.size() != padding_list_size) { return InvalidArgument( "Size of explicit_padding Attr must be 2 * (rank - 2). Given rank ", dims, " and explicit_padding of size ", padding_list_.size()); } else if (!absl::c_all_of(padding_list_, [](int elem) { return elem >= 0; })) { return InvalidArgument("All explicit_padding elems must be >= 0, Given ", absl::StrJoin(padding_list_, ", ")); } } else if (padding_ == "VALID") { padding_list_.resize(padding_list_size, 0); } else { padding_list_.resize(padding_list_size); for (int i = 0; i < dimension_numbers_.input_spatial_dimensions_size(); ++i) { const int64_t stride = window_strides_[i]; const int64_t lhs_size_dilated = DilatedSize( lhs_shape.dim_size(dimension_numbers_.input_spatial_dimensions(i)), lhs_dilation_[i]); const int64_t rhs_size_dilated = DilatedSize( rhs_shape.dim_size(dimension_numbers_.kernel_spatial_dimensions(i)), rhs_dilation_[i]); const int64_t output_size = (lhs_size_dilated + stride - 1) / stride; const int64_t total_padding = std::max( (output_size - 1) * stride + rhs_size_dilated - lhs_size_dilated, static_cast<int64_t>(0)); const int64_t padding_begin = total_padding / 2; const int64_t padding_end = total_padding - padding_begin; padding_list_[2 * i] = padding_begin; padding_list_[2 * i + 1] = padding_end; } } return absl::OkStatus(); } }
#include "tensorflow/core/util/quantization/uniform_quant_ops_params.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/util/quantization/uniform_quant_ops_attr.pb.h" #include "tsl/lib/core/status_test_util.h" namespace tensorflow { namespace { using protobuf::TextFormat; using ::testing::ElementsAreArray; TEST(UniformQuantizedConvolutionParamsTest, DilatedSize) { EXPECT_EQ(UniformQuantizedConvolutionParams::DilatedSize(0, 2), 0); EXPECT_EQ(UniformQuantizedConvolutionParams::DilatedSize(10, 3), 28); } TEST(UniformQuantizedConvolutionParamsTest, ValidateOrFillParamsAndValidateShapeDefaultAttr) { UniformQuantizedConvolutionDimensionNumbersAttr dimension_numbers; UniformQuantizedConvolutionParams params({}, {}, {}, dimension_numbers, 1, 1, "VALID"); TF_ASSERT_OK( params.ValidateOrFillParamsAndValidateShape({2, 2, 3, 4}, {3, 2, 2, 3})); EXPECT_THAT(params.window_strides(), ElementsAreArray({1, 1})); EXPECT_THAT(params.lhs_dilation(), ElementsAreArray({1, 1})); EXPECT_THAT(params.rhs_dilation(), ElementsAreArray({1, 1})); EXPECT_THAT(params.padding_list(), ElementsAreArray({0, 0, 0, 0})); EXPECT_EQ(params.dimension_numbers().input_batch_dimension(), 0); EXPECT_EQ(params.dimension_numbers().input_feature_dimension(), 1); EXPECT_THAT(params.dimension_numbers().input_spatial_dimensions(), ElementsAreArray({2, 3})); EXPECT_EQ(params.dimension_numbers().kernel_output_feature_dimension(), 0); EXPECT_EQ(params.dimension_numbers().kernel_input_feature_dimension(), 1); EXPECT_THAT(params.dimension_numbers().kernel_spatial_dimensions(), ElementsAreArray({2, 3})); EXPECT_EQ(params.dimension_numbers().output_batch_dimension(), 0); EXPECT_EQ(params.dimension_numbers().output_feature_dimension(), 1); EXPECT_THAT(params.dimension_numbers().output_spatial_dimensions(), ElementsAreArray({2, 3})); } TEST(UniformQuantizedConvolutionParamsTest, ValidateOrFillParamsAndValidateShapeSetAttr) { UniformQuantizedConvolutionDimensionNumbersAttr dimension_numbers; ASSERT_TRUE(TextFormat::ParseFromString(R"pb( input_batch_dimension: 0 input_feature_dimension: 3 input_spatial_dimensions: 1 input_spatial_dimensions: 2 kernel_output_feature_dimension: 3 kernel_input_feature_dimension: 2 kernel_spatial_dimensions: 0 kernel_spatial_dimensions: 1 output_batch_dimension: 0 output_feature_dimension: 3 output_spatial_dimensions: 1 output_spatial_dimensions: 2 )pb", &dimension_numbers)); UniformQuantizedConvolutionParams params({2, 2}, {3, 3}, {4, 4}, dimension_numbers, 2, 1, "EXPLICIT", {1, 1, 2, 2}); TF_ASSERT_OK( params.ValidateOrFillParamsAndValidateShape({2, 3, 4, 2}, {2, 3, 1, 2})); EXPECT_THAT(params.padding_list(), ElementsAreArray({1, 1, 2, 2})); EXPECT_EQ(params.dimension_numbers().input_batch_dimension(), 0); EXPECT_EQ(params.dimension_numbers().input_feature_dimension(), 3); EXPECT_THAT(params.dimension_numbers().input_spatial_dimensions(), ElementsAreArray({1, 2})); EXPECT_EQ(params.dimension_numbers().kernel_output_feature_dimension(), 3); EXPECT_EQ(params.dimension_numbers().kernel_input_feature_dimension(), 2); EXPECT_THAT(params.dimension_numbers().kernel_spatial_dimensions(), ElementsAreArray({0, 1})); EXPECT_EQ(params.dimension_numbers().output_batch_dimension(), 0); EXPECT_EQ(params.dimension_numbers().output_feature_dimension(), 3); EXPECT_THAT(params.dimension_numbers().output_spatial_dimensions(), ElementsAreArray({1, 2})); } TEST(UniformQuantizedConvolutionParamsTest, CalculateOutputShapeDefaultAttr) { UniformQuantizedConvolutionDimensionNumbersAttr dimension_numbers; UniformQuantizedConvolutionParams params({}, {}, {}, dimension_numbers, 1, 1, "VALID"); const TensorShape lhs_shape({2, 2, 3, 4}); const TensorShape rhs_shape({3, 2, 2, 3}); TF_ASSERT_OK( params.ValidateOrFillParamsAndValidateShape(lhs_shape, rhs_shape)); auto shape_or = params.CalculateOutputShape(lhs_shape, rhs_shape); TF_ASSERT_OK(shape_or.status()); EXPECT_TRUE(shape_or.value().IsSameSize({2, 3, 2, 2})); } TEST(UniformQuantizedConvolutionParamsTest, CalculateOutputShapeSetAttr) { UniformQuantizedConvolutionDimensionNumbersAttr dimension_numbers; ASSERT_TRUE(TextFormat::ParseFromString(R"pb( input_batch_dimension: 0 input_feature_dimension: 3 input_spatial_dimensions: 1 input_spatial_dimensions: 2 kernel_output_feature_dimension: 3 kernel_input_feature_dimension: 2 kernel_spatial_dimensions: 0 kernel_spatial_dimensions: 1 output_batch_dimension: 0 output_feature_dimension: 3 output_spatial_dimensions: 1 output_spatial_dimensions: 2 )pb", &dimension_numbers)); UniformQuantizedConvolutionParams params({2, 2}, {3, 3}, {4, 4}, dimension_numbers, 2, 1, "EXPLICIT", {1, 1, 2, 2}); const TensorShape lhs_shape({2, 3, 4, 2}); const TensorShape rhs_shape({2, 3, 1, 2}); TF_ASSERT_OK( params.ValidateOrFillParamsAndValidateShape(lhs_shape, rhs_shape)); auto shape_or = params.CalculateOutputShape(lhs_shape, rhs_shape); TF_ASSERT_OK(shape_or.status()); EXPECT_TRUE(shape_or.value().IsSameSize({2, 3, 3, 2})); } TEST(UniformQuantizedConvolutionParamsTest, CalculateSameOptionPadding) { UniformQuantizedConvolutionDimensionNumbersAttr dimension_numbers; UniformQuantizedConvolutionParams params({}, {}, {}, dimension_numbers, 1, 1, "SAME"); const TensorShape lhs_shape({2, 2, 3, 4}); const TensorShape rhs_shape({3, 2, 4, 3}); TF_ASSERT_OK( params.ValidateOrFillParamsAndValidateShape(lhs_shape, rhs_shape)); EXPECT_THAT(params.padding_list(), ElementsAreArray({1, 2, 1, 1})); } } }
1,722
cpp
tensorflow/tensorflow
sparse_tensor
tensorflow/core/util/sparse/sparse_tensor.cc
tensorflow/core/util/sparse/sparse_tensor_test.cc
#ifndef TENSORFLOW_CORE_UTIL_SPARSE_SPARSE_TENSOR_H_ #define TENSORFLOW_CORE_UTIL_SPARSE_SPARSE_TENSOR_H_ #include <limits> #include <numeric> #include <vector> #include "absl/base/macros.h" #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/sparse/dim_comparator.h" #include "tensorflow/core/util/sparse/group_iterator.h" namespace tensorflow { namespace sparse { class SparseTensor { public: typedef absl::Span<const int64_t> VarDimArray; typedef absl::InlinedVector<int64_t, 8UL> ShapeArray; static Status Create(Tensor ix, Tensor vals, const VarDimArray shape, const VarDimArray order, SparseTensor* result); static Status Create(Tensor ix, Tensor vals, const TensorShape& shape, SparseTensor* result); static Status Create(Tensor ix, Tensor vals, const VarDimArray shape, SparseTensor* result); static Status Create(Tensor ix, Tensor vals, const TensorShape& shape, const VarDimArray order, SparseTensor* result); SparseTensor() : dims_(0) {} ABSL_DEPRECATED("Use Create() functions instead of constructors directly.") SparseTensor(Tensor ix, Tensor vals, const TensorShape& shape) : SparseTensor(std::move(ix), std::move(vals), TensorShapeToVector(shape), UndefinedOrder(TensorShapeToVector(shape))) {} ABSL_DEPRECATED("Use Create() functions instead of constructors directly.") SparseTensor(Tensor ix, Tensor vals, const VarDimArray shape) : SparseTensor(std::move(ix), std::move(vals), shape, UndefinedOrder(shape)) {} ABSL_DEPRECATED("use Create() functions instead of constructors directly.") SparseTensor(Tensor ix, Tensor vals, const TensorShape& shape, const VarDimArray order) : SparseTensor(std::move(ix), std::move(vals), TensorShapeToVector(shape), order) {} ABSL_DEPRECATED("Use Create() functions instead of constructors directly.") SparseTensor(Tensor ix, Tensor vals, const VarDimArray shape, const VarDimArray order); SparseTensor(const SparseTensor& other) : SparseTensor(other.ix_, other.vals_, other.shape_, other.order_) {} SparseTensor(SparseTensor&& other) : SparseTensor(std::move(other.ix_), std::move(other.vals_), std::move(other.shape_), std::move(other.order_)) {} SparseTensor& operator=(const SparseTensor& other) { ix_ = other.ix_; vals_ = other.vals_; shape_ = other.shape_; order_ = other.order_; dims_ = other.dims_; return *this; } SparseTensor& operator=(SparseTensor&& other) { ix_ = std::move(other.ix_); vals_ = std::move(other.vals_); shape_ = std::move(other.shape_); order_ = std::move(other.order_); dims_ = std::move(other.dims_); return *this; } std::size_t num_entries() const { return ix_.dim_size(0); } int dims() const { return shape_.size(); } const Tensor& indices() const { return ix_; } const Tensor& values() const { return vals_; } DataType dtype() const { return vals_.dtype(); } Status IndicesValid() const; VarDimArray shape() const { return shape_; } VarDimArray order() const { return order_; } template <typename T> void Reorder(const VarDimArray& order); GroupIterable group(const VarDimArray& group_ix) const { DCHECK_LE(group_ix.size(), dims_); for (std::size_t di = 0; di < group_ix.size(); ++di) { DCHECK_GE(group_ix[di], 0) << "Group dimension out of range"; DCHECK_LT(group_ix[di], dims_) << "Group dimension out of range"; DCHECK_EQ(group_ix[di], order_[di]) << "Group dimension does not match sorted order"; } return GroupIterable(ix_, vals_, dims_, group_ix); } template <typename T> bool ToDense(Tensor* out, bool initialize = true); template <typename T> static SparseTensor Concat(const absl::Span<const SparseTensor>& tensors); template <typename T> static Status Split(const SparseTensor& tensor, const int split_dim, const int num_split, std::vector<SparseTensor>* result); template <typename T> static absl::StatusOr<SparseTensor> Slice( const SparseTensor& tensor, const absl::Span<const int64_t> start, const absl::Span<const int64_t> size); std::vector<int64_t> PickDims(absl::Span<const int64_t> dim_indices) const { std::vector<int64_t> res(dim_indices.size()); for (size_t i = 0; i < dim_indices.size(); ++i) { res[i] = shape_[dim_indices[i]]; } return res; } private: static inline ShapeArray UndefinedOrder(const VarDimArray shape) { return ShapeArray(shape.size(), -1); } static inline ShapeArray TensorShapeToVector(const TensorShape& shape) { ShapeArray vec(shape.dims()); for (int i = 0; i < shape.dims(); ++i) vec[i] = shape.dim_size(i); return vec; } bool IndicesValidVectorFastPath() const; bool IndicesValidMatrix32BitFastPath() const; template <bool standard_order> Status IndicesValidHelper() const; template <typename T> bool ValidateAndInitializeToDense(Tensor* out, bool initialize); static inline int GetSliceIndex(const int dim, const int split_size, const int residual) { DCHECK_GT(split_size, 0); DCHECK_GE(dim, 0); if (residual == 0) return dim / split_size; const int offset = residual * (split_size + 1); if (dim < offset) { return dim / (split_size + 1); } else { return residual + ((dim - offset) / split_size); } } static inline int GetDimensionInSlice(const int dim, const int split_size, const int residual) { DCHECK_GT(split_size, 0); DCHECK_GE(dim, 0); if (residual == 0) return dim % split_size; const int offset = residual * (split_size + 1); if (dim < offset) { return dim % (split_size + 1); } else { return (dim - offset) % split_size; } } static inline int GetSliceShape(const int slice_index, const int split_size, const int residual) { DCHECK_GT(split_size, 0); DCHECK_GE(slice_index, 0); if (residual == 0) return split_size; if (slice_index < residual) { return split_size + 1; } else { return split_size; } } Tensor ix_; Tensor vals_; ShapeArray shape_; ShapeArray order_; int dims_; }; template <typename T> inline void SparseTensor::Reorder(const VarDimArray& order) { DCHECK_EQ(DataTypeToEnum<T>::v(), dtype()) << "Reorder requested with the wrong datatype"; DCHECK_EQ(order.size(), dims_) << "Order length must be SparseTensor rank"; auto ix_t = ix_.matrix<int64_t>(); auto vals_t = vals_.vec<T>(); std::vector<int64_t> reorder(num_entries()); std::iota(reorder.begin(), reorder.end(), 0); switch (order.size()) { #define CASE_SORT(ORDER_SIZE) \ case ORDER_SIZE: { \ FixedDimComparator<ORDER_SIZE> sorter(ix_t, order, shape()); \ std::sort(reorder.begin(), reorder.end(), sorter); \ break; \ } CASE_SORT(0); CASE_SORT(1); CASE_SORT(2); CASE_SORT(3); CASE_SORT(4); CASE_SORT(5); #undef CASE_SORT default: { DimComparator sorter(ix_t, order, shape()); std::sort(reorder.begin(), reorder.end(), sorter); } } std::vector<size_t> permutation(reorder.size()); for (std::size_t n = 0; n < reorder.size(); ++n) { permutation[reorder[n]] = n; } for (std::size_t n = 0; n + 1 < permutation.size(); ++n) { while (n != permutation[n]) { std::size_t r = permutation[n]; std::swap_ranges(&(ix_t(n, 0)), &(ix_t(n + 1, 0)), &(ix_t(r, 0))); std::swap(vals_t(n), vals_t(r)); std::swap(permutation[n], permutation[r]); } } order_ = ShapeArray(order.begin(), order.end()); } template <typename T> inline bool SparseTensor::ValidateAndInitializeToDense(Tensor* out, bool initialize) { DCHECK_EQ(DataTypeToEnum<T>::v(), dtype()) << "ToDense requested with the wrong datatype"; DCHECK_EQ(out->shape().dims(), dims_) << "Incompatible dimensions between SparseTensor and output"; DCHECK_EQ(out->dtype(), DataTypeToEnum<T>::v()) << "Output must be type: " << DataTypeToEnum<T>::v() << " but got: " << out->dtype(); const auto& out_shape = out->shape(); if (shape_.size() != out_shape.dims()) return false; for (int d = 0; d < shape_.size(); ++d) { if (shape_[d] > out_shape.dim_size(d)) return false; } if (initialize) { auto out_t = out->flat<T>(); out_t.setConstant(T()); } return true; } template <typename T> inline bool SparseTensor::ToDense(Tensor* out, bool initialize) { if (!ValidateAndInitializeToDense<T>(out, initialize)) return false; auto out_t = out->flat<T>(); auto vals_t = vals_.vec<T>(); auto ix_t = ix_.matrix<int64_t>(); const int64_t* const ix_ptr = ix_t.data(); if (dims_ == 1) { const int64_t out_length = out->shape().dim_size(0); for (int n = 0; n < vals_t.dimension(0); ++n) { const int64_t index = internal::SubtleMustCopy(ix_ptr[n]); if (!FastBoundsCheck(index, out_length)) return false; out_t(index) = vals_t(n); } return true; } else if (dims_ == 2) { const auto& out_shape = out->shape(); const int64_t out_rows = out_shape.dim_size(0); const int64_t out_cols = out_shape.dim_size(1); for (int n = 0; n < vals_t.dimension(0); ++n) { const int64_t row_index = internal::SubtleMustCopy(ix_ptr[n * 2]); const int64_t col_index = internal::SubtleMustCopy(ix_ptr[n * 2 + 1]); if (!(FastBoundsCheck(row_index, out_rows) && FastBoundsCheck(col_index, out_cols))) { return false; } out_t(row_index * out_cols + col_index) = vals_t(n); } return true; } else { absl::InlinedVector<int64_t, 4UL> strides(dims_); const auto& out_shape = out->shape().dim_sizes(); if (dims_ > 0) { strides[dims_ - 1] = 1; } for (int d = dims_ - 2; d >= 0; --d) { strides[d] = strides[d + 1] * out_shape[d + 1]; } for (int n = 0; n < vals_t.dimension(0); ++n) { bool invalid_dims = false; int64_t ix = 0; for (int d = 0; d < dims_; ++d) { const int64_t ix_n_d = internal::SubtleMustCopy(ix_ptr[n * dims_ + d]); if (!FastBoundsCheck(ix_n_d, out_shape[d])) { invalid_dims = true; } ix += strides[d] * ix_n_d; } if (invalid_dims) return false; out_t(ix) = vals_t(n); } return true; } } template <typename T> inline SparseTensor SparseTensor::Concat( const absl::Span<const SparseTensor>& tensors) { DCHECK_GE(tensors.size(), size_t{1}) << "Cannot concat 0 SparseTensors"; const int dims = tensors[0].dims_; DCHECK_GE(dims, 1) << "Cannot concat 0-dimensional SparseTensors"; auto order_0 = tensors[0].order(); const int primary_dim = order_0[0]; ShapeArray final_order(order_0.begin(), order_0.end()); ShapeArray final_shape(tensors[0].shape().begin(), tensors[0].shape().end()); final_shape[primary_dim] = 0; int num_entries = 0; bool fully_ordered = true; for (const SparseTensor& st : tensors) { DCHECK_EQ(st.dims_, dims) << "All SparseTensors must have the same rank."; DCHECK_EQ(DataTypeToEnum<T>::v(), st.dtype()) << "Concat requested with the wrong data type"; DCHECK_GE(st.order()[0], 0) << "SparseTensor must be ordered"; DCHECK_EQ(st.order()[0], primary_dim) << "All SparseTensors' order[0] must match. This is the concat dim."; if (st.order() != final_order) fully_ordered = false; const VarDimArray& st_shape = st.shape(); for (int d = 0; d < dims - 1; ++d) { const int cdim = (d < primary_dim) ? d : d + 1; DCHECK_EQ(final_shape[cdim], st_shape[cdim]) << "All SparseTensors' shapes must match except on the concat dim. " << "Concat dim: " << primary_dim << ", mismatched shape at dim: " << cdim << ". Expecting shape like: [" << str_util::Join(final_shape, ",") << "] but saw shape: [" << str_util::Join(st_shape, ",") << "]"; } final_shape[primary_dim] = (final_shape[primary_dim] + st_shape[primary_dim]); num_entries += st.num_entries(); } if (!fully_ordered) { final_order = UndefinedOrder(final_shape); } Tensor output_ix(DT_INT64, TensorShape({num_entries, dims})); Tensor output_vals(DataTypeToEnum<T>::v(), TensorShape({num_entries})); TTypes<int64_t>::Matrix ix_t = output_ix.matrix<int64_t>(); typename TTypes<T>::Vec vals_t = output_vals.vec<T>(); Eigen::DenseIndex offset = 0; int64_t shape_offset = 0; for (const SparseTensor& st : tensors) { const int st_num_entries = st.num_entries(); if (st_num_entries > 0) { std::copy_n(&st.vals_.vec<T>()(0), st_num_entries, &vals_t(offset)); const auto* st_ix = &st.ix_.matrix<int64_t>()(0, 0); auto* ix_out = &ix_t(offset, 0); for (std::size_t i = 0; i < st_num_entries * dims; ++i) { *ix_out++ = *st_ix++ + ((i % dims == primary_dim) ? shape_offset : 0); } } offset += st_num_entries; shape_offset += st.shape()[primary_dim]; } return SparseTensor(output_ix, output_vals, final_shape, final_order); } template <typename T> inline Status SparseTensor::Split(const SparseTensor& input_tensor, const int split_dim, const int num_split, std::vector<SparseTensor>* result) { std::vector<Tensor> output_indices; std::vector<Tensor> output_values; std::vector<TensorShape> output_shapes; output_indices.reserve(num_split); output_values.reserve(num_split); output_shapes.reserve(num_split); std::vector<typename TTypes<int64_t>::Matrix> output_indices_t; std::vector<typename TTypes<T>::Vec> output_values_t; output_indices_t.reserve(num_split); output_values_t.reserve(num_split); auto input_values_t = input_tensor.values().vec<T>(); auto input_indices_t = input_tensor.indices().matrix<int64_t>(); std::vector<int> num_values(num_split, 0); const int num_dim = input_tensor.shape().size(); const int split_dim_size = input_tensor.shape()[split_dim]; const int split_size = split_dim_size / num_split; if (!(num_split > 0 && num_split <= split_dim_size)) { return errors::InvalidArgument("num_split must be in the interval (0, ", split_dim_size, "]"); } if (!(split_dim >= 0 && split_dim < num_dim)) { return errors::InvalidArgument("num_dim must be in the interval [0, ", num_dim, ")"); } const int residual = split_dim_size % num_split; for (int i = 0; i < input_tensor.indices().dim_size(0); ++i) { const int dim = input_tensor.indices().matrix<int64_t>()(i, split_dim); int slice_index = GetSliceIndex(dim, split_size, residual); if (slice_index >= num_values.size()) { return errors::InvalidArgument("Slice index ", slice_index, " is larger than num_split."); } num_values[slice_index]++; } for (int i = 0; i < num_split; ++i) { output_indices.emplace_back(DT_INT64, TensorShape({num_values[i], num_dim})); output_values.emplace_back(DataTypeToEnum<T>::v(), TensorShape({num_values[i]})); output_shapes.emplace_back(input_tensor.shape()); output_indices_t.emplace_back(output_indices[i].matrix<int64_t>()); output_values_t.emplace_back(output_values[i].vec<T>()); const int size = GetSliceShape(i, split_size, residual); output_shapes[i].set_dim(split_dim, size); } std::vector<int> values_inserted_in_slice(num_split, 0); for (int i = 0; i < input_tensor.indices().dim_size(0); ++i) { const int dim = input_indices_t(i, split_dim); const int slice_index = GetSliceIndex(dim, split_size, residual); const int slice_dim = values_inserted_in_slice[slice_index]++; output_values_t[slice_index](slice_dim) = input_values_t(i); for (int j = 0; j < num_dim; ++j) { const int64_t original_dim = input_indices_t(i, j); output_indices_t[slice_index](slice_dim, j) = (j == split_dim) ? GetDimensionInSlice(original_dim, split_size, residual) : original_dim; } } result->clear(); result->reserve(num_split); for (int i = 0; i < num_split; ++i) { SparseTensor tensor; Status create_status = Create(output_indices[i], output_values[i], output_shapes[i], &tensor); if (!create_status.ok()) { return create_status; } result->push_back(std::move(tensor)); } return absl::OkStatus(); } template <typename T> inline absl::StatusOr<SparseTensor> SparseTensor::Slice( const SparseTensor& input_tensor, const absl::Span<const int64_t> start, const absl::Span<const int64_t> size) { TensorShape output_shape(input_tensor.shape()); const int dims = input_tensor.dims(); for (int dim = 0; dim < dims; dim++) { const int64_t input_size = output_shape.dim_size(dim); const int64_t start_index = start[dim]; const int64_t slice_size = size[dim]; if (start_index < input_size - slice_size) { TF_RETURN_IF_ERROR(output_shape.SetDimWithStatus(dim, slice_size)); } else if (start_index < input_size) { TF_RETURN_IF_ERROR( output_shape.SetDimWithStatus(dim, input_size - start_index)); } else { TF_RETURN_IF_ERROR(output_shape.SetDimWithStatus(dim, 0)); } } auto input_indices_t = input_tensor.indices().matrix<int64_t>(); auto input_values_t = input_tensor.values().vec<T>(); int count = 0; for (int i = 0; i < input_tensor.indices().dim_size(0); i++) { bool hit = true; for (int dim = 0; dim < dims; dim++) { if (!(start[dim] <= input_indices_t(i, dim) && input_indices_t(i, dim) < start[dim] + size[dim])) { hit = false; break; } } if (!hit) { continue; } count++; } Tensor output_values(DataTypeToEnum<T>::v(), TensorShape({count})); Tensor output_indices(DT_INT64, TensorShape({count, dims})); auto output_values_t = output_values.vec<T>(); auto output_indices_t = output_indices.matrix<int64_t>(); int index = 0; for (int i = 0; i < input_tensor.indices().dim_size(0) && index < count; i++) { bool hit = true; for (int dim = 0; dim < dims; dim++) { if (!(start[dim] <= input_indices_t(i, dim) && input_indices_t(i, dim) < start[dim] + size[dim])) { hit = false; break; } } if (!hit) { continue; } output_values_t(index) = input_values_t(i); for (int dim = 0; dim < dims; dim++) { output_indices_t(index, dim) = input_indices_t(i, dim) - start[dim]; } index++; } return SparseTensor(output_indices, output_values, output_shape); } } } #endif #include "tensorflow/core/util/sparse/sparse_tensor.h" #include "tensorflow/core/lib/strings/strcat.h" namespace tensorflow { namespace sparse { namespace { int UnsafeGetDimsFromIx(const Tensor& ix) { DCHECK(TensorShapeUtils::IsMatrix(ix.shape())); return ix.dim_size(1); } Status GetDimsFromIx(const Tensor& ix, int* result) { if (!TensorShapeUtils::IsMatrix(ix.shape())) { return errors::InvalidArgument("indices must be a matrix, but got: ", ix.shape().DebugString()); } *result = UnsafeGetDimsFromIx(ix); return Status(); } } Status SparseTensor::Create(Tensor ix, Tensor vals, const VarDimArray shape, const VarDimArray order, SparseTensor* result) { if (ix.dtype() != DT_INT64) { return errors::InvalidArgument("indices must be type int64 but got: ", ix.dtype()); } if (!TensorShapeUtils::IsVector(vals.shape())) { return errors::InvalidArgument("vals must be a vec, but got: ", vals.shape().DebugString()); } if (ix.shape().dim_size(0) != vals.shape().dim_size(0)) { return errors::InvalidArgument( "indices and values rows (indexing " "dimension) must match. (indices = ", ix.shape().dim_size(0), ", values = ", vals.shape().dim_size(0), ")"); } int dims = 0; TF_RETURN_IF_ERROR(GetDimsFromIx(ix, &dims)); if (order.size() != dims) { return errors::InvalidArgument("Order length must be SparseTensor rank."); } if (shape.size() != dims) { return errors::InvalidArgument("Shape rank must be SparseTensor rank."); } result->ix_ = std::move(ix); result->vals_ = std::move(vals); result->shape_.assign(shape.begin(), shape.end()); result->order_.assign(order.begin(), order.end()); result->dims_ = dims; return absl::OkStatus(); } Status SparseTensor::Create(Tensor ix, Tensor vals, const TensorShape& shape, SparseTensor* result) { return Create(std::move(ix), std::move(vals), TensorShapeToVector(shape), UndefinedOrder(TensorShapeToVector(shape)), result); } Status SparseTensor::Create(Tensor ix, Tensor vals, const VarDimArray shape, SparseTensor* result) { return Create(std::move(ix), std::move(vals), shape, UndefinedOrder(shape), result); } Status SparseTensor::Create(Tensor ix, Tensor vals, const TensorShape& shape, const VarDimArray order, SparseTensor* result) { return Create(std::move(ix), std::move(vals), TensorShapeToVector(shape), order, result); } SparseTensor::SparseTensor(Tensor ix, Tensor vals, const VarDimArray shape, const VarDimArray order) : ix_(std::move(ix)), vals_(std::move(vals)), shape_(shape.begin(), shape.end()), order_(order.begin(), order.end()), dims_(UnsafeGetDimsFromIx(ix_)) { DCHECK_EQ(ix_.dtype(), DT_INT64) << "indices must be type int64 but got: " << ix_.dtype(); DCHECK(TensorShapeUtils::IsVector(vals_.shape())) << "vals must be a vec, but got: " << vals_.shape().DebugString(); DCHECK_EQ(ix_.shape().dim_size(0), vals_.shape().dim_size(0)) << "indices and values rows (indexing dimension) must match."; DCHECK_EQ(order.size(), dims_) << "Order length must be SparseTensor rank."; DCHECK_EQ(shape.size(), dims_) << "Shape rank must be SparseTensor rank."; } bool SparseTensor::IndicesValidVectorFastPath() const { DCHECK_EQ(shape_.size(), 1); DCHECK_EQ(order_[0], 0); const int64_t max_index = shape_[0]; bool index_in_range_valid = true; bool order_valid = true; int64_t prev_index = -1; const auto ix_t = ix_.matrix<int64_t>(); const int64_t* const index_base_ptr = ix_t.data(); for (std::size_t n = 0; n < ix_t.dimension(0); ++n) { const int64_t index = index_base_ptr[n]; index_in_range_valid = index_in_range_valid & (index < max_index); order_valid = order_valid & (index > prev_index); prev_index = index; } return index_in_range_valid & order_valid; } bool SparseTensor::IndicesValidMatrix32BitFastPath() const { const auto ix_t = ix_.matrix<int64_t>(); const int64_t* const shape_ptr = shape_.data(); DCHECK_EQ(shape_.size(), 2); DCHECK_EQ(order_[0], 0); DCHECK_EQ(order_[1], 1); DCHECK_LE(shape_ptr[0], std::numeric_limits<int32>::max()); DCHECK_LE(shape_ptr[1], std::numeric_limits<int32>::max()); const int32_t max_rows = static_cast<int32>(shape_ptr[0]); const int32_t max_cols = static_cast<int32>(shape_ptr[1]); bool row_zeros_valid = true; bool row_in_range_valid = true; bool col_zeros_valid = true; bool col_in_range_valid = true; bool order_valid = true; int64_t prev_index = -1; const int32* const index_base_ptr = reinterpret_cast<const int32*>(ix_t.data()); const size_t kInt32ElementsPerRow = 4; for (std::size_t n = 0; n < ix_t.dimension(0); ++n) { const int32* const index_ptr = index_base_ptr + n * kInt32ElementsPerRow; #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ const int32 row_zeros = index_ptr[0]; const int32 row_32 = index_ptr[1]; const int32 col_zeros = index_ptr[2]; const int32 col_32 = index_ptr[3]; #else const int32_t row_32 = index_ptr[0]; const int32_t row_ze
#include "tensorflow/core/util/sparse/sparse_tensor.h" #include <string> #include <vector> #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace sparse { namespace { Eigen::Tensor<int64_t, 2, Eigen::RowMajor, Eigen::DenseIndex> GetSimpleIndexTensor(int N, const int NDIM) { Eigen::Tensor<int64_t, 2, Eigen::RowMajor, Eigen::DenseIndex> ix(N, NDIM); ix(0, 0) = 0; ix(0, 1) = 0; ix(0, 2) = 0; ix(1, 0) = 3; ix(1, 1) = 0; ix(1, 2) = 0; ix(2, 0) = 2; ix(2, 1) = 0; ix(2, 2) = 0; ix(3, 0) = 0; ix(3, 1) = 1; ix(3, 2) = 0; ix(4, 0) = 0; ix(4, 1) = 0; ix(4, 2) = 2; return ix; } TEST(SparseTensorTest, DimComparatorSorts) { int64_t N = 5; const int NDIM = 3; auto ix = GetSimpleIndexTensor(N, NDIM); TTypes<int64_t>::Matrix map(ix.data(), N, NDIM); std::vector<int64_t> sorting(N); for (std::size_t n = 0; n < N; ++n) sorting[n] = n; std::vector<int64_t> order{0, 1, 2}; std::vector<int64_t> shape{N, N, N}; DimComparator sorter(map, order, shape); std::sort(sorting.begin(), sorting.end(), sorter); EXPECT_EQ(sorting, std::vector<int64_t>({0, 4, 3, 2, 1})); FixedDimComparator<3> sorter_fixed(map, order, shape); std::sort(sorting.begin(), sorting.end(), sorter_fixed); EXPECT_EQ(sorting, std::vector<int64_t>({0, 4, 3, 2, 1})); std::vector<int64_t> order1{2, 0, 1}; DimComparator sorter1(map, order1, shape); for (std::size_t n = 0; n < N; ++n) sorting[n] = n; std::sort(sorting.begin(), sorting.end(), sorter1); EXPECT_EQ(sorting, std::vector<int64_t>({0, 3, 2, 1, 4})); FixedDimComparator<3> sorter1_fixed(map, order1, shape); for (std::size_t n = 0; n < N; ++n) sorting[n] = n; std::sort(sorting.begin(), sorting.end(), sorter1_fixed); EXPECT_EQ(sorting, std::vector<int64_t>({0, 3, 2, 1, 4})); } TEST(SparseTensorTest, SparseTensorInvalidIndicesType) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT32, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); SparseTensor result; EXPECT_EQ(SparseTensor::Create(ix, vals, TensorShape({10, 10, 10}), {0, 1, 2}, &result) .code(), error::INVALID_ARGUMENT); } TEST(SparseTensorTest, SparseTensorInvalidIndicesShape) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM, 1})); Tensor vals(DT_STRING, TensorShape({N})); SparseTensor result; EXPECT_EQ(SparseTensor::Create(ix, vals, TensorShape({10, 10, 10}), {0, 1, 2}, &result) .code(), error::INVALID_ARGUMENT); } TEST(SparseTensorTest, SparseTensorInvalidValues) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N, 1})); SparseTensor result; EXPECT_EQ(SparseTensor::Create(ix, vals, TensorShape({10, 10, 10}), {0, 1, 2}, &result) .code(), error::INVALID_ARGUMENT); } TEST(SparseTensorTest, SparseTensorInvalidN) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N - 1})); SparseTensor result; EXPECT_EQ(SparseTensor::Create(ix, vals, TensorShape({10, 10, 10}), {0, 1, 2}, &result) .code(), error::INVALID_ARGUMENT); } TEST(SparseTensorTest, SparseTensorInvalidOrder) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); SparseTensor result; EXPECT_EQ( SparseTensor::Create(ix, vals, TensorShape({10, 10, 10}), {0, 1}, &result) .code(), error::INVALID_ARGUMENT); } TEST(SparseTensorTest, SparseTensorInvalidShape) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); SparseTensor result; EXPECT_EQ( SparseTensor::Create(ix, vals, TensorShape({10, 10}), {0, 1, 2}, &result) .code(), error::INVALID_ARGUMENT); } TEST(SparseTensorTest, SparseTensorConstruction) { int N = 5; const int NDIM = 3; auto ix_c = GetSimpleIndexTensor(N, NDIM); Eigen::Tensor<tstring, 1, Eigen::RowMajor> vals_c(N); vals_c(0) = "hi0"; vals_c(1) = "hi1"; vals_c(2) = "hi2"; vals_c(3) = "hi3"; vals_c(4) = "hi4"; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); auto ix_t = ix.matrix<int64_t>(); auto vals_t = vals.vec<tstring>(); vals_t = vals_c; ix_t = ix_c; TensorShape shape({10, 10, 10}); std::vector<int64_t> order{0, 1, 2}; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, order, &st)); Status st_indices_valid = st.IndicesValid(); EXPECT_FALSE(st_indices_valid.ok()); EXPECT_EQ( "indices[2] = [2,0,0] is out of order. " "Many sparse ops require sorted indices.\n" " Use `tf.sparse.reorder` to create a correctly ordered copy." "\n\n", st_indices_valid.message()); st.Reorder<tstring>({2, 0, 1}); TF_EXPECT_OK(st.IndicesValid()); EXPECT_EQ(vals_t(0), "hi0"); EXPECT_EQ(vals_t(1), "hi3"); EXPECT_EQ(vals_t(2), "hi2"); EXPECT_EQ(vals_t(3), "hi1"); EXPECT_EQ(vals_t(4), "hi4"); ix_t = ix_c; vals_t = vals_c; st.Reorder<tstring>({0, 1, 2}); TF_EXPECT_OK(st.IndicesValid()); EXPECT_EQ(vals_t(0), "hi0"); EXPECT_EQ(vals_t(1), "hi4"); EXPECT_EQ(vals_t(2), "hi3"); EXPECT_EQ(vals_t(3), "hi2"); EXPECT_EQ(vals_t(4), "hi1"); ix_t = ix_c; vals_t = vals_c; st.Reorder<tstring>({2, 1, 0}); TF_EXPECT_OK(st.IndicesValid()); } TEST(SparseTensorTest, EmptySparseTensorAllowed) { int N = 0; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); std::vector<int64_t> shape{10, 10, 10}; std::vector<int64_t> order{0, 1, 2}; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, order, &st)); TF_EXPECT_OK(st.IndicesValid()); EXPECT_EQ(st.order(), order); std::vector<int64_t> new_order{1, 0, 2}; st.Reorder<tstring>(new_order); TF_EXPECT_OK(st.IndicesValid()); EXPECT_EQ(st.order(), new_order); } TEST(SparseTensorTest, SortingWorksCorrectly) { int N = 30; const int NDIM = 4; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); TensorShape shape({1000, 1000, 1000, 1000}); SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, &st)); auto ix_t = ix.matrix<int64_t>(); for (int n = 0; n < 100; ++n) { ix_t = ix_t.random(Eigen::internal::UniformRandomGenerator<int64_t>(n + 1)); ix_t = ix_t.abs() % 1000; st.Reorder<tstring>({0, 1, 2, 3}); TF_EXPECT_OK(st.IndicesValid()); st.Reorder<tstring>({3, 2, 1, 0}); TF_EXPECT_OK(st.IndicesValid()); st.Reorder<tstring>({1, 0, 2, 3}); TF_EXPECT_OK(st.IndicesValid()); st.Reorder<tstring>({3, 0, 2, 1}); TF_EXPECT_OK(st.IndicesValid()); } } TEST(SparseTensorTest, ValidateIndicesFindsInvalid) { int N = 2; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); Eigen::Tensor<int64_t, 2, Eigen::RowMajor> ix_orig(N, NDIM); ix_orig(0, 0) = 0; ix_orig(0, 1) = 0; ix_orig(0, 2) = 0; ix_orig(1, 0) = 0; ix_orig(1, 1) = 0; ix_orig(1, 2) = 0; auto ix_t = ix.matrix<int64_t>(); ix_t = ix_orig; TensorShape shape({10, 10, 10}); std::vector<int64_t> order{0, 1, 2}; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, order, &st)); st.Reorder<tstring>(order); Status st_indices_valid = st.IndicesValid(); EXPECT_FALSE(st_indices_valid.ok()); EXPECT_EQ("indices[1] = [0,0,0] is repeated", st_indices_valid.message()); ix_orig(1, 2) = 1; ix_t = ix_orig; st.Reorder<tstring>(order); TF_EXPECT_OK(st.IndicesValid()); ix_orig(0, 2) = 1; ix_t = ix_orig; st.Reorder<tstring>(order); st_indices_valid = st.IndicesValid(); EXPECT_FALSE(st_indices_valid.ok()); EXPECT_EQ("indices[1] = [0,0,1] is repeated", st_indices_valid.message()); } TEST(SparseTensorTest, SparseTensorCheckBoundaries) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); auto ix_t = GetSimpleIndexTensor(N, NDIM); ix.matrix<int64_t>() = ix_t; TensorShape shape({10, 10, 10}); std::vector<int64_t> order{0, 1, 2}; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, order, &st)); EXPECT_FALSE(st.IndicesValid().ok()); st.Reorder<tstring>(order); TF_EXPECT_OK(st.IndicesValid()); ix_t(0, 0) = 11; ix.matrix<int64_t>() = ix_t; st.Reorder<tstring>(order); Status st_indices_valid = st.IndicesValid(); EXPECT_FALSE(st_indices_valid.ok()); EXPECT_EQ("[11,0,0] is out of bounds: need 0 <= index < [10,10,10]", st_indices_valid.message().substr(13)); ix_t(0, 0) = -1; ix.matrix<int64_t>() = ix_t; st.Reorder<tstring>(order); st_indices_valid = st.IndicesValid(); EXPECT_FALSE(st_indices_valid.ok()); EXPECT_EQ("[-1,0,0] is out of bounds: need 0 <= index < [10,10,10]", st_indices_valid.message().substr(13)); ix_t(0, 0) = 0; ix.matrix<int64_t>() = ix_t; st.Reorder<tstring>(order); TF_EXPECT_OK(st.IndicesValid()); } TEST(SparseTensorTest, SparseTensorToDenseTensor) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); auto ix_t = GetSimpleIndexTensor(N, NDIM); auto vals_t = vals.vec<tstring>(); ix.matrix<int64_t>() = ix_t; vals_t(0) = "hi0"; vals_t(1) = "hi1"; vals_t(2) = "hi2"; vals_t(3) = "hi3"; vals_t(4) = "hi4"; TensorShape shape({4, 4, 5}); std::vector<int64_t> order{0, 1, 2}; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, order, &st)); Tensor dense(DT_STRING, TensorShape({4, 4, 5})); st.ToDense<tstring>(&dense); auto dense_t = dense.tensor<tstring, 3>(); Eigen::array<Eigen::DenseIndex, NDIM> ix_n; for (int n = 0; n < N; ++n) { for (int d = 0; d < NDIM; ++d) ix_n[d] = ix_t(n, d); EXPECT_EQ(dense_t(ix_n), vals_t(n)); } EXPECT_EQ(dense_t(0, 0, 1), ""); EXPECT_EQ(dense_t(0, 0, 3), ""); EXPECT_EQ(dense_t(3, 3, 3), ""); EXPECT_EQ(dense_t(3, 3, 4), ""); } TEST(SparseTensorTest, SparseTensorToLargerDenseTensor) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); auto ix_t = GetSimpleIndexTensor(N, NDIM); auto vals_t = vals.vec<tstring>(); ix.matrix<int64_t>() = ix_t; vals_t(0) = "hi0"; vals_t(1) = "hi1"; vals_t(2) = "hi2"; vals_t(3) = "hi3"; vals_t(4) = "hi4"; TensorShape shape({4, 4, 5}); std::vector<int64_t> order{0, 1, 2}; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, order, &st)); Tensor dense(DT_STRING, TensorShape({10, 10, 10})); st.ToDense<tstring>(&dense); auto dense_t = dense.tensor<tstring, 3>(); Eigen::array<Eigen::DenseIndex, NDIM> ix_n; for (int n = 0; n < N; ++n) { for (int d = 0; d < NDIM; ++d) ix_n[d] = ix_t(n, d); EXPECT_EQ(dense_t(ix_n), vals_t(n)); } EXPECT_EQ(dense_t(0, 0, 1), ""); EXPECT_EQ(dense_t(0, 0, 3), ""); EXPECT_EQ(dense_t(3, 3, 3), ""); EXPECT_EQ(dense_t(3, 3, 4), ""); EXPECT_EQ(dense_t(9, 0, 0), ""); EXPECT_EQ(dense_t(9, 0, 9), ""); EXPECT_EQ(dense_t(9, 9, 9), ""); } TEST(SparseTensorTest, SparseTensorGroup) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_INT32, TensorShape({N})); auto ix_t = ix.matrix<int64_t>(); auto vals_t = vals.vec<int32>(); ix_t = GetSimpleIndexTensor(N, NDIM); vals_t(0) = 1; vals_t(1) = 2; vals_t(2) = 3; vals_t(3) = 4; vals_t(4) = 5; TensorShape shape({10, 10, 10}); std::vector<int64_t> order{0, 1, 2}; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, order, &st)); st.Reorder<int32>(order); std::vector<std::vector<int64_t> > groups; std::vector<TTypes<int64_t>::UnalignedConstMatrix> grouped_indices; std::vector<TTypes<int32>::UnalignedVec> grouped_values; auto gi = st.group({0}); for (const auto& g : gi) { groups.push_back(g.group()); VLOG(1) << "Group: " << absl::StrJoin(g.group(), ","); VLOG(1) << "Indices: " << g.indices(); VLOG(1) << "Values: " << g.values<int32>(); grouped_indices.push_back(g.indices()); grouped_values.push_back(g.values<int32>()); } EXPECT_EQ(groups.size(), 3); EXPECT_EQ(groups[0], std::vector<int64_t>({0})); EXPECT_EQ(groups[1], std::vector<int64_t>({2})); EXPECT_EQ(groups[2], std::vector<int64_t>({3})); std::vector<Eigen::Tensor<int64_t, 2, Eigen::RowMajor> > expected_indices; std::vector<Eigen::Tensor<int32, 1, Eigen::RowMajor> > expected_vals; expected_indices.emplace_back(3, NDIM); expected_vals.emplace_back(3); expected_indices[0].setZero(); expected_indices[0](1, 2) = 2; expected_indices[0](2, 1) = 1; expected_vals[0].setConstant(-1); expected_vals[0](0) = 1; expected_vals[0](1) = 5; expected_vals[0](2) = 4; expected_indices.emplace_back(1, NDIM); expected_vals.emplace_back(1); expected_indices[1].setZero(); expected_indices[1](0, 0) = 2; expected_vals[1](0) = 3; expected_indices.emplace_back(1, NDIM); expected_vals.emplace_back(1); expected_indices[2].setZero(); expected_indices[2](0, 0) = 3; expected_vals[2](0) = 2; for (std::size_t gix = 0; gix < groups.size(); ++gix) { auto gi_t = grouped_indices[gix]; Eigen::Tensor<bool, 0, Eigen::RowMajor> eval = (gi_t == expected_indices[gix]).all(); EXPECT_TRUE(eval()) << gix << " indices: " << gi_t << " vs. " << expected_indices[gix]; auto gv_t = grouped_values[gix]; eval = (gv_t == expected_vals[gix]).all(); EXPECT_TRUE(eval()) << gix << " values: " << gv_t << " vs. " << expected_vals[gix]; } } TEST(SparseTensorTest, Concat) { int N = 5; const int NDIM = 3; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); auto ix_c = GetSimpleIndexTensor(N, NDIM); auto ix_t = ix.matrix<int64_t>(); auto vals_t = vals.vec<tstring>(); ix_t = ix_c; TensorShape shape({10, 10, 10}); std::vector<int64_t> order{0, 1, 2}; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, order, &st)); EXPECT_FALSE(st.IndicesValid().ok()); st.Reorder<tstring>(order); TF_EXPECT_OK(st.IndicesValid()); SparseTensor concatted = SparseTensor::Concat<tstring>({st, st, st, st}); EXPECT_EQ(concatted.order(), st.order()); absl::InlinedVector<int64_t, 8UL> expected_shape{40, 10, 10}; EXPECT_EQ(concatted.shape(), expected_shape); EXPECT_EQ(concatted.num_entries(), 4 * N); TF_EXPECT_OK(concatted.IndicesValid()); auto conc_ix_t = concatted.indices().matrix<int64_t>(); auto conc_vals_t = concatted.values().vec<tstring>(); for (int n = 0; n < 4; ++n) { for (int i = 0; i < N; ++i) { EXPECT_EQ(conc_ix_t(n * N + i, 0), 10 * n + ix_t(i, 0)); EXPECT_EQ(conc_ix_t(n * N + i, 1), ix_t(i, 1)); EXPECT_EQ(conc_ix_t(n * N + i, 1), ix_t(i, 1)); EXPECT_EQ(conc_vals_t(n * N + i), vals_t(i)); } } SparseTensor st_ooo; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, {0, 2, 1}, &st_ooo)); SparseTensor conc_ooo = SparseTensor::Concat<tstring>({st, st, st, st_ooo}); std::vector<int64_t> expected_ooo{-1, -1, -1}; EXPECT_EQ(conc_ooo.order(), expected_ooo); EXPECT_EQ(conc_ooo.shape(), expected_shape); EXPECT_EQ(conc_ooo.num_entries(), 4 * N); } TEST(SparseTensorTest, ConcatEmptyN) { constexpr int N = 0; constexpr int NDIM = 2; Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); TensorShape shape({10, 10}); SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, {0, 1}, &st)); SparseTensor concatted = SparseTensor::Concat<tstring>({st, st, st}); EXPECT_EQ(concatted.num_entries(), 0); } TEST(SparseTensorTest, Split) { const int N = 4; const int DIM = 2; Tensor ids(DT_INT64, TensorShape({N, DIM})); Tensor vals(DT_INT64, TensorShape({N})); ids.matrix<int64_t>()(0, 0) = 0; ids.matrix<int64_t>()(0, 1) = 0; ids.matrix<int64_t>()(1, 0) = 1; ids.matrix<int64_t>()(1, 1) = 1; ids.matrix<int64_t>()(2, 0) = 1; ids.matrix<int64_t>()(2, 1) = 2; ids.matrix<int64_t>()(3, 0) = 3; ids.matrix<int64_t>()(3, 1) = 0; vals.vec<int64_t>()(0) = 1; vals.vec<int64_t>()(1) = 2; vals.vec<int64_t>()(2) = 3; vals.vec<int64_t>()(3) = 4; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ids, vals, TensorShape({4, 3}), &st)); std::vector<SparseTensor> st_list; TF_ASSERT_OK(SparseTensor::Split<int64_t>(st, 0, 2, &st_list)); EXPECT_EQ(st_list.size(), 2); auto expected_shape = absl::InlinedVector<int64_t, 8UL>{2, 3}; EXPECT_EQ(st_list[0].shape(), expected_shape); EXPECT_EQ(st_list[0].values().NumElements(), 3); EXPECT_EQ(st_list[0].values().vec<int64_t>()(0), 1); EXPECT_EQ(st_list[0].values().vec<int64_t>()(1), 2); EXPECT_EQ(st_list[0].values().vec<int64_t>()(2), 3); EXPECT_EQ(st_list[0].indices().NumElements(), 6); EXPECT_EQ(st_list[0].indices().matrix<int64_t>()(0, 0), 0); EXPECT_EQ(st_list[0].indices().matrix<int64_t>()(0, 1), 0); EXPECT_EQ(st_list[0].indices().matrix<int64_t>()(1, 0), 1); EXPECT_EQ(st_list[0].indices().matrix<int64_t>()(1, 1), 1); EXPECT_EQ(st_list[0].indices().matrix<int64_t>()(2, 0), 1); EXPECT_EQ(st_list[0].indices().matrix<int64_t>()(2, 1), 2); EXPECT_EQ(st_list[1].shape(), expected_shape); EXPECT_EQ(st_list[1].values().NumElements(), 1); EXPECT_EQ(st_list[1].values().vec<int64_t>()(0), 4); EXPECT_EQ(st_list[1].indices().NumElements(), 2); EXPECT_EQ(st_list[1].indices().matrix<int64_t>()(0, 0), 1); EXPECT_EQ(st_list[1].indices().matrix<int64_t>()(0, 1), 0); } TEST(SparseTensorTest, Slice) { const int N = 4; const int DIM = 2; Tensor ids(DT_INT64, TensorShape({N, DIM})); Tensor vals(DT_INT64, TensorShape({N})); ids.matrix<int64_t>()(0, 0) = 0; ids.matrix<int64_t>()(0, 1) = 0; ids.matrix<int64_t>()(1, 0) = 1; ids.matrix<int64_t>()(1, 1) = 1; ids.matrix<int64_t>()(2, 0) = 1; ids.matrix<int64_t>()(2, 1) = 2; ids.matrix<int64_t>()(3, 0) = 3; ids.matrix<int64_t>()(3, 1) = 0; vals.vec<int64_t>()(0) = 1; vals.vec<int64_t>()(1) = 2; vals.vec<int64_t>()(2) = 3; vals.vec<int64_t>()(3) = 4; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ids, vals, TensorShape({4, 3}), &st)); std::vector<int64_t> start(2, 0); std::vector<int64_t> size(2); size[0] = 2; size[1] = 3; TF_ASSERT_OK_AND_ASSIGN(SparseTensor slice, SparseTensor::Slice<int64_t>(st, start, size)); EXPECT_EQ(TensorShape(slice.shape()), TensorShape({2, 3})); EXPECT_EQ(slice.values().NumElements(), 3); EXPECT_EQ(slice.values().vec<int64_t>()(0), 1); EXPECT_EQ(slice.values().vec<int64_t>()(1), 2); EXPECT_EQ(slice.values().vec<int64_t>()(2), 3); EXPECT_EQ(slice.indices().NumElements(), 6); EXPECT_EQ(slice.indices().matrix<int64_t>()(0, 0), 0); EXPECT_EQ(slice.indices().matrix<int64_t>()(0, 1), 0); EXPECT_EQ(slice.indices().matrix<int64_t>()(1, 0), 1); EXPECT_EQ(slice.indices().matrix<int64_t>()(1, 1), 1); EXPECT_EQ(slice.indices().matrix<int64_t>()(2, 0), 1); EXPECT_EQ(slice.indices().matrix<int64_t>()(2, 1), 2); } TEST(SparseTensorTest, SliceReducesOutputDimension) { const int num_rows = 2; const int num_columns = 2; Tensor ids(DT_INT64, TensorShape({num_rows, num_columns})); ids.matrix<int64_t>()(0, 0) = 0; ids.matrix<int64_t>()(0, 1) = 0; ids.matrix<int64_t>()(1, 0) = 1; ids.matrix<int64_t>()(1, 1) = 1; Tensor vals(DT_INT64, TensorShape({2})); vals.vec<int64_t>()(0) = 1; vals.vec<int64_t>()(1) = 2; SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ids, vals, TensorShape({num_rows, num_columns}), &st)); TF_ASSERT_OK_AND_ASSIGN( SparseTensor slice, SparseTensor::Slice<int64_t>(st, {num_rows + 1, 1}, {1, num_columns})); EXPECT_EQ(TensorShape(slice.shape()), TensorShape({0, 1})); } TEST(SparseTensorTest, Dim0SparseTensorToDenseTensor) { Tensor ix(DT_INT64, TensorShape({1, 0})); Tensor vals(DT_INT32, TensorShape({1})); vals.scalar<int32>()() = 5; TensorShape shape({}); SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, &st)); Tensor dense(DT_INT32, TensorShape({})); st.ToDense<int32>(&dense); EXPECT_EQ(dense.scalar<int32>()(), 5); } static void BM_SparseReorderFloat(::testing::benchmark::State& state) { int N32 = state.range(0); int NDIM32 = state.range(1); random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); const int64_t NDIM = static_cast<int64_t>(NDIM32); const int64_t N = static_cast<int64_t>(N32); Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_FLOAT, TensorShape({N})); TensorShape shape; std::vector<int64_t> order; for (int d = 0; d < NDIM32; ++d) { shape.AddDim(1000); order.push_back(d); } std::vector<int64_t> reorder; reorder.push_back(1); reorder.push_back(0); for (int d = 2; d < NDIM32; ++d) { reorder.push_back(d); } auto ix_t = ix.matrix<int64_t>(); for (auto s : state) { state.PauseTiming(); for (int64_t i = 0; i < N; ++i) { for (int d = 0; d < NDIM32; ++d) { ix_t(i, d) = rnd.Rand64() % 1000; } } SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, order, &st)); state.ResumeTiming(); st.Reorder<float>(reorder); } } static void BM_SparseReorderString(::testing::benchmark::State& state) { int N32 = state.range(0); int NDIM32 = state.range(1); random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); const int64_t NDIM = static_cast<int64_t>(NDIM32); const int64_t N = static_cast<int64_t>(N32); Tensor ix(DT_INT64, TensorShape({N, NDIM})); Tensor vals(DT_STRING, TensorShape({N})); TensorShape shape; std::vector<int64_t> order; auto ix_t = ix.matrix<int64_t>(); auto vals_t = vals.vec<tstring>(); for (int i = 0; i < N32; ++i) { int len = rnd.Rand32() % 1000; vals_t(i).resize(len); } for (int d = 0; d < NDIM32; ++d) { shape.AddDim(1000); order.push_back(d); } std::vector<int64_t> reorder; reorder.push_back(1); reorder.push_back(0); for (int d = 2; d < NDIM32; ++d) { reorder.push_back(d); } for (auto s : state) { state.PauseTiming(); for (int64_t i = 0; i < N; ++i) { for (int d = 0; d < NDIM32; ++d) { ix_t(i, d) = rnd.Rand64() % 1000; } } SparseTensor st; TF_ASSERT_OK(SparseTensor::Create(ix, vals, shape, order, &st)); state.ResumeTiming(); st.Reorder<tstring>(reorder); } } BENCHMARK(BM_SparseReorderFloat)->UseRealTime()->ArgPair(10, 2); BENCHMARK(BM_SparseReorderFloat)->UseRealTime()->ArgPair(100, 2); BENCHMARK(BM_SparseReorderFloat)->UseRealTime()->ArgPair(1000, 2); BENCHMARK(BM_SparseReorderFloat)->UseRealTime()->ArgPair(10000, 2); BENCHMARK(BM_SparseReorderFloat)->UseRealTime()->ArgPair(100000, 2); BENCHMARK(BM_SparseReorderFloat)->UseRealTime()->ArgPair(10, 3); BENCHMARK(BM_SparseReorderFloat)->UseRealTime()->ArgPair(100, 3); BENCHMARK(BM_SparseReorderFloat)->UseRealTime()->ArgPair(1000, 3); BENCHMARK(BM_SparseReorderFloat)->UseRealTime()->ArgPair(10000, 3); BENCHMARK(BM_SparseReorderFloat)->UseRealTime()->ArgPair(100000, 3); BENCHMARK(BM_SparseReorderString)->UseRealTime()->ArgPair(10, 2); BENCHMARK(BM_SparseReorderString)->UseRealTime()->ArgPair(100, 2); BENCHMARK(BM_SparseReorderString)->UseRealTime()->ArgPair(1000, 2); BENCHMARK(BM_SparseReorderString)->UseRealTime()->ArgPair(10000, 2); BENCHMARK(BM_SparseReorderString)->UseRealTime()->ArgPair(10, 3); BENCHMARK(BM_SparseReorderString)->UseRealTime()->ArgPair(100, 3); BENCHMARK(BM_SparseReorderString)->UseRealTime()->ArgPair(1000, 3); BENCHMARK(BM_SparseReorderString)->UseRealTime()->ArgPair(10000, 3); } } }
1,723
cpp
tensorflow/tensorflow
serialization_utils
tensorflow/core/data/serialization_utils.cc
tensorflow/core/data/serialization_utils_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERIALIZATION_UTILS_H_ #define TENSORFLOW_CORE_DATA_SERIALIZATION_UTILS_H_ #include <cstdint> #include <map> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/string_view.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/lib/core/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { inline constexpr absl::string_view kRetvalOp = "_Retval"; Status ReadElementsFromCheckpoint(IteratorContext* ctx, IteratorStateReader* reader, StringPiece key_prefix, std::vector<std::vector<Tensor>>* elements); Status WriteElementsToCheckpoint( IteratorStateWriter* writer, StringPiece key_prefix, const std::vector<std::vector<Tensor>>& elements); Status UpdateCheckpointElements( IteratorStateWriter* writer, StringPiece key_prefix, const std::vector<std::vector<Tensor>>& elements, const absl::flat_hash_set<int64_t>& checkpoint_indices); class VariantTensorDataReader : public IteratorStateReader { public: explicit VariantTensorDataReader( const std::vector<const VariantTensorData*>& data); bool Contains(StringPiece key) const override; bool Contains(StringPiece name, StringPiece key) const override; Status ReadScalar(StringPiece key, int64_t* val) const override; Status ReadScalar(StringPiece name, StringPiece key, int64_t* val) const override; Status ReadScalar(StringPiece key, tstring* val) const override; Status ReadScalar(StringPiece name, StringPiece key, tstring* val) const override; Status ReadTensor(StringPiece key, Tensor* val) const override; Status ReadTensor(FunctionLibraryRuntime* flr, StringPiece key, Tensor* val) const override; Status ReadTensor(StringPiece name, StringPiece key, Tensor* val) const override; Status ReadTensor(FunctionLibraryRuntime* flr, StringPiece name, StringPiece key, Tensor* val) const override; private: template <typename T> Status ReadScalarInternal(StringPiece name, StringPiece key, T* val) const; Status ReadTensorInternal(FunctionLibraryRuntime* flr, StringPiece name, StringPiece key, Tensor* val) const; Status ReadDatasetInternal(FunctionLibraryRuntime* flr, StringPiece name, StringPiece key, Tensor* val) const; std::map<string, Tensor> ReadAllTensors(); friend absl::StatusOr<absl::flat_hash_map<std::string, int64_t>> CheckpointStats(const std::string& checkpoint_bytes); std::map<string, std::map<string, size_t>> map_; std::map<string, const VariantTensorData*> data_; }; class VariantTensorDataWriter : public IteratorStateWriter { public: Status WriteScalar(StringPiece key, int64_t val) override; Status WriteScalar(StringPiece name, StringPiece key, int64_t val) override; Status WriteScalar(StringPiece key, const tstring& val) override; Status WriteScalar(StringPiece name, StringPiece key, const tstring& val) override; Status WriteTensor(StringPiece key, const Tensor& val) override; Status WriteTensor(StringPiece name, StringPiece key, const Tensor& val) override; void ReleaseData(std::vector<std::unique_ptr<VariantTensorData>>* variants); void GetData(std::vector<const VariantTensorData*>* variants); private: void MaybeFlush(); void Reset(); template <typename T> Status WriteScalarInternal(StringPiece name, StringPiece key, const T& val); Status WriteTensorInternal(StringPiece name, StringPiece key, const Tensor& val); Status WriteDatasetInternal(StringPiece name, StringPiece key, const DatasetBase* dataset); bool is_flushed_ = false; std::map<string, std::unique_ptr<VariantTensorData>> data_; std::map<string, std::vector<string>> keys_; }; class IteratorStateVariant { public: IteratorStateVariant() = default; IteratorStateVariant(const IteratorStateVariant& other); IteratorStateVariant& operator=(IteratorStateVariant&& other) = default; IteratorStateVariant& operator=(const IteratorStateVariant& other) = delete; static std::string TypeName(); Status InitializeFromVariantData(std::unique_ptr<VariantTensorData> data); const VariantTensorData* GetData() const { return data_.get(); } void Encode(VariantTensorData* data) const; bool Decode(VariantTensorData data); std::string DebugString() const; private: static const CompressedElement* GetCompressedElement( const VariantTensorData& data); std::unique_ptr<VariantTensorData> data_; }; Status AsGraphDef(const DatasetBase* dataset, SerializationContext&& serialization_ctx, GraphDef* graph_def); Status AsGraphDefForRewrite(OpKernelContext* ctx, const DatasetBase* input, std::vector<std::pair<string, Tensor>>* input_list, GraphDef* result, string* dataset_node); absl::StatusOr<absl::flat_hash_map<std::string, int64_t>> CheckpointStats( const std::string& checkpoint_bytes); } } #endif #include "tensorflow/core/data/serialization_utils.h" #include <cstdint> #include <map> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/data/compression_utils.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/platform/stringpiece.h" namespace tensorflow { namespace data { namespace { constexpr char kDelimiter[] = "@@"; constexpr char kComponent[] = "component"; constexpr char kNumComponents[] = "num_components"; constexpr char kNumElements[] = "num_elements"; constexpr char kIsDataset[] = ".is_dataset"; constexpr char kIteratorVariantTypeName[] = "tensorflow::Iterator"; constexpr char kOutputNode[] = ".output_node"; Status FromGraphDef(FunctionLibraryRuntime* flr, const GraphDef& graph_def, const std::vector<std::pair<string, Tensor>>& input_list, const string& output_node, Tensor* result) { FunctionLibraryRuntime* cloned_flr = nullptr; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr = nullptr; std::unique_ptr<FunctionLibraryDefinition> lib_def = nullptr; TF_RETURN_IF_ERROR(flr->Clone(&lib_def, &pflr, &cloned_flr, true)); TF_RETURN_IF_ERROR(AddToFunctionLibrary(lib_def.get(), graph_def.library())); Graph graph(OpRegistry::Global()); TF_RETURN_IF_ERROR(ImportGraphDef({}, graph_def, &graph, nullptr)); std::vector<Tensor> outputs; GraphRunner graph_runner(cloned_flr->device()); TF_RETURN_IF_ERROR(graph_runner.Run(&graph, cloned_flr, input_list, {output_node}, &outputs)); *result = outputs[0]; return absl::OkStatus(); } Status FindStatefulOps(const GraphDef& graph_def, std::vector<string>* stateful_op_names) { FunctionLibraryDefinition lib_def(OpRegistry::Global(), graph_def.library()); for (const auto& node : graph_def.node()) { if (node.op() == FunctionLibraryDefinition::kRetOp) continue; if (!IsNodeStateful(lib_def, node).ok()) { stateful_op_names->push_back(node.op()); } } for (const auto& fdef : graph_def.library().function()) { if (!fdef.signature().is_stateful()) continue; for (const auto& node : fdef.node_def()) { if (!IsNodeStateful(lib_def, node).ok()) { stateful_op_names->push_back( absl::StrCat(node.op(), " in function: ", fdef.signature().name())); } } } return absl::OkStatus(); } } Status ReadElementsFromCheckpoint(IteratorContext* ctx, IteratorStateReader* reader, StringPiece key_prefix, std::vector<std::vector<Tensor>>* elements) { int64_t num_elements; TF_RETURN_IF_ERROR( reader->ReadScalar(key_prefix, kNumElements, &num_elements)); DCHECK(elements->empty()); elements->reserve(num_elements); for (int i = 0; i < num_elements; ++i) { std::string element_prefix = absl::StrCat(key_prefix, "::", i); int64_t num_components; TF_RETURN_IF_ERROR( reader->ReadScalar(element_prefix, kNumComponents, &num_components)); elements->emplace_back(); std::vector<Tensor>& element = elements->at(i); element.reserve(num_components); for (int j = 0; j < num_components; ++j) { element.emplace_back(); TF_RETURN_IF_ERROR(reader->ReadTensor( ctx->flr(), element_prefix, absl::StrCat(kComponent, "[", j, "]"), &element.back())); } } return absl::OkStatus(); } Status WriteElement(IteratorStateWriter* writer, StringPiece key_prefix, const std::vector<std::vector<Tensor>>& elements, int64_t index) { const std::vector<Tensor>& element = elements[index]; std::string element_prefix = absl::StrCat(key_prefix, "::", index); TF_RETURN_IF_ERROR( writer->WriteScalar(element_prefix, kNumComponents, element.size())); for (int j = 0; j < element.size(); ++j) { TF_RETURN_IF_ERROR(writer->WriteTensor( element_prefix, absl::StrCat(kComponent, "[", j, "]"), element[j])); } return absl::OkStatus(); } Status WriteElementsToCheckpoint( IteratorStateWriter* writer, StringPiece key_prefix, const std::vector<std::vector<Tensor>>& elements) { TF_RETURN_IF_ERROR( writer->WriteScalar(key_prefix, kNumElements, elements.size())); for (int i = 0; i < elements.size(); ++i) { TF_RETURN_IF_ERROR(WriteElement(writer, key_prefix, elements, i)); } return absl::OkStatus(); } Status UpdateCheckpointElements( IteratorStateWriter* writer, StringPiece key_prefix, const std::vector<std::vector<Tensor>>& elements, const absl::flat_hash_set<int64_t>& checkpoint_indices) { TF_RETURN_IF_ERROR( writer->WriteScalar(key_prefix, kNumElements, elements.size())); for (int64_t i : checkpoint_indices) { TF_RETURN_IF_ERROR(WriteElement(writer, key_prefix, elements, i)); } return absl::OkStatus(); } VariantTensorDataReader::VariantTensorDataReader( const std::vector<const tensorflow::VariantTensorData*>& data) { for (const auto& d : data) { string metadata; d->get_metadata(&metadata); auto keys = str_util::Split(metadata, kDelimiter, str_util::SkipEmpty()); const string name = keys[0]; data_[name] = d; map_[name] = std::map<string, size_t>(); for (size_t i = 1; i < keys.size(); ++i) { map_[name][keys[i]] = i - 1; } } } Status VariantTensorDataReader::ReadScalar(StringPiece key, int64_t* val) const { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return ReadScalar(prefix, key, val); } Status VariantTensorDataReader::ReadScalar(StringPiece name, StringPiece key, int64_t* val) const { return ReadScalarInternal(name, key, val); } Status VariantTensorDataReader::ReadScalar(StringPiece key, tstring* val) const { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return ReadScalar(prefix, key, val); } Status VariantTensorDataReader::ReadScalar(StringPiece name, StringPiece key, tstring* val) const { return ReadScalarInternal(name, key, val); } Status VariantTensorDataReader::ReadTensor(StringPiece key, Tensor* val) const { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return ReadTensor(prefix, key, val); } Status VariantTensorDataReader::ReadTensor(FunctionLibraryRuntime* flr, StringPiece key, Tensor* val) const { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return ReadTensorInternal(flr, prefix, key, val); } Status VariantTensorDataReader::ReadTensor(StringPiece name, StringPiece key, Tensor* val) const { return ReadTensor(nullptr, name, key, val); } Status VariantTensorDataReader::ReadTensor(FunctionLibraryRuntime* flr, StringPiece name, StringPiece key, Tensor* val) const { return ReadTensorInternal(flr, name, key, val); } bool VariantTensorDataReader::Contains(StringPiece key) const { string prefix; if (!ExtractIteratorPrefix(key, &prefix).ok()) { return false; } return Contains(prefix, key); } bool VariantTensorDataReader::Contains(StringPiece n, StringPiece key) const { string name(n); auto it = map_.find(name); if (it == map_.end()) { return false; } const auto& bucket = it->second; return bucket.find(string(key)) != bucket.end(); } template <typename T> Status VariantTensorDataReader::ReadScalarInternal(StringPiece n, StringPiece key, T* val) const { string name(n); auto it = map_.find(name); if (it == map_.end()) { return errors::NotFound(name); } const auto& bucket = it->second; auto key_it = bucket.find(string(key)); if (key_it == bucket.end()) { return errors::NotFound(key); } *val = data_.at(name)->tensors(key_it->second).scalar<T>()(); return absl::OkStatus(); } Status VariantTensorDataReader::ReadTensorInternal(FunctionLibraryRuntime* flr, StringPiece n, StringPiece key, Tensor* val) const { if (Contains(n, strings::StrCat(key, kIsDataset))) { return ReadDatasetInternal(flr, n, key, val); } string name(n); auto it = map_.find(name); if (it == map_.end()) { return errors::NotFound(name); } const auto& bucket = it->second; auto key_it = bucket.find(string(key)); if (key_it == bucket.end()) { return errors::NotFound(key); } *val = data_.at(name)->tensors(key_it->second); return absl::OkStatus(); } Status VariantTensorDataReader::ReadDatasetInternal(FunctionLibraryRuntime* flr, StringPiece n, StringPiece key, Tensor* val) const { if (flr == nullptr) { return errors::Internal( "Function library runtime is needed to restore a dataset."); } tstring output_node, serialized_graph_def; TF_RETURN_IF_ERROR( ReadScalar(n, strings::StrCat(key, kOutputNode), &output_node)); TF_RETURN_IF_ERROR( ReadScalar(n, strings::StrCat(key), &serialized_graph_def)); GraphDef graph_def; graph_def.ParseFromString(serialized_graph_def); TF_RETURN_IF_ERROR(FromGraphDef(flr, graph_def, {}, output_node, val)); return absl::OkStatus(); } std::map<string, Tensor> VariantTensorDataReader::ReadAllTensors() { std::map<string, Tensor> result; for (const auto& entry : map_) { string key1 = entry.first; for (const auto& inner : entry.second) { string key2 = inner.first; size_t index = inner.second; result[absl::StrCat(key1, kDelimiter, key2)] = data_[key1]->tensors(index); } } return result; } Status VariantTensorDataWriter::WriteScalar(StringPiece key, const int64_t val) { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return WriteScalar(prefix, key, val); } Status VariantTensorDataWriter::WriteScalar(StringPiece name, StringPiece key, const int64_t val) { return WriteScalarInternal(name, key, val); } Status VariantTensorDataWriter::WriteScalar(StringPiece key, const tstring& val) { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return WriteScalar(prefix, key, val); } Status VariantTensorDataWriter::WriteScalar(StringPiece name, StringPiece key, const tstring& val) { return WriteScalarInternal(name, key, val); } Status VariantTensorDataWriter::WriteTensor(StringPiece key, const Tensor& val) { string prefix; TF_RETURN_IF_ERROR(ExtractIteratorPrefix(key, &prefix)); return WriteTensor(prefix, key, val); } Status VariantTensorDataWriter::WriteTensor(StringPiece name, StringPiece key, const Tensor& val) { return WriteTensorInternal(name, key, val); } void VariantTensorDataWriter::MaybeFlush() { if (is_flushed_) return; for (auto& keys : keys_) { const string name = keys.first; string metadata = name; for (size_t i = 0; i < keys_[name].size(); ++i) { strings::StrAppend(&metadata, kDelimiter, keys_[name][i]); } data_[name]->set_metadata(metadata); } is_flushed_ = true; } void VariantTensorDataWriter::Reset() { is_flushed_ = false; data_.clear(); keys_.clear(); } void VariantTensorDataWriter::ReleaseData( std::vector<std::unique_ptr<VariantTensorData>>* variants) { MaybeFlush(); for (auto& it : data_) { variants->push_back(std::move(it.second)); } Reset(); } void VariantTensorDataWriter::GetData( std::vector<const VariantTensorData*>* variants) { MaybeFlush(); for (auto& it : data_) { variants->push_back(it.second.get()); } } template <typename T> Status VariantTensorDataWriter::WriteScalarInternal(StringPiece name, StringPiece key, const T& val) { if (is_flushed_) { return errors::FailedPrecondition( "Cannot call WriteScalar after GetData or ReleaseData is called"); } Tensor val_t = Tensor(DataTypeToEnum<T>::v(), TensorShape({})); val_t.scalar<T>()() = val; return WriteTensorInternal(name, key, val_t); } Status VariantTensorDataWriter::WriteTensorInternal(StringPiece n, StringPiece key, const Tensor& val) { DatasetBase* dataset; if (GetDatasetFromVariantTensor(val, &dataset).ok()) { return WriteDatasetInternal(n, key, dataset); } if (is_flushed_) { return errors::FailedPrecondition( "Cannot call WriteTensor after GetData or ReleaseData is called"); } DCHECK_EQ(key.find(kDelimiter), string::npos); string name(n); if (keys_.count(name) == 0) { keys_[name] = std::vector<string>(); } keys_[name].push_back(string(key)); if (data_.count(name) == 0) { data_[name] = std::make_unique<VariantTensorData>(); data_[name]->set_type_name("tensorflow::Iterator"); } *(data_[name]->add_tensors()) = val; return absl::OkStatus(); } Status VariantTensorDataWriter::WriteDatasetInternal( StringPiece n, StringPiece key, const DatasetBase* dataset) { GraphDef graph_def; SerializationContext ctx((SerializationContext::Params())); TF_RETURN_IF_ERROR(AsGraphDef(dataset, std::move(ctx), &graph_def)); string output_node; for (const auto& node : graph_def.node()) { if (node.op() == kRetvalOp) { output_node = node.input(0); break; } } string result; graph_def.SerializeToString(&result); TF_RETURN_IF_ERROR(WriteScalar(n, strings::StrCat(key, kIsDataset), "")); TF_RETURN_IF_ERROR( WriteScalar(n, strings::StrCat(key, kOutputNode), output_node)); TF_RETURN_IF_ERROR(WriteScalar(n, key, result)); return absl::OkStatus(); } std::string IteratorStateVariant::TypeName() { return kIteratorVariantTypeName; } IteratorStateVariant::IteratorStateVariant(const IteratorStateVariant& other) { if (other.data_) { data_ = std::make_unique<VariantTensorData>(*other.data_); } } Status IteratorStateVariant::InitializeFromVariantData( std::unique_ptr<VariantTensorData> data) { data_ = std::move(data); return absl::OkStatus(); } void IteratorStateVariant::Encode(VariantTensorData* data) const { CompressedElement compressed_tensors; Status s = CompressElement(data_->tensors(), &compressed_tensors); if (!s.ok()) { LOG(WARNING) << "Failed to compress iterator state variant: " << s; *data = *data_; return; } data->set_type_name(TypeName()); data->set_metadata(data_->metadata_string()); Tensor tensor(DT_VARIANT, TensorShape({})); tensor.scalar<Variant>()() = std::move(compressed_tensors); *data->add_tensors() = std::move(tensor); } bool IteratorStateVariant::Decode(VariantTensorData data) { if (data.type_name() != TypeName()) { return false; } const CompressedElement* compressed = GetCompressedElement(data); if (!compressed) { data_ = std::make_unique<VariantTensorData>(std::move(data)); return true; } std::vector<Tensor> tensors; Status s = UncompressElement(*compressed, &tensors); if (!s.ok()) { LOG(WARNING) << "Failed to uncompress iterator state variant: " << s; data_ = std::make_unique<VariantTensorData>(std::move(data)); return true; } data_ = std::make_unique<VariantTensorData>(); data_->set_type_name(TypeName()); data_->set_metadata(std::move(data.metadata_string())); for (auto& tensor : tensors) { *data_->add_tensors() = std::move(tensor); } return true; } const CompressedElement* IteratorStateVariant::GetCompressedElement( const VariantTensorData& data) { bool should_uncompress = data.tensors_size() == 1 && TensorShapeUtils::IsScalar(data.tensors(0).shape()) && data.tensors(0).dtype() == DT_VARIANT; if (!should_uncompress) { return nullptr; } const Variant& variant = data.tensors(0).scalar<Variant>()(); return variant.get<CompressedElement>(); } std::string IteratorStateVariant::DebugString() const { if (data_) { return strings::StrCat("IteratorStateVariant<", data_->DebugString(), ">"); } else { return strings::StrCat("IteratorStateVariant<empty>"); } } REGISTER_UNARY_VARIANT_DECODE_FUNCTION(IteratorStateVariant, kIteratorVariantTypeName); Status AsGraphDefForRewrite(OpKernelContext* ctx, const DatasetBase* input, std::vector<std::pair<string, Tensor>>* input_list, GraphDef* result, string* dataset_node) { SerializationContext::Params params(ctx); params.input_list = input_list; params.external_state_policy = ExternalStatePolicy::POLICY_IGNORE; params.is_graph_rewrite = true; SerializationContext serialization_ctx(params); TF_RETURN_IF_ERROR(AsGraphDef(input, std::move(serialization_ctx), result)); for (const auto& node : result->node()) { if (node.op() == kRetvalOp) { *dataset_node = node.input(0); } } return absl::OkStatus(); } Status AsGraphDef(const DatasetBase* dataset, SerializationContext&& serialization_ctx, GraphDef* graph_def) { if (serialization_ctx.external_state_policy() == ExternalStatePolicy::POLICY_FAIL) { TF_RETURN_IF_ERROR(dataset->CheckExternalState()); } if (serialization_ctx.external_state_policy() == ExternalStatePolicy::POLICY_WARN) { std::vector<string> stateful_op_names; TF_RETURN_IF_ERROR(FindStatefulOps(*graph_def, &stateful_op_names)); if (!stateful_op_names.empty()) { LOG(WARNING) << "We found the following stateful ops in the dataset " "construction graph whose state would not be " "serialized and might " "cause subtle bugs: " << absl::StrJoin(stateful_op_names, ", "); } } GraphDefBuilder b; DatasetBase::DatasetGraphDefBuilder db(&b); Node* output_node = nullptr; TF_RETURN_IF_ERROR( db.AddInputDataset(&serialization_ctx, dataset, &output_node)); ops::UnaryOp(std::string(kRetvalOp), output_node, b.opts() .WithName("dataset") .WithAttr("T", DT_VARIANT) .WithAttr("index", 0)); TF_RETURN_IF_ERROR(b.ToGraphDef(graph_def)); return absl::OkStatus(); } absl::StatusOr<absl::flat_hash_map<std::string, int64_t>> CheckpointStats( const std::string& checkpoint_bytes) { TensorProto proto; if (!ParseProtoUnlimited(&proto, checkpoint_bytes)) { return absl::InvalidArgumentError( "Failed to parse checkpoint bytes into proto."); } Tensor t; if (!t.FromProto(proto)) { return absl::InvalidArgumentError( "Failed to parse checkpoint tensor from proto."); } auto variant = t.scalar<Variant>()(); auto* w = variant.get<IteratorStateVariant>(); if (!w) { return absl::InvalidArgumentError( "Failed to access IteratorStateVariant inside checkpoint tensor"); } const VariantTensorData* data = w->GetData(); auto reader = std::make_unique<VariantTensorDataReader>( std::vector<const VariantTensorData*>{data}); absl::flat_hash_map<std::string, int64_t> stats; for (const auto& [key, tensor] : reader->ReadAllTensors()) { stats[key] = tensor.TotalBytes(); } return stats; } } }
#include "tensorflow/core/data/serialization_utils.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/test_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/work_sharder.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace { string full_name(string key) { return FullName("Iterator:", key); } TEST(SerializationUtilsTest, CheckpointElementsRoundTrip) { std::vector<std::vector<Tensor>> elements; elements.push_back(CreateTensors<int32>(TensorShape({3}), {{1, 2, 3}})); elements.push_back(CreateTensors<int32>(TensorShape({2}), {{4, 5}})); VariantTensorDataWriter writer; tstring test_prefix = full_name("test_prefix"); TF_ASSERT_OK(WriteElementsToCheckpoint(&writer, test_prefix, elements)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); std::vector<std::vector<Tensor>> read_elements; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TestContext> ctx, TestContext::Create()); TF_ASSERT_OK(ReadElementsFromCheckpoint(ctx->iter_ctx(), &reader, test_prefix, &read_elements)); ASSERT_EQ(elements.size(), read_elements.size()); for (int i = 0; i < elements.size(); ++i) { std::vector<Tensor>& original = elements[i]; std::vector<Tensor>& read = read_elements[i]; ASSERT_EQ(original.size(), read.size()); for (int j = 0; j < original.size(); ++j) { EXPECT_EQ(original[j].NumElements(), read[j].NumElements()); EXPECT_EQ(original[j].flat<int32>()(0), read[j].flat<int32>()(0)); } } } TEST(SerializationUtilsTest, VariantTensorDataRoundtrip) { VariantTensorDataWriter writer; TF_ASSERT_OK(writer.WriteScalar(full_name("Int64"), 24)); Tensor input_tensor(DT_FLOAT, {1}); input_tensor.flat<float>()(0) = 2.0f; TF_ASSERT_OK(writer.WriteTensor(full_name("Tensor"), input_tensor)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); int64_t val_int64; TF_ASSERT_OK(reader.ReadScalar(full_name("Int64"), &val_int64)); EXPECT_EQ(val_int64, 24); Tensor val_tensor; TF_ASSERT_OK(reader.ReadTensor(full_name("Tensor"), &val_tensor)); EXPECT_EQ(input_tensor.NumElements(), val_tensor.NumElements()); EXPECT_EQ(input_tensor.flat<float>()(0), val_tensor.flat<float>()(0)); } TEST(SerializationUtilsTest, VariantTensorDataNonExistentKey) { VariantTensorData data; strings::StrAppend(&data.metadata_, "key1", "@@"); data.tensors_.push_back(Tensor(DT_INT64, {1})); std::vector<const VariantTensorData*> reader_data; reader_data.push_back(&data); VariantTensorDataReader reader(reader_data); int64_t val_int64; tstring val_string; Tensor val_tensor; EXPECT_EQ(error::NOT_FOUND, reader.ReadScalar(full_name("NonExistentKey"), &val_int64).code()); EXPECT_EQ(error::NOT_FOUND, reader.ReadScalar(full_name("NonExistentKey"), &val_string).code()); EXPECT_EQ(error::NOT_FOUND, reader.ReadTensor(full_name("NonExistentKey"), &val_tensor).code()); } TEST(SerializationUtilsTest, VariantTensorDataRoundtripIteratorName) { VariantTensorDataWriter writer; TF_ASSERT_OK(writer.WriteScalar("Iterator", "Int64", 24)); Tensor input_tensor(DT_FLOAT, {1}); input_tensor.flat<float>()(0) = 2.0f; TF_ASSERT_OK(writer.WriteTensor("Iterator", "Tensor", input_tensor)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); int64_t val_int64; TF_ASSERT_OK(reader.ReadScalar("Iterator", "Int64", &val_int64)); EXPECT_EQ(val_int64, 24); Tensor val_tensor; TF_ASSERT_OK(reader.ReadTensor("Iterator", "Tensor", &val_tensor)); EXPECT_EQ(input_tensor.NumElements(), val_tensor.NumElements()); EXPECT_EQ(input_tensor.flat<float>()(0), val_tensor.flat<float>()(0)); } TEST(SerializationUtilsTest, VariantTensorDataNonExistentKeyIteratorName) { VariantTensorData data; strings::StrAppend(&data.metadata_, "key1", "@@"); data.tensors_.push_back(Tensor(DT_INT64, {1})); std::vector<const VariantTensorData*> reader_data; reader_data.push_back(&data); VariantTensorDataReader reader(reader_data); int64_t val_int64; tstring val_string; Tensor val_tensor; EXPECT_EQ(error::NOT_FOUND, reader.ReadScalar("Iterator", "NonExistentKey", &val_int64).code()); EXPECT_EQ( error::NOT_FOUND, reader.ReadScalar("Iterator", "NonExistentKey", &val_string).code()); EXPECT_EQ( error::NOT_FOUND, reader.ReadTensor("Iterator", "NonExistentKey", &val_tensor).code()); } TEST(SerializationUtilsTest, VariantTensorDataWriteAfterFlushing) { VariantTensorDataWriter writer; TF_ASSERT_OK(writer.WriteScalar(full_name("Int64"), 24)); std::vector<const VariantTensorData*> data; writer.GetData(&data); Tensor input_tensor(DT_FLOAT, {1}); input_tensor.flat<float>()(0) = 2.0f; EXPECT_EQ(error::FAILED_PRECONDITION, writer.WriteTensor(full_name("Tensor"), input_tensor).code()); } class ParameterizedIteratorStateVariantTest : public DatasetOpsTestBase, public ::testing::WithParamInterface<std::vector<Tensor>> { protected: VariantTensorData GetVariantTensorData() const { std::vector<Tensor> tensors = GetParam(); VariantTensorData data; data.set_type_name(IteratorStateVariant::TypeName()); for (Tensor& tensor : tensors) { *data.add_tensors() = std::move(tensor); } return data; } absl::StatusOr<VariantTensorData> EncodeAndDecode( const VariantTensorData& data) const { IteratorStateVariant encoder; TF_RETURN_IF_ERROR(encoder.InitializeFromVariantData( std::make_unique<VariantTensorData>(data))); VariantTensorData encoded_data; encoder.Encode(&encoded_data); IteratorStateVariant decoder; decoder.Decode(encoded_data); return *decoder.GetData(); } absl::StatusOr<VariantTensorData> DecodeUncompressed( const VariantTensorData& data) const { IteratorStateVariant decoder; decoder.Decode(data); return *decoder.GetData(); } }; class ParemeterizedCheckpointIndicesTest : public DatasetOpsTestBase, public ::testing::WithParamInterface<absl::flat_hash_set<int64_t>> { protected: absl::flat_hash_set<int64_t> GetCheckpointIndices() const { absl::flat_hash_set<int64_t> checkpoint_indices = GetParam(); return checkpoint_indices; } }; std::vector<std::vector<Tensor>> TestCases() { return { CreateTensors<int64_t>(TensorShape{1}, {{1}}), CreateTensors<int64_t>(TensorShape{1}, {{1}, {2}}), CreateTensors<tstring>(TensorShape{1}, {{"a"}, {"b"}}), {CreateTensor<tstring>(TensorShape{1}, {"a"}), CreateTensor<int64_t>(TensorShape{1}, {1})}, {}, {CreateTensor<int64_t>(TensorShape{128, 128}), CreateTensor<int64_t>(TensorShape{64, 2})}, }; } std::vector<absl::flat_hash_set<int64_t>> CheckpointIndicesTestCases() { return { {}, { 0}, { 0, 1}, { 0, 1, 2}, { 1, 3, 4}, { 1, 2, 3, 4}, { 0, 1, 2, 3, 4}, }; } TEST_P(ParameterizedIteratorStateVariantTest, EncodeAndDecode) { VariantTensorData data = GetVariantTensorData(); TF_ASSERT_OK_AND_ASSIGN(VariantTensorData result, EncodeAndDecode(data)); EXPECT_EQ(result.type_name(), data.type_name()); for (int i = 0; i < result.tensors_size(); ++i) { test::ExpectEqual(result.tensors(i), data.tensors(i)); } } TEST_P(ParameterizedIteratorStateVariantTest, DecodeUncompressed) { VariantTensorData data = GetVariantTensorData(); TF_ASSERT_OK_AND_ASSIGN(VariantTensorData result, DecodeUncompressed(data)); EXPECT_EQ(result.type_name(), data.type_name()); for (int i = 0; i < result.tensors_size(); ++i) { test::ExpectEqual(result.tensors(i), data.tensors(i)); } } TEST_P(ParemeterizedCheckpointIndicesTest, CheckpointElementsRoundTripUsingIndices) { std::vector<std::vector<Tensor>> elements; elements.push_back(CreateTensors<int32>(TensorShape({3}), {{1, 2, 3}})); elements.push_back(CreateTensors<int32>(TensorShape({2}), {{4, 5}})); elements.push_back( CreateTensors<int32>(TensorShape({5}), {{6, 7, 8, 9, 10}})); elements.push_back( CreateTensors<int32>(TensorShape({4}), {{11, 12, 13, 14}})); elements.push_back(CreateTensors<int32>(TensorShape({2}), {{15, 16}})); VariantTensorDataWriter writer; tstring test_prefix = full_name("test_prefix"); absl::flat_hash_set<int64_t> checkpoint_indices_write = {0, 1, 2, 3, 4}; TF_ASSERT_OK(WriteElementsToCheckpoint(&writer, test_prefix, elements)); for (auto index : GetCheckpointIndices()) { elements.at(index) = CreateTensors<int32>(TensorShape({1}), {{1}}); } TF_ASSERT_OK(UpdateCheckpointElements(&writer, test_prefix, elements, GetCheckpointIndices())); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); std::vector<std::vector<Tensor>> read_elements; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TestContext> ctx, TestContext::Create()); TF_ASSERT_OK(ReadElementsFromCheckpoint(ctx->iter_ctx(), &reader, test_prefix, &read_elements)); ASSERT_EQ(elements.size(), read_elements.size()); for (int index = 0; index < elements.size(); ++index) { std::vector<Tensor>& original = elements[index]; std::vector<Tensor>& read = read_elements[index]; ASSERT_EQ(original.size(), read.size()); for (int j = 0; j < original.size(); ++j) { EXPECT_EQ(original[j].NumElements(), read[j].NumElements()); EXPECT_EQ(original[j].flat<int32>()(0), read[j].flat<int32>()(0)); } } } INSTANTIATE_TEST_SUITE_P(Instantiation, ParameterizedIteratorStateVariantTest, ::testing::ValuesIn(TestCases())); INSTANTIATE_TEST_SUITE_P(Instantiation, ParemeterizedCheckpointIndicesTest, ::testing::ValuesIn(CheckpointIndicesTestCases())); } } }
1,724
cpp
tensorflow/tensorflow
hash_utils
tensorflow/core/data/hash_utils.cc
tensorflow/core/data/hash_utils_test.cc
#ifndef TENSORFLOW_CORE_DATA_HASH_UTILS_H_ #define TENSORFLOW_CORE_DATA_HASH_UTILS_H_ #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" namespace tensorflow { namespace data { Status HashNode(const GraphDef& graph, const NodeDef& node, uint64* hash); Status HashNode(const GraphDef& graph, const NodeDef& node, const FunctionLibraryDefinition& flib_def, uint64* hash); Status HashTensor(const Tensor& tensor, uint64* hash); Status HashGraph(const GraphDef& graph, uint64* hash); Status CheckGraphsEqual(const GraphDef& a, const GraphDef& b); Status CheckSubgraphsEqual(const GraphDef& a, const NodeDef* node_a, const GraphDef& b, const NodeDef* node_b); } } #endif #include "tensorflow/core/data/hash_utils.h" #include <array> #include <memory> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/proto_serialization.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/regexp.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { namespace data { namespace { constexpr std::array<const char*, 3> kOpsWithSeed = { "AnonymousRandomSeedGenerator", "ShuffleDataset", "ShuffleAndRepeatDataset" }; constexpr char kSeedInputName[] = "seed"; constexpr char kSeed2InputName[] = "seed2"; constexpr char kSeedGeneratorInputName[] = "seed_generator"; template <std::size_t SIZE> bool IsNodeOfType(const NodeDef& node, const std::array<const char*, SIZE>& op_types) { for (const auto& type : op_types) { if (MatchesAnyVersion(type, node.op())) { return true; } } return false; } Status GetSink(const GraphDef& graph_def, const NodeDef** sink) { for (auto& node : graph_def.node()) { if (node.op() == kRetvalOp) { *sink = &node; break; } } if (sink == nullptr) { return errors::Internal("Cannot find sink node for dataset graph."); } return absl::OkStatus(); } Status ShouldIgnoreInput(const NodeDef& node, int i, bool* result) { *result = false; if (IsNodeOfType(node, kOpsWithSeed)) { const OpRegistrationData* reg; auto status = OpRegistry::Global()->LookUp(node.op(), &reg); if (status.ok()) { if (reg->op_def.input_arg_size() > i) { const std::string input_arg_name = reg->op_def.input_arg(i).name(); if (input_arg_name == kSeedInputName || input_arg_name == kSeed2InputName || input_arg_name == kSeedGeneratorInputName) { VLOG(2) << "Ignoring arg: " << input_arg_name << " from node: " << node.name(); *result = true; return absl::OkStatus(); } } } else if (errors::IsNotFound(status)) { LOG(WARNING) << "Cannot find " << node.op() << " in global op registry, so cannot determine which " "inputs are seeds."; } else { return status; } } return absl::OkStatus(); } Status ParseInputNodeName(absl::string_view input_name, absl::string_view* node_name, absl::string_view* suffix, bool* is_control_input) { if (input_name[0] == '^') { *node_name = input_name.substr(1); *is_control_input = true; return absl::OkStatus(); } std::pair<absl::string_view, absl::string_view> node_spec = absl::StrSplit(input_name, absl::MaxSplits(':', 1)); *node_name = node_spec.first; *suffix = node_spec.second; *is_control_input = false; return absl::OkStatus(); } class GraphHasher { using NodeCache = absl::flat_hash_map<const NodeDef*, uint64>; using FunctionCache = absl::flat_hash_map<const FunctionDef*, uint64>; using AttrCache = absl::flat_hash_map<std::pair<const NodeDef*, bool>, uint64>; public: explicit GraphHasher(const GraphDef* graph, const NodeDef* root, const FunctionLibraryDefinition* flib) : graph_(graph), root_(root), flib_(flib) { node_cache_ = std::make_shared<NodeCache>(); function_cache_ = std::make_shared<FunctionCache>(); attr_cache_ = std::make_shared<AttrCache>(); } explicit GraphHasher(const GraphDef* graph, const NodeDef* root, const FunctionLibraryDefinition* flib, std::shared_ptr<NodeCache> node_cache, std::shared_ptr<FunctionCache> function_cache, std::shared_ptr<AttrCache> attr_cache) : graph_(graph), root_(root), flib_(flib), node_cache_(node_cache), function_cache_(function_cache), attr_cache_(attr_cache) {} Status Init() { absl::flat_hash_map<absl::string_view, const NodeDef*> node_def_by_name; node_def_by_name.reserve(graph_->node_size()); for (const auto& node : graph_->node()) { auto result = node_def_by_name.emplace(node.name(), &node); if (TF_PREDICT_FALSE(!result.second)) { auto node_name_formatter = [](std::string* out, const decltype(node_def_by_name)::value_type& item) { absl::StrAppend(out, "'", item.first, "'"); }; return errors::Internal( "Encountered graph with duplicate node name '", node.name(), "' in [", absl::StrJoin(node_def_by_name, ",", node_name_formatter), "]"); } } absl::flat_hash_set<absl::string_view> visited; std::queue<const NodeDef*> bfs_queue; bfs_queue.push(root_); while (!bfs_queue.empty()) { const NodeDef* node = bfs_queue.front(); bfs_queue.pop(); if (visited.contains(node->name())) { continue; } visited.insert(node->name()); NodeRep node_rep; for (int i = 0; i < node->input_size(); ++i) { DCHECK_GT(node->input(i).length(), 0); bool should_ignore_input = false; TF_RETURN_IF_ERROR(ShouldIgnoreInput(*node, i, &should_ignore_input)); if (should_ignore_input) continue; absl::string_view node_name, suffix; bool is_control_input; TF_RETURN_IF_ERROR(ParseInputNodeName(node->input(i), &node_name, &suffix, &is_control_input)); auto* input_node = gtl::FindPtrOrNull(node_def_by_name, node_name); if (input_node == nullptr) { return errors::Internal("Graph node [", node->name(), "] has input [", node_name, "] that doesn't exist in graph"); } if (visited.contains(node_name)) { EdgeRep cycle_edge(node, input_node); cycle_forming_edges_.insert(cycle_edge.GetHash()); continue; } if (is_control_input) { node_rep.node_control_inputs.push_back(input_node); } else { node_rep.node_inputs.push_back(std::make_pair(input_node, suffix)); bfs_queue.push(input_node); } } nodes_[node] = node_rep; } return absl::OkStatus(); } Status HashRoot(uint64* hash) { return HashNode(root_, hash); } Status CheckEqual(GraphHasher* that) { return CheckNodesEqual(root_, that, that->root_); } private: Status HashNode(const NodeDef* node, uint64* hash) { auto it = node_cache_->find(node); if (it != node_cache_->end()) { *hash = it->second; return absl::OkStatus(); } NodeRep* node_rep = gtl::FindOrNull(nodes_, node); if (node_rep == nullptr) { return errors::InvalidArgument("Could not find node: ", node->name()); } uint64 non_input_hash; TF_RETURN_IF_ERROR( HashNodeNonInput(node, true, &non_input_hash)); uint64 control_inputs_hash; TF_RETURN_IF_ERROR( HashControlInputs(node_rep->node_control_inputs, &control_inputs_hash)); uint64 inputs_hash = 0; for (const auto& input : node_rep->node_inputs) { uint64 node_hash = 0; EdgeRep edge(node, input.first); if (cycle_forming_edges_.contains(edge.GetHash())) { TF_RETURN_IF_ERROR( HashNodeNonInput(input.first, true, &node_hash)); } else { TF_RETURN_IF_ERROR(HashNode(input.first, &node_hash)); } inputs_hash = Hash64Combine( inputs_hash, Hash64Combine(node_hash, Hash64(input.second.data(), input.second.size()))); } *hash = Hash64Combine(non_input_hash, Hash64Combine(control_inputs_hash, inputs_hash)); auto result = node_cache_->emplace(node, *hash); if (!result.second) { return errors::Internal(absl::StrCat("Computed the hash for node ", node->DebugString(), " twice!")); } return absl::OkStatus(); } Status CheckNodesEqual(const NodeDef* this_node, GraphHasher* that, const NodeDef* that_node) { Status s = CheckNodesEqualHelper(this_node, that, that_node); if (!s.ok()) { return errors::FailedPrecondition("Nodes ", this_node->name(), " and ", that_node->name(), " are not the same:\n", s); } return s; } Status CheckNodesEqualHelper(const NodeDef* this_node, GraphHasher* that, const NodeDef* that_node) { TF_RETURN_IF_ERROR(CheckNodesEqualNonInput(this_node, that, that_node, true)); TF_RETURN_IF_ERROR( CheckControlInputsEqual(nodes_[this_node].node_control_inputs, that, that->nodes_[that_node].node_control_inputs)); auto& this_node_inputs = nodes_[this_node].node_inputs; auto& that_node_inputs = that->nodes_[that_node].node_inputs; if (this_node_inputs.size() != that_node_inputs.size()) { return errors::FailedPrecondition( "Nodes have different numbers of node inputs: ", this_node_inputs.size(), " vs ", that_node_inputs.size()); } for (int i = 0; i < this_node_inputs.size(); ++i) { const NodeDef* this_input = this_node_inputs[i].first; const NodeDef* that_input = that_node_inputs[i].first; if (is_cycle_forming_edge(this_node, this_input)) { TF_RETURN_IF_ERROR(CheckNodesEqualNonInput(this_input, that, that_input, true)); } else { TF_RETURN_IF_ERROR(CheckNodesEqual(this_input, that, that_input)); } absl::string_view this_input_suffix = this_node_inputs[i].second; absl::string_view that_input_suffix = that_node_inputs[i].second; if (this_input_suffix != that_input_suffix) { return errors::FailedPrecondition( "Node inputs ", this_input->name(), " and ", that_input->name(), " have different suffixes: ", this_input_suffix, " vs ", that_input_suffix); } } return absl::OkStatus(); } Status HashNodeNonInput(const NodeDef* node, bool hash_functions, uint64* hash) { auto iter = attr_cache_->find(std::make_pair(node, hash_functions)); if (iter != attr_cache_->end()) { *hash = iter->second; return absl::OkStatus(); } uint64 attrs_hash = 0; const OpRegistrationData* reg; TF_RETURN_IF_ERROR(flib_->LookUp(node->op(), &reg)); uint64 op_hash = 0; if (reg->is_function_op) { if (hash_functions) { TF_RETURN_IF_ERROR(HashFunction(node->op(), node->attr(), &op_hash)); } } else { op_hash = Hash64(node->op()); } for (const auto& attr : reg->op_def.attr()) { const auto& attr_key = attr.name(); if (DatasetOpKernel::IsDatasetOp(reg->op_def) && attr_key == "metadata") continue; auto node_attr_iter = node->attr().find(attr_key); if (node_attr_iter == node->attr().end()) { continue; } const auto& attr_value = node_attr_iter->second; if (attr_key == kColocationAttrName || attr_key == kColocationGroupPrefix) { continue; } uint64 attr_hash = 0; TF_RETURN_IF_ERROR( HashAttr(attr_key, attr_value, hash_functions, &attr_hash)); attrs_hash = Hash64Combine(attrs_hash, attr_hash); } uint64 device_hash = Hash64(node->device()); *hash = Hash64Combine(op_hash, Hash64Combine(attrs_hash, device_hash)); auto result = attr_cache_->emplace(std::make_pair(node, hash_functions), *hash); if (!result.second) { return errors::Internal(absl::StrCat( "Computed the hash for non-input node: ", node->DebugString(), " and hash function bool: ", hash_functions, "twice!")); } return absl::OkStatus(); } Status CheckNodesEqualNonInput(const NodeDef* this_node, GraphHasher* that, const NodeDef* that_node, bool compare_functions) { const OpRegistrationData* reg; TF_RETURN_IF_ERROR(flib_->LookUp(this_node->op(), &reg)); if (reg->is_function_op) { if (compare_functions) { TF_RETURN_IF_ERROR( CheckFunctionsEqual(this_node->op(), this_node->attr(), that, that_node->op(), that_node->attr())); } } else { if (this_node->op() != that_node->op()) { return errors::FailedPrecondition( "ops for nodes ", this_node->name(), " and ", that_node->name(), " are different: ", this_node->op(), " != ", that_node->op()); } } for (const auto& attr : reg->op_def.attr()) { const auto& attr_key = attr.name(); const bool this_has_attr = this_node->attr().contains(attr_key); const bool that_has_attr = that_node->attr().contains(attr_key); if (this_has_attr != that_has_attr) { return errors::FailedPrecondition( "attr with key ", attr_key, " is different for nodes ", this_node->name(), " and ", that_node->name(), ". Present in former: ", this_has_attr, ". Present in latter: ", that_has_attr); } if (!this_has_attr) { continue; } if (attr_key == kColocationAttrName || attr_key == kColocationGroupPrefix) { continue; } const auto& this_attr = this_node->attr().at(attr_key); const auto& that_attr = that_node->attr().at(attr_key); TF_RETURN_IF_ERROR(CheckAttrsEqual(attr_key, this_attr, that, that_attr, compare_functions)); } if (this_node->device() != that_node->device()) { return errors::FailedPrecondition( "Devices are different for nodes ", this_node->name(), " and ", that_node->name(), ": ", this_node->device(), " vs ", that_node->device()); } return absl::OkStatus(); } Status HashAttr(const std::string& attr_name, const AttrValue& attr_value, bool hash_functions, uint64* hash) { uint64 value_hash = 0; if (attr_value.has_func()) { if (hash_functions) { TF_RETURN_IF_ERROR(HashFunction(attr_value.func(), &value_hash)); } } else if (attr_value.has_list() && attr_value.list().func_size() > 0) { if (hash_functions) { for (auto& func : attr_value.list().func()) { uint64 func_hash; TF_RETURN_IF_ERROR(HashFunction(func, &func_hash)); value_hash = Hash64Combine(value_hash, func_hash); } } } else { value_hash = DeterministicProtoHash64(attr_value); } *hash = Hash64Combine(Hash64(attr_name), value_hash); return absl::OkStatus(); } Status CheckAttrsEqual(const std::string& attr_name, const AttrValue& this_attr, GraphHasher* that, const AttrValue& that_attr, bool compare_functions) { if (this_attr.has_func() != that_attr.has_func()) { return errors::FailedPrecondition( "AttrValues are of different types: ", this_attr.DebugString(), " vs ", that_attr.DebugString()); } if (this_attr.has_func()) { if (compare_functions) { TF_RETURN_IF_ERROR( CheckFunctionsEqual(this_attr.func(), that, that_attr.func())); } return absl::OkStatus(); } if (this_attr.has_list() != that_attr.has_list()) { return errors::FailedPrecondition( "AttrValues are of different types: ", this_attr.DebugString(), " vs ", that_attr.DebugString()); } if (this_attr.has_list()) { if (this_attr.list().func_size() != that_attr.list().func_size()) { return errors::FailedPrecondition( "AttrValues have func lists of different sizes: ", this_attr.DebugString(), " vs ", that_attr.DebugString()); } if (compare_functions) { for (int i = 0; i < this_attr.list().func_size(); ++i) { TF_RETURN_IF_ERROR(CheckFunctionsEqual(this_attr.list().func(i), that, that_attr.list().func(i))); } } return absl::OkStatus(); } uint64 this_hash, that_hash; TF_RETURN_IF_ERROR( HashAttr(attr_name, this_attr, true, &this_hash)); TF_RETURN_IF_ERROR(that->HashAttr(attr_name, that_attr, true, &that_hash)); if (this_hash != that_hash) { return errors::FailedPrecondition( "AttrValues are different: ", this_attr.DebugString(), " vs ", that_attr.DebugString()); } return absl::OkStatus(); } Status HashFunction(const NameAttrList& func, uint64* hash) { return HashFunction(func.name(), func.attr(), hash); } Status HashFunction(const std::string& name, const AttrValueMap& attrs, uint64* hash) { const FunctionDef* fdef = flib_->Find(name); auto it = function_cache_->find(fdef); if (it != function_cache_->end()) { *hash = it->second; return absl::OkStatus(); } std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(*fdef, AttrSlice(&attrs), flib_, &fbody)); GraphDef graph_def = fbody->graph->ToGraphDefDebug(); uint64 ret_nodes_hash = 0; for (const auto& ret_node : fbody->ret_nodes) { uint64 ret_node_hash = 0; GraphHasher hasher(&graph_def, &ret_node->def(), flib_, node_cache_, function_cache_, attr_cache_); TF_RETURN_IF_ERROR(hasher.Init()); TF_RETURN_IF_ERROR(hasher.HashRoot(&ret_node_hash)); ret_nodes_hash = Hash64Combine(ret_nodes_hash, ret_node_hash); } std::vector<const NodeDef*> control_rets; control_rets.reserve(fbody->control_ret_nodes.size()); for (const auto& control_ret_node : fbody->control_ret_nodes) { control_rets.push_back(&control_ret_node->def()); } uint64 control_ret_nodes_hash = 0; TF_RETURN_IF_ERROR( HashControlInputs(control_rets, &control_ret_nodes_hash)); *hash = Hash64Combine(ret_nodes_hash, control_ret_nodes_hash); auto result = function_cache_->emplace(fdef, *hash); if (!result.second) { return errors::Internal( absl::StrCat("Computed the hash for function ", name, " twice!")); } return absl::OkStatus(); } Status CheckFunctionsEqual(const NameAttrList& this_func, GraphHasher* that, const NameAttrList& that_func) { return CheckFunctionsEqual(this_func.name(), this_func.attr(), that, that_func.name(), that_func.attr()); } Status CheckFunctionsEqual(const std::string& this_name, const AttrValueMap& this_attrs, GraphHasher* that, const std::string& that_name, const AttrValueMap& that_attrs) { Status s = CheckFunctionsEqualHelper(this_name, this_attrs, that, that_name, that_attrs); if (!s.ok()) { return errors::FailedPrecondition("Functions ", this_name, " and ", that_name, " are not the same:\n", s); } return s; } Status CheckFunctionsEqualHelper(const std::string& this_name, const AttrValueMap& this_attrs, GraphHasher* that, const std::string& that_name, const AttrValueMap& that_attrs) { const FunctionDef* this_fdef = flib_->Find(this_name); const FunctionDef* that_fdef = that->flib_->Find(that_name); std::unique_ptr<FunctionBody> this_fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *this_fdef, AttrSlice(&this_attrs), flib_, &this_fbody)); GraphDef this_graph_def = this_fbody->graph->ToGraphDefDebug(); std::unique_ptr<FunctionBody> that_fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *that_fdef, AttrSlice(&that_attrs), that->flib_, &that_fbody)); GraphDef that_graph_def = that_fbody->graph->ToGraphDefDebug(); if (this_fbody->ret_nodes.size() != that_fbody->ret_nodes.size()) { return errors::FailedPrecondition( "Different numbers of ret nodes for functions ", this_name, " and ", that_name, ": ", this_fbody->ret_nodes.size(), " vs ", that_fbody->ret_nodes.size()); } for (int i = 0; i < this_fbody->ret_nodes.size(); ++i) { const NodeDef* this_root = &this_fbody->ret_nodes[i]->def(); const NodeDef* that_root = &that_fbody->ret_nodes[i]->def(); GraphHasher this_hasher(&this_graph_def, this_root, flib_, node_cache_, function_cache_, attr_cache_); TF_RETURN_IF_ERROR(this_hasher.Init()); GraphHasher that_hasher(&that_graph_def, that_root, that->flib_, node_cache_, function_cache_, attr_cache_); TF_RETURN_IF_ERROR(that_hasher.Init()); TF_RETURN_IF_ERROR(this_hasher.CheckEqual(&that_hasher)); } std::vector<const NodeDef*> this_control_rets; this_control_rets.reserve(this_fbody->control_ret_nodes.size()); for (const auto& control_ret_node : this_fbody->control_ret_nodes) { this_control_rets.push_back(&control_ret_node->def()); } std::vector<const NodeDef*> that_control_rets; that_control_rets.reserve(that_fbody->control_ret_nodes.size()); for (const auto& control_ret_node : that_fbody->control_ret_nodes) { that_control_rets.push_back(&control_ret_node->def()); } TF_RETURN_IF_ERROR( CheckControlInputsEqual(this_control_rets, that, that_control_rets)); return absl::OkStatus(); } Status HashControlInputs(const std::vector<const NodeDef*>& inputs, uint64* hash) { *hash = 0; for (const NodeDef* input : inputs) { uint64 node_hash = 0; TF_RETURN_IF_ERROR( HashNodeNonInput(input, false, &node_hash)); *hash = Hash64CombineUnordered(*hash, node_hash); } return absl::OkStatus(); } Status CheckControlInputsEqual( const std::vector<const NodeDef*>& this_inputs, GraphHasher* that, const std::vector<const NodeDef*>& that_inputs) { absl::flat_hash_map<uint64, const NodeDef*> this_hashes; for (const NodeDef* input : this_inputs) { uint64 node_hash = 0; TF_RETURN_IF_ERROR( HashNodeNonInput(input, false, &node_hash)); this_hashes[node_hash] = input; } absl::flat_hash_map<uint64, const NodeDef*> that_hashes; for (const NodeDef* input : that_inputs) { uint64 node_hash = 0; TF_RETURN_IF_ERROR( HashNodeNonInput(input, false, &node_hash)); auto this_iter = this_hashes.find(node_hash); if (this_iter != this_hashes.end()) { this_hashes.erase(this_iter); } else { that_hashes[node_hash] = input; } } if (!this_hashes.empty()) { auto formatter = [](string* out, const decltype(this_hashes)::value_type& item) { out->append(item.second->name()); }; return errors::FailedPrecondition( "Control dependencies are different. One node has dependencies [", absl::StrJoin(this_hashes, ", ", formatter), "], which don't match any of the other node's dependencies [", absl::StrJoin(that_hashes, ", ", formatter), "]"); } return absl::OkStatus(); } private: bool is_cycle_forming_edge(const NodeDef* start, const NodeDef* end) { EdgeRep edge(start, end); return cycle_forming_edges_.contains(edge.GetHash()); } struct NodeRep { std::vector<const NodeDef*> node_control_inputs; std::vector<std::pair<const NodeDef*, absl::string_view>> node_inputs; }; struct EdgeRep { const NodeDef* start_node; const NodeDef* end_node; EdgeRep(const NodeDef* start, const NodeDef* end) : start_node(start), end_node(end) {} uint64 GetHash() { return Hash64Combine(absl::Hash<const NodeDef*>()(start_node), absl::Hash<const NodeDef*>()(end_node)); } }; const GraphDef* const graph_; const NodeDef* const root_; const FunctionLibraryDefinition* const flib_; absl::flat_hash_set<uint64> cycle_forming_edges_; absl::flat_hash_map<const NodeDef*, NodeRep> nodes_; std::shared_ptr<NodeCache> node_cache_; std::shared_ptr<FunctionCache> function_cache_; std::shared_ptr<AttrCache> attr_cache_; }; } Status HashTensor(const Tensor& tensor, uint64* hash) { const tstring* s = nullptr; *hash = Hash64Combine(0, tensor.dtype()); for (int i = 0; i < tensor.shape().dims(); ++i) { *hash = Hash64Combine(*hash, tensor.shape().dim_size(i)); } switch (tensor.dtype()) { case DT_RESOURCE: case DT_VARIANT: return errors::Unimplemented("Hashing ", DataTypeString(tensor.dtype()), " is not supported."); case DT_STRING: s = tensor.flat<tstring>().data(); for (int i = 0; i < tensor.NumElements(); ++i, ++s) { *hash = Hash64Combine(*hash, Hash64(s->data(), s->size())); } break; default: *hash = Hash64(tensor.tensor_data().data(), tensor.tensor_data().size()); } return absl::OkStatus(); } Status HashNode(const GraphDef& graph, const NodeDef& node, uint64* hash) { const FunctionLibraryDefinition flib_def(OpRegistry::Global(), graph.library()); return HashNode(graph, node, flib_def, hash); } Status HashNod
#include "tensorflow/core/data/hash_utils.h" #include <utility> #include <vector> #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { namespace data { namespace { using ::testing::ContainsRegex; class DatasetHashUtilsTest : public ::testing::Test { protected: uint64 GetHash(const FunctionDefLibrary& library, const FunctionDef& fn) { GraphDef graph_def; *graph_def.mutable_library() = library; NodeDef* node = graph_def.add_node(); node->set_op("RemoteCall"); NameAttrList func; func.set_name(fn.signature().name()); AddNodeAttr("f", func, node); uint64 hash = 0; TF_CHECK_OK(HashNode(graph_def, *node, &hash)); return hash; } Status CheckEqual(const FunctionDefLibrary& library, const FunctionDef& fn1, const FunctionDef& fn2) { GraphDef graph_def; *graph_def.mutable_library() = library; NodeDef* node1 = graph_def.add_node(); node1->set_name("RemoteCall"); node1->set_op("RemoteCall"); NameAttrList func1; func1.set_name(fn1.signature().name()); AddNodeAttr("f", func1, node1); NodeDef* node2 = graph_def.add_node(); node1->set_name("RemoteCall2"); node2->set_op("RemoteCall"); NameAttrList func2; func2.set_name(fn2.signature().name()); AddNodeAttr("f", func2, node2); return CheckSubgraphsEqual(graph_def, node1, graph_def, node2); } uint64 GetHash(const GraphDef& graph, const NodeDef& node) { uint64 hash = 0; TF_CHECK_OK(HashNode(graph, node, &hash)); return hash; } uint64 GetHash(const Tensor& tensor) { uint64 hash = 0; TF_CHECK_OK(HashTensor(tensor, &hash)); return hash; } }; TEST_F(DatasetHashUtilsTest, HashFunctionSameFunctionDifferentNames) { FunctionDefLibrary fl; FunctionDef* f1 = fl.add_function(); *f1 = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); FunctionDef* f2 = fl.add_function(); *f2 = FunctionDefHelper::Create( "AddAndMul2", {"input: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"input", "input"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"input", "input"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); EXPECT_EQ(GetHash(fl, *f1), GetHash(fl, *f2)); TF_EXPECT_OK(CheckEqual(fl, *f1, *f2)); } TEST_F(DatasetHashUtilsTest, HashFunctionDifferentFunctions) { FunctionDefLibrary fl; FunctionDef* f1 = fl.add_function(); *f1 = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); FunctionDef* f2 = fl.add_function(); *f2 = FunctionDefHelper::Create( "AddAndAdd", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); EXPECT_NE(GetHash(fl, *f1), GetHash(fl, *f2)); Status s = CheckEqual(fl, *f1, *f2); EXPECT_NE(s.code(), error::OK); EXPECT_THAT(s.message(), ContainsRegex("Add")); } TEST_F(DatasetHashUtilsTest, HashFunctionDifferentInternalNodeNames) { FunctionDefLibrary fl; FunctionDef* f1 = fl.add_function(); *f1 = FunctionDefHelper::Create( "AddAndMul", {"i: float", "j: float", "k: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "j"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"add:z:0", "k"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "ret"}}); FunctionDef* f2 = fl.add_function(); *f2 = FunctionDefHelper::Create( "AddAndMul2", {"a: float", "b: float", "c: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"a", "b"}, {{"T", DT_FLOAT}}}, {{"mul"}, "Mul", {"add:z:0", "c"}, {{"T", DT_FLOAT}}}}, {{"o", "mul:z:0"}}, {{"must_execute", "mul"}}); EXPECT_EQ(GetHash(fl, *f1), GetHash(fl, *f2)); TF_EXPECT_OK(CheckEqual(fl, *f1, *f2)); } TEST_F(DatasetHashUtilsTest, HashGraphWithMultipleCycles) { uint64 hash = 0; for (int i = 0; i < 1000; ++i) { GraphDef g; NodeDef* output_node = g.add_node(); TF_CHECK_OK(NodeDefBuilder("O", "Add") .Input("A", 0, DT_FLOAT) .Input("D", 0, DT_FLOAT) .Finalize(output_node)); TF_CHECK_OK(NodeDefBuilder("A", "Abs") .Input("B", 0, DT_FLOAT) .Finalize(g.add_node())); TF_CHECK_OK(NodeDefBuilder("B", "Add") .Input("C", 0, DT_FLOAT) .Input("D", 0, DT_FLOAT) .Finalize(g.add_node())); TF_CHECK_OK(NodeDefBuilder("C", "Ceil") .Input("A", 0, DT_FLOAT) .Finalize(g.add_node())); TF_CHECK_OK(NodeDefBuilder("D", "Cos") .Input("E", 0, DT_FLOAT) .Finalize(g.add_node())); TF_CHECK_OK(NodeDefBuilder("E", "Floor") .Input("B", 0, DT_FLOAT) .Finalize(g.add_node())); uint64 t = GetHash(g, *output_node); if (hash == 0) { hash = t; } else { EXPECT_EQ(t, hash); } } } TEST_F(DatasetHashUtilsTest, HashNodeSameGraphDifferentNames) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_3/node_7", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n4)); NodeDef* n5 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_4/node_9", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n5)); NodeDef* n6 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_5/node_11", "Add") .Device("CPU:0") .Input(n4->name(), 0, DT_INT32) .Input(n5->name(), 0, DT_INT32) .Finalize(n6)); uint64 hash1 = GetHash(gd, *n3); uint64 hash2 = GetHash(gd, *n6); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n3, gd, n6)); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentGraphs) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Mul") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n4)); uint64 hash1 = GetHash(gd, *n3); uint64 hash2 = GetHash(gd, *n4); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n3, gd, n4); EXPECT_NE(s.code(), error::OK); EXPECT_THAT(s.message(), ContainsRegex("Add")); EXPECT_THAT(s.message(), ContainsRegex("Mul")); } TEST_F(DatasetHashUtilsTest, HashSameGraphDifferentSeeds) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* seed = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/seed", "Const") .Attr("value", 123) .Device("CPU:0") .Finalize(seed)); NodeDef* seed2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/seed2", "Const") .Attr("value", 456) .Device("CPU:0") .Finalize(seed2)); NodeDef* range_ds = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/range", "RangeDataset") .Input(n1->name(), 0, DT_INT64) .Input(n1->name(), 0, DT_INT64) .Input(n1->name(), 0, DT_INT64) .Device("CPU:0") .Finalize(range_ds)); NodeDef* shuffle_ds = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/shuffle", "ShuffleDataset") .Input(range_ds->name(), 0, DT_VARIANT) .Input(n1->name(), 0, DT_INT64) .Input(seed->name(), 0, DT_INT64) .Input(seed2->name(), 0, DT_INT64) .Device("CPU:0") .Finalize(shuffle_ds)); NodeDef* different_seed = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/different_seed", "Const") .Attr("value", 789) .Device("CPU:0") .Finalize(different_seed)); NodeDef* different_seed2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/different_seed2", "Const") .Attr("value", 654) .Device("CPU:0") .Finalize(different_seed2)); NodeDef* range_ds_2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/range_2", "RangeDataset") .Input(n1->name(), 0, DT_INT64) .Input(n1->name(), 0, DT_INT64) .Input(n1->name(), 0, DT_INT64) .Device("CPU:0") .Finalize(range_ds_2)); NodeDef* shuffle_ds_2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/shuffle_2", "ShuffleDataset") .Input(range_ds_2->name(), 0, DT_VARIANT) .Input(n1->name(), 0, DT_INT64) .Input(different_seed->name(), 0, DT_INT64) .Input(different_seed2->name(), 0, DT_INT64) .Device("CPU:0") .Finalize(shuffle_ds_2)); uint64 hash1 = GetHash(gd, *shuffle_ds); uint64 hash2 = GetHash(gd, *shuffle_ds_2); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, shuffle_ds, gd, shuffle_ds_2)); } TEST_F(DatasetHashUtilsTest, HashNodeSameGraphDifferentColocationNames) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Attr("_class", {"graph_1/node_2"}) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_3/node_7", "Const") .Attr("value", 1) .Attr("_class", {"graph_3/node_9"}) .Device("CPU:0") .Finalize(n4)); NodeDef* n5 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_4/node_9", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n5)); NodeDef* n6 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_5/node_11", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n6)); uint64 hash1 = GetHash(gd, *n3); uint64 hash2 = GetHash(gd, *n6); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n3, gd, n6)); } TEST_F(DatasetHashUtilsTest, HashNodeReversedOrder) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Add") .Device("CPU:0") .Input(n2->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Finalize(n4)); uint64 hash1 = GetHash(gd, *n3); uint64 hash2 = GetHash(gd, *n4); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n3, gd, n4); EXPECT_NE(s.code(), error::OK); EXPECT_THAT(s.message(), ContainsRegex("AttrValues are different")); } TEST_F(DatasetHashUtilsTest, HashNodeInputPortChanged) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Add") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .Input(n2->name(), 0, DT_INT32) .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Add") .Device("CPU:0") .Input(n1->name(), 1, DT_INT32) .Input(n2->name(), 2, DT_INT32) .Finalize(n4)); uint64 hash1 = GetHash(gd, *n3); uint64 hash2 = GetHash(gd, *n4); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n3, gd, n4); EXPECT_NE(s.code(), error::OK); EXPECT_THAT(s.message(), ContainsRegex("Node inputs")); } TEST_F(DatasetHashUtilsTest, HashNodeSameFunctionDifferentNames) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); *f1 = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); FunctionDef* f2 = fl1->add_function(); *f2 = FunctionDefHelper::Create( "AddAndMul2", {"input: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"input", "input"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"input", "input"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); AttrValue a1; NameAttrList* nal1 = a1.mutable_func(); nal1->set_name("AddAndMul"); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); std::vector<NodeDefBuilder::NodeOut> func_inputs; func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a1) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); AttrValue a2; NameAttrList* nal2 = a2.mutable_func(); nal2->set_name("AddAndMul2"); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a2) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n2, gd, n3)); } TEST_F(DatasetHashUtilsTest, HashNodeSameFunctionListsDifferentNames) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); *f1 = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); FunctionDef* f2 = fl1->add_function(); *f2 = FunctionDefHelper::Create( "AddAndMul2", {"input: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"input", "input"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"input", "input"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); AttrValue a1; AttrValue_ListValue* list1 = a1.mutable_list(); NameAttrList* nal1 = list1->add_func(); nal1->set_name("AddAndMul"); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); std::vector<NodeDefBuilder::NodeOut> func_inputs; func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a1) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); AttrValue a2; AttrValue_ListValue* list2 = a2.mutable_list(); NameAttrList* nal2 = list2->add_func(); nal2->set_name("AddAndMul2"); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a2) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n2, gd, n3)); } TEST_F(DatasetHashUtilsTest, HashNodeSameFunctionsOps) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); FunctionDef func = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f1 = func; FunctionDef* f2 = fl1->add_function(); func = FunctionDefHelper::Create( "AddAndMul2", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f2 = func; FunctionLibraryDefinition flib(OpRegistry::Global(), gd.library()); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "AddAndMul", &flib) .Input(n1->name(), 0, DT_FLOAT) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "AddAndMul2", &flib) .Input(n1->name(), 0, DT_FLOAT) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(CheckSubgraphsEqual(gd, n2, gd, n3)); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentFunctionsOps) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); FunctionDef func = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f1 = func; FunctionDef* f2 = fl1->add_function(); func = FunctionDefHelper::Create( "AddAndMul2", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "ret"}}); *f2 = func; FunctionLibraryDefinition flib(OpRegistry::Global(), gd.library()); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "AddAndMul", &flib) .Input(n1->name(), 0, DT_FLOAT) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "AddAndMul2", &flib) .Input(n1->name(), 0, DT_FLOAT) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n2, gd, n3); EXPECT_NE(s.code(), error::OK); EXPECT_THAT( s.message(), ContainsRegex("Functions AddAndMul and AddAndMul2 are not the same")); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentFunctions) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); FunctionDef func = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f1 = func; FunctionDef* f2 = fl1->add_function(); func = FunctionDefHelper::Create( "AddAndMul2", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "ret"}}); *f2 = func; AttrValue a1; NameAttrList* nal1 = a1.mutable_func(); nal1->set_name("AddAndMul"); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); std::vector<NodeDefBuilder::NodeOut> func_inputs; func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a1) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); AttrValue a2; NameAttrList* nal2 = a2.mutable_func(); nal2->set_name("AddAndMul2"); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a2) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n2, gd, n3); EXPECT_NE(s.code(), error::OK); EXPECT_THAT( s.message(), ContainsRegex("Functions AddAndMul and AddAndMul2 are not the same")); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentFunctionLists) { GraphDef gd; FunctionDefLibrary* fl1 = gd.mutable_library(); FunctionDef* f1 = fl1->add_function(); FunctionDef func = FunctionDefHelper::Create( "AddAndMul", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "add"}}); *f1 = func; FunctionDef* f2 = fl1->add_function(); func = FunctionDefHelper::Create( "AddAndMul2", {"i: float"}, {"o: float"}, {}, {{{"add"}, "Add", {"i", "i"}, {{"T", DT_FLOAT}}}, {{"ret"}, "Mul", {"i", "i"}, {{"T", DT_FLOAT}}}}, {{"o", "ret:z:0"}}, {{"must_execute", "ret"}}); *f2 = func; AttrValue a1; AttrValue_ListValue* list1 = a1.mutable_list(); NameAttrList* nal1 = list1->add_func(); nal1->set_name("AddAndMul"); NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); std::vector<NodeDefBuilder::NodeOut> func_inputs; func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); func_inputs.emplace_back(n1->name(), 0, DT_FLOAT); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a1) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); AttrValue a2; AttrValue_ListValue* list2 = a2.mutable_list(); NameAttrList* nal2 = list2->add_func(); nal2->set_name("AddAndMul2"); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "For") .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(n1->name(), 0, DT_INT32) .Input(func_inputs) .Attr("body", a2) .Device("CPU:0") .Finalize(n3)); uint64 hash1 = GetHash(gd, *n2); uint64 hash2 = GetHash(gd, *n3); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n2, gd, n3); EXPECT_NE(s.code(), error::OK); EXPECT_THAT( s.message(), ContainsRegex("Functions AddAndMul and AddAndMul2 are not the same")); } TEST_F(DatasetHashUtilsTest, HashNodeDifferentControlInputs) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Const") .Attr("value", 10) .Device("CPU:0") .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Identity") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .ControlInput(n2->name()) .Finalize(n4)); NodeDef* n5 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_5", "Identity") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .ControlInput(n3->name()) .Finalize(n5)); uint64 hash1 = GetHash(gd, *n4); uint64 hash2 = GetHash(gd, *n5); EXPECT_NE(hash1, hash2); Status s = CheckSubgraphsEqual(gd, n4, gd, n5); EXPECT_NE(s.code(), error::OK); EXPECT_THAT(s.message(), ContainsRegex("Control dependencies are different")); } TEST_F(DatasetHashUtilsTest, HashNodeControlInputDifferentOrdering) { GraphDef gd; NodeDef* n1 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_1", "Const") .Attr("value", 1) .Device("CPU:0") .Finalize(n1)); NodeDef* n2 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_2", "Const") .Attr("value", 2) .Device("CPU:0") .Finalize(n2)); NodeDef* n3 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_3", "Const") .Attr("value", 10) .Device("CPU:0") .Finalize(n3)); NodeDef* n4 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_4", "Identity") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .ControlInput(n2->name()) .ControlInput(n3->name()) .Finalize(n4)); NodeDef* n5 = gd.add_node(); TF_CHECK_OK(NodeDefBuilder("graph_1/node_5", "Identity") .Device("CPU:0") .Input(n1->name(), 0, DT_INT32) .ControlInput(n3->name()) .ControlInput(n2->name()) .Finalize(n5)); uint64 hash1 = GetHash(gd, *n4); uint64 hash2 = GetHash(gd, *n5); EXPECT_EQ(hash1, hash2); TF_EXPECT_OK(C
1,725
cpp
tensorflow/tensorflow
tfdataz_metrics
tensorflow/core/data/tfdataz_metrics.cc
tensorflow/core/data/tfdataz_metrics_test.cc
#ifndef TENSORFLOW_CORE_DATA_TFDATAZ_METRICS_H_ #define TENSORFLOW_CORE_DATA_TFDATAZ_METRICS_H_ #include <cstdint> #include <memory> #include <optional> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/time/time.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { class ApproximateLatencyEstimator { public: enum class Duration { kMinute = 1, kFiveMinutes = 5, kSixtyMinutes = 60, }; explicit ApproximateLatencyEstimator(const Env& env); void AddLatency(int64_t latency_usec); absl::Duration GetAverageLatency(Duration duration); private: static constexpr int64_t kSecondsPerMinute = 60; static constexpr int64_t kMinutesPerHour = 60; static constexpr int64_t kSlots = kMinutesPerHour; void UpdateRingBuffer() TF_LOCKS_EXCLUDED(mu_); void IncrementNextSlot() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); int PrevSlot(int steps) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); const Env& env_; int64_t last_updated_time_mins_ TF_GUARDED_BY(mu_); mutex mu_; int64_t latency_value_counter_ TF_GUARDED_BY(mu_); int64_t latency_count_counter_ TF_GUARDED_BY(mu_); int next_slot_ TF_GUARDED_BY(mu_); int64_t latency_value_[kSlots] TF_GUARDED_BY(mu_); int64_t latency_count_[kSlots] TF_GUARDED_BY(mu_); }; class TfDatazMetricsCollector { public: TfDatazMetricsCollector(const Env& env, DatasetBaseIterator* iterator, std::shared_ptr<model::Model> model); void RecordGetNextLatency(int64_t get_next_latency_usec); absl::Duration GetAverageLatencyForLastOneMinute(); absl::Duration GetAverageLatencyForLastFiveMinutes(); absl::Duration GetAverageLatencyForLastSixtyMinutes(); std::optional<std::string> DatasetName(); int64_t GetIteratorTotalMemoryUsage(); std::shared_ptr<model::Model> GetModel(); private: DatasetBaseIterator* iterator_; std::shared_ptr<model::Model> model_; ApproximateLatencyEstimator latency_estimator_; }; class TfDatazMetricsRegistry { public: static void Register(std::shared_ptr<TfDatazMetricsCollector> collector); static void Deregister(std::shared_ptr<TfDatazMetricsCollector> collector); static absl::flat_hash_set<std::shared_ptr<TfDatazMetricsCollector>> GetIteratorMetricCollectors(); }; } } #endif #include "tensorflow/core/data/tfdataz_metrics.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/time/time.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { ApproximateLatencyEstimator::ApproximateLatencyEstimator(const Env& env) : env_(env), last_updated_time_mins_(0), latency_value_counter_(0), latency_count_counter_(0), next_slot_(0) { for (int i = 0; i < kSlots; ++i) { latency_value_[i] = 0; latency_count_[i] = 0; } } void ApproximateLatencyEstimator::AddLatency(const int64_t latency_usec) TF_LOCKS_EXCLUDED(mu_) { UpdateRingBuffer(); mutex_lock l(mu_); latency_value_counter_ += latency_usec; latency_count_counter_ += 1; } void ApproximateLatencyEstimator::UpdateRingBuffer() TF_LOCKS_EXCLUDED(mu_) { int64_t now_minutes = absl::ToInt64Minutes(absl::Microseconds(env_.NowMicros())); mutex_lock l(mu_); int64_t elapsed_minutes = now_minutes - last_updated_time_mins_; int64_t minutes_to_update = std::min(elapsed_minutes, kSlots); for (int i = 0; i < minutes_to_update; ++i) { latency_value_[next_slot_] = latency_value_counter_; latency_count_[next_slot_] = latency_count_counter_; IncrementNextSlot(); } last_updated_time_mins_ = now_minutes; } void ApproximateLatencyEstimator::IncrementNextSlot() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { next_slot_ = (next_slot_ + 1) % kSlots; } int ApproximateLatencyEstimator::PrevSlot(int steps) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return (next_slot_ - steps + kSlots) % kSlots; } absl::Duration ApproximateLatencyEstimator::GetAverageLatency(Duration duration) TF_LOCKS_EXCLUDED(mu_) { UpdateRingBuffer(); mutex_lock l(mu_); double interval_latency = static_cast<double>(latency_value_counter_ - latency_value_[PrevSlot(static_cast<int>(duration))]); double interval_count = static_cast<double>(latency_count_counter_ - latency_count_[PrevSlot(static_cast<int>(duration))]); if (interval_count == 0) { return absl::ZeroDuration(); } return absl::Duration(absl::Microseconds(interval_latency)) / interval_count; } TfDatazMetricsCollector::TfDatazMetricsCollector( const Env& env, DatasetBaseIterator* iterator, std::shared_ptr<model::Model> model) : iterator_(iterator), model_(std::move(model)), latency_estimator_(env) {} void TfDatazMetricsCollector::RecordGetNextLatency( int64_t get_next_latency_usec) { if (get_next_latency_usec > 0) { latency_estimator_.AddLatency(get_next_latency_usec); } } absl::Duration TfDatazMetricsCollector::GetAverageLatencyForLastOneMinute() { return latency_estimator_.GetAverageLatency( ApproximateLatencyEstimator::Duration::kMinute); } absl::Duration TfDatazMetricsCollector::GetAverageLatencyForLastFiveMinutes() { return latency_estimator_.GetAverageLatency( ApproximateLatencyEstimator::Duration::kFiveMinutes); } absl::Duration TfDatazMetricsCollector::GetAverageLatencyForLastSixtyMinutes() { return latency_estimator_.GetAverageLatency( ApproximateLatencyEstimator::Duration::kSixtyMinutes); } std::optional<std::string> TfDatazMetricsCollector::DatasetName() { auto options = iterator_->dataset()->options(); if (options.has_dataset_name()) { return std::make_optional(options.dataset_name()); } return std::nullopt; } int64_t TfDatazMetricsCollector::GetIteratorTotalMemoryUsage() { return iterator_->TotalBufferedBytes(); } std::shared_ptr<model::Model> TfDatazMetricsCollector::GetModel() { return model_; } namespace { static mutex* get_tfdataz_metrics_registry_lock() { static mutex tfdataz_metrics_registry_lock(LINKER_INITIALIZED); return &tfdataz_metrics_registry_lock; } using TfDatazMetricsCollectors = absl::flat_hash_set<std::shared_ptr<TfDatazMetricsCollector>>; TfDatazMetricsCollectors& tfdataz_metric_collectors() { static auto& collectors = *new TfDatazMetricsCollectors(); return collectors; } } void TfDatazMetricsRegistry::Register( std::shared_ptr<TfDatazMetricsCollector> collector) { mutex_lock l(*get_tfdataz_metrics_registry_lock()); tfdataz_metric_collectors().insert(collector); } void TfDatazMetricsRegistry::Deregister( std::shared_ptr<TfDatazMetricsCollector> collector) { mutex_lock l(*get_tfdataz_metrics_registry_lock()); tfdataz_metric_collectors().erase(collector); } absl::flat_hash_set<std::shared_ptr<TfDatazMetricsCollector>> TfDatazMetricsRegistry::GetIteratorMetricCollectors() { mutex_lock l(*get_tfdataz_metrics_registry_lock()); return tfdataz_metric_collectors(); } } }
#include "tensorflow/core/data/tfdataz_metrics.h" #include <memory> #include <utility> #include "absl/time/time.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/fake_clock_env.h" namespace tensorflow { namespace data { namespace { static int64_t k1MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(1)); static int64_t k2MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(2)); static int64_t k5MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(5)); static int64_t k59MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(59)); static int64_t k60MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(60)); static int64_t k61MinutesInMicros = absl::ToInt64Microseconds(absl::Minutes(61)); class TfDatazMetricsTest : public ::testing::Test { protected: void SetUp() override { env_ = std::make_unique<FakeClockEnv>(Env::Default()); tfdataz_metrics_ = std::make_unique<TfDatazMetricsCollector>( *env_, iterator_.get(), nullptr); } void TearDown() override { env_.reset(); tfdataz_metrics_.reset(); } std::unique_ptr<DatasetBaseIterator> iterator_; std::unique_ptr<FakeClockEnv> env_; std::unique_ptr<TfDatazMetricsCollector> tfdataz_metrics_; }; TEST_F(TfDatazMetricsTest, RecordGetNextLatency) { tfdataz_metrics_->RecordGetNextLatency(1); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 2.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastOneMinute) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k2MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 2.5); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastFiveMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k5MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 5.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastSixtyMinutesWithAdvanceBySixtyMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k60MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 5.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastSixtyMinutesWithAdvanceByFiftyNineMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k59MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 4.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyForLastSixtyMinutesWithAdvanceBySixtyOneMinutes) { tfdataz_metrics_->RecordGetNextLatency(1); env_->AdvanceByMicroseconds(k61MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); tfdataz_metrics_->RecordGetNextLatency(4); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 3.0); } TEST_F(TfDatazMetricsTest, GetMultipleAverageLatencies) { tfdataz_metrics_->RecordGetNextLatency(1); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 1.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 1.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 1.0); env_->AdvanceByMicroseconds(k1MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(2); tfdataz_metrics_->RecordGetNextLatency(3); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 2.5); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 2.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 2.0); env_->AdvanceByMicroseconds(k60MinutesInMicros); tfdataz_metrics_->RecordGetNextLatency(4); tfdataz_metrics_->RecordGetNextLatency(5); tfdataz_metrics_->RecordGetNextLatency(6); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 5.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 5.0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 5.0); } TEST_F(TfDatazMetricsTest, GetAverageLatencyWithZeroGetNextCalls) { EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastOneMinute()), 0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastFiveMinutes()), 0); EXPECT_FLOAT_EQ(absl::ToDoubleMicroseconds( tfdataz_metrics_->GetAverageLatencyForLastSixtyMinutes()), 0); } class ScopedTfDataMetricsRegistration { public: explicit ScopedTfDataMetricsRegistration( std::shared_ptr<TfDatazMetricsCollector> collector) : collector_(std::move(collector)) { TfDatazMetricsRegistry::Register(collector_); } ~ScopedTfDataMetricsRegistration() { TfDatazMetricsRegistry::Deregister(collector_); } void Deregister() { TfDatazMetricsRegistry::Deregister(collector_); } private: std::shared_ptr<TfDatazMetricsCollector> collector_; }; TEST(TfDatazMetricsRegistryTest, Register) { std::unique_ptr<DatasetBaseIterator> iterator; auto collector_one = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); auto collector_two = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); ScopedTfDataMetricsRegistration scoped_registration_one(collector_one); ScopedTfDataMetricsRegistration scoped_registration_two(collector_two); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 2); } TEST(TfDatazMetricsRegistryTest, Deregister) { std::unique_ptr<DatasetBaseIterator> iterator; auto collector_one = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); auto collector_two = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); auto collector_three = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), iterator.get(), nullptr); ScopedTfDataMetricsRegistration scoped_registration_one(collector_one); ScopedTfDataMetricsRegistration scoped_registration_two(collector_two); ScopedTfDataMetricsRegistration scoped_registration_three(collector_three); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 3); scoped_registration_one.Deregister(); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 2); scoped_registration_two.Deregister(); scoped_registration_three.Deregister(); EXPECT_EQ(TfDatazMetricsRegistry::GetIteratorMetricCollectors().size(), 0); } } } }
1,726
cpp
tensorflow/tensorflow
metric_utils
tensorflow/core/data/metric_utils.cc
tensorflow/core/data/metric_utils_test.cc
#ifndef TENSORFLOW_CORE_DATA_METRIC_UTILS_H_ #define TENSORFLOW_CORE_DATA_METRIC_UTILS_H_ #include <cstdint> #include <string> #include <vector> #include "absl/time/time.h" #include "tensorflow/core/data/tfdataz_metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/thread_annotations.h" namespace tensorflow { namespace data { class IteratorMetricsCollector { public: IteratorMetricsCollector(const std::string& device_type, const Env& env); absl::Time RecordStart(); void RecordStop(absl::Time start_time, const std::vector<Tensor>& output); private: bool ShouldCollectMetrics() const; const std::string device_type_; const Env& env_; mutex mu_; uint64_t num_active_calls_ TF_GUARDED_BY(mu_) = 0; uint64_t first_start_time_us_ TF_GUARDED_BY(mu_) = 0; uint64_t end_time_us_ TF_GUARDED_BY(mu_) = 0; }; } } #endif #include "tensorflow/core/data/metric_utils.h" #include <algorithm> #include <cstdint> #include <string> #include <vector> #include "absl/time/time.h" #include "tensorflow/core/data/utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { namespace data { namespace { uint64_t safe_sub(uint64_t x, uint64_t y) { return x >= y ? x - y : 0; } } IteratorMetricsCollector::IteratorMetricsCollector( const std::string& device_type, const Env& env) : device_type_(device_type), env_(env) {} absl::Time IteratorMetricsCollector::RecordStart() { const uint64_t start_time_us = env_.NowMicros(); if (!ShouldCollectMetrics()) { return absl::FromUnixMicros(start_time_us); } mutex_lock l(mu_); if (end_time_us_ == 0) { end_time_us_ = start_time_us; } uint64_t gap_time_us = 0; if (num_active_calls_ == 0) { first_start_time_us_ = start_time_us; gap_time_us = safe_sub(start_time_us, end_time_us_); } metrics::RecordTFDataIteratorGap(gap_time_us); num_active_calls_++; return absl::FromUnixMicros(start_time_us); } void IteratorMetricsCollector::RecordStop(absl::Time start_time, const std::vector<Tensor>& output) { if (!ShouldCollectMetrics()) { return; } const uint64_t end_time_us = env_.NowMicros(); const int64_t latency_micros = safe_sub(end_time_us, absl::ToUnixMicros(start_time)); AddLatencySample(latency_micros); IncrementThroughput(GetTotalBytes(output)); mutex_lock l(mu_); metrics::RecordTFDataIteratorLifetime(safe_sub(end_time_us, end_time_us_)); end_time_us_ = std::max(end_time_us_, end_time_us); num_active_calls_--; if (num_active_calls_ == 0) { metrics::RecordTFDataIteratorBusy( safe_sub(end_time_us_, first_start_time_us_)); } } bool IteratorMetricsCollector::ShouldCollectMetrics() const { return device_type_ == DEVICE_CPU; } } }
#include "tensorflow/core/data/metric_utils.h" #include <cstdint> #include "absl/memory/memory.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/lib/monitoring/test_utils.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { using tensorflow::monitoring::testing::CellReader; using tensorflow::monitoring::testing::Histogram; TEST(MetricUtilsTest, CollectMetrics) { CellReader<Histogram> latency("/tensorflow/data/getnext_duration"); CellReader<int64_t> iterator_lifetime("/tensorflow/data/iterator_lifetime"); CellReader<int64_t> iterator_busy("/tensorflow/data/iterator_busy"); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0); EXPECT_EQ(iterator_busy.Delta(), 0); IteratorMetricsCollector metrics_collector(DEVICE_CPU, *Env::Default()); absl::Time start_time = metrics_collector.RecordStart(); absl::SleepFor(absl::Seconds(1)); metrics_collector.RecordStop(start_time, {}); Histogram latency_histogram = latency.Delta(); EXPECT_FLOAT_EQ(latency_histogram.num(), 1.0); EXPECT_GT(latency_histogram.sum(), 0.0); EXPECT_GT(iterator_lifetime.Delta(), 0); EXPECT_GT(iterator_busy.Delta(), 0); } TEST(MetricUtilsTest, ShouldNotCollectMetrics) { CellReader<Histogram> latency("/tensorflow/data/getnext_duration"); CellReader<int64_t> iterator_lifetime("/tensorflow/data/iterator_lifetime"); CellReader<int64_t> iterator_busy("/tensorflow/data/iterator_busy"); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0); EXPECT_EQ(iterator_busy.Delta(), 0); IteratorMetricsCollector metrics_collector(DEVICE_TPU, *Env::Default()); absl::Time start_time = metrics_collector.RecordStart(); absl::SleepFor(absl::Seconds(1)); metrics_collector.RecordStop(start_time, {}); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0); EXPECT_EQ(iterator_busy.Delta(), 0); } TEST(MetricUtilsTest, ConcurrentThreads) { CellReader<Histogram> latency("/tensorflow/data/getnext_duration"); CellReader<int64_t> iterator_lifetime("/tensorflow/data/iterator_lifetime"); CellReader<int64_t> iterator_busy("/tensorflow/data/iterator_busy"); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0); EXPECT_EQ(iterator_busy.Delta(), 0); IteratorMetricsCollector metrics_collector(DEVICE_CPU, *Env::Default()); absl::Time start_time = metrics_collector.RecordStart(); auto thread = absl::WrapUnique(Env::Default()->StartThread( {}, "Concurrent metric collection thread", [&metrics_collector]() { absl::Time concurrent_start_time = metrics_collector.RecordStart(); absl::SleepFor(absl::Seconds(1)); metrics_collector.RecordStop(concurrent_start_time, {}); })); absl::SleepFor(absl::Seconds(1)); metrics_collector.RecordStop(start_time, {}); thread.reset(); Histogram latency_histogram = latency.Delta(); EXPECT_FLOAT_EQ(latency_histogram.num(), 2.0); EXPECT_GT(latency_histogram.sum(), absl::ToInt64Microseconds(absl::Seconds(2))); EXPECT_GE(iterator_lifetime.Delta(), absl::ToInt64Microseconds(absl::Seconds(1))); EXPECT_LT(iterator_lifetime.Delta(), absl::ToInt64Microseconds(absl::Seconds(1.5))); EXPECT_GE(iterator_busy.Delta(), absl::ToInt64Microseconds(absl::Seconds(1))); EXPECT_LT(iterator_busy.Delta(), absl::ToInt64Microseconds(absl::Seconds(1.5))); } TEST(MetricUtilsTest, OverlappingThreads) { CellReader<Histogram> latency("/tensorflow/data/getnext_duration"); CellReader<int64_t> iterator_lifetime("/tensorflow/data/iterator_lifetime"); CellReader<int64_t> iterator_busy("/tensorflow/data/iterator_busy"); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0); EXPECT_EQ(iterator_busy.Delta(), 0); IteratorMetricsCollector metrics_collector(DEVICE_CPU, *Env::Default()); absl::Time start_time = metrics_collector.RecordStart(); absl::SleepFor(absl::Seconds(0.5)); auto thread = absl::WrapUnique(Env::Default()->StartThread( {}, "Concurrent metric collection thread", [&metrics_collector]() { absl::Time concurrent_start_time = metrics_collector.RecordStart(); absl::SleepFor(absl::Seconds(2)); metrics_collector.RecordStop(concurrent_start_time, {}); })); absl::SleepFor(absl::Seconds(0.5)); metrics_collector.RecordStop(start_time, {}); absl::SleepFor(absl::Seconds(1.5)); thread.reset(); Histogram latency_histogram = latency.Delta(); EXPECT_FLOAT_EQ(latency_histogram.num(), 2.0); EXPECT_GT(latency_histogram.sum(), absl::ToInt64Microseconds(absl::Seconds(3))); EXPECT_GE(iterator_lifetime.Delta(), absl::ToInt64Microseconds(absl::Seconds(2.5))); EXPECT_LT(iterator_lifetime.Delta(), absl::ToInt64Microseconds(absl::Seconds(2.9))); EXPECT_GE(iterator_busy.Delta(), absl::ToInt64Microseconds(absl::Seconds(2.5))); EXPECT_LT(iterator_busy.Delta(), absl::ToInt64Microseconds(absl::Seconds(2.9))); } } } }
1,727
cpp
tensorflow/tensorflow
rewrite_utils
tensorflow/core/data/rewrite_utils.cc
tensorflow/core/data/rewrite_utils_test.cc
#ifndef TENSORFLOW_CORE_DATA_REWRITE_UTILS_H_ #define TENSORFLOW_CORE_DATA_REWRITE_UTILS_H_ #include "tensorflow/core/platform/platform.h" #if !defined(IS_MOBILE_PLATFORM) #include <functional> #include <memory> #include <string> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace data { RewriterConfig CreateRewriterConfig( const absl::flat_hash_set<tstring>& optimizations, const absl::flat_hash_set<tstring>& optimizations_configs); Status RewriteDataset(OpKernelContext* ctx, const DatasetBase* input, std::function<RewriterConfig(void)> config_factory, bool record_fingerprint, core::RefCountPtr<DatasetBase>* rewritten_input); std::unique_ptr<tensorflow::grappler::GrapplerItem> GetGrapplerItem( GraphDef* graph_def, std::string* dataset_node, bool add_fake_sinks, bool apply_optimizations = true); absl::StatusOr<std::string> GetDatasetNode(const GraphDef& graph_def); absl::StatusOr<NodeDef> GetDatasetNodeDef(const GraphDef& graph_def); absl::flat_hash_set<tstring> SelectOptimizations( const absl::flat_hash_set<string>& experiments, const absl::flat_hash_set<tstring>& optimizations_enabled, const absl::flat_hash_set<tstring>& optimizations_disabled, const absl::flat_hash_set<tstring>& optimizations_default); } } #endif #endif #include "tensorflow/core/data/rewrite_utils.h" #include "tensorflow/core/platform/refcount.h" #if !defined(IS_MOBILE_PLATFORM) #include <algorithm> #include <functional> #include <map> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/hash_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/grappler_item_builder.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/function_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/optimizers/meta_optimizer.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/proto_serialization.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/device_properties.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace data { namespace { constexpr char kOptimizerName[] = "tf_data_meta_optimizer"; constexpr char kOptimizers[] = "optimizers"; constexpr char kOptimizerConfigs[] = "optimizer_configs"; void AddFakeSinks(FunctionDef* function_def) { int counter = 0; for (const auto& output : function_def->signature().output_arg()) { NodeDef* node = function_def->add_node_def(); tensorflow::grappler::function_utils::SetUniqueFunctionNodeName( strings::StrCat("FakeSink", counter++), function_def, node); node->set_op("Identity"); node->add_input(function_def->ret().at(output.name())); (*node->mutable_attr())["T"].set_type(output.type()); (*function_def->mutable_ret())[output.name()] = strings::StrCat(node->name(), ":output:0"); } } void RemoveFakeSinks(FunctionDef* function_def) { std::map<std::string, std::string> identity_map; for (const auto& node : function_def->node_def()) { if (node.op() == "Identity" && node.input_size() == 1) { identity_map[node.name()] = node.input(0); } } for (const auto& output_arg : function_def->signature().output_arg()) { const std::string& tensor = function_def->ret().at(output_arg.name()); const std::string& output_node = tensor.substr(0, tensor.find(':')); if (identity_map.find(output_node) != identity_map.end()) { (*function_def->mutable_ret())[output_arg.name()] = identity_map.at(output_node); } } } Status ApplyRewrites(OpKernelContext* ctx, const std::function<RewriterConfig(void)> config_factory, GraphDef* graph_def, string* dataset_node) { std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = GetGrapplerItem(graph_def, dataset_node, true); std::unordered_map<std::string, tensorflow::DeviceProperties> device_map; tensorflow::grappler::VirtualCluster cluster(device_map); tensorflow::ConfigProto config; *config.mutable_graph_options()->mutable_rewrite_options() = config_factory(); TF_RETURN_IF_ERROR(tensorflow::grappler::RunMetaOptimizer( std::move(*grappler_item), config, ctx->device(), &cluster, graph_def)); for (auto& function_def : *graph_def->mutable_library()->mutable_function()) { RemoveFakeSinks(&function_def); } return absl::OkStatus(); } } RewriterConfig CreateRewriterConfig( const absl::flat_hash_set<tstring>& optimizations, const absl::flat_hash_set<tstring>& optimizations_configs) { RewriterConfig rewriter_config; rewriter_config.add_optimizers(kOptimizerName); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::ONE); rewriter_config.set_fail_on_optimizer_errors(true); auto custom_optimizer = rewriter_config.add_custom_optimizers(); custom_optimizer->set_name(kOptimizerName); auto* custom_optimizations_list = (*custom_optimizer->mutable_parameter_map())[kOptimizers].mutable_list(); const auto& registered_optimizers = grappler::CustomGraphOptimizerRegistry::GetRegisteredOptimizers(); for (const auto& optimization : optimizations) { if (std::find(registered_optimizers.begin(), registered_optimizers.end(), optimization) != registered_optimizers.end()) { custom_optimizations_list->add_s(optimization.data(), optimization.size()); } else { VLOG(1) << "Optimization " << optimization << " is not registered."; } } auto* config_list = (*custom_optimizer->mutable_parameter_map())[kOptimizerConfigs] .mutable_list(); for (const auto& config : optimizations_configs) { config_list->add_s(config.data(), config.size()); } return rewriter_config; } Status RewriteDataset(OpKernelContext* ctx, const DatasetBase* input, std::function<RewriterConfig(void)> config_factory, bool record_fingerprint, core::RefCountPtr<DatasetBase>* rewritten_input) { std::vector<std::pair<string, Tensor>> input_list; GraphDef graph_def; string output_node; TF_RETURN_IF_ERROR( AsGraphDefForRewrite(ctx, input, &input_list, &graph_def, &output_node)); VLOG(3) << "Before graph rewrites: " << graph_def.DebugString(); TF_RETURN_IF_ERROR( ApplyRewrites(ctx, config_factory, &graph_def, &output_node)); VLOG(3) << "After graph rewrites: " << graph_def.DebugString(); FunctionLibraryRuntime* flr = nullptr; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr = nullptr; std::unique_ptr<FunctionLibraryDefinition> lib_def = nullptr; TF_RETURN_IF_ERROR( ctx->function_library()->Clone(&lib_def, &pflr, &flr, true)); TF_RETURN_IF_ERROR(AddToFunctionLibrary(lib_def.get(), graph_def.library())); Graph graph(OpRegistry::Global()); TF_RETURN_IF_ERROR(ImportGraphDef({}, graph_def, &graph, nullptr)); std::vector<Tensor> outputs; GraphRunner graph_runner(flr->device()); TF_RETURN_IF_ERROR( graph_runner.Run(&graph, flr, input_list, {output_node}, &outputs)); DatasetBase* rewritten_dataset; TF_RETURN_IF_ERROR( GetDatasetFromVariantTensor(outputs[0], &rewritten_dataset)); rewritten_dataset->Ref(); rewritten_input->reset(rewritten_dataset); if (record_fingerprint) { (*ctx->runner())([graph_def = std::move(graph_def), lib_def = lib_def.release(), input_list = std::move(input_list), output_node = std::move(output_node)]() { std::unique_ptr<FunctionLibraryDefinition> lib_def_owner(lib_def); const NodeDef* node_def = nullptr; for (const auto& node : graph_def.node()) { if (node.name() == output_node) { node_def = &node; break; } } if (node_def == nullptr) { VLOG(3) << "Failed to find node: " << output_node; return; } uint64 hash = 0; Status s = HashNode(graph_def, *node_def, *lib_def, &hash); if (!s.ok()) { VLOG(3) << "Failed to hash graph: " << s; return; } for (const auto& pair : input_list) { hash = Hash64CombineUnordered(hash, Hash64(pair.first)); uint64 tensor_hash = 0; Status s = HashTensor(pair.second, &tensor_hash); if (s.ok()) { hash = Hash64CombineUnordered(hash, tensor_hash); } else { VLOG(3) << "Failed to hash tensor: " << s; } } string graph_hash = strings::StrCat(strings::Hex(hash, strings::kZeroPad16)); metrics::RecordTFDataFingerprint(graph_hash); }); } return absl::OkStatus(); } std::unique_ptr<tensorflow::grappler::GrapplerItem> GetGrapplerItem( GraphDef* graph_def, std::string* dataset_node, bool add_fake_sinks, bool apply_optimizations) { NodeDef* node = graph_def->mutable_node()->Add(); tensorflow::grappler::graph_utils::SetUniqueGraphNodeName("Sink", graph_def, node); node->set_op("Identity"); node->add_input(*dataset_node); (*node->mutable_attr())["T"].set_type(DT_VARIANT); *dataset_node = node->name(); if (add_fake_sinks) { for (auto& function_def : *graph_def->mutable_library()->mutable_function()) { AddFakeSinks(&function_def); } } MetaGraphDef meta_graph_def; (*meta_graph_def.mutable_graph_def()) = *graph_def; CollectionDef collection_def; auto node_list = collection_def.mutable_node_list(); node_list->add_value(*dataset_node); (*meta_graph_def.mutable_collection_def())["train_op"] = collection_def; tensorflow::grappler::ItemConfig item_config; item_config.apply_optimizations = apply_optimizations; std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = tensorflow::grappler::GrapplerItemFromMetaGraphDef( "graph", meta_graph_def, item_config); grappler_item->optimization_options().optimize_function_library = false; return grappler_item; } absl::flat_hash_set<tstring> SelectOptimizations( const absl::flat_hash_set<string>& experiments, const absl::flat_hash_set<tstring>& optimizations_enabled, const absl::flat_hash_set<tstring>& optimizations_disabled, const absl::flat_hash_set<tstring>& optimizations_default) { absl::flat_hash_set<tstring> optimizations; optimizations.insert(optimizations_enabled.begin(), optimizations_enabled.end()); for (const auto& optimization : optimizations_default) { if (!optimizations_disabled.contains(optimization)) { optimizations.insert(optimization); } } const auto& registered_optimizers = grappler::CustomGraphOptimizerRegistry::GetRegisteredOptimizers(); for (const auto& experiment : experiments) { if (std::find(registered_optimizers.begin(), registered_optimizers.end(), experiment) != registered_optimizers.end() && !optimizations_disabled.contains(experiment)) { optimizations.insert(experiment); } } return optimizations; } absl::StatusOr<std::string> GetDatasetNode(const GraphDef& graph_def) { for (const auto& node : graph_def.node()) { if (node.op() == kRetvalOp) { return node.input(0); } } return errors::NotFound( absl::Substitute("Dataset node for graph is not found:\n$0", graph_def.ShortDebugString())); } absl::StatusOr<NodeDef> GetDatasetNodeDef(const GraphDef& graph_def) { TF_ASSIGN_OR_RETURN(std::string dataset_node_name, GetDatasetNode(graph_def)); for (const auto& node : graph_def.node()) { if (node.name() == dataset_node_name) { return node; } } return errors::NotFound( absl::Substitute("Dataset node for graph is not found:\n$0", graph_def.ShortDebugString())); } } } #endif
#include "tensorflow/core/data/rewrite_utils.h" #include <memory> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::test::AsScalar; using ::tensorflow::test::function::GDef; using ::tensorflow::test::function::NDef; using ::testing::ElementsAre; NodeDef GetMapNode(absl::string_view name, absl::string_view input_node_name, absl::string_view function_name) { return NDef( name, "MapDataset", {std::string(input_node_name)}, {{"f", FunctionDefHelper::FunctionRef(std::string(function_name))}, {"Targuments", {}}, {"output_shapes", absl::Span<const TensorShape>{TensorShape()}}, {"output_types", absl::Span<const DataType>{DT_INT64}}}); } FunctionDef XTimesX() { return FunctionDefHelper::Create( "XTimesX", {"x: int64"}, {"y: int64"}, {}, {{{"y"}, "Mul", {"x", "x"}, {{"T", DT_INT64}}}}, {{"y", "y:z:0"}}); } GraphDef GetRangeSquareDatasetDef(const int64_t range) { return GDef( {NDef("start", "Const", {}, {{"value", AsScalar<int64_t>(0)}, {"dtype", DT_INT64}}), NDef("stop", "Const", {}, {{"value", AsScalar<int64_t>(range)}, {"dtype", DT_INT64}}), NDef("step", "Const", {}, {{"value", AsScalar<int64_t>(1)}, {"dtype", DT_INT64}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{TensorShape()}}, {"output_types", absl::Span<const DataType>{DT_INT64}}}), GetMapNode("map", "range", "XTimesX"), NDef("dataset", "_Retval", {"map"}, {{"T", DT_VARIANT}, {"index", 0}})}, {XTimesX()}); } TEST(GraphUtilTest, GetFetchNode) { GraphDef graph = GetRangeSquareDatasetDef(10); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_node, GetDatasetNode(graph)); std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = GetGrapplerItem(&graph, &dataset_node, false); EXPECT_THAT(grappler_item->fetch, ElementsAre("Sink")); } TEST(GraphUtilTest, GetFetchNodeDef) { GraphDef graph = GetRangeSquareDatasetDef(10); TF_ASSERT_OK_AND_ASSIGN(NodeDef dataset_nodedef, GetDatasetNodeDef(graph)); std::string dataset_node = dataset_nodedef.name(); std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = GetGrapplerItem(&graph, &dataset_node, false); EXPECT_THAT(grappler_item->fetch, ElementsAre("Sink")); } struct SelectOptimizationsTestCase { absl::flat_hash_set<string> experiments; absl::flat_hash_set<tstring> optimizations_enabled; absl::flat_hash_set<tstring> optimizations_disabled; absl::flat_hash_set<tstring> optimizations_default; std::vector<string> expected; }; class SelectOptimizationsTest : public ::testing::TestWithParam<SelectOptimizationsTestCase> {}; TEST_P(SelectOptimizationsTest, DatasetUtils) { const SelectOptimizationsTestCase test_case = GetParam(); auto optimizations = SelectOptimizations( test_case.experiments, test_case.optimizations_enabled, test_case.optimizations_disabled, test_case.optimizations_default); EXPECT_THAT(std::vector<string>(optimizations.begin(), optimizations.end()), ::testing::UnorderedElementsAreArray(test_case.expected)); } INSTANTIATE_TEST_SUITE_P( Test, SelectOptimizationsTest, ::testing::Values( SelectOptimizationsTestCase{ {}, {}, {}, {}, {}}, SelectOptimizationsTestCase{ {"map_and_batch_fusion"}, {"bar"}, {}, {"baz"}, {"map_and_batch_fusion", "bar", "baz"}}, SelectOptimizationsTestCase{ {"this_is_not_an_optimization"}, {"bar"}, {}, {"baz"}, {"bar", "baz"}}, SelectOptimizationsTestCase{{}, {"foo"}, {"baz"}, {"bar", "baz"}, {"foo", "bar"}}, SelectOptimizationsTestCase{ {"foo"}, {"bar"}, {"foo"}, {"baz"}, {"bar", "baz"}})); } } }
1,728
cpp
tensorflow/tensorflow
dataset_utils
tensorflow/core/data/dataset_utils.cc
tensorflow/core/data/dataset_utils_test.cc
#ifndef TENSORFLOW_CORE_DATA_DATASET_UTILS_H_ #define TENSORFLOW_CORE_DATA_DATASET_UTILS_H_ #include <atomic> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/resource_handle.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" namespace tensorflow { namespace data { constexpr int kShardHint = -1; template <typename T> Status CreateWeakHandle(OpKernelContext* ctx, T* resource, const string& container_name, ResourceHandle* handle) { static std::atomic<int64_t> resource_id_counter(0); string unique_name = strings::StrCat(container_name, resource_id_counter.fetch_add(1)); ResourceMgr* mgr = ctx->resource_manager(); TF_RETURN_IF_ERROR(mgr->Create<T>(container_name, unique_name, resource)); *handle = MakeResourceHandle(container_name, unique_name, *ctx->device(), TypeIndex::Make<T>()); return absl::OkStatus(); } template <typename T> Status CreateHandle(OpKernelContext* ctx, T* resource, ResourceHandle* handle) { ResourceMgr* mgr = ctx->resource_manager(); *handle = ResourceHandle::MakeRefCountingHandle(resource, ctx->device()->name()); TF_RETURN_IF_ERROR( mgr->CreateUnowned<T>(handle->container(), handle->name(), resource)); return absl::OkStatus(); } template <typename T> class AnonymousResourceOp : public OpKernel { public: explicit AnonymousResourceOp(OpKernelConstruction* context, bool ref_counting, bool return_deleter) : OpKernel(context), ref_counting_(ref_counting), return_deleter_(return_deleter) {} void Compute(OpKernelContext* ctx) override { FunctionLibraryRuntime* lib; std::unique_ptr<FunctionLibraryDefinition> flib_def(nullptr); std::unique_ptr<ProcessFunctionLibraryRuntime> pflr(nullptr); OP_REQUIRES_OK( ctx, ctx->function_library()->Clone(&flib_def, &pflr, &lib, true)); T* resource; OP_REQUIRES_OK(ctx, CreateResource(ctx, std::move(flib_def), std::move(pflr), lib, &resource)); ResourceHandle handle; if (ref_counting_) { OP_REQUIRES_OK(ctx, CreateHandle(ctx, resource, &handle)); } else { OP_REQUIRES_OK(ctx, CreateWeakHandle(ctx, resource, name(), &handle)); } Tensor* handle_t; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &handle_t)); handle_t->scalar<ResourceHandle>()() = handle; if (return_deleter_) { Tensor* deleter_t; AllocatorAttributes attr; attr.set_on_host(true); OP_REQUIRES_OK( ctx, ctx->allocate_output(1, TensorShape({}), &deleter_t, attr)); if (!ref_counting_) { deleter_t->scalar<Variant>()() = ResourceDeleter(handle, ctx->resource_manager()); } } } protected: virtual string name() = 0; virtual Status CreateResource( OpKernelContext* ctx, std::unique_ptr<FunctionLibraryDefinition> flib_def, std::unique_ptr<ProcessFunctionLibraryRuntime> pflr, FunctionLibraryRuntime* lib, T** resource) = 0; private: const bool ref_counting_; const bool return_deleter_; }; Status VerifyTypesMatch(const DataTypeVector& expected, const DataTypeVector& received); Status VerifyTypesMatch(const DataTypeVector& expected, const std::vector<Tensor>& received); Status VerifyShapesCompatible(const std::vector<PartialTensorShape>& expected, const std::vector<PartialTensorShape>& received); Status VerifyShapesCompatible(const std::vector<PartialTensorShape>& expected, const std::vector<Tensor>& received); class DeterminismPolicy { public: enum class Type : int { kDeterministic, kNondeterministic, kDefault, }; static constexpr const char* const kDeterministic = "true"; static constexpr const char* const kNondeterministic = "false"; static constexpr const char* const kDefault = "default"; DeterminismPolicy() : determinism_(Type::kDefault) {} explicit DeterminismPolicy(Type determinism) : determinism_(determinism) {} explicit DeterminismPolicy(bool is_deterministic); static Status FromString(const std::string& s, DeterminismPolicy* out); std::string String() const; bool IsDeterministic() const { return determinism_ == Type::kDeterministic; } bool IsNondeterministic() const { return determinism_ == Type::kNondeterministic; } bool IsDefault() const { return determinism_ == Type::kDefault; } private: Type determinism_; }; std::pair<int64_t, int64_t> MaybeOverrideSeeds( std::pair<int64_t, int64_t> seeds); Status AddToFunctionLibrary(FunctionLibraryDefinition* base, const FunctionLibraryDefinition& to_add); Status AddToFunctionLibrary(FunctionLibraryDefinition* base, const FunctionDefLibrary& to_add); Status IsFunctionStateful(const FunctionLibraryDefinition& library, const FunctionDef& function_def); Status IsNodeStateful(const FunctionLibraryDefinition& library, const NodeDef& node); std::function<void(std::function<void()>)> RunnerWithMaxParallelism( std::function<void(std::function<void()>)> runner, int max_parallelism); template <typename ResourceType> class DummyResourceOp : public OpKernel { public: explicit DummyResourceOp(OpKernelConstruction* ctx) : OpKernel(ctx) {} void Compute(OpKernelContext* ctx) override { Tensor* tensor; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &tensor)); tensor->scalar<ResourceHandle>()() = MakeResourceHandle<ResourceType>( ctx, "", "dummy_resource"); } }; bool MatchesAnyVersion(StringPiece op_prefix, StringPiece op_to_match); Tensor MaybeCopySubSlice(const Tensor& tensor, int64 index); void StripDevicePlacement(FunctionDefLibrary* library); Status CopyPartialBatch(int64_t num_elements, const Tensor& value, Tensor* output); Status ReadBatch(IteratorContext* ctx, IteratorStateReader* reader, int64_t batch_size, const string& iterator_prefix, const string& batch_prefix, std::vector<Tensor>* batch); Status WriteBatch(int64_t batch_size, int64_t num_elements, const string& iterator_prefix, const string& batch_prefix, IteratorStateWriter* writer, std::vector<Tensor>* batch); Status ReadStatus(const string& iterator_prefix, const string& prefix, IteratorStateReader* reader, Status* status); Status WriteStatus(const string& iterator_prefix, const string& prefix, const Status& status, IteratorStateWriter* writer); Status ProcessBatch(int64_t batch_size, int64_t num_elements, bool drop_remainder, const Status& status, IteratorContext* ctx, std::vector<Tensor>* output, bool* end_of_sequence, std::vector<Tensor>* batch); Status CopyBatch(AnyContext ctx, std::vector<std::vector<Tensor>>&& batch_elements, bool parallel_copy, std::vector<Tensor>* out_tensors); absl::flat_hash_set<string> GetExperiments(); absl::flat_hash_set<string> GetExperiments( const std::string& job_name, int64_t task_id, std::function<uint64_t(const string&)> hash_func); void LogAndRecordExperiments(const absl::flat_hash_set<string>& experiments); void GetOptimizations(const Options& options, absl::flat_hash_set<tstring>* optimizations_enabled, absl::flat_hash_set<tstring>* optimizations_disabled, absl::flat_hash_set<tstring>* optimizations_default); absl::flat_hash_set<tstring> CreateGraphRewriteConfigs(const Options& options); bool ShouldConfigureMaxIntraOpParallelism(const Options& options); bool ShouldUsePrivateThreadPool(const Options& options); bool ShouldUseAutotuning(const Options& options); bool ShouldApplyOptimizations( const Options& options, const absl::flat_hash_set<tstring>& optimizations_enabled, const absl::flat_hash_set<tstring>& optimizations_default); inline int GetCpuBudget() { static bool in_experiment = GetExperiments().contains("tune_cpu_budget"); return (in_experiment ? 1.2 : 1.0) * port::NumSchedulableCPUs(); } int64 GetAutotuneDefaultParallelism(IteratorContext* ctx); IteratorContext MakeNestedIteratorContext(IteratorContext* ctx); template <int64_t rollout_pct> bool RandomJobSamplePercentage(uint64_t name_hash) { return name_hash % 100 < rollout_pct; } bool AllTasks(int64_t unused_task_id, bool unused_evens); bool IndependentHostTasks(int64_t task_id, bool evens); class DatasetExperimentRegistry { public: using JobSelector = std::function<bool(uint64_t name_hash)>; using TaskSelector = std::function<bool(int64_t task_id, bool evens)>; struct ExperimentSelector { JobSelector job_selector; TaskSelector task_selector; }; static void Register(const string& experiment, JobSelector job_selector, TaskSelector task_selector); static absl::flat_hash_map<string, ExperimentSelector> Experiments(); }; class DatasetExperimentRegistrar { public: explicit DatasetExperimentRegistrar( const string& experiment, DatasetExperimentRegistry::JobSelector job_selector, DatasetExperimentRegistry::TaskSelector task_selector) { DatasetExperimentRegistry::Register(experiment, job_selector, task_selector); } }; #define REGISTER_DATASET_EXPERIMENT(experiment, job_selector, task_selector) \ REGISTER_DATASET_OP_NAME_UNIQ_HELPER(__COUNTER__, experiment, job_selector, \ task_selector) #define REGISTER_DATASET_OP_NAME_UNIQ_HELPER(ctr, experiment, job_selector, \ task_selector) \ REGISTER_DATASET_OP_NAME_UNIQ(ctr, experiment, job_selector, task_selector) #define REGISTER_DATASET_OP_NAME_UNIQ(ctr, experiment, job_selector, \ task_selector) \ static ::tensorflow::data::DatasetExperimentRegistrar \ registrar__body__##ctr##__object(experiment, job_selector, \ task_selector) } } #endif #include "tensorflow/core/data/dataset_utils.h" #include <algorithm> #include <array> #include <cstdint> #include <cstdlib> #include <functional> #include <memory> #include <queue> #include <random> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/proto_serialization.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/host_info.h" #include "tensorflow/core/platform/regexp.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/util/determinism.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { namespace data { namespace { constexpr char kOutputSize[] = "output_size"; constexpr char kCode[] = "code"; constexpr char kExperimentOptAll[] = "all"; constexpr char kExperimentOptOutAllExceptOptIn[] = "all_except_opt_in"; constexpr char kMessage[] = "msg"; constexpr char kOutput[] = "output"; static mutex* get_dataset_experiment_registry_lock() { static mutex dataset_experiment_registry_lock(LINKER_INITIALIZED); return &dataset_experiment_registry_lock; } static absl::flat_hash_map<string, DatasetExperimentRegistry::ExperimentSelector>* get_dataset_experiments() { static absl::flat_hash_map< string, DatasetExperimentRegistry::ExperimentSelector>* experiments = new absl::flat_hash_map<string, DatasetExperimentRegistry::ExperimentSelector>; return experiments; } constexpr char kMapAndBatchFusionOpt[] = "map_and_batch_fusion"; constexpr char kNoopEliminationOpt[] = "noop_elimination"; constexpr char kMapParallelizationOpt[] = "map_parallelization"; constexpr char kShuffleAndRepeatFusionOpt[] = "shuffle_and_repeat_fusion"; constexpr char kFilterFusionOpt[] = "filter_fusion"; constexpr char kMapAndFilterFusionOpt[] = "map_and_filter_fusion"; constexpr char kMapFusionOpt[] = "map_fusion"; constexpr char kParallelBatchOpt[] = "parallel_batch"; constexpr char kAutotuneBufferSizesOpt[] = "autotune_buffer_sizes"; constexpr char kDisablePrefetchLegacyAutotuneOpt[] = "disable_prefetch_legacy_autotune"; constexpr char kMakeSloppyOpt[] = "make_sloppy"; constexpr char kBatchParallelizationOpt[] = "batch_parallelization"; constexpr char kEnableGradientDescentOpt[] = "enable_gradient_descent"; constexpr char kInjectPrefetchOpt[] = "inject_prefetch"; constexpr char kSeqInterleavePrefetchOpt[] = "seq_interleave_prefetch"; constexpr char kInjectIoPrefetchEligibleOpt[] = "inject_io_prefetch_eligible"; constexpr char kInjectIoPrefetchOpt[] = "inject_io_prefetch"; constexpr char kAutotuneOpt[] = "autotune"; constexpr char kSlackOpt[] = "slack"; constexpr char kSlackPeriodOpt[] = "slack_period"; constexpr char kMakeDeterministicOpt[] = "make_deterministic"; constexpr char kFilterParallelizationOpt[] = "filter_parallelization"; constexpr char kWarmStartOpt[] = "warm_start"; void DefaultOptimizationGraphRewrites( const Options& options, absl::flat_hash_set<tstring>* optimization_enabled, absl::flat_hash_set<tstring>* optimization_disabled, absl::flat_hash_set<tstring>* optimization_default) { const auto& optimization_options = options.optimization_options(); if (optimization_options.optional_apply_default_optimizations_case() != OptimizationOptions::kApplyDefaultOptimizations || optimization_options.apply_default_optimizations()) { if (optimization_options.optional_map_and_batch_fusion_case() != OptimizationOptions::kMapAndBatchFusion) { optimization_default->insert(kMapAndBatchFusionOpt); } if (optimization_options.optional_noop_elimination_case() != OptimizationOptions::kNoopElimination) { optimization_default->insert(kNoopEliminationOpt); } if (optimization_options.optional_map_parallelization_case() != OptimizationOptions::kMapParallelization) { optimization_default->insert(kMapParallelizationOpt); } if (optimization_options.optional_shuffle_and_repeat_fusion_case() != OptimizationOptions::kShuffleAndRepeatFusion) { optimization_default->insert(kShuffleAndRepeatFusionOpt); } if (optimization_options.optional_parallel_batch_case() != OptimizationOptions::kParallelBatch) { optimization_default->insert(kParallelBatchOpt); } if (optimization_options.optional_inject_prefetch_case() != OptimizationOptions::kInjectPrefetch) { optimization_default->insert(kInjectPrefetchOpt); } } if (OpDeterminismRequired()) { optimization_enabled->insert(kMakeDeterministicOpt); } if (optimization_options.optional_filter_fusion_case() == OptimizationOptions::kFilterFusion) { if (optimization_options.filter_fusion()) { optimization_enabled->insert(kFilterFusionOpt); } else { optimization_disabled->insert(kFilterFusionOpt); } } if (optimization_options.optional_map_and_batch_fusion_case() == OptimizationOptions::kMapAndBatchFusion) { if (optimization_options.map_and_batch_fusion()) { optimization_enabled->insert(kMapAndBatchFusionOpt); } else { optimization_disabled->insert(kMapAndBatchFusionOpt); } } if (optimization_options.optional_map_and_filter_fusion_case() == OptimizationOptions::kMapAndFilterFusion) { if (optimization_options.map_and_filter_fusion()) { optimization_enabled->insert(kMapAndFilterFusionOpt); } else { optimization_disabled->insert(kMapAndFilterFusionOpt); } } if (optimization_options.optional_map_parallelization_case() == OptimizationOptions::kMapParallelization) { if (optimization_options.map_parallelization()) { optimization_enabled->insert(kMapParallelizationOpt); } else { optimization_disabled->insert(kMapParallelizationOpt); } } if (optimization_options.optional_filter_parallelization_case() == OptimizationOptions::kFilterParallelization) { if (optimization_options.filter_parallelization()) { optimization_enabled->insert(kFilterParallelizationOpt); } else { optimization_disabled->insert(kFilterParallelizationOpt); } } if (optimization_options.optional_map_fusion_case() == OptimizationOptions::kMapFusion) { if (optimization_options.map_fusion()) { optimization_enabled->insert(kMapFusionOpt); } else { optimization_disabled->insert(kMapFusionOpt); } } if (optimization_options.optional_noop_elimination_case() == OptimizationOptions::kNoopElimination) { if (optimization_options.noop_elimination()) { optimization_enabled->insert(kNoopEliminationOpt); } else { optimization_disabled->insert(kNoopEliminationOpt); } } if (optimization_options.optional_parallel_batch_case() == OptimizationOptions::kParallelBatch) { if (optimization_options.parallel_batch()) { optimization_enabled->insert(kParallelBatchOpt); } else { optimization_disabled->insert(kParallelBatchOpt); } } if (optimization_options.optional_shuffle_and_repeat_fusion_case() == OptimizationOptions::kShuffleAndRepeatFusion) { if (optimization_options.shuffle_and_repeat_fusion()) { optimization_enabled->insert(kShuffleAndRepeatFusionOpt); } else { optimization_disabled->insert(kShuffleAndRepeatFusionOpt); } } if (optimization_options.optional_inject_prefetch_case() == OptimizationOptions::kInjectPrefetch) { if (optimization_options.inject_prefetch()) { optimization_enabled->insert(kInjectPrefetchOpt); } else { optimization_disabled->insert(kInjectPrefetchOpt); } } if (optimization_options.optional_seq_interleave_prefetch_case() == OptimizationOptions::kSeqInterleavePrefetch) { if (optimization_options.seq_interleave_prefetch()) { optimization_enabled->insert(kSeqInterleavePrefetchOpt); } else { optimization_disabled->insert(kSeqInterleavePrefetchOpt); } } } bool IsOpAllowlisted(const OpDef* op_def) { return (op_def->output_arg_size() == 1 && op_def->output_arg(0).type() == DT_VARIANT && (absl::EndsWith(op_def->name(), "Dataset") || absl::EndsWith(op_def->name(), "DatasetV2"))) || AllowlistedStatefulOpRegistry::Global()->Contains(op_def->name()); } } std::pair<int64_t, int64_t> MaybeOverrideSeeds( std::pair<int64_t, int64_t> seeds) { if (seeds.first == 0 && seeds.second == 0) { return {random::New64(), random::New64()}; } return seeds; } Status VerifyTypeMatch(const DataType& expected, const DataType& received, int index) { if (expected != received) { return errors::InvalidArgument("Data type mismatch at component ", index, ": expected ", DataTypeString(expected), " but got ", DataTypeString(received), "."); } return absl::OkStatus(); } Status VerifyTypesMatch(const DataTypeVector& expected, const DataTypeVector& received) { if (expected.size() != received.size()) { return errors::InvalidArgument( "Number of components does not match: expected ", expected.size(), " types but got ", received.size(), "."); } for (size_t i = 0; i < expected.size(); ++i) { TF_RETURN_IF_ERROR(VerifyTypeMatch(expected[i], received[i], i)); } return absl::OkStatus(); } Status VerifyTypesMatch(const DataTypeVector& expected, const std::vector<Tensor>& received) { if (expected.size() != received.size()) { return errors::InvalidArgument( "Number of components does not match: expected ", expected.size(), " types but got ", received.size(), "."); } for (size_t i = 0; i < expected.size(); ++i) { TF_RETURN_IF_ERROR(VerifyTypeMatch(expected[i], received[i].dtype(), i)); } return absl::OkStatus(); } Status VerifyShapeCompatible(const PartialTensorShape& expected, const PartialTensorShape& received, int index) { if (!expected.IsCompatibleWith(received)) { return errors::InvalidArgument("Incompatible shapes at component ", index, ": expected ", expected.DebugString(), " but got ", received.DebugString(), "."); } return absl::OkStatus(); } Status VerifyShapesCompatible(const std::vector<PartialTensorShape>& expected, const std::vector<PartialTensorShape>& received) { if (expected.size() != received.size()) { return errors::InvalidArgument( "Number of components does not match: expected ", expected.size(), " shapes but got ", received.size(), "."); } for (size_t i = 0; i < expected.size(); ++i) { TF_RETURN_IF_ERROR(VerifyShapeCompatible(expected[i], received[i], i)); } return absl::OkStatus(); } Status VerifyShapesCompatible(const std::vector<PartialTensorShape>& expected, const std::vector<Tensor>& received) { if (expected.size() != received.size()) { return errors::InvalidArgument( "Number of components does not match: expected ", expected.size(), " shapes but got ", received.size(), "."); } for (size_t i = 0; i < expected.size(); ++i) { TF_RETURN_IF_ERROR( VerifyShapeCompatible(expected[i], received[i].shape(), i)); } return absl::OkStatus(); } Status AddToFunctionLibrary(FunctionLibraryDefinition* base, const FunctionLibraryDefinition& to_add) { for (const auto& fn : to_add.ListFunctionNames()) { if (auto found = base->Find(fn)) { if (!OpDefEqual(found->signature(), to_add.Find(fn)->signature())) { return errors::InvalidArgument("Cannot add function '", fn, "' because a different function with " "the same signature already exists."); } TF_RETURN_IF_ERROR(base->RemoveFunction(fn)); } } return base->AddLibrary(to_add); } Status AddToFunctionLibrary(FunctionLibraryDefinition* base, const FunctionDefLibrary& to_add) { for (const auto& fd : to_add.function()) { if (auto found = base->Find(fd.signature().name())) { if (!OpDefEqual(found->signature(), fd.signature())) { return errors::InvalidArgument("Cannot add function '", fd.signature().name(), "' because a different function with " "the same signature already exists."); } TF_RETURN_IF_ERROR(base->RemoveFunction(fd.signature().name())); } } return base->AddLibrary(to_add); } Status IsFunctionStateful(const FunctionLibraryDefinition& library, const FunctionDef& function_def) { if (!function_def.signature().is_stateful()) { return absl::OkStatus(); } for (const NodeDef& node_def : function_def.node_def()) { TF_RETURN_IF_ERROR(IsNodeStateful(library, node_def)); } return absl::OkStatus(); } Status
#include "tensorflow/core/data/dataset_utils.h" #include <functional> #include <memory> #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "xla/tsl/util/determinism_test_util.h" #include "tensorflow/core/data/compression_utils.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/test_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/util/work_sharder.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(DatasetUtilsTest, MatchesAnyVersion) { EXPECT_TRUE(MatchesAnyVersion("BatchDataset", "BatchDataset")); EXPECT_TRUE(MatchesAnyVersion("BatchDataset", "BatchDatasetV2")); EXPECT_TRUE(MatchesAnyVersion("BatchDataset", "BatchDatasetV3")); EXPECT_FALSE(MatchesAnyVersion("BatchDataset", "BatchDatasetXV3")); EXPECT_FALSE(MatchesAnyVersion("BatchDataset", "BatchV2Dataset")); EXPECT_FALSE(MatchesAnyVersion("BatchDataset", "PaddedBatchDataset")); } TEST(DatasetUtilsTest, AddToFunctionLibrary) { auto make_fn_a = [](const string& fn_name) { return FunctionDefHelper::Create( fn_name, {"arg: int64"}, {"ret: int64"}, {}, {{{"node"}, "Identity", {"arg"}, {{"T", DT_INT64}}}}, {{"ret", "node:output:0"}}); }; auto make_fn_b = [](const string& fn_name) { return FunctionDefHelper::Create( fn_name, {"arg: int64"}, {"ret: int64"}, {}, {{{"node"}, "Identity", {"arg"}, {{"T", DT_INT64}}}, {{"node2"}, "Identity", {"node:output:0"}, {{"T", DT_INT64}}}}, {{"ret", "node2:output:0"}}); }; FunctionDefLibrary fdef_base; *fdef_base.add_function() = make_fn_a("0"); *fdef_base.add_function() = make_fn_a("1"); *fdef_base.add_function() = make_fn_a("2"); FunctionDefLibrary fdef_to_add; *fdef_to_add.add_function() = make_fn_b("0"); *fdef_to_add.add_function() = make_fn_a("1"); *fdef_to_add.add_function() = make_fn_b("3"); FunctionLibraryDefinition flib_0(OpRegistry::Global(), fdef_base); TF_ASSERT_OK(AddToFunctionLibrary(&flib_0, fdef_to_add)); FunctionLibraryDefinition flib_1(OpRegistry::Global(), fdef_base); FunctionLibraryDefinition flib_to_add(OpRegistry::Global(), fdef_to_add); TF_ASSERT_OK(AddToFunctionLibrary(&flib_1, flib_to_add)); for (const auto& flib : {flib_0, flib_1}) { EXPECT_TRUE(FunctionDefsEqual(*flib.Find("0"), make_fn_b("0"))); EXPECT_TRUE(FunctionDefsEqual(*flib.Find("1"), make_fn_a("1"))); EXPECT_TRUE(FunctionDefsEqual(*flib.Find("2"), make_fn_a("2"))); EXPECT_TRUE(FunctionDefsEqual(*flib.Find("3"), make_fn_b("3"))); } } TEST(DatasetUtilsTest, AddToFunctionLibraryWithConflictingSignatures) { FunctionDefLibrary fdef_base; *fdef_base.add_function() = FunctionDefHelper::Create( "0", {"arg: int64"}, {"ret: int64"}, {}, {}, {{"ret", "arg"}}); FunctionDefLibrary fdef_to_add; *fdef_to_add.add_function() = FunctionDefHelper::Create( "0", {"arg: int64"}, {"ret: int64", "ret2: int64"}, {}, {}, {{"ret", "arg"}, {"ret2", "arg"}}); FunctionLibraryDefinition flib_0(OpRegistry::Global(), fdef_base); Status s = AddToFunctionLibrary(&flib_0, fdef_to_add); EXPECT_EQ(error::Code::INVALID_ARGUMENT, s.code()); EXPECT_EQ( "Cannot add function '0' because a different function with the same " "signature already exists.", s.message()); FunctionLibraryDefinition flib_1(OpRegistry::Global(), fdef_base); FunctionLibraryDefinition flib_to_add(OpRegistry::Global(), fdef_to_add); s = AddToFunctionLibrary(&flib_1, flib_to_add); EXPECT_EQ(error::Code::INVALID_ARGUMENT, s.code()); EXPECT_EQ( "Cannot add function '0' because a different function with the same " "signature already exists.", s.message()); } TEST(DatasetUtilsTest, StripDevicePlacement) { FunctionDefLibrary flib; *flib.add_function() = FunctionDefHelper::Create( "0", {"arg: int64"}, {"ret: int64"}, {}, {{{"node"}, "Identity", {"arg"}, {{"T", DT_INT64}}, {}, "device:CPU:0"}}, {{"ret", "arg"}}); EXPECT_EQ(flib.function(0).node_def(0).device(), "device:CPU:0"); StripDevicePlacement(&flib); EXPECT_EQ(flib.function(0).node_def(0).device(), ""); } TEST(DatasetUtilsTest, RunnerWithMaxParallelism) { auto runner = RunnerWithMaxParallelism([](const std::function<void()> fn) { fn(); }, 2); auto fn = []() { ASSERT_EQ(GetPerThreadMaxParallelism(), 2); }; runner(fn); } TEST(DatasetUtilsTest, ParseDeterminismPolicy) { DeterminismPolicy determinism; TF_ASSERT_OK(DeterminismPolicy::FromString("true", &determinism)); EXPECT_TRUE(determinism.IsDeterministic()); TF_ASSERT_OK(DeterminismPolicy::FromString("false", &determinism)); EXPECT_TRUE(determinism.IsNondeterministic()); TF_ASSERT_OK(DeterminismPolicy::FromString("default", &determinism)); EXPECT_TRUE(determinism.IsDefault()); } TEST(DatasetUtilsTest, DeterminismString) { for (auto s : {"true", "false", "default"}) { DeterminismPolicy determinism; TF_ASSERT_OK(DeterminismPolicy::FromString(s, &determinism)); EXPECT_TRUE(s == determinism.String()); } } TEST(DatasetUtilsTest, BoolConstructor) { EXPECT_TRUE(DeterminismPolicy(true).IsDeterministic()); EXPECT_FALSE(DeterminismPolicy(true).IsNondeterministic()); EXPECT_FALSE(DeterminismPolicy(true).IsDefault()); EXPECT_TRUE(DeterminismPolicy(false).IsNondeterministic()); EXPECT_FALSE(DeterminismPolicy(false).IsDeterministic()); EXPECT_FALSE(DeterminismPolicy(false).IsDefault()); } class TestSplitProvider : public SplitProvider { public: Status GetNext(Tensor* split, bool* end_of_splits) override { return absl::OkStatus(); } Status Reset() override { return absl::OkStatus(); } Status Save(std::function<std::string(std::string)> key_name_fn, IteratorStateWriter* writer) override { return absl::OkStatus(); } Status Restore(std::function<std::string(std::string)> key_name_fn, IteratorStateReader* reader) override { return absl::OkStatus(); } }; TEST(DatasetUtilsTest, MakeNestedIteratorContext) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<TestContext> test_ctx, TestContext::Create()); IteratorContext::Params params(test_ctx->op_ctx()); params.split_providers.push_back(std::make_unique<TestSplitProvider>()); IteratorContext iter_ctx(params); IteratorContext nested_ctx = MakeNestedIteratorContext(&iter_ctx); EXPECT_FALSE(iter_ctx.split_providers().empty()); EXPECT_TRUE(nested_ctx.split_providers().empty()); } REGISTER_DATASET_EXPERIMENT("test_only_experiment_0", RandomJobSamplePercentage<0>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_1", RandomJobSamplePercentage<1>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_5", RandomJobSamplePercentage<5>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_10", RandomJobSamplePercentage<10>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_50", RandomJobSamplePercentage<50>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_99", RandomJobSamplePercentage<99>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_experiment_100", RandomJobSamplePercentage<100>, AllTasks); REGISTER_DATASET_EXPERIMENT("test_only_task_experiment_100", RandomJobSamplePercentage<100>, IndependentHostTasks); struct GetExperimentsHashTestCase { uint64 hash; std::vector<string> expected_in; std::vector<string> expected_out; }; class GetExperimentsHashTest : public ::testing::TestWithParam<GetExperimentsHashTestCase> {}; TEST_P(GetExperimentsHashTest, DatasetUtils) { const GetExperimentsHashTestCase test_case = GetParam(); uint64 hash_result = test_case.hash; const std::string job_name = "job"; const int64_t task_id = 0; auto hash_func = [hash_result](const string& str) { return hash_result; }; auto experiments = GetExperiments(job_name, task_id, hash_func); absl::flat_hash_set<string> experiment_set(experiments.begin(), experiments.end()); for (const auto& experiment : test_case.expected_in) { EXPECT_TRUE(experiment_set.find(experiment) != experiment_set.end()) << "experiment=" << experiment << " hash=" << hash_result; } for (const auto& experiment : test_case.expected_out) { EXPECT_TRUE(experiment_set.find(experiment) == experiment_set.end()) << "experiment=" << experiment << " hash=" << hash_result; } } INSTANTIATE_TEST_SUITE_P( Test, GetExperimentsHashTest, ::testing::Values<GetExperimentsHashTestCase>( GetExperimentsHashTestCase{ 0, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0"}, }, GetExperimentsHashTestCase{ 5, {"test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, { "test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", }, }, GetExperimentsHashTestCase{ 95, {"test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50"}, }, GetExperimentsHashTestCase{ 99, {"test_only_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99"}, }, GetExperimentsHashTestCase{ 100, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0"}, }, GetExperimentsHashTestCase{ 105, {"test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, { "test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", }, }, GetExperimentsHashTestCase{ 195, {"test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50"}, })); struct GetExperimentsOptTestCase { std::vector<string> opt_ins; std::vector<string> opt_outs; std::vector<string> expected_in; std::vector<string> expected_out; }; class GetExperimentsOptTest : public ::testing::TestWithParam<GetExperimentsOptTestCase> {}; TEST_P(GetExperimentsOptTest, DatasetUtils) { const GetExperimentsOptTestCase test_case = GetParam(); auto opt_ins = test_case.opt_ins; auto opt_outs = test_case.opt_outs; if (!opt_ins.empty()) { setenv("TF_DATA_EXPERIMENT_OPT_IN", str_util::Join(opt_ins, ",").c_str(), 1); } if (!opt_outs.empty()) { setenv("TF_DATA_EXPERIMENT_OPT_OUT", str_util::Join(opt_outs, ",").c_str(), 1); } const std::string job_name = "job"; const int64_t task_id = 0; auto hash_func = [](const string& str) { return 0; }; auto experiments = GetExperiments(job_name, task_id, hash_func); absl::flat_hash_set<string> experiment_set(experiments.begin(), experiments.end()); for (const auto& experiment : test_case.expected_in) { EXPECT_TRUE(experiment_set.find(experiment) != experiment_set.end()) << "experiment=" << experiment << " opt_ins={" << str_util::Join(opt_ins, ",") << "} opt_outs={" << str_util::Join(opt_outs, ",") << "}"; } for (const auto& experiment : test_case.expected_out) { EXPECT_TRUE(experiment_set.find(experiment) == experiment_set.end()) << "experiment=" << experiment << " opt_ins={" << str_util::Join(opt_ins, ",") << "} opt_outs={" << str_util::Join(opt_outs, ",") << "}"; } if (!opt_ins.empty()) { unsetenv("TF_DATA_EXPERIMENT_OPT_IN"); } if (!opt_outs.empty()) { unsetenv("TF_DATA_EXPERIMENT_OPT_OUT"); } } INSTANTIATE_TEST_SUITE_P( Test, GetExperimentsOptTest, ::testing::Values<GetExperimentsOptTestCase>( GetExperimentsOptTestCase{ {"all"}, {"all"}, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}}, GetExperimentsOptTestCase{ {"all"}, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {}}, GetExperimentsOptTestCase{ {"all"}, {"test_only_experiment_1", "test_only_experiment_99"}, {"test_only_experiment_0", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_100"}, {"test_only_experiment_1", "test_only_experiment_99"}}, GetExperimentsOptTestCase{ {}, {"all"}, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}}, GetExperimentsOptTestCase{ {}, {}, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0"}}, GetExperimentsOptTestCase{ {}, {"test_only_experiment_1", "test_only_experiment_99"}, {"test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_99"}}, GetExperimentsOptTestCase{ {"test_only_experiment_0", "test_only_experiment_100"}, {"all"}, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}}, GetExperimentsOptTestCase{ {"test_only_experiment_0", "test_only_experiment_100"}, {"all_except_opt_in"}, {"test_only_experiment_0", "test_only_experiment_100"}, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99"}}, GetExperimentsOptTestCase{ {"test_only_experiment_0", "test_only_experiment_100"}, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {}}, GetExperimentsOptTestCase{ {"test_only_experiment_0", "test_only_experiment_100"}, {"test_only_experiment_1", "test_only_experiment_99"}, {"test_only_experiment_0", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_100"}, {"test_only_experiment_1", "test_only_experiment_99"}})); struct GetExperimentsJobNameTestCase { uint64_t hash; string job_name; int64_t task_id; std::vector<string> expected_in; std::vector<string> expected_out; }; class GetExperimentsJobNameTest : public ::testing::TestWithParam<GetExperimentsJobNameTestCase> {}; TEST_P(GetExperimentsJobNameTest, DatasetUtils) { const GetExperimentsJobNameTestCase test_case = GetParam(); auto job_name = test_case.job_name; auto task_id = test_case.task_id; uint64 hash_result = test_case.hash; auto hash_func = [hash_result](const string& str) { return hash_result; }; auto experiments = GetExperiments(job_name, task_id, hash_func); absl::flat_hash_set<string> experiment_set(experiments.begin(), experiments.end()); for (const auto& experiment : test_case.expected_in) { EXPECT_TRUE(experiment_set.find(experiment) != experiment_set.end()) << "experiment=" << experiment << " job_name=" << job_name; } for (const auto& experiment : test_case.expected_out) { EXPECT_TRUE(experiment_set.find(experiment) == experiment_set.end()) << "experiment=" << experiment << " job_name=" << job_name; } } INSTANTIATE_TEST_SUITE_P( Test, GetExperimentsJobNameTest, ::testing::Values( GetExperimentsJobNameTestCase{ 0, "", 0, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 0, "", -1, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 0, "", 2, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 0, "job_name", -1, {}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 0, "job_name", 0, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}, {"test_only_experiment_0"}}, GetExperimentsJobNameTestCase{ 0, "job_name", 1, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}, {"test_only_experiment_0"}}, GetExperimentsJobNameTestCase{ 0, "job_name", 2, {"test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 95, "job_name", 1, {"test_only_experiment_99", "test_only_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50", "test_only_task_experiment_100"}}, GetExperimentsJobNameTestCase{ 95, "job_name", 2, {"test_only_experiment_99", "test_only_experiment_100", "test_only_task_experiment_100"}, {"test_only_experiment_0", "test_only_experiment_1", "test_only_experiment_5", "test_only_experiment_10", "test_only_experiment_50"}})); struct GetOptimizationsTestCase { Options options; std::vector<string> expected_enabled; std::vector<string> expected_disabled; std::vector<string> expected_default; }; GetOptimizationsTestCase GetOptimizationTestCase1() { return { Options(), {}, {}, {"noop_elimination", "map_and_batch_fusion", "shuffle_and_repeat_fusion", "map_parallelization", "parallel_batch", "inject_prefetch"}}; } GetOptimizationsTestCase GetOptimizationTestCase2() { Options options; options.mutable_optimization_options()->set_apply_default_optimizations( false); return {options, {}, {}, {}}; } GetOptimizationsTestCase GetOptimizationTestCase3() { Options options; options.set_deterministic(false); options.mutable_optimization_options()->set_map_and_batch_fusion(true); options.mutable_optimization_options()->set_map_parallelization(false); options.mutable_optimization_options()->set_parallel_batch(false); return {options, {"make_sloppy", "map_and_batch_fusion"}, {"parallel_batch", "map_parallelization"}, {"noop_elimination", "shuffle_and_repeat_fusion", "inject_prefetch"}}; } GetOptimizationsTestCase GetOptimizationTestCase4() { Options options; options.set_deterministic(false); options.mutable_optimization_options()->set_filter_fusion(true); options.mutable_optimization_options()->set_filter_parallelization(true); options.mutable_optimization_options()->set_map_and_batch_fusion(true); options.mutable_optimization_options()->set_map_and_filter_fusion(true); options.mutable_optimization_options()->set_map_fusion(true); options.mutable_optimization_options()->set_map_parallelization(true); options.mutable_optimization_options()->set_noop_elimination(true); options.mutable_optimization_options()->set_parallel_batch(true); options.mutable_optimization_options()->set_shuffle_and_repeat_fusion(true); options.mutable_optimization_options()->set_inject_prefetch(true); options.mutable_optimization_options()->set_seq_interleave_prefetch(true); options.set_slack(true); return {options, {"filter_fusion", "filter_parallelization", "make_sloppy", "map_and_batch_fusion", "map_and_filter_fusion", "map_fusion", "map_parallelization", "noop_elimination", "parallel_batch", "shuffle_and_repeat_fusion", "slack", "inject_prefetch", "seq_interleave_prefetch"}, {}, {}}; } class GetOptimizationsTest : public ::testing::TestWithParam<GetOptimizationsTestCase> {}; TEST_P(GetOptimizationsTest, DatasetUtils) { const GetOptimizationsTestCase test_case = GetParam(); auto options = test_case.options; absl::flat_hash_set<tstring> actual_enabled, actual_disabled, actual_default; GetOptimizations(options, &actual_enabled, &actual_disabled, &actual_default); EXPECT_THAT(std::vector<string>(actual_enabled.begin(), actual_enabled.end()), ::testing::UnorderedElementsAreArray(test_case.expected_enabled)); EXPECT_THAT( std::vector<string>(actual_disabled.begin(), actual_disabled.end()), ::testing::UnorderedElementsAreArray(test_case.expected_disabled)); EXPECT_THAT(std::vector<string>(actual_default.begin(), actual_default.end()), ::testing::UnorderedElementsAreArray(test_case.expected_default)); } INSTANTIATE_TEST_SUITE_P(Test, GetOptimizationsTest, ::testing::Values(GetOptimizationTestCase1(), GetOptimizationTestCase2(), GetOptimizationTestCase3(), GetOptimizationTestCase4())); TEST(DeterministicOpsTest, GetOptimizations) { #if !defined(__APPLE__) tsl::test::DeterministicOpsScope det_scope; Options options; options.set_deterministic(false); absl::flat_hash_set<tstring> actual_enabled, actual_disabled, actual_default; GetOptimizations(options, &actual_enabled, &actual_disabled, &actual_default); EXPECT_THAT(std::vector<string>(actual_enabled.begin(), actual_enabled.end()), ::testing::UnorderedElementsAreArray({"make_deterministic"})); EXPECT_EQ(actual_disabled.size(), 0); #endif } REGISTER_DATASET_EXPERIMENT("test_only_experiment", RandomJobSamplePercentage<42>, AllTasks); TEST(DatasetUtilsTest, DatasetExperimentRegistry) { auto experiments = DatasetExperimentRegistry::Experiments(); EXPECT_TRUE(experiments.find("test_only_experiment") != experiments.end()); EXPECT_TRUE(experiments.find("non_existing_experiment") == experiments.end()); } TEST(DatasetUtilsTest, CountBytes) { std::vector<Tensor> uncompressed = { CreateTensor<int64_t>(TensorShape{128, 2}), CreateTensor<int64_t>(TensorShape{64, 4})}; EXPECT_EQ(GetAllocatedBytes(uncompressed), 4096); EXPECT_EQ(GetTotalBytes(uncompressed), 4096); CompressedElement compressed_element; TF_ASSERT_OK(CompressElement(uncompressed, &compressed_element)); std::vector<Tensor> compressed{{DT_VARIANT, TensorShape({})}}; compressed.front().scalar<Variant>()() = compressed_element; EXPECT_EQ(GetAllocatedBytes(compressed), compressed_element.ByteSizeLong()); EXPECT_EQ(GetTotalBytes(compressed), compressed_element.ByteSizeLong()); } TEST_F(DatasetOpsTestBase, TestVariantEqualityChecking) { Tensor scalar_0{DT_VARIANT, TensorShape({})}; scalar_0.scalar<Variant>()() = TestVariant({CreateTensor<int64_t>({}, {0})}); TF_EXPECT_OK(ExpectEqual(scalar_0, scalar_0)); Tensor scalar_1{DT_VARIANT, TensorShape({})}; scalar_1.scalar<Variant>()() = TestVariant({CreateTensor<int64_t>({}, {1})}); EXPECT_THAT(ExpectEqual(scalar_0, scalar_1), StatusIs(tsl::error::INTERNAL, HasSubstr("aren't equal"))); Tensor nonscalar{DT_VARIANT, TensorShape({2})}; EXPECT_THAT(ExpectEqual(nonscalar, nonscalar), StatusIs(tsl::error::INTERNAL, HasSubstr("must be scalars"))); Tensor unsupported{DT_VARIANT, TensorShape({})}; unsupported.scalar<Variant>()() = 0; EXPECT_THAT(ExpectEqual(unsupported, unsupported), StatusIs(tsl::error::INTERNAL, HasSubstr("types must be"))); } } } }
1,729
cpp
tensorflow/tensorflow
compression_utils
tensorflow/core/data/compression_utils.cc
tensorflow/core/data/compression_utils_test.cc
#ifndef TENSORFLOW_CORE_DATA_COMPRESSION_UTILS_H_ #define TENSORFLOW_CORE_DATA_COMPRESSION_UTILS_H_ #include <vector> #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace data { Status CompressElement(const std::vector<Tensor>& element, CompressedElement* out); Status UncompressElement(const CompressedElement& compressed, std::vector<Tensor>* out); } } #endif #include "tensorflow/core/data/compression_utils.h" #include <limits> #include <string> #include <vector> #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/snappy.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { namespace { constexpr int kCompressedElementVersion = 0; } class Iov { public: explicit Iov(size_t size) : iov_(size), idx_(0), num_bytes_(0) {} void Add(void* base, size_t len) { iov_[idx_].iov_base = base; iov_[idx_].iov_len = len; num_bytes_ += len; ++idx_; } iovec* Data() { return iov_.data(); } size_t NumBytes() const { return num_bytes_; } size_t NumPieces() const { return iov_.size(); } private: std::vector<struct iovec> iov_; size_t idx_; size_t num_bytes_; }; Status CompressElement(const std::vector<Tensor>& element, CompressedElement* out) { size_t num_string_tensors = 0; size_t num_string_tensor_strings = 0; std::vector<TensorProto> nonmemcpyable_components; size_t total_nonmemcpyable_size = 0; for (const auto& component : element) { if (component.dtype() == DT_STRING) { ++num_string_tensors; num_string_tensor_strings += component.NumElements(); } else if (!DataTypeCanUseMemcpy(component.dtype())) { nonmemcpyable_components.emplace_back(); component.AsProtoTensorContent(&nonmemcpyable_components.back()); total_nonmemcpyable_size += nonmemcpyable_components.back().ByteSizeLong(); } } Iov iov{element.size() + num_string_tensor_strings - num_string_tensors}; tstring nonmemcpyable; nonmemcpyable.resize_uninitialized(total_nonmemcpyable_size); char* nonmemcpyable_pos = nonmemcpyable.mdata(); int nonmemcpyable_component_index = 0; for (int i = 0; i < element.size(); ++i) { const auto& component = element[i]; CompressedComponentMetadata* metadata = out->mutable_component_metadata()->Add(); metadata->set_dtype(component.dtype()); component.shape().AsProto(metadata->mutable_tensor_shape()); if (DataTypeCanUseMemcpy(component.dtype())) { const TensorBuffer* buffer = DMAHelper::buffer(&component); if (buffer) { iov.Add(buffer->data(), buffer->size()); metadata->add_uncompressed_bytes(buffer->size()); } } else if (component.dtype() == DT_STRING) { const auto& flats = component.unaligned_flat<tstring>(); for (int i = 0; i < flats.size(); ++i) { iov.Add(const_cast<char*>(flats.data()[i].data()), flats.data()[i].size()); metadata->add_uncompressed_bytes(flats.data()[i].size()); } } else { TensorProto& proto = nonmemcpyable_components[nonmemcpyable_component_index++]; proto.SerializeToArray(nonmemcpyable_pos, proto.ByteSizeLong()); iov.Add(nonmemcpyable_pos, proto.ByteSizeLong()); nonmemcpyable_pos += proto.ByteSizeLong(); metadata->add_uncompressed_bytes(proto.ByteSizeLong()); } } if (iov.NumBytes() > kuint32max) { return errors::OutOfRange("Encountered dataset element of size ", iov.NumBytes(), ", exceeding the 4GB Snappy limit."); } if (!port::Snappy_CompressFromIOVec(iov.Data(), iov.NumBytes(), out->mutable_data())) { return errors::Internal("Failed to compress using snappy."); } out->set_version(kCompressedElementVersion); VLOG(3) << "Compressed element from " << iov.NumBytes() << " bytes to " << out->data().size() << " bytes"; return absl::OkStatus(); } Status UncompressElement(const CompressedElement& compressed, std::vector<Tensor>* out) { if (compressed.version() != kCompressedElementVersion) { return errors::Internal("Unsupported compressed element version: ", compressed.version()); } int num_components = compressed.component_metadata_size(); out->clear(); out->reserve(num_components); size_t num_string_tensors = 0; size_t num_string_tensor_strings = 0; size_t total_nonmemcpyable_size = 0; for (const auto& metadata : compressed.component_metadata()) { if (metadata.dtype() == DT_STRING) { ++num_string_tensors; num_string_tensor_strings += metadata.uncompressed_bytes_size(); } else if (!DataTypeCanUseMemcpy(metadata.dtype())) { total_nonmemcpyable_size += metadata.uncompressed_bytes(0); } } Iov iov{num_components + num_string_tensor_strings - num_string_tensors}; tstring nonmemcpyable; nonmemcpyable.resize_uninitialized(total_nonmemcpyable_size); char* nonmemcpyable_pos = nonmemcpyable.mdata(); for (const auto& metadata : compressed.component_metadata()) { if (DataTypeCanUseMemcpy(metadata.dtype())) { out->emplace_back(metadata.dtype(), metadata.tensor_shape()); TensorBuffer* buffer = DMAHelper::buffer(&out->back()); if (buffer) { iov.Add(buffer->data(), metadata.uncompressed_bytes(0)); } } else if (metadata.dtype() == DT_STRING) { out->emplace_back(metadata.dtype(), metadata.tensor_shape()); const auto& flats = out->back().unaligned_flat<tstring>(); for (int i = 0; i < metadata.uncompressed_bytes_size(); ++i) { flats.data()[i].resize(metadata.uncompressed_bytes(i)); iov.Add(flats.data()[i].mdata(), metadata.uncompressed_bytes(i)); } } else { out->emplace_back(); iov.Add(nonmemcpyable_pos, metadata.uncompressed_bytes(0)); nonmemcpyable_pos += metadata.uncompressed_bytes(0); } } const std::string& compressed_data = compressed.data(); size_t uncompressed_size; if (!port::Snappy_GetUncompressedLength( compressed_data.data(), compressed_data.size(), &uncompressed_size)) { return errors::Internal( "Could not get snappy uncompressed length. Compressed data size: ", compressed_data.size()); } if (uncompressed_size != static_cast<size_t>(iov.NumBytes())) { return errors::Internal( "Uncompressed size mismatch. Snappy expects ", uncompressed_size, " whereas the tensor metadata suggests ", iov.NumBytes()); } if (!port::Snappy_UncompressToIOVec(compressed_data.data(), compressed_data.size(), iov.Data(), iov.NumPieces())) { return errors::Internal("Failed to perform snappy decompression."); } nonmemcpyable_pos = nonmemcpyable.mdata(); for (int i = 0; i < num_components; ++i) { const CompressedComponentMetadata& metadata = compressed.component_metadata(i); if (!DataTypeCanUseMemcpy(metadata.dtype()) && metadata.dtype() != DT_STRING) { TensorProto tp; if (!tp.ParseFromString( {nonmemcpyable_pos, static_cast<size_t>(metadata.uncompressed_bytes(0))})) { return errors::Internal("Could not parse TensorProto"); } if (!out->at(i).FromProto(tp)) { return errors::Internal("Could not parse Tensor"); } nonmemcpyable_pos += metadata.uncompressed_bytes(0); } } return absl::OkStatus(); } REGISTER_UNARY_VARIANT_DECODE_FUNCTION(CompressedElement, "tensorflow.data.CompressedElement"); } }
#include "tensorflow/core/data/compression_utils.h" #include <string> #include <vector> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(CompressionUtilsTest, Exceeds4GB) { std::vector<Tensor> element = { CreateTensor<int64_t>(TensorShape{1024, 1024, 513})}; CompressedElement compressed; EXPECT_THAT(CompressElement(element, &compressed), StatusIs(error::OUT_OF_RANGE, HasSubstr("exceeding the 4GB Snappy limit"))); } std::vector<std::vector<Tensor>> TestCases() { return { CreateTensors<int64_t>(TensorShape{1}, {{1}}), CreateTensors<int64_t>(TensorShape{1}, {{1}, {2}}), CreateTensors<tstring>(TensorShape{1}, {{"a"}, {"b"}}), {CreateTensor<tstring>(TensorShape{1, 2}, {"abc", "xyz"}), CreateTensor<tstring>(TensorShape{2, 1}, {"ijk", "mnk"})}, {CreateTensor<tstring>(TensorShape{1}, {"a"}), CreateTensor<int64_t>(TensorShape{1}, {1})}, {}, {CreateTensor<int64_t>(TensorShape{1, 0})}, {CreateTensor<int64_t>(TensorShape{128, 128}), CreateTensor<int64_t>(TensorShape{64, 2})}, { DatasetOpsTestBase::CreateTestVariantTensor( {CreateTensor<int64_t>(TensorShape{3, 1}, {1, 2, 3}), CreateTensor<tstring>(TensorShape{}, {"abc"})}), DatasetOpsTestBase::CreateTestVariantTensor( {CreateTensor<int64_t>(TensorShape{3, 1}, {10, 11, 12}), CreateTensor<tstring>(TensorShape{}, {"xyz"})}), }, }; } class ParameterizedCompressionUtilsTest : public DatasetOpsTestBase, public ::testing::WithParamInterface<std::vector<Tensor>> {}; TEST_P(ParameterizedCompressionUtilsTest, RoundTrip) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); std::vector<Tensor> round_trip_element; TF_ASSERT_OK(UncompressElement(compressed, &round_trip_element)); TF_EXPECT_OK( ExpectEqual(element, round_trip_element, true)); } TEST_P(ParameterizedCompressionUtilsTest, CompressedElementVersion) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); EXPECT_EQ(0, compressed.version()); } TEST_P(ParameterizedCompressionUtilsTest, VersionMismatch) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); compressed.set_version(1); std::vector<Tensor> round_trip_element; EXPECT_THAT(UncompressElement(compressed, &round_trip_element), StatusIs(error::INTERNAL)); } INSTANTIATE_TEST_SUITE_P(Instantiation, ParameterizedCompressionUtilsTest, ::testing::ValuesIn(TestCases())); } } }
1,730
cpp
tensorflow/tensorflow
standalone
tensorflow/core/data/standalone.cc
tensorflow/core/data/standalone_test.cc
#ifndef TENSORFLOW_CORE_DATA_STANDALONE_H_ #define TENSORFLOW_CORE_DATA_STANDALONE_H_ #include <functional> #include <memory> #include <optional> #include <vector> #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/data/tfdataz_metrics.h" #include "tensorflow/core/data/unbounded_thread_pool.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_handle_cache.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/public/session_options.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace standalone { class Dataset; class Iterator { public: virtual ~Iterator(); Status GetNext(std::vector<Tensor>* outputs, bool* end_of_input); absl::StatusOr<std::vector<Tensor>> Save(); Status Restore(const std::vector<Tensor>& saved_iterator); std::shared_ptr<model::Model> model() const; private: friend class Dataset; Iterator(IteratorBase* iterator, IteratorContext* ctx, SerializationContext* serialization_ctx); std::unique_ptr<IteratorBase> iterator_; std::unique_ptr<IteratorContext> ctx_; std::unique_ptr<SerializationContext> serialization_ctx_; std::shared_ptr<TfDatazMetricsCollector> tf_dataz_metrics_collector_; }; class Dataset { public: struct Params { SessionOptions session_options; }; static Status FromGraph(Params params, const GraphDef& graph_def, std::unique_ptr<Dataset>* result); ~Dataset(); Status MakeIterator(std::unique_ptr<Iterator>* result); Status MakeIterator( std::vector<std::unique_ptr<SplitProvider>> split_providers, std::unique_ptr<Iterator>* result); Status MakeSplitProviders( std::vector<std::unique_ptr<SplitProvider>>* result); const DatasetBase* Get() const; private: Dataset(DatasetBase* finalized_dataset, DatasetBase* original_dataset, DeviceMgr* device_mgr, ProcessFunctionLibraryRuntime* pflr, FunctionLibraryDefinition* flib_def, thread::ThreadPool* pool, std::function<void(std::function<void()>)> runner); DatasetBase* finalized_dataset_; DatasetBase* original_dataset_; std::unique_ptr<DeviceMgr> device_mgr_; std::unique_ptr<FunctionLibraryDefinition> flib_def_; std::unique_ptr<ProcessFunctionLibraryRuntime> pflr_; std::unique_ptr<thread::ThreadPool> interop_threadpool_; std::unique_ptr<FunctionHandleCache> function_handle_cache_; std::function<void(std::function<void()>)> runner_; ResourceMgr resource_mgr_; CancellationManager cancellation_manager_; UnboundedThreadPool unbounded_thread_pool_; }; } } } #endif #include "tensorflow/core/data/standalone.h" #include <algorithm> #include <functional> #include <iterator> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/root_dataset.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/tf_data_memory_logger.h" #include "tensorflow/core/data/tfdataz_metrics.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_handle_cache.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/version.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/refcount.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace standalone { namespace { OpKernelContext::Params CreateParams( ProcessFunctionLibraryRuntime* pflr, DeviceMgr* device_mgr, std::function<void(std::function<void()>)>* runner) { OpKernelContext::Params params; params.function_library = pflr->GetFLR("/device:CPU:0"); params.device = device_mgr->ListDevices()[0]; params.runner = runner; return params; } } Iterator::Iterator(IteratorBase* iterator, IteratorContext* ctx, SerializationContext* serialization_ctx) : iterator_(iterator), ctx_(ctx), serialization_ctx_(serialization_ctx) { if (DatasetBaseIterator* dataset_iterator = dynamic_cast<DatasetBaseIterator*>(iterator_.get())) { tf_dataz_metrics_collector_ = std::make_shared<TfDatazMetricsCollector>( *Env::Default(), dataset_iterator, ctx_->model()); TfDatazMetricsRegistry::Register(tf_dataz_metrics_collector_); EnsureIteratorMemoryLoggerStarted(); } } Iterator::~Iterator() { if (tf_dataz_metrics_collector_) { TfDatazMetricsRegistry::Deregister(tf_dataz_metrics_collector_); } } Status Iterator::GetNext(std::vector<Tensor>* outputs, bool* end_of_input) { return iterator_->GetNext(ctx_.get(), outputs, end_of_input); } absl::StatusOr<std::vector<Tensor>> Iterator::Save() { VariantTensorDataWriter writer; TF_RETURN_IF_ERROR(iterator_->Save(serialization_ctx_.get(), &writer)); std::vector<std::unique_ptr<VariantTensorData>> data; writer.ReleaseData(&data); std::vector<Tensor> serialized; for (size_t i = 0; i < data.size(); ++i) { Tensor tensor(DT_VARIANT, TensorShape({1})); IteratorStateVariant variant; TF_RETURN_IF_ERROR(variant.InitializeFromVariantData(std::move(data[i]))); tensor.vec<Variant>()(0) = std::move(variant); serialized.push_back(std::move(tensor)); } return serialized; } Status Iterator::Restore(const std::vector<Tensor>& saved_iterator) { std::vector<const VariantTensorData*> data; data.reserve(saved_iterator.size()); for (int i = 0; i < saved_iterator.size(); ++i) { auto saved_vec = saved_iterator[i].vec<Variant>(); auto* variant = saved_vec(0).get<IteratorStateVariant>(); if (!variant) { return errors::Internal( "Cannot initialize an iterator from tensor ", saved_vec(0).DebugString(), ". Expected a variant tensor of type IteratorStateVariant."); } data.push_back(variant->GetData()); } VariantTensorDataReader reader(data); return iterator_->Restore(ctx_.get(), &reader); } std::shared_ptr<model::Model> Iterator::model() const { return ctx_->model(); } Status Dataset::FromGraph(Params params, const GraphDef& graph_def, std::unique_ptr<Dataset>* result) { Graph graph(OpRegistry::Global()); TF_RETURN_IF_ERROR(ImportGraphDef({}, graph_def, &graph, nullptr)); auto device_mgr = std::make_unique<StaticDeviceMgr>(DeviceFactory::NewDevice( "CPU", params.session_options, "/job:localhost/replica:0/task:0")); Device* device = device_mgr->ListDevices()[0]; auto flib_def = std::make_unique<FunctionLibraryDefinition>( OpRegistry::Global(), graph_def.library()); auto pflr = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr.get(), Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, flib_def.get(), OptimizerOptions{}, nullptr, nullptr, nullptr, Rendezvous::Factory{[](const int64_t, const DeviceMgr* device_mgr, tsl::core::RefCountPtr<Rendezvous>* r) { *r = tsl::core::RefCountPtr<Rendezvous>( new IntraProcessRendezvous(device_mgr)); return absl::OkStatus(); }}); string fetch_node = ""; for (const auto& node : graph_def.node()) { if (node.op() == "_Retval") { fetch_node = node.input(0); } } if (fetch_node.empty()) { return errors::NotFound("Failed to find a _Retval op in the given dataset"); } std::vector<Tensor> outputs; GraphRunner graph_runner(device); TF_RETURN_IF_ERROR(graph_runner.Run(&graph, pflr->GetFLR("/device:CPU:0"), {}, {fetch_node}, &outputs)); data::DatasetBase* dataset; TF_RETURN_IF_ERROR(GetDatasetFromVariantTensor(outputs[0], &dataset)); data::DatasetBase* finalized_dataset; std::unique_ptr<thread::ThreadPool> pool( NewThreadPoolFromSessionOptions(params.session_options)); std::function<void(std::function<void()>)> runner = [&pool](std::function<void()> c) { pool->Schedule(std::move(c)); }; OpKernelContext::Params op_params = CreateParams(pflr.get(), device_mgr.get(), &runner); OpKernelContext ctx(&op_params, 0); TF_RETURN_IF_ERROR(data::FinalizeDataset(&ctx, dataset, &finalized_dataset)); core::ScopedUnref unref(finalized_dataset); *result = absl::WrapUnique(new Dataset( finalized_dataset, dataset, device_mgr.release(), pflr.release(), flib_def.release(), pool.release(), std::move(runner))); return absl::OkStatus(); } Status Dataset::MakeIterator( std::vector<std::unique_ptr<SplitProvider>> split_providers, std::unique_ptr<Iterator>* result) { std::unique_ptr<IteratorContext> ctx; OpKernelContext::Params op_params = CreateParams(pflr_.get(), device_mgr_.get(), &runner_); OpKernelContext op_ctx(&op_params, 0); IteratorContext::Params params(&op_ctx); params.cancellation_manager = &cancellation_manager_; params.function_handle_cache = function_handle_cache_.get(); params.resource_mgr = &resource_mgr_; std::move(split_providers.begin(), split_providers.end(), std::back_inserter(params.split_providers)); params.thread_factory = unbounded_thread_pool_.get_thread_factory(); params.thread_pool = &unbounded_thread_pool_; if (ShouldUseAutotuning(finalized_dataset_->options())) { params.model = std::make_shared<model::Model>(); } params.run_mode = RunMode::STANDALONE; ctx = std::make_unique<IteratorContext>(std::move(params)); SerializationContext::Params serialization_params(&op_ctx); auto serialization_ctx = std::make_unique<SerializationContext>(std::move(serialization_params)); std::unique_ptr<IteratorBase> iterator; TF_RETURN_IF_ERROR(finalized_dataset_->MakeIterator( ctx.get(), nullptr, "Iterator", &iterator)); *result = absl::WrapUnique(new Iterator(iterator.release(), ctx.release(), serialization_ctx.release())); return absl::OkStatus(); } Status Dataset::MakeIterator(std::unique_ptr<Iterator>* result) { return MakeIterator({}, result); } Status Dataset::MakeSplitProviders( std::vector<std::unique_ptr<SplitProvider>>* result) { return finalized_dataset_->MakeSplitProviders(result); } const DatasetBase* Dataset::Get() const { return finalized_dataset_; } Dataset::Dataset(DatasetBase* finalized_dataset, DatasetBase* original_dataset, DeviceMgr* device_mgr, ProcessFunctionLibraryRuntime* pflr, FunctionLibraryDefinition* flib_def, thread::ThreadPool* pool, std::function<void(std::function<void()>)> runner) : finalized_dataset_(finalized_dataset), original_dataset_(original_dataset), device_mgr_(device_mgr), flib_def_(flib_def), pflr_(pflr), interop_threadpool_(pool), runner_(std::move(runner)), unbounded_thread_pool_(Env::Default(), "tf_data_standalone") { finalized_dataset_->Ref(); original_dataset_->Ref(); function_handle_cache_ = std::make_unique<FunctionHandleCache>(pflr_->GetFLR("/device:CPU:0")); } Dataset::~Dataset() { finalized_dataset_->Unref(); original_dataset_->Unref(); } } } }
#include "tensorflow/core/data/standalone.h" #include <memory> #include <optional> #include <vector> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tsl/lib/core/status_test_util.h" namespace tensorflow { namespace data { namespace standalone { namespace { constexpr const char* const kRangeGraphProto = R"pb( node { name: "Const/_0" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 0 } } } } node { name: "Const/_1" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 10 } } } } node { name: "Const/_2" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 1 } } } } node { name: "RangeDataset/_3" op: "RangeDataset" input: "Const/_0" input: "Const/_1" input: "Const/_2" attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } } node { name: "dataset" op: "_Retval" input: "RangeDataset/_3" attr { key: "T" value { type: DT_VARIANT } } attr { key: "index" value { i: 0 } } } library {} versions { producer: 96 } )pb"; constexpr const char* const kMapGraphProto = R"pb( node { name: "Const/_0" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 0 } } } } node { name: "Const/_1" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 10 } } } } node { name: "Const/_2" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 1 } } } } node { name: "RangeDataset/_3" op: "RangeDataset" input: "Const/_0" input: "Const/_1" input: "Const/_2" attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } } node { name: "MapDataset/_4" op: "MapDataset" input: "RangeDataset/_3" attr { key: "Targuments" value { list {} } } attr { key: "f" value { func { name: "__inference_Dataset_map_<lambda>_67" } } } attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } attr { key: "preserve_cardinality" value { b: false } } attr { key: "use_inter_op_parallelism" value { b: true } } } node { name: "dataset" op: "_Retval" input: "MapDataset/_4" attr { key: "T" value { type: DT_VARIANT } } attr { key: "index" value { i: 0 } } } library { function { signature { name: "__inference_Dataset_map_<lambda>_67" input_arg { name: "args_0" type: DT_INT64 } output_arg { name: "identity" type: DT_INT64 } } node_def { name: "mul" op: "Mul" input: "args_0" input: "args_0" attr { key: "T" value { type: DT_INT64 } } } node_def { name: "Identity" op: "Identity" input: "mul:z:0" attr { key: "T" value { type: DT_INT64 } } } ret { key: "identity" value: "Identity:output:0" } arg_attr { key: 0 value { attr { key: "_user_specified_name" value { s: "args_0" } } } } } } versions { producer: 96 min_consumer: 12 } )pb"; constexpr const char* const kMapGraphNoAutotuneProto = R"pb( node { name: "Const/_0" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 0 } } } } node { name: "Const/_1" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 10 } } } } node { name: "Const/_2" op: "Const" attr { key: "dtype" value { type: DT_INT64 } } attr { key: "value" value { tensor { dtype: DT_INT64 tensor_shape {} int64_val: 1 } } } } node { name: "RangeDataset/_3" op: "RangeDataset" input: "Const/_0" input: "Const/_1" input: "Const/_2" attr { key: "metadata" value { s: "\n\017RangeDataset:13" } } attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } attr { key: "replicate_on_split" value { b: false } } experimental_type { type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT64 } } } } } } node { name: "MapDataset/_4" op: "MapDataset" input: "RangeDataset/_3" attr { key: "Targuments" value { list {} } } attr { key: "f" value { func { name: "__inference_Dataset_map_lambda_74" } } } attr { key: "metadata" value { s: "\n\rMapDataset:14" } } attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } attr { key: "preserve_cardinality" value { b: true } } attr { key: "use_inter_op_parallelism" value { b: true } } experimental_type { type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT64 } } } } } } node { name: "OptionsDataset/_5" op: "OptionsDataset" input: "MapDataset/_4" attr { key: "metadata" value { s: "\n\021OptionsDataset:15" } } attr { key: "output_shapes" value { list { shape {} } } } attr { key: "output_types" value { list { type: DT_INT64 } } } attr { key: "serialized_options" value { s: "\022\000\032\003\240\001\000*\000:\002\010\000" } } experimental_type { type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT64 } } } } } } node { name: "dataset" op: "_Retval" input: "OptionsDataset/_5" attr { key: "T" value { type: DT_VARIANT } } attr { key: "index" value { i: 0 } } } library { function { signature { name: "__inference_Dataset_map_lambda_74" input_arg { name: "args_0" type: DT_INT64 } output_arg { name: "identity" type: DT_INT64 } } node_def { name: "mul" op: "Mul" input: "args_0" input: "args_0" attr { key: "T" value { type: DT_INT64 } } } node_def { name: "Identity" op: "Identity" input: "mul:z:0" attr { key: "T" value { type: DT_INT64 } } } ret { key: "identity" value: "Identity:output:0" } attr { key: "_construction_context" value { s: "kEagerRuntime" } } attr { key: "_tf_data_function" value { b: true } } arg_attr { key: 0 value { attr { key: "_output_shapes" value { list { shape {} } } } attr { key: "_user_specified_name" value { s: "args_0" } } } } } } versions { producer: 1594 } )pb"; TEST(Scalar, Standalone) { struct TestCase { string graph_string; std::vector<int64_t> expected_outputs; }; auto test_cases = { TestCase{kRangeGraphProto, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}, TestCase{kMapGraphProto, {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}}, }; for (auto test_case : test_cases) { GraphDef graph_def; protobuf::TextFormat::ParseFromString(test_case.graph_string, &graph_def); std::unique_ptr<Dataset> dataset; TF_EXPECT_OK(Dataset::FromGraph({}, graph_def, &dataset)); std::unique_ptr<Iterator> iterator; TF_EXPECT_OK(dataset->MakeIterator(&iterator)); EXPECT_DOUBLE_EQ(iterator->model()->ComputeSnapshotProcessingTimeNsec(), 0); bool end_of_input = false; for (int num_outputs = 0; !end_of_input; ++num_outputs) { std::vector<tensorflow::Tensor> outputs; TF_EXPECT_OK(iterator->GetNext(&outputs, &end_of_input)); if (!end_of_input) { EXPECT_EQ(outputs[0].scalar<int64_t>()(), test_case.expected_outputs[num_outputs]); } else { EXPECT_EQ(test_case.expected_outputs.size(), num_outputs); } } absl::SleepFor(absl::Seconds(1)); EXPECT_GT(iterator->model()->ComputeSnapshotProcessingTimeNsec(), 0); } } TEST(NoAutotune, Standalone) { std::vector<int64_t> expected_outputs({0, 1, 4, 9, 16, 25, 36, 49, 64, 81}); GraphDef graph_def; protobuf::TextFormat::ParseFromString(kMapGraphNoAutotuneProto, &graph_def); std::unique_ptr<Dataset> dataset; TF_EXPECT_OK(Dataset::FromGraph({}, graph_def, &dataset)); std::unique_ptr<Iterator> iterator; TF_EXPECT_OK(dataset->MakeIterator(&iterator)); EXPECT_EQ(iterator->model(), nullptr); bool end_of_input = false; for (int num_outputs = 0; !end_of_input; ++num_outputs) { std::vector<tensorflow::Tensor> outputs; TF_EXPECT_OK(iterator->GetNext(&outputs, &end_of_input)); if (!end_of_input) { EXPECT_EQ(outputs[0].scalar<int64_t>()(), expected_outputs[num_outputs]); } else { EXPECT_EQ(expected_outputs.size(), num_outputs); } } absl::SleepFor(absl::Seconds(1)); EXPECT_EQ(iterator->model(), nullptr); } } } } }
1,731
cpp
tensorflow/tensorflow
snapshot_utils
tensorflow/core/data/snapshot_utils.cc
tensorflow/core/data/snapshot_utils_test.cc
#ifndef TENSORFLOW_CORE_DATA_SNAPSHOT_UTILS_H_ #define TENSORFLOW_CORE_DATA_SNAPSHOT_UTILS_H_ #include <cstdint> #include <deque> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/io/compression.h" #include "tensorflow/core/lib/io/inputstream_interface.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/snapshot.pb.h" namespace tensorflow { class GraphDef; namespace data { namespace experimental { class SnapshotMetadataRecord; class SnapshotTensorMetadata; } namespace snapshot_util { constexpr char kMetadataFilename[] = "snapshot.metadata"; constexpr char kModeAuto[] = "auto"; constexpr char kModeWrite[] = "write"; constexpr char kModeRead[] = "read"; constexpr char kModePassthrough[] = "passthrough"; constexpr char kShardDirectorySuffix[] = ".shard"; enum Mode { READER = 0, WRITER = 1, PASSTHROUGH = 2 }; std::string HashDirectory(const std::string& path, uint64 hash); std::string RunDirectory(const std::string& hash_directory, uint64 run_id); std::string RunDirectory(const std::string& hash_directory, const std::string& run_id); std::string ShardDirectory(const std::string& run_directory, int64_t shard_id); std::string GetCheckpointFileName(const std::string& shard_directory, uint64 checkpoint_id); class Writer { public: static Status Create(Env* env, const std::string& filename, const std::string& compression_type, int version, const DataTypeVector& dtypes, std::unique_ptr<Writer>* out_writer); virtual Status WriteTensors(const std::vector<Tensor>& tensors) = 0; virtual Status Sync() = 0; virtual Status Close() = 0; virtual ~Writer() = default; protected: virtual Status Initialize(tensorflow::Env* env) = 0; }; class TFRecordWriter : public Writer { public: TFRecordWriter(const std::string& filename, const std::string& compression_type); Status Initialize(tensorflow::Env* env) override; Status WriteTensors(const std::vector<Tensor>& tensors) override; Status Sync() override; Status Close() override; ~TFRecordWriter() override; private: const std::string filename_; const std::string compression_type_; std::unique_ptr<WritableFile> dest_; std::unique_ptr<io::RecordWriter> record_writer_; }; class CustomWriter : public Writer { public: static constexpr const size_t kHeaderSize = sizeof(uint64); static constexpr const char* const kClassName = "SnapshotWriter"; static constexpr const char* const kWriteStringPiece = "WriteStringPiece"; static constexpr const char* const kWriteCord = "WriteCord"; static constexpr const char* const kSeparator = "::"; CustomWriter(const std::string& filename, const std::string& compression_type, const DataTypeVector& dtypes); Status WriteTensors(const std::vector<Tensor>& tensors) override; Status Sync() override; Status Close() override; ~CustomWriter() override; protected: Status Initialize(tensorflow::Env* env) override; private: Status WriteRecord(const StringPiece& data); #if defined(TF_CORD_SUPPORT) Status WriteRecord(const absl::Cord& data); #endif std::unique_ptr<WritableFile> dest_; const std::string filename_; const std::string compression_type_; const DataTypeVector dtypes_; std::unique_ptr<WritableFile> zlib_underlying_dest_; std::vector<bool> simple_tensor_mask_; int num_simple_ = 0; int num_complex_ = 0; }; class Reader { public: class DatasetOp : public DatasetOpKernel { public: explicit DatasetOp(OpKernelConstruction* ctx); protected: void MakeDataset(OpKernelContext* ctx, DatasetBase** output) override; private: DataTypeVector output_types_; std::vector<PartialTensorShape> output_shapes_; std::string compression_; int64_t version_; }; class NestedDatasetOp : public DatasetOpKernel { public: explicit NestedDatasetOp(OpKernelConstruction* ctx); protected: void MakeDataset(OpKernelContext* ctx, DatasetBase** output) override; private: DataTypeVector output_types_; std::vector<PartialTensorShape> output_shapes_; }; static Status Create(Env* env, const std::string& filename, const string& compression_type, int version, const DataTypeVector& dtypes, std::unique_ptr<Reader>* out_reader); static Status MakeNestedDataset(Env* env, const std::vector<std::string>& shard_dirs, const string& compression_type, int version, const DataTypeVector& dtypes, const std::vector<PartialTensorShape>& shapes, int64_t start_index, DatasetBase** output); static void MakeNestedDataset(const std::vector<DatasetBase*>& datasets, DatasetBase** output); virtual Status ReadTensors(std::vector<Tensor>* read_tensors) = 0; virtual Status SkipRecords(int64_t num_records); virtual ~Reader() = default; protected: virtual Status Initialize(Env* env) = 0; class Dataset; class NestedDataset; }; class TFRecordReaderImpl { public: TFRecordReaderImpl(const std::string& filename, const string& compression, std::optional<int64_t> output_buffer_size = std::nullopt); Status Initialize(Env* env); absl::StatusOr<Tensor> GetNext(); absl::StatusOr<std::vector<Tensor>> GetTensors(); uint64_t BytesRead() const { return bytes_read_; } private: absl::StatusOr<Tensor> Parse(const tstring& record); std::string filename_; std::unique_ptr<RandomAccessFile> file_; std::unique_ptr<io::RecordReader> record_reader_; uint64_t offset_ = 0; uint64_t bytes_read_ = 0; const string compression_; const std::optional<int64_t> output_buffer_size_; }; class TFRecordReader : public Reader { public: TFRecordReader(const std::string& filename, const string& compression, const DataTypeVector& dtypes, std::optional<int64_t> output_buffer_size = std::nullopt) : reader_impl_(filename, compression, output_buffer_size), dtypes_(dtypes) {} Status Initialize(Env* env) override { return reader_impl_.Initialize(env); } Status ReadTensors(std::vector<Tensor>* read_tensors) override; uint64_t BytesRead() const { return reader_impl_.BytesRead(); } private: TFRecordReaderImpl reader_impl_; const DataTypeVector dtypes_; }; class CustomReader : public Reader { public: static constexpr const int64_t kSnappyReaderInputBufferSizeBytes = 1 << 30; static constexpr const int64_t kSnappyReaderOutputBufferSizeBytes = 32 << 20; static constexpr const size_t kHeaderSize = sizeof(uint64); static constexpr const char* const kClassName = "SnapshotReader"; static constexpr const char* const kReadString = "ReadString"; static constexpr const char* const kReadCord = "ReadCord"; static constexpr const char* const kSeparator = "::"; CustomReader(const std::string& filename, const string& compression_type, int version, const DataTypeVector& dtypes); Status ReadTensors(std::vector<Tensor>* read_tensors) override; ~CustomReader() override = default; protected: Status Initialize(Env* env) override; private: Status ReadTensorsV0(std::vector<Tensor>* read_tensors); Status SnappyUncompress( const experimental::SnapshotTensorMetadata* metadata, std::vector<Tensor>* simple_tensors, std::vector<std::pair<std::unique_ptr<char[]>, size_t>>* tensor_proto_strs); Status ReadRecord(tstring* record); #if defined(TF_CORD_SUPPORT) Status ReadRecord(absl::Cord* record); #endif std::string filename_; std::unique_ptr<RandomAccessFile> file_; std::unique_ptr<io::InputStreamInterface> input_stream_; const string compression_type_; const int version_; const DataTypeVector dtypes_; int num_simple_ = 0; int num_complex_ = 0; std::vector<bool> simple_tensor_mask_; }; Status WriteMetadataFile(Env* env, const string& dir, const experimental::SnapshotMetadataRecord* metadata); Status WriteMetadataFile( Env* env, const string& dir, const experimental::DistributedSnapshotMetadata* metadata); Status ReadMetadataFile(Env* env, const string& dir, experimental::SnapshotMetadataRecord* metadata, bool* file_exists); Status ReadMetadataFile(Env* env, const string& dir, experimental::DistributedSnapshotMetadata* metadata, bool* file_exists); Status DumpDatasetGraph(Env* env, const std::string& path, uint64 hash, const GraphDef* graph); Status DetermineOpState(const std::string& mode_string, bool file_exists, const experimental::SnapshotMetadataRecord* metadata, uint64 pending_snapshot_expiry_seconds, Mode* mode); struct ElementOrEOF { std::vector<Tensor> value; bool end_of_sequence = false; }; class AsyncWriter { public: explicit AsyncWriter(Env* env, int64_t file_index, const std::string& shard_directory, uint64 checkpoint_id, const std::string& compression, int64_t version, const DataTypeVector& output_types, std::function<void(Status)> done); void Write(const std::vector<Tensor>& tensors) TF_LOCKS_EXCLUDED(mu_); void SignalEOF() TF_LOCKS_EXCLUDED(mu_); private: void Consume(ElementOrEOF* be) TF_LOCKS_EXCLUDED(mu_); bool ElementAvailable() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Status WriterThread(Env* env, const std::string& shard_directory, uint64 checkpoint_id, const std::string& compression, int64_t version, DataTypeVector output_types); mutex mu_; std::deque<ElementOrEOF> deque_ TF_GUARDED_BY(mu_); std::unique_ptr<Thread> thread_; }; } } } #endif #include "tensorflow/core/data/snapshot_utils.h" #include <algorithm> #include <climits> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/io/buffered_inputstream.h" #include "tensorflow/core/lib/io/random_inputstream.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/lib/io/zlib_compression_options.h" #include "tensorflow/core/lib/io/zlib_inputstream.h" #include "tensorflow/core/lib/io/zlib_outputbuffer.h" #include "tensorflow/core/platform/coding.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringprintf.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/protobuf/snapshot.pb.h" #include "tsl/lib/io/snappy/snappy_inputbuffer.h" #include "tsl/lib/io/snappy/snappy_outputbuffer.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace snapshot_util { namespace { constexpr const char* const kOutputTypes = "output_types"; constexpr const char* const kOutputShapes = "output_shapes"; constexpr const char* const kCompression = "compression"; constexpr const char* const kVersion = "version"; constexpr const char* const kCurrentCheckpointID = "current_checkpoint_id"; constexpr const char* const kIndex = "index"; constexpr const char* const kStartIndex = "start_index"; std::string ProtoSerializationErrorMessage(const TensorProto& proto, const std::string& output_file) { const auto proto_byte_size = proto.ByteSizeLong(); std::string error_message = absl::StrCat("Failed to serialize tensor proto of ", proto_byte_size, " bytes to file: ", output_file); if (proto_byte_size > INT_MAX) { absl::StrAppend(&error_message, ": exceeded maximum protobuf size of 2GB."); } return error_message; } } constexpr const int64_t CustomReader::kSnappyReaderInputBufferSizeBytes; constexpr const int64_t CustomReader::kSnappyReaderOutputBufferSizeBytes; std::string HashDirectory(const std::string& path, uint64 hash) { return io::JoinPath( path, strings::Printf("%llu", static_cast<unsigned long long>(hash))); } std::string RunDirectory(const std::string& hash_directory, uint64 run_id) { return RunDirectory( hash_directory, strings::Printf("%llu", static_cast<unsigned long long>(run_id))); } std::string RunDirectory(const std::string& hash_directory, const std::string& run_id) { return io::JoinPath(hash_directory, run_id); } std::string ShardDirectory(const std::string& run_directory, int64_t shard_id) { return io::JoinPath( run_directory, strings::Printf("%08llu%s", static_cast<unsigned long long>(shard_id), kShardDirectorySuffix)); } std::string GetCheckpointFileName(const std::string& shard_directory, uint64 checkpoint_id) { return io::JoinPath( shard_directory, strings::Printf("%08llu.snapshot", static_cast<unsigned long long>(checkpoint_id))); } Status Writer::Create(Env* env, const std::string& filename, const std::string& compression_type, int version, const DataTypeVector& dtypes, std::unique_ptr<Writer>* out_writer) { switch (version) { case 1: *out_writer = std::make_unique<CustomWriter>(filename, compression_type, dtypes); break; case 2: *out_writer = std::make_unique<TFRecordWriter>(filename, compression_type); break; default: return errors::InvalidArgument("Snapshot writer version: ", version, " is not supported."); } return (*out_writer)->Initialize(env); } TFRecordWriter::TFRecordWriter(const std::string& filename, const std::string& compression_type) : filename_(filename), compression_type_(compression_type) {} Status TFRecordWriter::Initialize(tensorflow::Env* env) { TF_RETURN_IF_ERROR(env->NewAppendableFile(filename_, &dest_)); record_writer_ = std::make_unique<io::RecordWriter>( dest_.get(), io::RecordWriterOptions::CreateRecordWriterOptions( compression_type_)); return absl::OkStatus(); } Status TFRecordWriter::WriteTensors(const std::vector<Tensor>& tensors) { for (const auto& tensor : tensors) { TensorProto proto; tensor.AsProtoTensorContent(&proto); #if defined(TF_CORD_SUPPORT) auto* proto_buffer = new std::string(); if (!proto.SerializeToString(proto_buffer)) { delete proto_buffer; return errors::DataLoss(ProtoSerializationErrorMessage(proto, filename_)); } absl::Cord proto_serialized = absl::MakeCordFromExternal( *proto_buffer, [proto_buffer](absl::string_view) { delete proto_buffer; }); TF_RETURN_IF_ERROR(record_writer_->WriteRecord(proto_serialized)); #else std::string proto_serialized; if (!proto.SerializeToString(&proto_serialized)) { return errors::DataLoss(ProtoSerializationErrorMessage(proto, filename_)); } TF_RETURN_IF_ERROR(record_writer_->WriteRecord(proto_serialized)); #endif } return absl::OkStatus(); } Status TFRecordWriter::Sync() { TF_RETURN_IF_ERROR(record_writer_->Flush()); return dest_->Flush(); } Status TFRecordWriter::Close() { if (record_writer_ != nullptr) { TF_RETURN_IF_ERROR(Sync()); TF_RETURN_IF_ERROR(record_writer_->Close()); TF_RETURN_IF_ERROR(dest_->Close()); record_writer_ = nullptr; dest_ = nullptr; } return absl::OkStatus(); } TFRecordWriter::~TFRecordWriter() { Status s = Close(); if (!s.ok()) { LOG(ERROR) << "Failed to close snapshot file " << filename_ << ": " << s; } } CustomWriter::CustomWriter(const std::string& filename, const std::string& compression_type, const DataTypeVector& dtypes) : filename_(filename), compression_type_(compression_type), dtypes_(dtypes) {} Status CustomWriter::Initialize(tensorflow::Env* env) { TF_RETURN_IF_ERROR(env->NewAppendableFile(filename_, &dest_)); #if defined(IS_SLIM_BUILD) if (compression_type_ != io::compression::kNone) { LOG(ERROR) << "Compression is unsupported on mobile platforms. Turning " << "off compression."; } #else if (compression_type_ == io::compression::kGzip) { zlib_underlying_dest_.swap(dest_); io::ZlibCompressionOptions zlib_options; zlib_options = io::ZlibCompressionOptions::GZIP(); io::ZlibOutputBuffer* zlib_output_buffer = new io::ZlibOutputBuffer( zlib_underlying_dest_.get(), zlib_options.input_buffer_size, zlib_options.output_buffer_size, zlib_options); TF_CHECK_OK(zlib_output_buffer->Init()); dest_.reset(zlib_output_buffer); } #endif simple_tensor_mask_.reserve(dtypes_.size()); for (const auto& dtype : dtypes_) { if (DataTypeCanUseMemcpy(dtype)) { simple_tensor_mask_.push_back(true); num_simple_++; } else { simple_tensor_mask_.push_back(false); num_complex_++; } } return absl::OkStatus(); } Status CustomWriter::WriteTensors(const std::vector<Tensor>& tensors) { if (compression_type_ != io::compression::kSnappy) { experimental::SnapshotRecord record; for (const auto& tensor : tensors) { TensorProto* t = record.add_tensor(); tensor.AsProtoTensorContent(t); } #if defined(TF_CORD_SUPPORT) auto record_buffer = new std::string(); record.SerializeToString(record_buffer); absl::Cord record_serialized = absl::MakeCordFromExternal( *record_buffer, [record_buffer](absl::string_view) { delete record_buffer; }); return WriteRecord(record_serialized); #else return WriteRecord(record.SerializeAsString()); #endif } std::vector<const TensorBuffer*> tensor_buffers; tensor_buffers.reserve(num_simple_); std::vector<TensorProto> tensor_protos; tensor_protos.reserve(num_complex_); experimental::SnapshotTensorMetadata metadata; int64_t total_size = 0; for (int i = 0, end = tensors.size(); i < end; ++i) { const Tensor& tensor = tensors[i]; experimental::TensorMetadata* tensor_metadata = metadata.add_tensor_metadata(); tensor.shape().AsProto(tensor_metadata->mutable_tensor_shape()); int64_t size = 0; if (simple_tensor_mask_[i]) { auto tensor_buffer = DMAHelper::buffer(&tensor); tensor_buffers.push_back(tensor_buffer); size = tensor_buffer->size(); } else { TensorProto proto; tensor.AsProtoTensorContent(&proto); size = proto.ByteSizeLong(); tensor_protos.push_back(std::move(proto)); } tensor_metadata->set_tensor_size_bytes(size); total_size += size; } std::vector<char> uncompressed(total_size); char* position = uncompressed.data(); int buffer_index = 0; int proto_index = 0; for (int i = 0, end = tensors.size(); i < end; ++i) { const auto& tensor_metadata = metadata.tensor_metadata(i); if (simple_tensor_mask_[i]) { memcpy(position, tensor_buffers[buffer_index]->data(), tensor_metadata.tensor_size_bytes()); buffer_index++; } else { tensor_protos[proto_index].SerializeToArray( position, tensor_metadata.tensor_size_bytes()); proto_index++; } position += tensor_metadata.tensor_size_bytes(); } DCHECK_EQ(position, uncompressed.data() + total_size); string output; if (!tsl::port::Snappy_Compress(uncompressed.data(), total_size, &output)) { return errors::Internal("Failed to compress using snappy."); } #if defined(TF_CORD_SUPPORT) auto metadata_buffer = new std::string(); metadata.SerializeToString(metadata_buffer); absl::Cord metadata_serialized = absl::MakeCordFromExternal( *metadata_buffer, [metadata_buffer](absl::string_view) { delete metadata_buffer; }); #else std::string metadata_serialized = metadata.SerializeAsString(); #endif TF_RETURN_IF_ERROR(WriteRecord(metadata_serialized)); TF_RETURN_IF_ERROR(WriteRecord(output)); return absl::OkStatus(); } Status CustomWriter::Sync() { return dest_->Sync(); } Status CustomWriter::Close() { if (dest_ != nullptr) { TF_RETURN_IF_ERROR(dest_->Close()); dest_ = nullptr; } if (zlib_underlying_dest_ != nullptr) { TF_RETURN_IF_ERROR(zlib_underlying_dest_->Close()); zlib_underlying_dest_ = nullptr; } return absl::OkStatus(); } CustomWriter::~CustomWriter() { Status s = Close(); if (!s.ok()) { LOG(ERROR) << "Could not finish writing file: " << s; } } Status CustomWriter::WriteRecord(const StringPiece& data) { char header[kHeaderSize]; core::EncodeFixed64(header, data.size()); TF_RETURN_IF_ERROR(dest_->Append(StringPiece(header, sizeof(header)))); return dest_->Append(data); } #if defined(TF_CORD_SUPPORT) Status CustomWriter::WriteRecord(const absl::Cord& data) { char header[kHeaderSize]; core::EncodeFixed64(header, data.size()); TF_RETURN_IF_ERROR(dest_->Append(StringPiece(header, sizeof(header)))); return dest_->Append(data); } #endif Status Reader::Create(Env* env, const std::string& filename, const string& compression_type, int version, const DataTypeVector& dtypes, std::unique_ptr<Reader>* out_reader) { switch (version) { case 0: case 1: *out_reader = std::make_unique<CustomReader>(filename, compression_type, version, dtypes); break; case 2: *out_reader = std::make_unique<TFRecordReader>(filename, compression_type, dtypes); break; default: return errors::InvalidArgument("Snapshot reader version: ", version, " is not supported."); } return (*out_reader)->Initialize(env); } Status Reader::SkipRecords(int64_t num_records) { for (int i = 0; i < num_records; ++i) { std::vector<Tensor> unused_tensors; TF_RETURN_IF_ERROR(ReadTensors(&unused_tensors)); } return absl::OkStatus(); } class Reader::Dataset : public DatasetBase { public: Dataset(DatasetContext&& ctx, const std::string& shard_dir, const std::string& compression, const int64_t version, const DataTypeVector& dtypes, const std::vector<PartialTensorShape>& shapes, const int64_t start_index) : DatasetBase(std::move(ctx)), shard_dir_(shard_dir), compression_(compression), version_(version), dtypes_(dtypes), shapes_(shapes), start_index_(start_index) {} const DataTypeVector& output_dtypes() const override { return dtypes_; } const std::vector<PartialTensorShape>& output_shapes() const override { return shapes_; } std::string DebugString() const override { return "SnapshotDatasetReader"; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { return absl::OkStatus(); } Status CheckExternalState() const override { return absl::OkStatus(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** node) const override { Node* shard_dir = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(shard_dir_, &shard_dir)); Node* start_index = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(start_index_, &start_index)); AttrValue compression; b->BuildAttrValue(compression_, &compression); AttrValue version; b->BuildAttrValue(version_, &version); return b->AddDataset( this, {std::make_pair(0, shard_dir), std::make_pair(1, start_index)}, {}, {{kCompression, compression}, {kVersion, version}}, true, node); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(node_name(), prefix)}); } private: class Iterator : public DatasetIterator<Dataset> { p
#include "tensorflow/core/data/snapshot_utils.h" #include <memory> #include <string> #include <vector> #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/compression.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace data { namespace snapshot_util { namespace { using ::tensorflow::data::testing::EqualsProto; using ::tensorflow::data::testing::LocalTempFilename; void GenerateTensorVector(tensorflow::DataTypeVector& dtypes, std::vector<Tensor>& tensors) { std::string tensor_data(1024, 'a'); for (int i = 0; i < 10; ++i) { Tensor t(tensor_data.data()); dtypes.push_back(t.dtype()); tensors.push_back(t); } } void SnapshotRoundTrip(std::string compression_type, int version) { std::vector<Tensor> tensors; tensorflow::DataTypeVector dtypes; GenerateTensorVector(dtypes, tensors); std::string filename; EXPECT_TRUE(Env::Default()->LocalTempFilename(&filename)); std::unique_ptr<Writer> writer; TF_ASSERT_OK(Writer::Create(tensorflow::Env::Default(), filename, compression_type, version, dtypes, &writer)); for (int i = 0; i < 100; ++i) { TF_ASSERT_OK(writer->WriteTensors(tensors)); } TF_ASSERT_OK(writer->Close()); std::unique_ptr<Reader> reader; TF_ASSERT_OK(Reader::Create(Env::Default(), filename, compression_type, version, dtypes, &reader)); for (int i = 0; i < 100; ++i) { std::vector<Tensor> read_tensors; TF_ASSERT_OK(reader->ReadTensors(&read_tensors)); EXPECT_EQ(tensors.size(), read_tensors.size()); for (int j = 0; j < read_tensors.size(); ++j) { TensorProto proto; TensorProto read_proto; tensors[j].AsProtoTensorContent(&proto); read_tensors[j].AsProtoTensorContent(&read_proto); std::string proto_serialized, read_proto_serialized; proto.AppendToString(&proto_serialized); read_proto.AppendToString(&read_proto_serialized); EXPECT_EQ(proto_serialized, read_proto_serialized); } } TF_ASSERT_OK(Env::Default()->DeleteFile(filename)); } TEST(SnapshotUtilTest, CombinationRoundTripTest) { SnapshotRoundTrip(io::compression::kNone, 1); SnapshotRoundTrip(io::compression::kGzip, 1); SnapshotRoundTrip(io::compression::kSnappy, 1); SnapshotRoundTrip(io::compression::kNone, 2); SnapshotRoundTrip(io::compression::kGzip, 2); SnapshotRoundTrip(io::compression::kSnappy, 2); } TEST(SnapshotUtilTest, MetadataFileRoundTrip) { experimental::DistributedSnapshotMetadata metadata_in; metadata_in.set_compression(io::compression::kGzip); std::string dir = LocalTempFilename(); TF_ASSERT_OK(WriteMetadataFile(Env::Default(), dir, &metadata_in)); experimental::DistributedSnapshotMetadata metadata_out; bool file_exists; TF_ASSERT_OK( ReadMetadataFile(Env::Default(), dir, &metadata_out, &file_exists)); EXPECT_THAT(metadata_in, EqualsProto(metadata_out)); } TEST(SnapshotUtilTest, MetadataFileDoesntExist) { experimental::DistributedSnapshotMetadata metadata; bool file_exists; TF_ASSERT_OK(ReadMetadataFile(Env::Default(), LocalTempFilename(), &metadata, &file_exists)); EXPECT_FALSE(file_exists); } void SnapshotReaderBenchmarkLoop(::testing::benchmark::State& state, std::string compression_type, int version) { tensorflow::DataTypeVector dtypes; std::vector<Tensor> tensors; GenerateTensorVector(dtypes, tensors); std::string filename; EXPECT_TRUE(Env::Default()->LocalTempFilename(&filename)); std::unique_ptr<Writer> writer; TF_ASSERT_OK(Writer::Create(tensorflow::Env::Default(), filename, compression_type, version, dtypes, &writer)); for (auto s : state) { writer->WriteTensors(tensors).IgnoreError(); } TF_ASSERT_OK(writer->Close()); std::unique_ptr<Reader> reader; TF_ASSERT_OK(Reader::Create(Env::Default(), filename, compression_type, version, dtypes, &reader)); for (auto s : state) { std::vector<Tensor> read_tensors; reader->ReadTensors(&read_tensors).IgnoreError(); } TF_ASSERT_OK(Env::Default()->DeleteFile(filename)); } void SnapshotCustomReaderNoneBenchmark(::testing::benchmark::State& state) { SnapshotReaderBenchmarkLoop(state, io::compression::kNone, 1); } void SnapshotCustomReaderGzipBenchmark(::testing::benchmark::State& state) { SnapshotReaderBenchmarkLoop(state, io::compression::kGzip, 1); } void SnapshotCustomReaderSnappyBenchmark(::testing::benchmark::State& state) { SnapshotReaderBenchmarkLoop(state, io::compression::kSnappy, 1); } void SnapshotTFRecordReaderNoneBenchmark(::testing::benchmark::State& state) { SnapshotReaderBenchmarkLoop(state, io::compression::kNone, 2); } void SnapshotTFRecordReaderGzipBenchmark(::testing::benchmark::State& state) { SnapshotReaderBenchmarkLoop(state, io::compression::kGzip, 2); } BENCHMARK(SnapshotCustomReaderNoneBenchmark); BENCHMARK(SnapshotCustomReaderGzipBenchmark); BENCHMARK(SnapshotCustomReaderSnappyBenchmark); BENCHMARK(SnapshotTFRecordReaderNoneBenchmark); BENCHMARK(SnapshotTFRecordReaderGzipBenchmark); void SnapshotWriterBenchmarkLoop(::testing::benchmark::State& state, std::string compression_type, int version) { tensorflow::DataTypeVector dtypes; std::vector<Tensor> tensors; GenerateTensorVector(dtypes, tensors); std::string filename; EXPECT_TRUE(Env::Default()->LocalTempFilename(&filename)); std::unique_ptr<Writer> writer; TF_ASSERT_OK(Writer::Create(tensorflow::Env::Default(), filename, compression_type, version, dtypes, &writer)); for (auto s : state) { writer->WriteTensors(tensors).IgnoreError(); } writer->Close().IgnoreError(); TF_ASSERT_OK(Env::Default()->DeleteFile(filename)); } void SnapshotCustomWriterNoneBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kNone, 1); } void SnapshotCustomWriterGzipBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kGzip, 1); } void SnapshotCustomWriterSnappyBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kSnappy, 1); } void SnapshotTFRecordWriterNoneBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kNone, 2); } void SnapshotTFRecordWriterGzipBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kGzip, 2); } void SnapshotTFRecordWriterSnappyBenchmark(::testing::benchmark::State& state) { SnapshotWriterBenchmarkLoop(state, io::compression::kSnappy, 2); } BENCHMARK(SnapshotCustomWriterNoneBenchmark); BENCHMARK(SnapshotCustomWriterGzipBenchmark); BENCHMARK(SnapshotCustomWriterSnappyBenchmark); BENCHMARK(SnapshotTFRecordWriterNoneBenchmark); BENCHMARK(SnapshotTFRecordWriterGzipBenchmark); BENCHMARK(SnapshotTFRecordWriterSnappyBenchmark); } } } }
1,732
cpp
tensorflow/tensorflow
unbounded_thread_pool
tensorflow/core/data/unbounded_thread_pool.cc
tensorflow/core/data/unbounded_thread_pool_test.cc
#ifndef TENSORFLOW_CORE_DATA_UNBOUNDED_THREAD_POOL_H_ #define TENSORFLOW_CORE_DATA_UNBOUNDED_THREAD_POOL_H_ #include <deque> #include <functional> #include <memory> #include <vector> #include "tensorflow/core/framework/thread_factory.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/threadpool_interface.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/unbounded_work_queue.h" namespace tensorflow { namespace data { class UnboundedThreadPool : public thread::ThreadPoolInterface { public: UnboundedThreadPool(Env* env, const string& thread_name) : unbounded_work_queue_(env, thread_name) {} UnboundedThreadPool(Env* env, const string& thread_name, const ThreadOptions& thread_options) : unbounded_work_queue_(env, thread_name, thread_options) {} ~UnboundedThreadPool() override = default; std::shared_ptr<ThreadFactory> get_thread_factory(); void Schedule(std::function<void()> fn) override; int NumThreads() const override; int CurrentThreadId() const override; private: class LogicalThreadFactory; class LogicalThreadWrapper; void ScheduleOnWorkQueue(std::function<void()> fn, std::shared_ptr<Notification> done); UnboundedWorkQueue unbounded_work_queue_; }; } } #endif #include "tensorflow/core/data/unbounded_thread_pool.h" #include <functional> #include <memory> #include <utility> #include "absl/memory/memory.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/resource.h" #include "tensorflow/core/platform/unbounded_work_queue.h" namespace tensorflow { namespace data { class UnboundedThreadPool::LogicalThreadWrapper : public Thread { public: explicit LogicalThreadWrapper(std::shared_ptr<Notification> done) : done_(std::move(done)) {} ~LogicalThreadWrapper() override { done_->WaitForNotification(); } private: std::shared_ptr<Notification> done_; }; class UnboundedThreadPool::LogicalThreadFactory : public ThreadFactory { public: explicit LogicalThreadFactory(UnboundedThreadPool* pool) : pool_(pool) {} std::unique_ptr<Thread> StartThread(const string& name, std::function<void()> fn) override { auto done = std::make_shared<Notification>(); pool_->ScheduleOnWorkQueue(std::move(fn), done); return std::make_unique<LogicalThreadWrapper>(std::move(done)); } private: UnboundedThreadPool* const pool_; }; std::shared_ptr<ThreadFactory> UnboundedThreadPool::get_thread_factory() { return std::make_shared<LogicalThreadFactory>(this); } void UnboundedThreadPool::Schedule(std::function<void()> fn) { auto tagged_fn = [fn = std::move(fn)]() { tensorflow::ResourceTagger tag(kTFDataResourceTag, "ThreadPool"); fn(); }; ScheduleOnWorkQueue(std::move(tagged_fn), nullptr); } int UnboundedThreadPool::NumThreads() const { return -1; } int UnboundedThreadPool::CurrentThreadId() const { return -1; } namespace { void WorkQueueFunc(const std::function<void()>& fn, std::shared_ptr<Notification> done) { fn(); if (done) { done->Notify(); } } } void UnboundedThreadPool::ScheduleOnWorkQueue( std::function<void()> fn, std::shared_ptr<Notification> done) { unbounded_work_queue_.Schedule( std::bind(&WorkQueueFunc, std::move(fn), std::move(done))); } } }
#include "tensorflow/core/data/unbounded_thread_pool.h" #include <atomic> #include <memory> #include <vector> #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { TEST(UnboundedThreadPool, ConcurrentThreadCreation) { UnboundedThreadPool pool(Env::Default(), "test"); auto thread_factory = pool.get_thread_factory(); std::vector<std::unique_ptr<Thread>> threads; const int kNumThreadsToCreate = 10; std::atomic<int> i(0); for (int j = 0; j < kNumThreadsToCreate; ++j) { threads.push_back(thread_factory->StartThread("", [=, &i, &thread_factory]() { std::vector<std::unique_ptr<Thread>> nested_threads; for (int k = 0; k < kNumThreadsToCreate; ++k) { nested_threads.push_back( thread_factory->StartThread("", [&i]() { ++i; })); } nested_threads.clear(); })); } threads.clear(); EXPECT_EQ(i, kNumThreadsToCreate * kNumThreadsToCreate); } TEST(UnboundedThreadPool, MultipleBlockingThreads) { UnboundedThreadPool pool(Env::Default(), "test"); auto thread_factory = pool.get_thread_factory(); std::vector<std::unique_ptr<Thread>> threads; std::vector<int> round_sizes = {5, 10, 15, 20}; for (const int round_size : round_sizes) { Notification n; BlockingCounter bc(round_size); for (int j = 0; j < round_size; ++j) { threads.push_back(thread_factory->StartThread("", [&bc, &n]() { bc.DecrementCount(); n.WaitForNotification(); })); } bc.Wait(); n.Notify(); threads.clear(); } } } } }
1,733
cpp
tensorflow/tensorflow
dispatcher_state
tensorflow/core/data/service/dispatcher_state.cc
tensorflow/core/data/service/dispatcher_state_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_DISPATCHER_STATE_H_ #define TENSORFLOW_CORE_DATA_SERVICE_DISPATCHER_STATE_H_ #include <cstdint> #include <memory> #include <optional> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/graph_rewriters.h" #include "tensorflow/core/data/service/journal.h" #include "tensorflow/core/data/service/journal.pb.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { class DispatcherState { public: DispatcherState(); explicit DispatcherState( const experimental::DispatcherConfig& dispatcher_config); DispatcherState(const DispatcherState&) = delete; DispatcherState& operator=(const DispatcherState&) = delete; Status Apply(const Update& update); struct Dataset { explicit Dataset(const std::string& dataset_id, const DataServiceMetadata& metadata) : dataset_id(dataset_id), metadata(metadata) {} const std::string dataset_id; const DataServiceMetadata metadata; }; struct Worker { explicit Worker(const RegisterWorkerUpdate& register_worker) : address(register_worker.worker_address()), transfer_servers({register_worker.transfer_servers().begin(), register_worker.transfer_servers().end()}), tags(register_worker.worker_tags().begin(), register_worker.worker_tags().end()), uid(register_worker.worker_uid()) {} const std::string address; const std::vector<DataTransferServerInfo> transfer_servers; const std::vector<std::string> tags; const int64_t uid; }; struct IterationKey { explicit IterationKey(absl::string_view name, int64_t repetition) : name(name), repetition(repetition) {} friend bool operator==(const IterationKey& lhs, const IterationKey& rhs) { return lhs.name == rhs.name && lhs.repetition == rhs.repetition; } template <typename H> friend H AbslHashValue(H h, const IterationKey& k) { return H::combine(std::move(h), k.name, k.repetition); } std::string DebugString() const { return absl::StrCat(name, "/", repetition); } const std::string name; const int64_t repetition; }; struct DistributedEpochState { explicit DistributedEpochState(int64_t num_split_providers) : repetitions(num_split_providers), indices(num_split_providers) {} std::vector<int64_t> repetitions; std::vector<int64_t> indices; }; struct Task; struct PendingTask { explicit PendingTask(std::shared_ptr<Task> task, int64_t target_round) : task(std::move(task)), target_round(target_round) {} std::shared_ptr<Task> task; int64_t target_round; absl::flat_hash_set<int64_t> ready_consumers; int64_t failures = 0; }; struct Job { explicit Job(int64_t id, const std::string& dataset_id, const ProcessingModeDef& processing_mode, std::string job_name, std::optional<int64_t> num_consumers, bool use_cross_trainer_cache, TargetWorkers target_workers) : id(id), dataset_id(dataset_id), processing_mode(processing_mode), job_name(job_name), num_consumers(num_consumers), use_cross_trainer_cache(use_cross_trainer_cache), target_workers(target_workers) {} const int64_t id; const std::string dataset_id; const ProcessingModeDef processing_mode; const std::string job_name; const std::optional<int64_t> num_consumers; const bool use_cross_trainer_cache; const TargetWorkers target_workers; }; struct Iteration { explicit Iteration(int64_t iteration_id, IterationKey iteration_key, int64_t num_split_providers, std::shared_ptr<Job> job) : iteration_id(iteration_id), iteration_key(iteration_key), job(job) { if (IsDynamicShard(job->processing_mode)) { distributed_epoch_state = DistributedEpochState(num_split_providers); } } bool IsRoundRobin() const { return job->num_consumers.has_value(); } std::string DebugString() const { return absl::StrCat(iteration_key.name, "_", iteration_key.repetition); } const int64_t iteration_id; const IterationKey iteration_key; const std::shared_ptr<Job> job; std::optional<DistributedEpochState> distributed_epoch_state; std::queue<PendingTask> pending_tasks; int64_t num_clients = 0; int64_t last_client_released_micros = -1; bool finished = false; bool garbage_collected = false; }; struct Task { template <class T> explicit Task(const T& create_task_update, const std::shared_ptr<Iteration>& iteration) : task_id(create_task_update.task_id()), iteration(iteration), worker_address(create_task_update.worker_address()), transfer_servers(create_task_update.transfer_servers().begin(), create_task_update.transfer_servers().end()), worker_tags(create_task_update.worker_tags().begin(), create_task_update.worker_tags().end()), worker_uid(create_task_update.worker_uid()) {} const int64_t task_id; const std::shared_ptr<Iteration> iteration; const std::string worker_address; const std::vector<DataTransferServerInfo> transfer_servers; const std::vector<std::string> worker_tags; const int64_t worker_uid; int64_t starting_round = 0; bool finished = false; bool removed = false; }; using TasksById = absl::flat_hash_map<int64_t, std::shared_ptr<Task>>; std::string NextAvailableDatasetId() const; Status DatasetFromId(const std::string& id, std::shared_ptr<const Dataset>& dataset) const; Status WorkerFromAddress(const std::string& address, std::shared_ptr<const Worker>& worker) const; std::vector<std::shared_ptr<const Worker>> ListWorkers() const; int64_t NextAvailableJobId() const; Status JobFromId(int64_t job_id, std::shared_ptr<const Job>& job) const; Status JobByName(const std::string& job_name, std::shared_ptr<const Job>& job) const; int64_t NextAvailableIterationId() const; std::vector<std::shared_ptr<const Iteration>> ListIterations() const; Status IterationFromId(int64_t id, std::shared_ptr<const Iteration>& iteration) const; Status IterationByKey(IterationKey key, std::shared_ptr<const Iteration>& iteration) const; Status IterationForIterationClientId( int64_t iteration_client_id, std::shared_ptr<const Iteration>& iteration); std::vector<int64_t> ListActiveClientIds(); int64_t NextAvailableIterationClientId() const; int64_t NextAvailableTaskId() const; Status TaskFromId(int64_t id, std::shared_ptr<const Task>& task) const; Status TasksForIteration( int64_t iteration_id, std::vector<std::shared_ptr<const Task>>& tasks) const; Status TasksForWorker(const absl::string_view worker_address, std::vector<std::shared_ptr<const Task>>& tasks) const; Status ValidateWorker(absl::string_view worker_address) const; absl::StatusOr<int64_t> GetWorkerIndex( absl::string_view worker_address) const; const absl::flat_hash_set<std::string>& ListSnapshotPaths() const { return snapshot_paths_; } std::optional<bool> CompressionDisabledAtRuntime( const std::string& dataset_id) const; int64_t GetNumberOfRegisteredWorkers() const { return workers_.size(); } private: void RegisterDataset(const RegisterDatasetUpdate& register_dataset); void RegisterWorker(const RegisterWorkerUpdate& register_worker); void CreateJob(const CreateJobUpdate& create_job); void CreateIteration(const CreateIterationUpdate& create_iteration); void ProduceSplit(const ProduceSplitUpdate& produce_split); void AcquireIterationClient( const AcquireIterationClientUpdate& acquire_iteration_client); void ReleaseIterationClient( const ReleaseIterationClientUpdate& release_iteration_client); void GarbageCollectIteration( const GarbageCollectIterationUpdate& garbage_collect_iteration); void RemoveTask(const RemoveTaskUpdate& remove_task); void CreatePendingTask(const CreatePendingTaskUpdate& create_pending_task); void ClientHeartbeat(const ClientHeartbeatUpdate& client_heartbeat); void CreateTask(const CreateTaskUpdate& create_task); void FinishTask(const FinishTaskUpdate& finish_task); void Snapshot(const SnapshotUpdate& snapshot); void CompressionDisabledAtRuntime(const CompressionDisabledAtRuntimeUpdate& compression_disabled_at_runtime); void UpdateNextAvailableDatasetId(); int64_t next_available_dataset_id_ = 1000; absl::flat_hash_map<std::string, std::shared_ptr<Dataset>> datasets_by_id_; absl::flat_hash_map<std::string, std::shared_ptr<Worker>> workers_; WorkerIndexResolver worker_index_resolver_; int64_t next_available_job_id_ = 5000; absl::flat_hash_map<int64_t, std::shared_ptr<Job>> jobs_by_id_; absl::flat_hash_map<std::string, std::shared_ptr<Job>> jobs_by_name_; int64_t next_available_iteration_id_ = 2000; absl::flat_hash_map<int64_t, std::shared_ptr<Iteration>> iterations_; absl::flat_hash_map<IterationKey, std::shared_ptr<Iteration>> iterations_by_key_; int64_t next_available_iteration_client_id_ = 3000; absl::flat_hash_map<int64_t, std::shared_ptr<Iteration>> iterations_for_client_ids_; int64_t next_available_task_id_ = 4000; TasksById tasks_; absl::flat_hash_map<int64_t, std::vector<std::shared_ptr<Task>>> tasks_by_iteration_; absl::flat_hash_map<std::string, TasksById> tasks_by_worker_; absl::flat_hash_set<std::string> snapshot_paths_; absl::flat_hash_map<std::string, bool> compression_disabled_at_runtime_; }; } } #endif #include "tensorflow/core/data/service/dispatcher_state.h" #include <algorithm> #include <memory> #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/journal.h" #include "tensorflow/core/data/service/journal.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { DispatcherState::DispatcherState() : worker_index_resolver_(std::vector<std::string>{}) {} DispatcherState::DispatcherState( const experimental::DispatcherConfig& dispatcher_config) : worker_index_resolver_(dispatcher_config.worker_addresses()) {} Status DispatcherState::Apply(const Update& update) { switch (update.update_type_case()) { case Update::kRegisterDataset: RegisterDataset(update.register_dataset()); break; case Update::kRegisterWorker: RegisterWorker(update.register_worker()); break; case Update::kCreateJob: CreateJob(update.create_job()); break; case Update::kCreateIteration: CreateIteration(update.create_iteration()); break; case Update::kProduceSplit: ProduceSplit(update.produce_split()); break; case Update::kAcquireIterationClient: AcquireIterationClient(update.acquire_iteration_client()); break; case Update::kReleaseIterationClient: ReleaseIterationClient(update.release_iteration_client()); break; case Update::kGarbageCollectIteration: GarbageCollectIteration(update.garbage_collect_iteration()); break; case Update::kRemoveTask: RemoveTask(update.remove_task()); break; case Update::kCreatePendingTask: CreatePendingTask(update.create_pending_task()); break; case Update::kClientHeartbeat: ClientHeartbeat(update.client_heartbeat()); break; case Update::kCreateTask: CreateTask(update.create_task()); break; case Update::kFinishTask: FinishTask(update.finish_task()); break; case Update::kSnapshot: Snapshot(update.snapshot()); break; case Update::kCompressionDisabledAtRuntime: CompressionDisabledAtRuntime(update.compression_disabled_at_runtime()); break; case Update::UPDATE_TYPE_NOT_SET: return errors::Internal("Update type not set."); } return absl::OkStatus(); } void DispatcherState::RegisterDataset( const RegisterDatasetUpdate& register_dataset) { std::string dataset_id = register_dataset.dataset_id(); auto dataset = std::make_shared<Dataset>(dataset_id, register_dataset.metadata()); DCHECK(!datasets_by_id_.contains(dataset_id)); datasets_by_id_[dataset_id] = dataset; UpdateNextAvailableDatasetId(); } void DispatcherState::RegisterWorker( const RegisterWorkerUpdate& register_worker) { std::string address = register_worker.worker_address(); DCHECK(!workers_.contains(address)); workers_[address] = std::make_shared<Worker>(register_worker); tasks_by_worker_[address] = absl::flat_hash_map<int64_t, std::shared_ptr<Task>>(); worker_index_resolver_.AddWorker(address); } void DispatcherState::CreateJob(const CreateJobUpdate& create_job) { int64_t job_id = create_job.job_id(); std::string job_name = create_job.job_name(); std::optional<int64_t> num_consumers; if (create_job.optional_num_consumers_case() == CreateJobUpdate::kNumConsumers) { num_consumers = create_job.num_consumers(); } auto job = std::make_shared<Job>( job_id, create_job.dataset_id(), create_job.processing_mode_def(), job_name, num_consumers, create_job.use_cross_trainer_cache(), create_job.target_workers()); DCHECK(!jobs_by_id_.contains(job_id)); jobs_by_id_[job_id] = job; DCHECK(!jobs_by_name_.contains(job_name)); jobs_by_name_[job_name] = job; next_available_job_id_ = std::max(next_available_job_id_, job_id + 1); } Status DispatcherState::JobFromId(int64_t job_id, std::shared_ptr<const Job>& job) const { auto it = jobs_by_id_.find(job_id); if (it == jobs_by_id_.end()) { return errors::NotFound("Job with id ", job_id, " not found"); } job = it->second; return absl::OkStatus(); } Status DispatcherState::JobByName(const std::string& job_name, std::shared_ptr<const Job>& job) const { auto it = jobs_by_name_.find(job_name); if (it == jobs_by_name_.end()) { return errors::NotFound("Job with name ", job_name, " not found"); } job = it->second; return absl::OkStatus(); } void DispatcherState::CreateIteration( const CreateIterationUpdate& create_iteration) { int64_t iteration_id = create_iteration.iteration_id(); int64_t job_id = create_iteration.job_id(); DCHECK(jobs_by_id_.contains(job_id)); auto& job = jobs_by_id_[job_id]; DCHECK(job); IterationKey iteration_key(job->job_name, create_iteration.repetition()); auto iteration = std::make_shared<Iteration>( iteration_id, iteration_key, create_iteration.num_split_providers(), job); DCHECK(!iterations_.contains(iteration_id)); iterations_[iteration_id] = iteration; tasks_by_iteration_[iteration_id] = std::vector<std::shared_ptr<Task>>(); DCHECK(!iterations_by_key_.contains(iteration_key) || iterations_by_key_[iteration_key]->garbage_collected); iterations_by_key_[iteration_key] = iteration; next_available_iteration_id_ = std::max(next_available_iteration_id_, iteration_id + 1); } void DispatcherState::ProduceSplit(const ProduceSplitUpdate& produce_split) { std::shared_ptr<Iteration> iteration = iterations_[produce_split.iteration_id()]; DCHECK(iteration->distributed_epoch_state.has_value()); DistributedEpochState& state = iteration->distributed_epoch_state.value(); int64_t provider_index = produce_split.split_provider_index(); DCHECK_GE(produce_split.repetition(), state.repetitions[provider_index]); state.repetitions[provider_index] = produce_split.repetition(); if (produce_split.finished()) { state.repetitions[provider_index]++; state.indices[provider_index] = 0; return; } state.indices[provider_index]++; } void DispatcherState::AcquireIterationClient( const AcquireIterationClientUpdate& acquire_iteration_client) { int64_t iteration_client_id = acquire_iteration_client.iteration_client_id(); std::shared_ptr<Iteration>& iteration = iterations_for_client_ids_[iteration_client_id]; DCHECK(!iteration); iteration = iterations_[acquire_iteration_client.iteration_id()]; DCHECK(iteration); iteration->num_clients++; next_available_iteration_client_id_ = std::max(next_available_iteration_client_id_, iteration_client_id + 1); } void DispatcherState::ReleaseIterationClient( const ReleaseIterationClientUpdate& release_iteration_client) { int64_t iteration_client_id = release_iteration_client.iteration_client_id(); std::shared_ptr<Iteration>& iteration = iterations_for_client_ids_[iteration_client_id]; DCHECK(iteration); iteration->num_clients--; DCHECK_GE(iteration->num_clients, 0); iteration->last_client_released_micros = release_iteration_client.time_micros(); iterations_for_client_ids_.erase(iteration_client_id); } void DispatcherState::GarbageCollectIteration( const GarbageCollectIterationUpdate& garbage_collect_iteration) { int64_t iteration_id = garbage_collect_iteration.iteration_id(); for (auto& task : tasks_by_iteration_[iteration_id]) { task->finished = true; tasks_by_worker_[task->worker_address].erase(task->task_id); } iterations_[iteration_id]->finished = true; iterations_[iteration_id]->garbage_collected = true; } void DispatcherState::RemoveTask(const RemoveTaskUpdate& remove_task) { std::shared_ptr<Task>& task = tasks_[remove_task.task_id()]; DCHECK(task); task->removed = true; auto& tasks_for_iteration = tasks_by_iteration_[task->iteration->iteration_id]; for (auto it = tasks_for_iteration.begin(); it != tasks_for_iteration.end(); ++it) { if ((*it)->task_id == task->task_id) { tasks_for_iteration.erase(it); break; } } tasks_by_worker_[task->worker_address].erase(task->task_id); tasks_.erase(task->task_id); VLOG(1) << "Removed task " << remove_task.task_id() << " from worker " << task->worker_address; } void DispatcherState::CreatePendingTask( const CreatePendingTaskUpdate& create_pending_task) { int64_t task_id = create_pending_task.task_id(); auto& task = tasks_[task_id]; DCHECK_EQ(task, nullptr); auto& iteration = iterations_[create_pending_task.iteration_id()]; DCHECK_NE(iteration, nullptr); task = std::make_shared<Task>(create_pending_task, iteration); iteration->pending_tasks.emplace(task, create_pending_task.starting_round()); tasks_by_worker_[create_pending_task.worker_address()][task->task_id] = task; next_available_task_id_ = std::max(next_available_task_id_, task_id + 1); } void DispatcherState::ClientHeartbeat( const ClientHeartbeatUpdate& client_heartbeat) { int64_t iteration_client_id = client_heartbeat.iteration_client_id(); auto& iteration = iterations_for_client_ids_[iteration_client_id]; DCHECK(!iteration->pending_tasks.empty()); auto& task = iteration->pending_tasks.front(); if (client_heartbeat.has_task_rejected()) { task.failures++; task.ready_consumers.clear(); task.target_round = client_heartbeat.task_rejected().new_target_round(); } if (client_heartbeat.task_accepted()) { task.ready_consumers.insert(iteration_client_id); if (task.ready_consumers.size() == iteration->job->num_consumers.value()) { VLOG(1) << "Promoting task " << task.task->task_id << " from pending to active"; task.task->starting_round = task.target_round; tasks_by_iteration_[iteration->iteration_id].push_back(task.task); iteration->pending_tasks.pop(); } } } void DispatcherState::CreateTask(const CreateTaskUpdate& create_task) { int64_t task_id = create_task.task_id(); auto& task = tasks_[task_id]; DCHECK_EQ(task, nullptr); auto& iteration = iterations_[create_task.iteration_id()]; DCHECK_NE(iteration, nullptr); task = std::make_shared<Task>(create_task, iteration); tasks_by_iteration_[create_task.iteration_id()].push_back(task); tasks_by_worker_[create_task.worker_address()][task->task_id] = task; next_available_task_id_ = std::max(next_available_task_id_, task_id + 1); } void DispatcherState::FinishTask(const FinishTaskUpdate& finish_task) { VLOG(2) << "Marking task " << finish_task.task_id() << " as finished"; int64_t task_id = finish_task.task_id(); auto& task = tasks_[task_id]; DCHECK(task != nullptr); task->finished = true; tasks_by_worker_[task->worker_address].erase(task->task_id); bool all_finished = true; for (const auto& task_for_iteration : tasks_by_iteration_[task->iteration->iteration_id]) { if (!task_for_iteration->finished) { all_finished = false; } } VLOG(3) << "Iteration " << task->iteration->iteration_id << " finished: " << all_finished; iterations_[task->iteration->iteration_id]->finished = all_finished; } std::string DispatcherState::NextAvailableDatasetId() const { return absl::StrCat(next_available_dataset_id_); } void DispatcherState::UpdateNextAvailableDatasetId() { while (datasets_by_id_.contains(absl::StrCat(next_available_dataset_id_))) { ++next_available_dataset_id_; } } Status DispatcherState::DatasetFromId( const std::string& id, std::shared_ptr<const Dataset>& dataset) const { auto it = datasets_by_id_.find(id); if (it == datasets_by_id_.end()) { return errors::NotFound("Dataset id ", id, " not found"); } dataset = it->second; return absl::OkStatus(); } Status DispatcherState::WorkerFromAddress( const std::string& address, std::shared_ptr<const Worker>& worker) const { auto it = workers_.find(address); if (it == workers_.end()) { return errors::NotFound("Worker with address ", address, " not found."); } worker = it->second; return absl::OkStatus(); } std::vector<std::shared_ptr<const DispatcherState::Worker>> DispatcherState::ListWorkers() const { std::vector<std::shared_ptr<const Worker>> workers; workers.reserve(workers_.size()); for (const auto& it : workers_) { workers.push_back(it.second); } return workers; } std::vector<std::shared_ptr<const DispatcherState::Iteration>> DispatcherState::ListIterations() const { std::vector<std::shared_ptr<const DispatcherState::Iteration>> iterations; iterations.reserve(iterations_.size()); for (const auto& it : iterations_) { iterations.push_back(it.second); } return iterations; } Status DispatcherState::IterationFromId( int64_t id, std::shared_ptr<const Iteration>& iteration) const { auto it = iterations_.find(id); if (it == iterations_.end()) { return errors::NotFound("Iteration id ", id, " not found"); } iteration = it->second; return absl::OkStatus(); } Status DispatcherState::IterationByKey( IterationKey iteration_key, std::shared_ptr<const Iteration>& iteration) const { auto it = iterations_by_key_.find(iteration_key); if (it == iterations_by_key_.end()) { return errors::NotFound("Iteration key ", iteration_key.DebugString(), " not found"); } iteration = it->second; return absl::OkStatus(); } int64_t DispatcherState::NextAvailableJobId() const { return next_available_job_id_; } int64_t DispatcherState::NextAvailableIterationId() const { return next_available_iteration_id_; } Status DispatcherState::IterationForIterationClientId( int64_t iteration_client_id, std::shared_ptr<const Iteration>& iteration) { iteration = iterations_for_client_ids_[iteration_client_id]; if (!iteration) { return errors::NotFound("Iteration client id not found: ", iteration_client_id); } return absl::OkStatus(); } std::vector<int64_t> DispatcherState::ListActiveClientIds() { std::vector<int64_t> ids; for (const auto& it : iterations_for_client_ids_) { if (it.second && !it.second->finished) { ids.push_back(it.first); } } return ids; } int64_t DispatcherState::NextAvailableIterationClientId() const { return next_available_iteration_client_id_; } Status DispatcherState::TaskFromId(int64_t id, std::shared_ptr<const Task>& task) const { auto it = tasks_.find(id); if (it == tasks_.end()) { return errors::NotFound("Task ", id, " not found"); } task = it->second; return absl::OkStatus(); } Status DispatcherState::TasksForIteration( int64_t iteration_id, std::vector<std::shared_ptr<const Task>>& tasks) const { auto it = tasks_by_iteration_.find(iteration_id); if (it == tasks_by_iteration_.end()) { return errors::NotFound("Iteration ", iteration_id, " not found"); } tasks.clear(); tasks.reserve(it->second.size()); for (const auto& task : it->second) { tasks.push_back(task); } return absl::OkStatus(); } Status DispatcherState::TasksForWorker( absl::string_view worker_address, std::vector<std::shared_ptr<const Task>>& tasks) const { tasks.clear(); auto it = tasks_by_worker_.find(worker_address); if (it == tasks_by_worker_.end()) { return errors::NotFound("Worker ", worker_address, " not found"); } const absl::flat_hash_map<int64_t, std::shared_ptr<Task>>& worker_tasks = it->second; tasks.reserve(worker_tasks.size()); for (const auto& task : worker_tasks) { tasks.push_back(task.second); } return absl::OkStatus(); } int64_t DispatcherState::NextAvailableTaskId() const { return next_available_task_id_; } Status DispatcherState::ValidateWorker(absl::string_view worker_address) const { return worker_index_resolver_.ValidateWorker(worker_address); } absl::StatusOr<int64_t> DispatcherState::GetWorkerIndex( absl::string_view worker_address) const { return worker_index_resolver_.GetWorkerIndex(worker_address); } void DispatcherState::Snapshot(const SnapshotUpdate& snapshot) { snapshot_paths_.insert(snapshot.path()); } void DispatcherState::CompressionDisabledAtRuntime( const Compr
#include "tensorflow/core/data/service/dispatcher_state.h" #include <cstdint> #include <memory> #include <string> #include <vector> #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/journal.pb.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using Dataset = DispatcherState::Dataset; using Worker = DispatcherState::Worker; using IterationKey = DispatcherState::IterationKey; using Job = DispatcherState::Job; using Iteration = DispatcherState::Iteration; using Task = DispatcherState::Task; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; using ::tsl::testing::StatusIs; Status RegisterDataset(const std::string& dataset_id, DispatcherState& state) { Update update; RegisterDatasetUpdate* register_dataset = update.mutable_register_dataset(); register_dataset->set_dataset_id(dataset_id); return state.Apply(update); } Status RegisterWorker(std::string worker_address, DispatcherState& state) { Update update; update.mutable_register_worker()->set_worker_address(worker_address); return state.Apply(update); } Status CreateJob(int64_t job_id, const std::string& dataset_id, const std::string& job_name, DispatcherState& state) { Update update; CreateJobUpdate* create_job = update.mutable_create_job(); create_job->set_job_id(job_id); create_job->set_dataset_id(dataset_id); create_job->set_job_name(job_name); return state.Apply(update); } Status CreateIteration(int64_t iteration_id, const std::string& dataset_id, const IterationKey& named_iteration_key, DispatcherState& state) { int64_t job_id = state.NextAvailableJobId(); TF_RETURN_IF_ERROR( CreateJob(job_id, dataset_id, named_iteration_key.name, state)); Update update; CreateIterationUpdate* create_iteration = update.mutable_create_iteration(); create_iteration->set_job_id(job_id); create_iteration->set_iteration_id(iteration_id); create_iteration->set_repetition(named_iteration_key.repetition); return state.Apply(update); } Status CreateIteration(int64_t iteration_id, const std::string& dataset_id, DispatcherState& state) { IterationKey key(absl::StrCat(random::New64()), 0); return CreateIteration(iteration_id, dataset_id, key, state); } Status AcquireIterationClientId(int64_t iteration_id, int64_t iteration_client_id, DispatcherState& state) { Update update; AcquireIterationClientUpdate* acquire_iteration_client = update.mutable_acquire_iteration_client(); acquire_iteration_client->set_iteration_id(iteration_id); acquire_iteration_client->set_iteration_client_id(iteration_client_id); return state.Apply(update); } Status ReleaseIterationClientId(int64_t iteration_client_id, int64_t release_time, DispatcherState& state) { Update update; ReleaseIterationClientUpdate* release_iteration_client = update.mutable_release_iteration_client(); release_iteration_client->set_iteration_client_id(iteration_client_id); release_iteration_client->set_time_micros(release_time); return state.Apply(update); } Status CreateTask(int64_t task_id, int64_t iteration_id, const std::string& worker_address, DispatcherState& state) { Update update; CreateTaskUpdate* create_task = update.mutable_create_task(); create_task->set_task_id(task_id); create_task->set_iteration_id(iteration_id); create_task->set_worker_address(worker_address); return state.Apply(update); } Status FinishTask(int64_t task_id, DispatcherState& state) { Update update; FinishTaskUpdate* finish_task = update.mutable_finish_task(); finish_task->set_task_id(task_id); return state.Apply(update); } Status Snapshot(const std::string& path, DispatcherState& state) { Update update; SnapshotUpdate* snapshot = update.mutable_snapshot(); snapshot->set_path(path); return state.Apply(update); } } TEST(DispatcherState, RegisterDataset) { DispatcherState state; std::string dataset_id = state.NextAvailableDatasetId(); int64_t dataset_id_int; ASSERT_TRUE(absl::SimpleAtoi(dataset_id, &dataset_id_int)); TF_EXPECT_OK(RegisterDataset(dataset_id, state)); EXPECT_EQ(state.NextAvailableDatasetId(), absl::StrCat(dataset_id_int + 1)); std::shared_ptr<const Dataset> dataset; TF_EXPECT_OK(state.DatasetFromId(dataset_id, dataset)); EXPECT_TRUE(dataset->metadata.element_spec().empty()); EXPECT_EQ(dataset->metadata.compression(), DataServiceMetadata::COMPRESSION_UNSPECIFIED); } TEST(DispatcherState, RegisterDatasetWithExplicitID) { DispatcherState state; TF_EXPECT_OK(RegisterDataset("dataset_id", state)); std::shared_ptr<const Dataset> dataset; TF_EXPECT_OK(state.DatasetFromId("dataset_id", dataset)); EXPECT_EQ(dataset->dataset_id, "dataset_id"); } TEST(DispatcherState, RegisterDatasetsWithDifferentIDs) { DispatcherState state; TF_EXPECT_OK(RegisterDataset("dataset_id1", state)); TF_EXPECT_OK(RegisterDataset("dataset_id2", state)); std::shared_ptr<const Dataset> dataset; TF_EXPECT_OK(state.DatasetFromId("dataset_id1", dataset)); EXPECT_EQ(dataset->dataset_id, "dataset_id1"); TF_EXPECT_OK(state.DatasetFromId("dataset_id2", dataset)); EXPECT_EQ(dataset->dataset_id, "dataset_id2"); } TEST(DispatcherState, RegisterDatasetCompression) { DispatcherState state; const std::string dataset_id = state.NextAvailableDatasetId(); Update update; RegisterDatasetUpdate* register_dataset = update.mutable_register_dataset(); register_dataset->set_dataset_id(dataset_id); register_dataset->mutable_metadata()->set_compression( DataServiceMetadata::COMPRESSION_SNAPPY); TF_ASSERT_OK(state.Apply(update)); { std::shared_ptr<const Dataset> dataset; TF_EXPECT_OK(state.DatasetFromId(dataset_id, dataset)); EXPECT_EQ(dataset->metadata.compression(), DataServiceMetadata::COMPRESSION_SNAPPY); } } TEST(DispatcherState, RegisterDatasetElementSpec) { DispatcherState state; const std::string dataset_id = state.NextAvailableDatasetId(); Update update; RegisterDatasetUpdate* register_dataset = update.mutable_register_dataset(); register_dataset->set_dataset_id(dataset_id); register_dataset->mutable_metadata()->set_element_spec( "encoded_element_spec"); TF_ASSERT_OK(state.Apply(update)); { std::shared_ptr<const Dataset> dataset; TF_EXPECT_OK(state.DatasetFromId(dataset_id, dataset)); EXPECT_EQ(dataset->metadata.element_spec(), "encoded_element_spec"); } } TEST(DispatcherState, MissingDatasetId) { DispatcherState state; std::shared_ptr<const Dataset> dataset; Status s = state.DatasetFromId("missing_dataset_id", dataset); EXPECT_EQ(s.code(), error::NOT_FOUND); } TEST(DispatcherState, NextAvailableDatasetId) { DispatcherState state; std::string dataset_id = state.NextAvailableDatasetId(); int64_t dataset_id_int; ASSERT_TRUE(absl::SimpleAtoi(dataset_id, &dataset_id_int)); TF_EXPECT_OK(RegisterDataset(dataset_id, state)); EXPECT_NE(state.NextAvailableDatasetId(), dataset_id); EXPECT_EQ(state.NextAvailableDatasetId(), absl::StrCat(dataset_id_int + 1)); EXPECT_EQ(state.NextAvailableDatasetId(), state.NextAvailableDatasetId()); } TEST(DispatcherState, RegisterWorker) { DispatcherState state; std::string address = "test_worker_address"; TF_EXPECT_OK(RegisterWorker(address, state)); std::shared_ptr<const Worker> worker; TF_EXPECT_OK(state.WorkerFromAddress(address, worker)); EXPECT_EQ(worker->address, address); } TEST(DispatcherState, RegisterWorkerInFixedWorkerSet) { experimental::DispatcherConfig config; config.add_worker_addresses("/worker/task/0"); config.add_worker_addresses("/worker/task/1"); config.add_worker_addresses("/worker/task/2"); DispatcherState state(config); TF_EXPECT_OK(state.ValidateWorker("/worker/task/0:20000")); TF_EXPECT_OK(state.ValidateWorker("/worker/task/1:20000")); TF_EXPECT_OK(state.ValidateWorker("/worker/task/2:20000")); TF_EXPECT_OK(RegisterWorker("/worker/task/0:20000", state)); TF_EXPECT_OK(RegisterWorker("/worker/task/1:20000", state)); TF_EXPECT_OK(RegisterWorker("/worker/task/2:20000", state)); std::shared_ptr<const Worker> worker; TF_EXPECT_OK(state.WorkerFromAddress("/worker/task/0:20000", worker)); EXPECT_EQ(worker->address, "/worker/task/0:20000"); } TEST(DispatcherState, RegisterInvalidWorkerInFixedWorkerSet) { experimental::DispatcherConfig config; config.add_worker_addresses("/worker/task/0"); config.add_worker_addresses("/worker/task/1"); config.add_worker_addresses("/worker/task/2"); DispatcherState state(config); EXPECT_THAT(state.ValidateWorker("localhost:20000"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("The worker's address is not configured"))); TF_EXPECT_OK(RegisterWorker("localhost:20000", state)); std::shared_ptr<const Worker> worker; EXPECT_THAT(state.WorkerFromAddress("/worker/task/0:20000", worker), StatusIs(error::NOT_FOUND, "Worker with address /worker/task/0:20000 not found.")); } TEST(DispatcherState, ListWorkers) { DispatcherState state; std::string address_1 = "address_1"; std::string address_2 = "address_2"; { std::vector<std::shared_ptr<const Worker>> workers = state.ListWorkers(); EXPECT_THAT(workers, IsEmpty()); } TF_EXPECT_OK(RegisterWorker(address_1, state)); { std::vector<std::shared_ptr<const Worker>> workers = state.ListWorkers(); EXPECT_THAT(workers, SizeIs(1)); } TF_EXPECT_OK(RegisterWorker(address_2, state)); { std::vector<std::shared_ptr<const Worker>> workers = state.ListWorkers(); EXPECT_THAT(workers, SizeIs(2)); } } TEST(DispatcherState, MissingWorker) { DispatcherState state; std::shared_ptr<const Worker> worker; Status s = state.WorkerFromAddress("test_worker_address", worker); EXPECT_EQ(s.code(), error::NOT_FOUND); } TEST(DispatcherState, UnknownUpdate) { DispatcherState state; Update update; Status s = state.Apply(update); EXPECT_EQ(s.code(), error::INTERNAL); } TEST(DispatcherState, JobName) { DispatcherState state; std::string dataset_id = state.NextAvailableDatasetId(); int64_t job_id = state.NextAvailableJobId(); std::string job_name = "test_name"; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateJob(job_id, dataset_id, job_name, state)); std::shared_ptr<const Job> job; TF_EXPECT_OK(state.JobByName(job_name, job)); EXPECT_EQ(state.NextAvailableJobId(), job_id + 1); EXPECT_EQ(job->dataset_id, dataset_id); EXPECT_FALSE(job->use_cross_trainer_cache); } TEST(DispatcherState, JobData) { DispatcherState state; std::string dataset_id = state.NextAvailableDatasetId(); int64_t job_id = state.NextAvailableJobId(); int64_t num_consumers = 8; bool use_cross_trainer_cache = true; TF_ASSERT_OK(RegisterDataset(dataset_id, state)); Update update; CreateJobUpdate* create_job = update.mutable_create_job(); create_job->set_job_id(job_id); create_job->set_dataset_id(dataset_id); create_job->set_num_consumers(num_consumers); create_job->set_use_cross_trainer_cache(use_cross_trainer_cache); TF_ASSERT_OK(state.Apply(update)); std::shared_ptr<const Job> job; TF_ASSERT_OK(state.JobFromId(job_id, job)); EXPECT_EQ(job->num_consumers, num_consumers); EXPECT_EQ(job->use_cross_trainer_cache, use_cross_trainer_cache); } TEST(DispatcherState, CrossTrainerCacheTask) { DispatcherState state; std::string dataset_id = state.NextAvailableDatasetId(); std::string worker_address = "test_worker_address"; TF_ASSERT_OK(RegisterDataset(dataset_id, state)); int64_t job_id = state.NextAvailableJobId(); Update job_update; CreateJobUpdate* create_job = job_update.mutable_create_job(); create_job->set_job_id(job_id); create_job->set_dataset_id(dataset_id); create_job->set_use_cross_trainer_cache(true); TF_ASSERT_OK(state.Apply(job_update)); int64_t iteration_id = state.NextAvailableIterationId(); Update iteration_update; CreateIterationUpdate* create_iteration = iteration_update.mutable_create_iteration(); create_iteration->set_job_id(job_id); create_iteration->set_iteration_id(iteration_id); TF_ASSERT_OK(state.Apply(iteration_update)); int64_t task_id = state.NextAvailableTaskId(); TF_EXPECT_OK(CreateTask(task_id, iteration_id, worker_address, state)); std::shared_ptr<const Task> task; TF_EXPECT_OK(state.TaskFromId(task_id, task)); EXPECT_EQ(task->iteration->iteration_id, iteration_id); EXPECT_EQ(task->task_id, task_id); EXPECT_EQ(task->worker_address, worker_address); EXPECT_TRUE(task->iteration->job->use_cross_trainer_cache); } TEST(DispatcherState, CreateTask) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; std::string worker_address = "test_worker_address"; DispatcherState state; int64_t task_id = state.NextAvailableTaskId(); TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id, iteration_id, worker_address, state)); EXPECT_EQ(state.NextAvailableTaskId(), task_id + 1); { std::shared_ptr<const Task> task; TF_EXPECT_OK(state.TaskFromId(task_id, task)); EXPECT_EQ(task->iteration->iteration_id, iteration_id); EXPECT_EQ(task->task_id, task_id); EXPECT_EQ(task->worker_address, worker_address); EXPECT_FALSE(task->iteration->job->use_cross_trainer_cache); } { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForIteration(iteration_id, tasks)); EXPECT_THAT(tasks, SizeIs(1)); } { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForWorker(worker_address, tasks)); EXPECT_EQ(1, tasks.size()); } } TEST(DispatcherState, CreateTasksForSameIteration) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t task_id_1 = 8; int64_t task_id_2 = 9; std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id_1, iteration_id, worker_address, state)); TF_EXPECT_OK(CreateTask(task_id_2, iteration_id, worker_address, state)); { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForIteration(iteration_id, tasks)); EXPECT_THAT(tasks, SizeIs(2)); } } TEST(DispatcherState, CreateTasksForDifferentIterations) { std::string dataset_id = "dataset_id"; int64_t iteration_id_1 = 3; int64_t iteration_id_2 = 4; int64_t task_id_1 = 8; int64_t task_id_2 = 9; std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id_1, dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id_2, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id_1, iteration_id_1, worker_address, state)); TF_EXPECT_OK(CreateTask(task_id_2, iteration_id_2, worker_address, state)); { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForIteration(iteration_id_1, tasks)); EXPECT_THAT(tasks, SizeIs(1)); } { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForIteration(iteration_id_2, tasks)); EXPECT_THAT(tasks, SizeIs(1)); } } TEST(DispatcherState, CreateTasksForSameWorker) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t task_id_1 = 8; int64_t task_id_2 = 9; std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id_1, iteration_id, worker_address, state)); TF_EXPECT_OK(CreateTask(task_id_2, iteration_id, worker_address, state)); { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForWorker(worker_address, tasks)); EXPECT_EQ(2, tasks.size()); } } TEST(DispatcherState, CreateTasksForDifferentWorkers) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t task_id_1 = 8; int64_t task_id_2 = 9; std::string worker_address_1 = "test_worker_address_1"; std::string worker_address_2 = "test_worker_address_2"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id_1, iteration_id, worker_address_1, state)); TF_EXPECT_OK(CreateTask(task_id_2, iteration_id, worker_address_2, state)); { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForWorker(worker_address_1, tasks)); EXPECT_EQ(1, tasks.size()); } { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForWorker(worker_address_2, tasks)); EXPECT_EQ(1, tasks.size()); } } TEST(DispatcherState, GetTasksForWorkerEmpty) { std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterWorker(worker_address, state)); { std::vector<std::shared_ptr<const Task>> tasks; TF_EXPECT_OK(state.TasksForWorker(worker_address, tasks)); EXPECT_EQ(0, tasks.size()); } } TEST(DispatcherState, FinishTask) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t task_id = 4; std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id, iteration_id, worker_address, state)); TF_EXPECT_OK(FinishTask(task_id, state)); std::shared_ptr<const Task> task; TF_EXPECT_OK(state.TaskFromId(task_id, task)); EXPECT_TRUE(task->finished); std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK(state.IterationFromId(iteration_id, iteration)); EXPECT_TRUE(iteration->finished); } TEST(DispatcherState, FinishMultiTaskIteration) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t task_id_1 = 4; int64_t task_id_2 = 5; std::string worker_address = "test_worker_address"; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK(CreateTask(task_id_1, iteration_id, worker_address, state)); TF_EXPECT_OK(CreateTask(task_id_2, iteration_id, worker_address, state)); TF_EXPECT_OK(FinishTask(task_id_1, state)); { std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK(state.IterationFromId(iteration_id, iteration)); EXPECT_FALSE(iteration->finished); } TF_EXPECT_OK(FinishTask(task_id_2, state)); { std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK(state.IterationFromId(iteration_id, iteration)); EXPECT_TRUE(iteration->finished); } } TEST(DispatcherState, AcquireIterationClientId) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t iteration_client_id_1 = 1; int64_t iteration_client_id_2 = 2; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id_1, state)); { std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK(state.IterationFromId(iteration_id, iteration)); EXPECT_EQ(iteration->num_clients, 1); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id_2, state)); EXPECT_EQ(iteration->num_clients, 2); } { std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK( state.IterationForIterationClientId(iteration_client_id_1, iteration)); EXPECT_EQ(iteration->iteration_id, iteration_id); } { std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK( state.IterationForIterationClientId(iteration_client_id_2, iteration)); EXPECT_EQ(iteration->iteration_id, iteration_id); } } TEST(DispatcherState, ReleaseIterationClientId) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t iteration_client_id = 6; int64_t release_time = 100; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id, state)); TF_EXPECT_OK( ReleaseIterationClientId(iteration_client_id, release_time, state)); std::shared_ptr<const Iteration> iteration; TF_EXPECT_OK(state.IterationFromId(iteration_id, iteration)); EXPECT_EQ(iteration->num_clients, 0); Status s = state.IterationForIterationClientId(iteration_client_id, iteration); EXPECT_EQ(s.code(), error::NOT_FOUND); } TEST(DispatcherState, ListActiveClientsEmpty) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t iteration_client_id = 6; int64_t release_time = 100; DispatcherState state; EXPECT_THAT(state.ListActiveClientIds(), IsEmpty()); TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id, state)); TF_EXPECT_OK( ReleaseIterationClientId(iteration_client_id, release_time, state)); EXPECT_THAT(state.ListActiveClientIds(), IsEmpty()); } TEST(DispatcherState, ListActiveClients) { std::string dataset_id = "dataset_id"; int64_t iteration_id = 3; int64_t iteration_client_id_1 = 6; int64_t iteration_client_id_2 = 7; int64_t iteration_client_id_3 = 8; int64_t release_time = 100; DispatcherState state; TF_EXPECT_OK(RegisterDataset(dataset_id, state)); TF_EXPECT_OK(CreateIteration(iteration_id, dataset_id, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id_1, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id_2, state)); TF_EXPECT_OK( ReleaseIterationClientId(iteration_client_id_2, release_time, state)); TF_EXPECT_OK( AcquireIterationClientId(iteration_id, iteration_client_id_3, state)); EXPECT_THAT(state.ListActiveClientIds(), UnorderedElementsAre(6, 8)); } TEST(DispatcherState, ListSnapshotPaths) { DispatcherState state; absl::flat_hash_set<std::string> snapshot_paths = {"p1", "p2"}; for (const auto& snapshot_path : snapshot_paths) { TF_EXPECT_OK(Snapshot(snapshot_path, state)); } EXPECT_EQ(state.ListSnapshotPaths(), snapshot_paths); } TEST(DispatcherState, GetNumberOfRegisteredWorkers) { DispatcherState state; std::string address_1 = "address_1"; std::string address_2 = "address_2"; EXPECT_EQ(state.GetNumberOfRegisteredWorkers(), 0); TF_EXPECT_OK(RegisterWorker(address_1, state)); EXPECT_EQ(state.GetNumberOfRegisteredWorkers(), 1); TF_EXPECT_OK(RegisterWorker(address_2, state)); EXPECT_EQ(state.GetNumberOfRegisteredWorkers(), 2); } } }
1,734
cpp
tensorflow/tensorflow
validate_utils
tensorflow/core/data/service/client/validate_utils.cc
tensorflow/core/data/service/client/validate_utils_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_CLIENT_VALIDATE_UTILS_H_ #define TENSORFLOW_CORE_DATA_SERVICE_CLIENT_VALIDATE_UTILS_H_ #include "tensorflow/core/data/service/client/common.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace data { Status ValidateDataServiceParams(const DataServiceParams& data_service_params); } } #endif #include "tensorflow/core/data/service/client/validate_utils.h" #include "tensorflow/core/data/service/client/common.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/data_service.pb.h" namespace tensorflow { namespace data { namespace { Status ValidateLocalWorkers(const DataServiceParams& data_service_params) { if (data_service_params.target_workers != TARGET_WORKERS_LOCAL) { return absl::OkStatus(); } if (LocalWorkers::Empty()) { if (IsStaticShard(data_service_params.processing_mode)) { return errors::InvalidArgument( "Static sharding policy <", ProcessingModeDef::ShardingPolicy_Name( data_service_params.processing_mode.sharding_policy()), "> requires local tf.data workers, but no local worker is found. " "You need to run local tf.data service workers in your training " "workers. Static sharding also requires a fixed worker pool and " "a list of worker addresses in the DispatcherConfig. See the " "\"Processing Modes\" section in the module doc for details."); } return errors::InvalidArgument( "Local reads require local tf.data workers, but no local worker " "is found. You need to run local tf.data service workers in your " "training workers."); } if (data_service_params.num_consumers.has_value()) { return errors::InvalidArgument( "Coordinated reads require non-local workers, but `target_workers` " "is \"LOCAL\"."); } return absl::OkStatus(); } Status ValidateCrossTrainerCache(const DataServiceParams& data_service_params) { if (!data_service_params.cross_trainer_cache_options.has_value()) { return absl::OkStatus(); } if (data_service_params.job_name.empty()) { return errors::InvalidArgument( "Cross-trainer caching requires named jobs. Got empty `job_name`."); } if (data_service_params.metadata.cardinality() >= 0) { return errors::InvalidArgument( "Cross-trainer caching requires the input dataset to be infinite. " "Got input with cardinality ", data_service_params.metadata.cardinality()); } if (data_service_params.repetition > 1) { return errors::InvalidArgument( "Cross-trainer caching requires infinite datasets and disallows " "multiple repetitions of the same dataset. Got repetition ", data_service_params.repetition); } if (data_service_params.num_consumers.has_value()) { return errors::InvalidArgument( "Cross-trainer caching does not support coordinated reads. " "Got number of coordinated consumers: ", data_service_params.num_consumers.value()); } return absl::OkStatus(); } } Status ValidateDataServiceParams(const DataServiceParams& data_service_params) { TF_RETURN_IF_ERROR(ValidateLocalWorkers(data_service_params)); TF_RETURN_IF_ERROR(ValidateCrossTrainerCache(data_service_params)); return absl::OkStatus(); } } }
#include "tensorflow/core/data/service/client/validate_utils.h" #include <memory> #include "tensorflow/core/data/service/client/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; DataServiceParams GetDefaultParams() { DataServiceParams params; params.dataset_id = "dataset_id"; params.processing_mode.set_sharding_policy(ProcessingModeDef::OFF); params.address = "localhost"; params.protocol = "grpc"; params.data_transfer_protocol = "grpc"; params.metadata.set_cardinality(kUnknownCardinality); return params; } std::shared_ptr<DataServiceWorkerImpl> GetLocalWorker() { experimental::WorkerConfig config; config.set_protocol("grpc"); config.set_dispatcher_address("localhost"); config.set_worker_address("localhost"); return std::make_shared<DataServiceWorkerImpl>(config); } TEST(ValidateUtilsTest, DefaultParams) { TF_EXPECT_OK(ValidateDataServiceParams(GetDefaultParams())); } TEST(ValidateUtilsTest, LocalWorkerSuccess) { DataServiceParams params = GetDefaultParams(); LocalWorkers::Add("localhost", GetLocalWorker()); params.target_workers = TARGET_WORKERS_LOCAL; TF_EXPECT_OK(ValidateDataServiceParams(params)); LocalWorkers::Remove("localhost"); } TEST(ValidateUtilsTest, NoLocalWorker) { DataServiceParams params = GetDefaultParams(); params.target_workers = TARGET_WORKERS_LOCAL; EXPECT_THAT( ValidateDataServiceParams(params), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Local reads require local tf.data workers, but no local worker " "is found."))); } TEST(ValidateUtilsTest, NoLocalWorkerStaticSharding) { DataServiceParams params = GetDefaultParams(); params.processing_mode.set_sharding_policy(ProcessingModeDef::FILE_OR_DATA); params.target_workers = TARGET_WORKERS_LOCAL; EXPECT_THAT( ValidateDataServiceParams(params), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Static sharding policy <FILE_OR_DATA> requires local tf.data " "workers, but no local worker is found."))); } TEST(ValidateUtilsTest, LocalReadDisallowsCoordinatedRead) { DataServiceParams params = GetDefaultParams(); LocalWorkers::Add("localhost", GetLocalWorker()); params.num_consumers = 1; params.consumer_index = 0; params.target_workers = TARGET_WORKERS_LOCAL; EXPECT_THAT( ValidateDataServiceParams(params), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Coordinated reads require non-local workers, but " "`target_workers` is \"LOCAL\"."))); LocalWorkers::Remove("localhost"); } TEST(ValidateUtilsTest, CrossTrainerCacheSuccess) { DataServiceParams params = GetDefaultParams(); params.job_name = "job_name"; params.repetition = 1; params.metadata.set_cardinality(kInfiniteCardinality); params.cross_trainer_cache_options.emplace(); params.cross_trainer_cache_options->set_trainer_id("trainer ID"); TF_EXPECT_OK(ValidateDataServiceParams(params)); } TEST(ValidateUtilsTest, CrossTrainerCacheRequiresJobName) { DataServiceParams params = GetDefaultParams(); params.repetition = 1; params.metadata.set_cardinality(kInfiniteCardinality); params.cross_trainer_cache_options.emplace(); params.cross_trainer_cache_options->set_trainer_id("trainer ID"); EXPECT_THAT( ValidateDataServiceParams(params), StatusIs( error::INVALID_ARGUMENT, "Cross-trainer caching requires named jobs. Got empty `job_name`.")); } TEST(ValidateUtilsTest, CrossTrainerCacheRequiresInfiniteDataset) { DataServiceParams params = GetDefaultParams(); params.job_name = "job_name"; params.repetition = 1; params.metadata.set_cardinality(10); params.cross_trainer_cache_options.emplace(); params.cross_trainer_cache_options->set_trainer_id("trainer ID"); EXPECT_THAT(ValidateDataServiceParams(params), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Cross-trainer caching requires the input " "dataset to be infinite."))); } TEST(ValidateUtilsTest, CrossTrainerCacheDisallowsRepetition) { DataServiceParams params = GetDefaultParams(); params.job_name = "job_name"; params.repetition = 5; params.metadata.set_cardinality(kInfiniteCardinality); params.cross_trainer_cache_options.emplace(); params.cross_trainer_cache_options->set_trainer_id("trainer ID"); EXPECT_THAT( ValidateDataServiceParams(params), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Cross-trainer caching requires infinite datasets and disallows " "multiple repetitions of the same dataset."))); } TEST(ValidateUtilsTest, CrossTrainerCacheDisallowsCoordinatedRead) { DataServiceParams params = GetDefaultParams(); params.job_name = "job_name"; params.repetition = 1; params.num_consumers = 1; params.consumer_index = 0; params.metadata.set_cardinality(kInfiniteCardinality); params.cross_trainer_cache_options.emplace(); params.cross_trainer_cache_options->set_trainer_id("trainer ID"); EXPECT_THAT( ValidateDataServiceParams(params), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Cross-trainer caching does not support coordinated reads."))); } } } }
1,735
cpp
tensorflow/tensorflow
dispatcher_client
tensorflow/core/data/service/dispatcher_client.cc
tensorflow/core/data/service/dispatcher_client_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_DISPATCHER_CLIENT_H_ #define TENSORFLOW_CORE_DATA_SERVICE_DISPATCHER_CLIENT_H_ #include <cstdint> #include <memory> #include <optional> #include <string> #include <vector> #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher.grpc.pb.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" #include "tensorflow/core/protobuf/snapshot.pb.h" namespace tensorflow { namespace data { class DataServiceDispatcherClient : public DataServiceClientBase { public: DataServiceDispatcherClient(const std::string& address, const std::string& protocol) : DataServiceClientBase(address, protocol) {} Status Initialize() override; absl::StatusOr<WorkerHeartbeatResponse> WorkerHeartbeat( const WorkerHeartbeatRequest& request); Status WorkerUpdate(const std::string& worker_address, std::vector<TaskProgress>& task_progress); Status GetDatasetDef(const std::string& dataset_id, DatasetDef& dataset_def); Status GetSplit(int64_t iteration_id, int64_t repetition, int64_t split_provider_index, Tensor& split, bool& end_of_splits); virtual Status GetSnapshotSplit(const std::string& worker_address, const std::string& base_path, int64_t stream_index, int64_t source_index, int64_t repetition_index, Tensor& split, int64_t& local_split_index, bool& end_of_splits); Status Snapshot(const DatasetDef& dataset, const std::string& path, const experimental::DistributedSnapshotMetadata& metadata); Status RegisterDataset(const DatasetDef& dataset, const DataServiceMetadata& metadata, const std::optional<std::string>& requested_dataset_id, std::string& dataset_id); Status GetOrCreateJob(const std::string& dataset_id, const ProcessingModeDef& processing_mode, const std::optional<std::string>& job_name, std::optional<int64_t> num_consumers, bool use_cross_trainer_cache, TargetWorkers target_workers, int64_t& job_id); Status GetOrCreateIteration(int64_t job_id, int64_t repetition, int64_t& iteration_client_id); Status ReleaseIterationClient(int64_t iteration_client_id); Status MaybeRemoveTask(int64_t task_id, int64_t consumer_index, int64_t round, bool& removed); Status ClientHeartbeat(ClientHeartbeatRequest& req, ClientHeartbeatResponse& resp); Status GetWorkers(std::vector<WorkerInfo>& workers); Status GetDataServiceMetadata(const std::string& dataset_id, DataServiceMetadata& metadata); Status GetDataServiceConfig(DataServiceConfig& config); Status DisableCompressionAtRuntime( const std::string& dataset_id, bool disable_compression_at_runtime, DisableCompressionAtRuntimeResponse& response); protected: Status EnsureInitialized() override; private: mutex mu_; std::unique_ptr<DispatcherService::Stub> stub_; }; } } #endif #include "tensorflow/core/data/service/dispatcher_client.h" #include <cstdint> #include <limits> #include <memory> #include <optional> #include <string> #include <vector> #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "grpcpp/support/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/dispatcher.grpc.pb.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace data { Status DataServiceDispatcherClient::Initialize() { mutex_lock l(mu_); if (stub_) { return absl::OkStatus(); } std::shared_ptr<grpc::ChannelCredentials> credentials; TF_RETURN_IF_ERROR( CredentialsFactory::CreateClientCredentials(protocol_, &credentials)); grpc::ChannelArguments args; args.SetMaxReceiveMessageSize(std::numeric_limits<int32>::max()); args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, true); auto channel = grpc::CreateCustomChannel(address_, credentials, args); stub_ = DispatcherService::NewStub(channel); GetVersionRequest req; GetVersionResponse resp; grpc::ClientContext ctx; grpc::Status s = stub_->GetVersion(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to get dispatcher version from dispatcher " "running at ", address_), s); } if (resp.version() != kDataServiceVersion) { return errors::FailedPrecondition( "Version mismatch with tf.data service server. The server is running " "version ", resp.version(), ", while the client is running version ", kDataServiceVersion, ". Please ensure that the client and server side are running the " "same version of TensorFlow. If you're running an MPM binary, make " "sure the server is running an up-to-date MPM."); } return absl::OkStatus(); } absl::StatusOr<WorkerHeartbeatResponse> DataServiceDispatcherClient::WorkerHeartbeat( const WorkerHeartbeatRequest& request) { WorkerHeartbeatResponse response; grpc::ClientContext client_ctx; grpc::Status status = stub_->WorkerHeartbeat(&client_ctx, request, &response); if (!status.ok()) { return grpc_util::WrapError("Failed to perform worker heartbeat", status); } return response; } Status DataServiceDispatcherClient::WorkerUpdate( const std::string& worker_address, std::vector<TaskProgress>& task_progress) { WorkerUpdateRequest req; req.set_worker_address(worker_address); for (const auto& update : task_progress) { *(req.add_updates()) = update; } WorkerUpdateResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->WorkerUpdate(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to send worker update", status); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetDatasetDef(const std::string& dataset_id, DatasetDef& dataset_def) { GetDatasetDefRequest req; req.set_dataset_id(dataset_id); GetDatasetDefResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetDatasetDef(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to get dataset def", status); } dataset_def = resp.dataset_def(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetSplit(int64_t iteration_id, int64_t repetition, int64_t split_provider_index, Tensor& split, bool& end_of_splits) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetSplitRequest req; req.set_iteration_id(iteration_id); req.set_repetition(repetition); req.set_split_provider_index(split_provider_index); GetSplitResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetSplit(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to get split", status); } end_of_splits = resp.end_of_splits(); if (!end_of_splits) { if (!split.FromProto(resp.split())) { return errors::Internal("Failed to parse split tensor proto"); } } return absl::OkStatus(); } Status DataServiceDispatcherClient::Snapshot( const DatasetDef& dataset, const std::string& path, const experimental::DistributedSnapshotMetadata& metadata) { TF_RETURN_IF_ERROR(EnsureInitialized()); SnapshotRequest req; *req.mutable_dataset() = dataset; req.set_path(path); *req.mutable_metadata() = metadata; SnapshotResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->Snapshot(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to snapshot", status); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetSnapshotSplit( const std::string& worker_address, const std::string& base_path, int64_t stream_index, int64_t source_index, int64_t repetition_index, Tensor& split, int64_t& local_split_index, bool& end_of_splits) { GetSnapshotSplitRequest req; req.set_worker_address(worker_address); req.set_base_path(base_path); req.set_stream_index(stream_index); req.set_source_index(source_index); req.set_repetition_index(repetition_index); GetSnapshotSplitResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetSnapshotSplit(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to get snapshot split", status); } local_split_index = resp.local_split_index(); end_of_splits = resp.end_of_splits(); if (end_of_splits) { return absl::OkStatus(); } if (!split.FromProto(resp.split())) { return errors::Internal("Failed to parse split tensor proto: ", resp.split().DebugString()); } return absl::OkStatus(); } Status DataServiceDispatcherClient::RegisterDataset( const DatasetDef& dataset, const DataServiceMetadata& metadata, const std::optional<std::string>& requested_dataset_id, std::string& dataset_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetOrRegisterDatasetRequest req; *req.mutable_dataset() = dataset; *req.mutable_metadata() = metadata; if (requested_dataset_id.has_value()) { req.set_dataset_id(*requested_dataset_id); } GetOrRegisterDatasetResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetOrRegisterDataset(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to register dataset", status); } dataset_id = resp.dataset_id(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetOrCreateJob( const std::string& dataset_id, const ProcessingModeDef& processing_mode, const std::optional<std::string>& job_name, std::optional<int64_t> num_consumers, bool use_cross_trainer_cache, TargetWorkers target_workers, int64_t& job_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetOrCreateJobRequest req; req.set_dataset_id(dataset_id); *req.mutable_processing_mode_def() = processing_mode; if (job_name.has_value()) { req.set_job_name(job_name.value()); } if (num_consumers.has_value()) { req.set_num_consumers(num_consumers.value()); } req.set_target_workers(target_workers); req.set_use_cross_trainer_cache(use_cross_trainer_cache); GetOrCreateJobResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetOrCreateJob(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to get or create job for dataset with id ", dataset_id), status); } job_id = resp.job_id(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetOrCreateIteration( int64_t job_id, int64_t repetition, int64_t& iteration_client_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetOrCreateIterationRequest req; req.set_job_id(job_id); req.set_repetition(repetition); GetOrCreateIterationResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->GetOrCreateIteration(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to get or create iteration for job with id ", job_id), status); } iteration_client_id = resp.iteration_client_id(); return absl::OkStatus(); } Status DataServiceDispatcherClient::ReleaseIterationClient( int64_t iteration_client_id) { TF_RETURN_IF_ERROR(EnsureInitialized()); ReleaseIterationClientRequest req; req.set_iteration_client_id(iteration_client_id); ReleaseIterationClientResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->ReleaseIterationClient(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError( absl::StrCat("Failed to release iteration client with id ", iteration_client_id), status); } return absl::OkStatus(); } Status DataServiceDispatcherClient::MaybeRemoveTask(int64_t task_id, int64_t consumer_index, int64_t round, bool& removed) { TF_RETURN_IF_ERROR(EnsureInitialized()); MaybeRemoveTaskRequest req; req.set_task_id(task_id); req.set_consumer_index(consumer_index); req.set_round(round); MaybeRemoveTaskResponse resp; grpc::ClientContext client_ctx; grpc::Status status = stub_->MaybeRemoveTask(&client_ctx, req, &resp); if (!status.ok()) { return grpc_util::WrapError("Failed to call MaybeRemoveTask", status); } removed = resp.removed(); return absl::OkStatus(); } Status DataServiceDispatcherClient::ClientHeartbeat( ClientHeartbeatRequest& req, ClientHeartbeatResponse& resp) { TF_RETURN_IF_ERROR(EnsureInitialized()); grpc::ClientContext ctx; grpc::Status s = stub_->ClientHeartbeat(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError("Failed to get tasks", s); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetWorkers( std::vector<WorkerInfo>& workers) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetWorkersRequest req; GetWorkersResponse resp; grpc::ClientContext ctx; grpc::Status s = stub_->GetWorkers(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError("Failed to get workers", s); } workers.clear(); for (auto& worker : resp.workers()) { workers.push_back(worker); } return absl::OkStatus(); } Status DataServiceDispatcherClient::GetDataServiceMetadata( const std::string& dataset_id, DataServiceMetadata& metadata) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetDataServiceMetadataRequest req; req.set_dataset_id(dataset_id); GetDataServiceMetadataResponse resp; grpc::ClientContext ctx; grpc::Status s = stub_->GetDataServiceMetadata(&ctx, req, &resp); if (!s.ok()) { return grpc_util::WrapError("Failed to get data service metadata", s); } metadata = resp.metadata(); return absl::OkStatus(); } Status DataServiceDispatcherClient::GetDataServiceConfig( DataServiceConfig& config) { TF_RETURN_IF_ERROR(EnsureInitialized()); GetDataServiceConfigRequest request; GetDataServiceConfigResponse response; grpc::ClientContext ctx; grpc::Status s = stub_->GetDataServiceConfig(&ctx, request, &response); if (!s.ok()) { return grpc_util::WrapError("Failed to get data service config", s); } config = response.config(); return absl::OkStatus(); } Status DataServiceDispatcherClient::DisableCompressionAtRuntime( const std::string& dataset_id, bool disable_compression_at_runtime, DisableCompressionAtRuntimeResponse& response) { TF_RETURN_IF_ERROR(EnsureInitialized()); grpc::ClientContext ctx; DisableCompressionAtRuntimeRequest request; request.set_dataset_id(dataset_id); request.set_disable_compression_at_runtime(disable_compression_at_runtime); grpc::Status s = stub_->DisableCompressionAtRuntime(&ctx, request, &response); if (!s.ok()) { return grpc_util::WrapError( "Failed to get runtime compression disabling decision", s); } return absl::OkStatus(); } Status DataServiceDispatcherClient::EnsureInitialized() { return grpc_util::Retry([this] { return Initialize(); }, "Initialize dispatcher client", kint64max); } } }
#include "tensorflow/core/data/service/dispatcher_client.h" #include <cstdint> #include <cstdlib> #include <memory> #include <optional> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dataset_store.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/snapshot.pb.h" #include "tensorflow/core/protobuf/struct.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::experimental::DistributedSnapshotMetadata; using ::tensorflow::data::testing::CreateDummyDistributedSnapshotMetadata; using ::tensorflow::data::testing::EqualsProto; using ::tensorflow::data::testing::InfiniteDataset; using ::tensorflow::data::testing::LocalTempFilename; using ::tensorflow::data::testing::RangeDataset; using ::tensorflow::testing::StatusIs; using ::testing::AllOf; using ::testing::ContainsRegex; using ::testing::HasSubstr; constexpr const char kProtocol[] = "grpc"; DataServiceMetadata GetDefaultMetadata() { StructuredValue decoded_spec; TensorShapeProto::Dim* dim = decoded_spec.mutable_tensor_shape_value()->add_dim(); dim->set_size(1); dim->set_name(absl::StrCat("dim")); DataServiceMetadata metadata; metadata.set_element_spec(decoded_spec.SerializeAsString()); metadata.set_compression(DataServiceMetadata::COMPRESSION_SNAPPY); metadata.set_cardinality(kUnknownCardinality); return metadata; } class DispatcherClientTest : public ::testing::Test { protected: absl::Status SetUpTfDataService(int64_t num_workers, int64_t worker_max_concurrent_snapshots = 0) { TestCluster::Config config; config.num_workers = num_workers; config.work_dir = tsl::io::JoinPath(tsl::testing::TmpDir(), "work_dir"); config.worker_max_concurrent_snapshots = worker_max_concurrent_snapshots; test_cluster_ = std::make_unique<TestCluster>(config); TF_RETURN_IF_ERROR(test_cluster_->Initialize()); dispatcher_client_ = std::make_unique<DataServiceDispatcherClient>( test_cluster_->DispatcherAddress(), kProtocol); return absl::OkStatus(); } absl::StatusOr<std::string> RegisterDataset( const DatasetDef& dataset, const DataServiceMetadata& metadata, const std::optional<std::string>& requested_dataset_id = std::nullopt) { std::string dataset_id; TF_RETURN_IF_ERROR(dispatcher_client_->RegisterDataset( dataset, metadata, requested_dataset_id, dataset_id)); return dataset_id; } absl::StatusOr<absl::flat_hash_set<std::string>> StartDummySnapshots( int64_t num_snapshots) { DistributedSnapshotMetadata metadata = CreateDummyDistributedSnapshotMetadata(); absl::flat_hash_set<std::string> directories; for (int64_t i = 0; i < num_snapshots; ++i) { directories.insert(LocalTempFilename()); } for (const auto& directory : directories) { TF_RETURN_IF_ERROR( dispatcher_client_->Snapshot(RangeDataset(10), directory, metadata)); } return directories; } std::unique_ptr<TestCluster> test_cluster_; std::unique_ptr<DataServiceDispatcherClient> dispatcher_client_; }; TEST_F(DispatcherClientTest, GetDataServiceMetadata) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(RangeDataset(10), metadata)); DataServiceMetadata result; TF_ASSERT_OK(dispatcher_client_->GetDataServiceMetadata(dataset_id, result)); EXPECT_THAT(result, EqualsProto(metadata)); } TEST_F(DispatcherClientTest, DatasetDoesNotExist) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); EXPECT_THAT( dispatcher_client_->GetDataServiceMetadata( "not-found", metadata), StatusIs(error::NOT_FOUND, HasSubstr("Dataset id not-found not found"))); } TEST_F(DispatcherClientTest, SnapshotAlreadyStarted) { TF_ASSERT_OK(SetUpTfDataService(1)); DistributedSnapshotMetadata metadata = CreateDummyDistributedSnapshotMetadata(); std::string directory = LocalTempFilename(); TF_ASSERT_OK( dispatcher_client_->Snapshot(RangeDataset(10), directory, metadata)); EXPECT_THAT( dispatcher_client_->Snapshot(RangeDataset(10), directory, metadata), StatusIs(error::ALREADY_EXISTS, HasSubstr("already started"))); } TEST_F(DispatcherClientTest, GetDataServiceConfig) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceConfig config; TF_ASSERT_OK(dispatcher_client_->GetDataServiceConfig(config)); EXPECT_EQ(config.deployment_mode(), DEPLOYMENT_MODE_COLOCATED); } TEST_F(DispatcherClientTest, SnapshotSkeletonWritten) { TF_ASSERT_OK(SetUpTfDataService(1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); for (const auto& path : paths) { TF_ASSERT_OK(Env::Default()->FileExists(CommittedChunksDirectory(path))); TF_ASSERT_OK(Env::Default()->FileExists(StreamsDirectory(path))); } } TEST_F(DispatcherClientTest, SnapshotMetadataAndDatasetDefWritten) { TF_ASSERT_OK(SetUpTfDataService(1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); for (const auto& path : paths) { TF_ASSERT_OK( Env::Default()->FileExists(io::JoinPath(path, "snapshot.metadata"))); TF_ASSERT_OK( Env::Default()->FileExists(io::JoinPath(path, "dataset_def.proto"))); } } TEST_F(DispatcherClientTest, SnapshotsInHeartbeat) { TF_ASSERT_OK(SetUpTfDataService(1, 3)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address(test_cluster_->WorkerAddress(0)); for (int64_t i = 1; i <= 3; ++i) { TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); ASSERT_EQ(worker_heartbeat_response.snapshot_tasks_size(), i); for (const auto& snapshot_task : worker_heartbeat_response.snapshot_tasks()) { ASSERT_TRUE(paths.count(snapshot_task.base_path())); ASSERT_EQ(snapshot_task.stream_index(), 0); } } } TEST_F(DispatcherClientTest, GetSnapshotSplit) { TF_ASSERT_OK(SetUpTfDataService(1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address(test_cluster_->WorkerAddress(0)); TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); for (int64_t i = 0; i < 5; ++i) { for (const auto& snapshot_task : worker_heartbeat_response.snapshot_tasks()) { GetSnapshotSplitRequest get_snapshot_split_request; Tensor split; int64_t local_split_index = 0; bool end_of_splits = false; TF_ASSERT_OK(dispatcher_client_->GetSnapshotSplit( test_cluster_->WorkerAddress(0), snapshot_task.base_path(), snapshot_task.stream_index(), 0, 0, split, local_split_index, end_of_splits)); EXPECT_EQ(local_split_index, i); EXPECT_FALSE(end_of_splits); } } } TEST_F(DispatcherClientTest, GetSnapshotSplitMultipleStreams) { TF_ASSERT_OK(SetUpTfDataService(3, 1)); TF_ASSERT_OK_AND_ASSIGN(absl::flat_hash_set<std::string> paths, StartDummySnapshots(3)); absl::flat_hash_set<std::string> snapshots_in_progress; for (int64_t i = 0; i < 3; ++i) { WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address( test_cluster_->WorkerAddress(i)); TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); EXPECT_EQ(worker_heartbeat_response.snapshot_tasks().size(), 1); for (const auto& snapshot_task : worker_heartbeat_response.snapshot_tasks()) { snapshots_in_progress.insert(snapshot_task.base_path()); GetSnapshotSplitRequest get_snapshot_split_request; Tensor split; int64_t local_split_index = 0; bool end_of_splits = false; TF_ASSERT_OK(dispatcher_client_->GetSnapshotSplit( test_cluster_->WorkerAddress(i), snapshot_task.base_path(), snapshot_task.stream_index(), 0, 0, split, local_split_index, end_of_splits)); EXPECT_EQ(local_split_index, 0); EXPECT_FALSE(end_of_splits); } } EXPECT_EQ(snapshots_in_progress, paths); } TEST_F(DispatcherClientTest, RegisterDatasetWithExplicitId) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN( const std::string dataset_id1, RegisterDataset(RangeDataset(10), metadata, "dataset_id")); EXPECT_EQ(dataset_id1, "dataset_id"); TF_ASSERT_OK_AND_ASSIGN( const std::string dataset_id2, RegisterDataset(RangeDataset(10), metadata, "dataset_id")); EXPECT_EQ(dataset_id1, dataset_id2); } TEST_F(DispatcherClientTest, DatasetsDoNotMatch) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN( const std::string dataset_id1, RegisterDataset(RangeDataset(10), metadata, "dataset_id")); EXPECT_EQ(dataset_id1, "dataset_id"); metadata.set_cardinality(kInfiniteCardinality); EXPECT_THAT( RegisterDataset(InfiniteDataset(), metadata, "dataset_id"), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Datasets with the same ID should have the same structure"))); } TEST_F(DispatcherClientTest, EnableCrossTrainerCache) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(kInfiniteCardinality); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(InfiniteDataset(), metadata)); ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); std::string job_name = "job"; int64_t job_id; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id)); int64_t iteration_client_id; TF_ASSERT_OK(dispatcher_client_->GetOrCreateIteration( job_id, 0, iteration_client_id)); WorkerHeartbeatRequest worker_heartbeat_request; worker_heartbeat_request.set_worker_address(test_cluster_->WorkerAddress(0)); TF_ASSERT_OK_AND_ASSIGN( WorkerHeartbeatResponse worker_heartbeat_response, dispatcher_client_->WorkerHeartbeat(worker_heartbeat_request)); ASSERT_EQ(worker_heartbeat_response.new_tasks_size(), 1); EXPECT_TRUE(worker_heartbeat_response.new_tasks(0).use_cross_trainer_cache()); } TEST_F(DispatcherClientTest, CreateNamedJob) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(RangeDataset(10), metadata)); ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); std::string job_name = "job"; int64_t job_id_1 = -1; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id_1)); int64_t job_id_2 = -2; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id_2)); ASSERT_EQ(job_id_1, job_id_2); } TEST_F(DispatcherClientTest, NamedJobsDoNotMatch) { TF_ASSERT_OK(SetUpTfDataService(1)); DataServiceMetadata metadata = GetDefaultMetadata(); metadata.set_cardinality(10); TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(RangeDataset(10), metadata)); int64_t job_id = 0; ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); std::string job_name = "job"; TF_ASSERT_OK(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, job_name, std::nullopt, false, TARGET_WORKERS_AUTO, job_id)); processing_mode.set_sharding_policy(ProcessingModeDef::DYNAMIC); EXPECT_THAT( dispatcher_client_->GetOrCreateJob(dataset_id, processing_mode, job_name, std::nullopt, true, TARGET_WORKERS_AUTO, job_id), StatusIs(error::INVALID_ARGUMENT, AllOf(HasSubstr("but found an existing job with different " "parameters: "), ContainsRegex("Existing processing mode: <\\w*std::nullopt, dataset_id)); EXPECT_EQ(dataset_id, "1000"); std::string datasets_dir = tsl::io::JoinPath(config.work_dir, "datasets"); FileSystemDatasetStore dataset_store(datasets_dir); TF_ASSERT_OK(dataset_store.Put("1001", dataset_def)); if (requested_dataset_id.has_value()) { TF_ASSERT_OK(dataset_store.Put(*requested_dataset_id, dataset_def)); } TF_ASSERT_OK(dispatcher_client_->RegisterDataset( dataset_def, GetDefaultMetadata(), requested_dataset_id, dataset_id)); if (requested_dataset_id.has_value()) { EXPECT_EQ(dataset_id, *requested_dataset_id); } else { EXPECT_EQ(dataset_id, "1001"); } } INSTANTIATE_TEST_SUITE_P(DatasetId, DispatcherClientTest_DatasetId, ::testing::Values(std::nullopt, "dataset_id")); } } }
1,736
cpp
tensorflow/tensorflow
url
tensorflow/core/data/service/url.cc
tensorflow/core/data/service/url_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_URL_H_ #define TENSORFLOW_CORE_DATA_SERVICE_URL_H_ #include <string> #include "absl/strings/string_view.h" namespace tensorflow { namespace data { class URL { public: explicit URL(absl::string_view url); absl::string_view host() const { return host_; } bool has_port() const { return !port_.empty(); } absl::string_view port() const { return port_; } private: void Parse(absl::string_view url); std::string host_; std::string port_; }; } } #endif #include "tensorflow/core/data/service/url.h" #include <string> #include "absl/strings/string_view.h" #include "tensorflow/core/platform/regexp.h" namespace tensorflow { namespace data { URL::URL(absl::string_view url) { Parse(url); } void URL::Parse(absl::string_view url) { absl::string_view regexp = "(.*):([a-zA-Z0-9_]+|%port(_[a-zA-Z0-9_]+)?%)"; if (!RE2::FullMatch(url, regexp, &host_, &port_)) { host_ = std::string(url); port_ = ""; } } } }
#include "tensorflow/core/data/service/url.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { TEST(URLTest, ParseUrl) { URL url("localhost"); EXPECT_EQ(url.host(), "localhost"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseUrlWithProtocol) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseUrlWithPort) { URL url("localhost:1234"); EXPECT_EQ(url.host(), "localhost"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "1234"); } TEST(URLTest, ParseUrlWithProtocolAndPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "1234"); } TEST(URLTest, ParseUrlWithProtocolAndDynamicPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port%"); } TEST(URLTest, ParseBorgAddress) { URL url("/worker/task/0"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseBorgAddressWithCustomProtocol) { URL url("worker:/worker/task/0"); EXPECT_EQ(url.host(), "worker:/worker/task/0"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseBorgAddressWithNamedPort) { URL url("/worker/task/0:worker"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "worker"); } TEST(URLTest, ParseBorgAddressWithDynamicPort) { URL url("/worker/task/0:%port%"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port%"); } TEST(URLTest, ParseBorgAddressWithDynamicNamedPort) { URL url("/worker/task/0:%port_worker%"); EXPECT_EQ(url.host(), "/worker/task/0"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port_worker%"); } TEST(URLTest, ParseIPv4Address) { URL url("127.0.0.1"); EXPECT_EQ(url.host(), "127.0.0.1"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseIPv4AddressWithPort) { URL url("127.0.0.1:8000"); EXPECT_EQ(url.host(), "127.0.0.1"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "8000"); } TEST(URLTest, ParseIPv6Address) { URL url("[::1]"); EXPECT_EQ(url.host(), "[::1]"); EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseIPv6AddressWithProtocol) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseIPv6AddressWithPort) { URL url("[::1]:23456"); EXPECT_EQ(url.host(), "[::1]"); EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "23456"); } TEST(URLTest, ParseIPv6AddressWithProtocolAndPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "23456"); } TEST(URLTest, ParseIPv6AddressWithProtocolAndDynamicPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "%port_name%"); } TEST(URLTest, ParseNonLocalIPv6Address) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseNonLocalIPv6AddressWithNamedPort) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_TRUE(url.has_port()); EXPECT_EQ(url.port(), "worker"); } TEST(URLTest, ParseEmptyIPv6Address) { URL url("http: EXPECT_EQ(url.host(), "http: EXPECT_FALSE(url.has_port()); } TEST(URLTest, ParseEmptyAddress) { URL url(""); EXPECT_EQ(url.host(), ""); EXPECT_FALSE(url.has_port()); } } } }
1,737
cpp
tensorflow/tensorflow
dataset_store
tensorflow/core/data/service/dataset_store.cc
tensorflow/core/data/service/dataset_store_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_DATASET_STORE_H_ #define TENSORFLOW_CORE_DATA_SERVICE_DATASET_STORE_H_ #include <memory> #include <string> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/data/service/dispatcher_state.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/platform/env.h" namespace tensorflow { namespace data { class DatasetStore { public: virtual ~DatasetStore() = default; virtual Status Put(const std::string& key, const DatasetDef& dataset) = 0; virtual Status Get(const std::string& key, std::shared_ptr<const DatasetDef>& dataset_def) = 0; }; class FileSystemDatasetStore : public DatasetStore { public: explicit FileSystemDatasetStore(const std::string& datasets_dir); FileSystemDatasetStore(const FileSystemDatasetStore&) = delete; FileSystemDatasetStore& operator=(const FileSystemDatasetStore&) = delete; Status Put(const std::string& key, const DatasetDef& dataset) override; Status Get(const std::string& key, std::shared_ptr<const DatasetDef>& dataset_def) override; private: const std::string datasets_dir_; }; class MemoryDatasetStore : public DatasetStore { public: MemoryDatasetStore() = default; MemoryDatasetStore(const MemoryDatasetStore&) = delete; MemoryDatasetStore& operator=(const MemoryDatasetStore&) = delete; Status Put(const std::string& key, const DatasetDef& dataset) override; Status Get(const std::string& key, std::shared_ptr<const DatasetDef>& dataset_def) override; private: absl::flat_hash_map<std::string, std::shared_ptr<const DatasetDef>> datasets_; }; } } #endif #include "tensorflow/core/data/service/dataset_store.h" #include <memory> #include <string> #include "absl/memory/memory.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/utils.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/path.h" namespace tensorflow { namespace data { FileSystemDatasetStore::FileSystemDatasetStore(const std::string& datasets_dir) : datasets_dir_(datasets_dir) {} Status FileSystemDatasetStore::Put(const std::string& key, const DatasetDef& dataset) { std::string path_to_write = io::JoinPath(datasets_dir_, key); TF_RETURN_IF_ERROR(WriteDatasetDef(path_to_write, dataset)); return absl::OkStatus(); } Status FileSystemDatasetStore::Get( const std::string& key, std::shared_ptr<const DatasetDef>& dataset_def) { std::string path = io::JoinPath(datasets_dir_, key); TF_RETURN_IF_ERROR(Env::Default()->FileExists(path)); DatasetDef def; TF_RETURN_IF_ERROR(ReadDatasetDef(path, def)); dataset_def = std::make_shared<const DatasetDef>(def); return absl::OkStatus(); } Status MemoryDatasetStore::Put(const std::string& key, const DatasetDef& dataset) { auto& stored_dataset = datasets_[key]; stored_dataset = std::make_shared<const DatasetDef>(dataset); return absl::OkStatus(); } Status MemoryDatasetStore::Get(const std::string& key, std::shared_ptr<const DatasetDef>& dataset_def) { auto& stored_dataset = datasets_[key]; if (!stored_dataset) { return errors::NotFound("Dataset with key ", key, " not found"); } dataset_def = stored_dataset; return absl::OkStatus(); } } }
#include "tensorflow/core/data/service/dataset_store.h" #include <memory> #include <string> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { const char kFileSystem[] = "file_system"; const char kMemory[] = "memory"; std::string NewDatasetsDir() { std::string dir = io::JoinPath(testing::TmpDir(), "datasets"); if (Env::Default()->FileExists(dir).ok()) { int64_t undeleted_files; int64_t undeleted_dirs; CHECK(Env::Default() ->DeleteRecursively(dir, &undeleted_files, &undeleted_dirs) .ok()); } CHECK(Env::Default()->RecursivelyCreateDir(dir).ok()); return dir; } std::unique_ptr<DatasetStore> MakeStore(const std::string& type) { if (type == kFileSystem) { return std::make_unique<FileSystemDatasetStore>(NewDatasetsDir()); } else if (type == kMemory) { return std::make_unique<MemoryDatasetStore>(); } else { CHECK(false) << "unexpected type: " << type; } } DatasetDef DatasetDefWithVersion(int32_t version) { DatasetDef def; def.mutable_graph()->set_version(version); return def; } } class DatasetStoreTest : public ::testing::Test, public ::testing::WithParamInterface<std::string> {}; TEST_P(DatasetStoreTest, StoreAndGet) { std::unique_ptr<DatasetStore> store = MakeStore(GetParam()); std::string key = "key"; DatasetDef dataset_def = DatasetDefWithVersion(1); TF_ASSERT_OK(store->Put(key, dataset_def)); std::shared_ptr<const DatasetDef> result; TF_ASSERT_OK(store->Get(key, result)); EXPECT_EQ(result->graph().version(), dataset_def.graph().version()); } TEST_P(DatasetStoreTest, StoreAndGetMultiple) { std::unique_ptr<DatasetStore> store = MakeStore(GetParam()); int64_t num_datasets = 10; std::vector<std::string> keys; for (int i = 0; i < num_datasets; ++i) { std::string key = absl::StrCat("key", i); DatasetDef dataset_def = DatasetDefWithVersion(i); TF_ASSERT_OK(store->Put(key, dataset_def)); keys.push_back(key); } for (int i = 0; i < num_datasets; ++i) { std::shared_ptr<const DatasetDef> result; TF_ASSERT_OK(store->Get(keys[i], result)); EXPECT_EQ(result->graph().version(), i); } } TEST_P(DatasetStoreTest, StoreAlreadyExists) { std::unique_ptr<DatasetStore> store = MakeStore(GetParam()); int32_t version = 1; DatasetDef dataset_def = DatasetDefWithVersion(version); std::string key = "key"; TF_ASSERT_OK(store->Put(key, dataset_def)); TF_EXPECT_OK(store->Put(key, dataset_def)); std::shared_ptr<const DatasetDef> result; TF_ASSERT_OK(store->Get(key, result)); EXPECT_EQ(result->graph().version(), version); } TEST_P(DatasetStoreTest, GetMissing) { std::unique_ptr<DatasetStore> store = MakeStore(GetParam()); std::shared_ptr<const DatasetDef> result; Status s = store->Get("missing", result); EXPECT_EQ(s.code(), error::NOT_FOUND); } INSTANTIATE_TEST_SUITE_P(DatasetStoreTests, DatasetStoreTest, ::testing::Values(kFileSystem, kMemory)); } }
1,738
cpp
tensorflow/tensorflow
grpc_dispatcher_impl
tensorflow/core/data/service/grpc_dispatcher_impl.cc
tensorflow/core/data/service/grpc_dispatcher_impl_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_GRPC_DISPATCHER_IMPL_H_ #define TENSORFLOW_CORE_DATA_SERVICE_GRPC_DISPATCHER_IMPL_H_ #include "grpcpp/server_builder.h" #include "tensorflow/core/data/service/dispatcher.grpc.pb.h" #include "tensorflow/core/data/service/dispatcher_impl.h" #include "tensorflow/core/data/service/export.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { class GrpcDispatcherImpl : public DispatcherService::Service { public: explicit GrpcDispatcherImpl(const experimental::DispatcherConfig& config, ::grpc::ServerBuilder& server_builder); ~GrpcDispatcherImpl() override { Stop(); } Status Start(); void Stop(); size_t NumActiveIterations(); DispatcherStateExport ExportState() const; #define HANDLER(method) \ ::grpc::Status method(::grpc::ServerContext* context, \ const method##Request* request, \ method##Response* response) override; HANDLER(WorkerHeartbeat); HANDLER(WorkerUpdate); HANDLER(GetDatasetDef); HANDLER(GetSplit); HANDLER(GetVersion); HANDLER(GetOrRegisterDataset); HANDLER(ReleaseIterationClient); HANDLER(MaybeRemoveTask); HANDLER(GetOrCreateJob); HANDLER(GetOrCreateIteration); HANDLER(ClientHeartbeat); HANDLER(GetWorkers); HANDLER(GetDataServiceMetadata); HANDLER(GetDataServiceConfig); HANDLER(Snapshot); HANDLER(GetSnapshotSplit); HANDLER(GetSnapshotStreams); HANDLER(DisableCompressionAtRuntime); #undef HANDLER private: DataServiceDispatcherImpl impl_; GrpcDispatcherImpl(const GrpcDispatcherImpl&) = delete; void operator=(const GrpcDispatcherImpl&) = delete; }; } } #endif #include "tensorflow/core/data/service/grpc_dispatcher_impl.h" #include "grpcpp/server_context.h" #include "tensorflow/core/data/service/export.pb.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { using ::grpc::ServerBuilder; using ::grpc::ServerContext; GrpcDispatcherImpl::GrpcDispatcherImpl( const experimental::DispatcherConfig& config, ServerBuilder& server_builder) : impl_(config) { server_builder.RegisterService(this); VLOG(1) << "Registered data service dispatcher"; } Status GrpcDispatcherImpl::Start() { return impl_.Start(); } void GrpcDispatcherImpl::Stop() { impl_.Stop(); } size_t GrpcDispatcherImpl::NumActiveIterations() { return impl_.NumActiveIterations(); } DispatcherStateExport GrpcDispatcherImpl::ExportState() const { return impl_.ExportState(); } #define HANDLER(method) \ grpc::Status GrpcDispatcherImpl::method(ServerContext* context, \ const method##Request* request, \ method##Response* response) { \ return ToGrpcStatus(impl_.method(request, response)); \ } HANDLER(WorkerHeartbeat); HANDLER(WorkerUpdate); HANDLER(GetDatasetDef); HANDLER(GetSplit); HANDLER(GetVersion); HANDLER(GetOrRegisterDataset); HANDLER(ReleaseIterationClient); HANDLER(MaybeRemoveTask); HANDLER(GetOrCreateJob); HANDLER(GetOrCreateIteration); HANDLER(ClientHeartbeat); HANDLER(GetWorkers); HANDLER(GetDataServiceMetadata); HANDLER(GetDataServiceConfig); HANDLER(Snapshot); HANDLER(GetSnapshotSplit); HANDLER(GetSnapshotStreams); HANDLER(DisableCompressionAtRuntime); #undef HANDLER } }
#include "tensorflow/core/data/service/grpc_dispatcher_impl.h" #include <limits> #include <memory> #include <string> #include <utility> #include "grpcpp/channel.h" #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/server_lib.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { namespace { using ::grpc::Channel; using ::grpc::ChannelArguments; using ::grpc::ChannelCredentials; using ::grpc::ClientContext; constexpr const char kHostAddress[] = "localhost"; constexpr const char kProtocol[] = "grpc"; class GrpcDispatcherImplTest : public ::testing::Test { protected: void SetUp() override { TF_ASSERT_OK(SetUpDispatcherServer()); TF_ASSERT_OK(SetUpDispatcherClientStub()); } Status SetUpDispatcherServer() { experimental::DispatcherConfig config; config.set_protocol(kProtocol); TF_RETURN_IF_ERROR(NewDispatchServer(config, dispatcher_server_)); return dispatcher_server_->Start(); } Status SetUpDispatcherClientStub() { std::shared_ptr<ChannelCredentials> credentials; TF_RETURN_IF_ERROR( CredentialsFactory::CreateClientCredentials(kProtocol, &credentials)); ChannelArguments args; args.SetMaxReceiveMessageSize(std::numeric_limits<int32>::max()); args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, true); std::shared_ptr<Channel> channel = ::grpc::CreateCustomChannel(GetDispatcherAddress(), credentials, args); dispatcher_client_stub_ = DispatcherService::NewStub(channel); return absl::OkStatus(); } std::string GetDispatcherAddress() const { return absl::StrCat(kHostAddress, ":", dispatcher_server_->BoundPort()); } std::unique_ptr<DispatchGrpcDataServer> dispatcher_server_; std::unique_ptr<DispatcherService::Stub> dispatcher_client_stub_; }; TEST_F(GrpcDispatcherImplTest, GrpcTest) { ClientContext ctx; GetVersionRequest req; GetVersionResponse resp; TF_ASSERT_OK( FromGrpcStatus(dispatcher_client_stub_->GetVersion(&ctx, req, &resp))); EXPECT_EQ(resp.version(), kDataServiceVersion); } } } }
1,739
cpp
tensorflow/tensorflow
credentials_factory
tensorflow/core/data/service/credentials_factory.cc
tensorflow/core/data/service/credentials_factory_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_CREDENTIALS_FACTORY_H_ #define TENSORFLOW_CORE_DATA_SERVICE_CREDENTIALS_FACTORY_H_ #include <memory> #include <string> #include "grpcpp/grpcpp.h" #include "grpcpp/security/credentials.h" #include "absl/strings/string_view.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { namespace data { class CredentialsFactory { public: virtual ~CredentialsFactory() = default; virtual std::string Protocol() = 0; virtual Status CreateServerCredentials( std::shared_ptr<::grpc::ServerCredentials>* out) = 0; virtual Status CreateClientCredentials( std::shared_ptr<::grpc::ChannelCredentials>* out) = 0; static void Register(CredentialsFactory* factory); static Status CreateServerCredentials( absl::string_view protocol, std::shared_ptr<::grpc::ServerCredentials>* out); static Status CreateClientCredentials( absl::string_view protocol, std::shared_ptr<::grpc::ChannelCredentials>* out); static bool Exists(absl::string_view protocol); private: static Status Get(const absl::string_view protocol, CredentialsFactory** out); }; } } #endif #include "tensorflow/core/data/service/credentials_factory.h" #include <memory> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { namespace data { namespace { mutex* get_lock() { static mutex lock(LINKER_INITIALIZED); return &lock; } using CredentialsFactories = std::unordered_map<std::string, CredentialsFactory*>; CredentialsFactories& credentials_factories() { static auto& factories = *new CredentialsFactories(); return factories; } } void CredentialsFactory::Register(CredentialsFactory* factory) { mutex_lock l(*get_lock()); if (!credentials_factories().insert({factory->Protocol(), factory}).second) { LOG(ERROR) << "Two credentials factories are being registered with protocol " << factory->Protocol() << ". Which one gets used is undefined."; } } Status CredentialsFactory::Get(absl::string_view protocol, CredentialsFactory** out) { mutex_lock l(*get_lock()); auto it = credentials_factories().find(std::string(protocol)); if (it != credentials_factories().end()) { *out = it->second; return absl::OkStatus(); } std::vector<string> available_types; for (const auto& factory : credentials_factories()) { available_types.push_back(factory.first); } return errors::NotFound("No credentials factory has been registered for ", "protocol ", protocol, ". The available types are: [ ", absl::StrJoin(available_types, ", "), " ]"); } Status CredentialsFactory::CreateServerCredentials( absl::string_view protocol, std::shared_ptr<::grpc::ServerCredentials>* out) { CredentialsFactory* factory; TF_RETURN_IF_ERROR(CredentialsFactory::Get(protocol, &factory)); TF_RETURN_IF_ERROR(factory->CreateServerCredentials(out)); return absl::OkStatus(); } Status CredentialsFactory::CreateClientCredentials( absl::string_view protocol, std::shared_ptr<::grpc::ChannelCredentials>* out) { CredentialsFactory* factory; TF_RETURN_IF_ERROR(CredentialsFactory::Get(protocol, &factory)); TF_RETURN_IF_ERROR(factory->CreateClientCredentials(out)); return absl::OkStatus(); } bool CredentialsFactory::Exists(absl::string_view protocol) { mutex_lock l(*get_lock()); return credentials_factories().find(std::string(protocol)) != credentials_factories().end(); } class InsecureCredentialsFactory : public CredentialsFactory { public: std::string Protocol() override { return "grpc"; } Status CreateServerCredentials( std::shared_ptr<::grpc::ServerCredentials>* out) override { *out = ::grpc::InsecureServerCredentials(); return absl::OkStatus(); } Status CreateClientCredentials( std::shared_ptr<::grpc::ChannelCredentials>* out) override { *out = ::grpc::InsecureChannelCredentials(); return absl::OkStatus(); } }; class InsecureCredentialsRegistrar { public: InsecureCredentialsRegistrar() { auto factory = new InsecureCredentialsFactory(); CredentialsFactory::Register(factory); } }; static InsecureCredentialsRegistrar registrar; } }
#include "tensorflow/core/data/service/credentials_factory.h" #include <memory> #include <string> #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { constexpr char kFailedToCreateServerCredentials[] = "Failed to create server credentials."; constexpr char kFailedToCreateClientCredentials[] = "Failed to create client credentials."; class TestCredentialsFactory : public CredentialsFactory { public: std::string Protocol() override { return "test"; } Status CreateServerCredentials( std::shared_ptr<grpc::ServerCredentials>* out) override { return errors::Internal(kFailedToCreateServerCredentials); } Status CreateClientCredentials( std::shared_ptr<grpc::ChannelCredentials>* out) override { return errors::Internal(kFailedToCreateClientCredentials); } }; } TEST(CredentialsFactory, Register) { TestCredentialsFactory test_factory; CredentialsFactory::Register(&test_factory); std::shared_ptr<grpc::ServerCredentials> server_credentials; ASSERT_EQ(errors::Internal(kFailedToCreateServerCredentials), CredentialsFactory::CreateServerCredentials(test_factory.Protocol(), &server_credentials)); std::shared_ptr<grpc::ChannelCredentials> client_credentials; ASSERT_EQ(errors::Internal(kFailedToCreateClientCredentials), CredentialsFactory::CreateClientCredentials(test_factory.Protocol(), &client_credentials)); } TEST(CredentialsFactory, DefaultGrpcProtocol) { std::shared_ptr<grpc::ServerCredentials> server_credentials; TF_ASSERT_OK( CredentialsFactory::CreateServerCredentials("grpc", &server_credentials)); std::shared_ptr<grpc::ChannelCredentials> client_credentials; TF_ASSERT_OK( CredentialsFactory::CreateClientCredentials("grpc", &client_credentials)); } TEST(CredentialsFactory, MissingServerProtocol) { std::shared_ptr<grpc::ServerCredentials> server_credentials; Status s = CredentialsFactory::CreateServerCredentials("unknown_protocol", &server_credentials); ASSERT_EQ(error::Code::NOT_FOUND, s.code()); ASSERT_TRUE( absl::StrContains(s.ToString(), "No credentials factory has been registered for " "protocol unknown_protocol")); } TEST(CredentialsFactory, MissingClientProtocol) { std::shared_ptr<grpc::ChannelCredentials> client_credentials; Status s = CredentialsFactory::CreateClientCredentials("unknown_protocol", &client_credentials); ASSERT_EQ(error::Code::NOT_FOUND, s.code()); ASSERT_TRUE( absl::StrContains(s.ToString(), "No credentials factory has been registered for " "protocol unknown_protocol")); } } }
1,740
cpp
tensorflow/tensorflow
data_transfer
tensorflow/core/data/service/data_transfer.cc
tensorflow/core/data/service/data_transfer_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_DATA_TRANSFER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_DATA_TRANSFER_H_ #include <functional> #include <memory> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { struct GetElementResult { GetElementResult() = default; GetElementResult(const GetElementResult&) = delete; GetElementResult& operator=(const GetElementResult&) = delete; GetElementResult(GetElementResult&&) = default; GetElementResult& operator=(GetElementResult&&) = default; GetElementResult Copy() const; size_t EstimatedMemoryUsageBytes() const; std::vector<Tensor> components; int64_t element_index = 0; bool end_of_sequence = false; bool skip = false; }; class DataTransferClient { public: struct Config { absl::string_view protocol; std::string address; const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info; Allocator* allocator; }; using ClientFactoryT = std::function<Status(Config, std::unique_ptr<DataTransferClient>*)>; virtual ~DataTransferClient() = default; virtual Status GetElement(const GetElementRequest& req, GetElementResult& result) = 0; virtual void TryCancel() = 0; static void Register(std::string name, ClientFactoryT factory); static Status Build(std::string name, Config config, std::unique_ptr<DataTransferClient>* out); virtual absl::StatusOr<std::string> GetCompatibilityInfo() const { return std::string(); } virtual Status CheckCompatibility( const std::string& server_compatibility_info) const { return absl::OkStatus(); } protected: Env* const env_ = Env::Default(); }; class DataTransferServer { public: using GetElementT = std::function<Status(const GetElementRequest*, GetElementResult*)>; using ServerFactoryT = std::function<Status(GetElementT, std::shared_ptr<DataTransferServer>*)>; virtual ~DataTransferServer() = default; virtual Status Start(const experimental::WorkerConfig& config) = 0; virtual int Port() const = 0; static void Register(std::string name, ServerFactoryT factory); static Status Build(std::string name, GetElementT get_element, std::shared_ptr<DataTransferServer>* out); virtual absl::StatusOr<std::string> GetCompatibilityInfo() const { return std::string(); } }; } } #endif #include "tensorflow/core/data/service/data_transfer.h" #include <functional> #include <memory> #include <string> #include <unordered_map> #include <vector> #include "absl/strings/str_join.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace data { namespace { mutex* get_lock() { static mutex lock(LINKER_INITIALIZED); return &lock; } using DataTransferServerFactories = std::unordered_map<std::string, DataTransferServer::ServerFactoryT>; DataTransferServerFactories& transfer_server_factories() { static auto& factories = *new DataTransferServerFactories(); return factories; } using DataTransferClientFactories = std::unordered_map<std::string, DataTransferClient::ClientFactoryT>; DataTransferClientFactories& transfer_client_factories() { static auto& factories = *new DataTransferClientFactories(); return factories; } } GetElementResult GetElementResult::Copy() const { GetElementResult copy; copy.components = components; copy.element_index = element_index; copy.end_of_sequence = end_of_sequence; copy.skip = skip; return copy; } size_t GetElementResult::EstimatedMemoryUsageBytes() const { size_t size_bytes = components.size() * sizeof(Tensor) + sizeof(element_index) + sizeof(end_of_sequence) + sizeof(skip); for (const Tensor& tensor : components) { size_bytes += tensor.TotalBytes(); if (tensor.dtype() != DT_VARIANT) { continue; } const Variant& variant = tensor.scalar<Variant>()(); const CompressedElement* compressed = variant.get<CompressedElement>(); if (compressed) { size_bytes += compressed->SpaceUsedLong(); } } return size_bytes; } void DataTransferServer::Register(std::string name, ServerFactoryT factory) { mutex_lock l(*get_lock()); if (!transfer_server_factories().insert({name, factory}).second) { LOG(ERROR) << "Two data transfer server factories are being registered with name " << name << ". Which one gets used is undefined."; } } Status DataTransferServer::Build(std::string name, GetElementT get_element, std::shared_ptr<DataTransferServer>* out) { mutex_lock l(*get_lock()); auto it = transfer_server_factories().find(name); if (it != transfer_server_factories().end()) { return it->second(get_element, out); } std::vector<std::string> available_names; for (const auto& factory : transfer_server_factories()) { available_names.push_back(factory.first); } return errors::NotFound( "No data transfer server factory has been registered for name ", name, ". The available names are: [ ", absl::StrJoin(available_names, ", "), " ]"); } void DataTransferClient::Register(std::string name, ClientFactoryT factory) { mutex_lock l(*get_lock()); if (!transfer_client_factories().insert({name, factory}).second) { LOG(ERROR) << "Two data transfer client factories are being registered with name " << name << ". Which one gets used is undefined."; } } Status DataTransferClient::Build(std::string name, Config config, std::unique_ptr<DataTransferClient>* out) { mutex_lock l(*get_lock()); auto it = transfer_client_factories().find(name); if (it != transfer_client_factories().end()) { return it->second(config, out); } std::vector<string> available_names; for (const auto& factory : transfer_client_factories()) { available_names.push_back(factory.first); } return errors::NotFound( "No data transfer client factory has been registered for name ", name, ". The available names are: [ ", absl::StrJoin(available_names, ", "), " ]"); } } }
#include "tensorflow/core/data/service/data_transfer.h" #include <memory> #include <string> #include <utility> #include <vector> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { class TestDataTransferServer : public DataTransferServer { public: explicit TestDataTransferServer(bool* called) : called_(called) {} Status Start(const experimental::WorkerConfig& unused_config) override { *called_ = true; return absl::OkStatus(); } int Port() const override { return 0; } private: bool* called_; }; template <class T> GetElementResult MakeElementResult(T value) { GetElementResult result; result.components.push_back(Tensor(std::move(value))); result.element_index = 0; result.end_of_sequence = false; return result; } TEST(DataTransferTest, RegisterDataTransferServerBuilder) { bool called = false; DataTransferServer::Register("test", [&called](auto ignore, auto* server) { *server = std::make_shared<TestDataTransferServer>(&called); return absl::OkStatus(); }); std::shared_ptr<DataTransferServer> server; TF_ASSERT_OK(DataTransferServer::Build("test", {}, &server)); EXPECT_FALSE(called); TF_ASSERT_OK(server->Start({})); EXPECT_TRUE(called); } TEST(DataTransferTest, EstimateMemoryUsageBytes) { GetElementResult empty; EXPECT_GT(empty.EstimatedMemoryUsageBytes(), 0); Tensor tensor(DT_INT64, TensorShape({10, 100})); GetElementResult int64_result = MakeElementResult(tensor); EXPECT_GT(int64_result.EstimatedMemoryUsageBytes(), 1000 * sizeof(int64_t)); EXPECT_GT(int64_result.EstimatedMemoryUsageBytes(), int64_result.components[0].AllocatedBytes()); EXPECT_GE(int64_result.EstimatedMemoryUsageBytes(), sizeof(int64_result)); } TEST(DataTransferTest, EstimateVariantMemoryUsageBytes) { const size_t data_size = 1000; std::unique_ptr<CompressedElement> compressed{ protobuf::Arena::Create<CompressedElement>(nullptr)}; compressed->set_data(std::string(data_size, 'a')); Tensor tensor(DT_VARIANT, TensorShape({})); tensor.scalar<Variant>()() = *compressed; GetElementResult variant_result = MakeElementResult(tensor); EXPECT_GT(variant_result.EstimatedMemoryUsageBytes(), data_size); EXPECT_GT(variant_result.EstimatedMemoryUsageBytes(), compressed->ByteSizeLong()); EXPECT_GT(variant_result.EstimatedMemoryUsageBytes(), compressed->SpaceUsedLong()); } TEST(DataTransferTest, CopyGetElementResult) { std::string hello_world = "hello, world!"; GetElementResult result = MakeElementResult(hello_world); ASSERT_EQ(result.components.size(), 1); EXPECT_GT(result.EstimatedMemoryUsageBytes(), hello_world.size()); GetElementResult copy = result.Copy(); ASSERT_EQ(copy.components.size(), 1); test::ExpectEqual(result.components[0], copy.components[0]); EXPECT_EQ(copy.EstimatedMemoryUsageBytes(), result.EstimatedMemoryUsageBytes()); } } } }
1,741
cpp
tensorflow/tensorflow
byte_size
tensorflow/core/data/service/byte_size.cc
tensorflow/core/data/service/byte_size_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_BYTE_SIZE_H_ #define TENSORFLOW_CORE_DATA_SERVICE_BYTE_SIZE_H_ #include <cstddef> #include <ostream> #include <string> namespace tensorflow { namespace data { class ByteSize final { public: constexpr ByteSize() = default; constexpr ByteSize(const ByteSize&) = default; ByteSize& operator=(const ByteSize&) = default; constexpr static ByteSize Bytes(size_t n); template <class T> constexpr static ByteSize KB(T n); template <class T> constexpr static ByteSize MB(T n); template <class T> constexpr static ByteSize GB(T n); template <class T> constexpr static ByteSize TB(T n); ByteSize& operator+=(ByteSize rhs); ByteSize& operator-=(ByteSize rhs); template <class T> ByteSize& operator*=(T rhs); template <class T> ByteSize& operator/=(T rhs); size_t ToUnsignedBytes() const; double ToDoubleBytes() const; double ToDoubleKB() const; double ToDoubleMB() const; double ToDoubleGB() const; double ToDoubleTB() const; std::string DebugString() const; private: constexpr explicit ByteSize(double bytes) : bytes_(bytes) {} size_t bytes_ = 0; }; constexpr ByteSize ByteSize::Bytes(size_t n) { return ByteSize(n); }; template <class T> constexpr ByteSize ByteSize::KB(T n) { return ByteSize::Bytes(n * (size_t{1} << 10)); } template <class T> constexpr ByteSize ByteSize::MB(T n) { return ByteSize::Bytes(n * (size_t{1} << 20)); } template <class T> constexpr ByteSize ByteSize::GB(T n) { return ByteSize::Bytes(n * (size_t{1} << 30)); } template <class T> constexpr ByteSize ByteSize::TB(T n) { return ByteSize::Bytes(n * (size_t{1} << 40)); } inline ByteSize& ByteSize::operator+=(ByteSize rhs) { bytes_ += rhs.ToUnsignedBytes(); return *this; } inline ByteSize& ByteSize::operator-=(ByteSize rhs) { if (bytes_ < rhs.ToUnsignedBytes()) { bytes_ = 0; return *this; } bytes_ -= rhs.ToUnsignedBytes(); return *this; } template <class T> inline ByteSize& ByteSize::operator*=(T rhs) { bytes_ *= rhs; return *this; } template <class T> inline ByteSize& ByteSize::operator/=(T rhs) { bytes_ /= rhs; return *this; } inline ByteSize operator+(ByteSize lhs, ByteSize rhs) { return lhs += rhs; } inline ByteSize operator-(ByteSize lhs, ByteSize rhs) { return lhs -= rhs; } template <class T> inline ByteSize operator*(ByteSize lhs, T rhs) { return lhs *= rhs; } template <class T> inline ByteSize operator*(T lhs, ByteSize rhs) { return rhs *= lhs; } template <class T> inline ByteSize operator/(ByteSize lhs, T rhs) { return lhs /= rhs; } inline double operator/(ByteSize lhs, ByteSize rhs) { return lhs.ToDoubleBytes() / rhs.ToDoubleBytes(); } inline bool operator<(ByteSize lhs, ByteSize rhs) { return lhs.ToUnsignedBytes() < rhs.ToUnsignedBytes(); } inline bool operator>(ByteSize lhs, ByteSize rhs) { return rhs < lhs; } inline bool operator>=(ByteSize lhs, ByteSize rhs) { return !(lhs < rhs); } inline bool operator<=(ByteSize lhs, ByteSize rhs) { return !(rhs < lhs); } inline bool operator==(ByteSize lhs, ByteSize rhs) { return lhs.ToUnsignedBytes() == rhs.ToUnsignedBytes(); } inline bool operator!=(ByteSize lhs, ByteSize rhs) { return !(lhs == rhs); } inline std::ostream& operator<<(std::ostream& os, ByteSize byte_size) { return os << byte_size.DebugString(); } } } #endif #include "tensorflow/core/data/service/byte_size.h" #include <cstddef> #include <string> #include "absl/strings/str_cat.h" namespace tensorflow { namespace data { size_t ByteSize::ToUnsignedBytes() const { return bytes_; } double ByteSize::ToDoubleBytes() const { return static_cast<double>(bytes_); } double ByteSize::ToDoubleKB() const { return *this / ByteSize::KB(1); } double ByteSize::ToDoubleMB() const { return *this / ByteSize::MB(1); } double ByteSize::ToDoubleGB() const { return *this / ByteSize::GB(1); } double ByteSize::ToDoubleTB() const { return *this / ByteSize::TB(1); } std::string ByteSize::DebugString() const { if (*this < ByteSize::KB(1)) { return absl::StrCat(ToUnsignedBytes(), "B"); } if (*this < ByteSize::MB(1)) { return absl::StrCat(ToDoubleKB(), "KB"); } if (*this < ByteSize::GB(1)) { return absl::StrCat(ToDoubleMB(), "MB"); } if (*this < ByteSize::TB(1)) { return absl::StrCat(ToDoubleGB(), "GB"); } return absl::StrCat(ToDoubleTB(), "TB"); } } }
#include "tensorflow/core/data/service/byte_size.h" #include <cstddef> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "tsl/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::Eq; using ::testing::Not; TEST(ByteSizeTest, Constructors) { EXPECT_EQ(ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(1), ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::Bytes(1024), ByteSize::Bytes(1024)); EXPECT_EQ(ByteSize::Bytes(1024), ByteSize::KB(1)); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 63), ByteSize::TB(size_t{1} << 23)); EXPECT_EQ(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1), ByteSize::Bytes(size_t{1} << 10)); EXPECT_EQ(ByteSize::KB(0.9), ByteSize::Bytes(1024 * 0.9)); EXPECT_EQ(ByteSize::KB(1.5), ByteSize::Bytes(1024 * 1.5)); EXPECT_EQ(ByteSize::KB(1.5), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::KB(1024), ByteSize::MB(1)); EXPECT_EQ(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1), ByteSize::Bytes(size_t{1} << 20)); EXPECT_EQ(ByteSize::MB(0.9), ByteSize::Bytes(size_t{1} << 20) * 0.9); EXPECT_EQ(ByteSize::MB(1.5), ByteSize::Bytes(size_t{1} << 20) * 1.5); EXPECT_EQ(ByteSize::MB(1.5), ByteSize::MB(1.5)); EXPECT_EQ(ByteSize::MB(1024), ByteSize::GB(1)); EXPECT_EQ(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::GB(1), ByteSize::Bytes(size_t{1} << 30)); EXPECT_EQ(ByteSize::GB(0.9), ByteSize::Bytes(size_t{1} << 30) * 0.9); EXPECT_EQ(ByteSize::GB(1.5), ByteSize::Bytes(size_t{1} << 30) * 1.5); EXPECT_EQ(ByteSize::GB(1.5), ByteSize::GB(1.5)); EXPECT_EQ(ByteSize::GB(1024), ByteSize::TB(1)); EXPECT_EQ(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::TB(1), ByteSize::Bytes(size_t{1} << 40)); EXPECT_EQ(ByteSize::TB(0.9), ByteSize::Bytes(size_t{1} << 40) * 0.9); EXPECT_EQ(ByteSize::TB(1.5), ByteSize::Bytes(size_t{1} << 40) * 1.5); EXPECT_EQ(ByteSize::TB(1.5), ByteSize::TB(1.5)); EXPECT_EQ(ByteSize::TB(1024), ByteSize::TB(1024)); EXPECT_EQ(ByteSize::TB(size_t{1} << 23), ByteSize::TB(size_t{1} << 23)); EXPECT_THAT(ByteSize::Bytes(0), Not(Eq(ByteSize::Bytes(1)))); EXPECT_THAT(ByteSize::Bytes(1025), Not(Eq(ByteSize::KB(1)))); EXPECT_THAT(ByteSize::KB(1), Not(Eq(ByteSize::MB(1)))); EXPECT_THAT(ByteSize::MB(1), Not(Eq(ByteSize::GB(1)))); EXPECT_THAT(ByteSize::GB(1), Not(Eq(ByteSize::TB(1)))); EXPECT_THAT(ByteSize::TB(1), Not(Eq(ByteSize::TB(2)))); } TEST(ByteSizeTest, ConstexprConstruction) { constexpr ByteSize default_byte_size; EXPECT_EQ(default_byte_size, ByteSize::Bytes(0)); constexpr ByteSize bytes = ByteSize::Bytes(1); EXPECT_EQ(bytes, ByteSize::Bytes(1)); constexpr ByteSize kb = ByteSize::KB(1); EXPECT_EQ(kb, ByteSize::KB(1)); constexpr ByteSize mb = ByteSize::MB(1); EXPECT_EQ(mb, ByteSize::MB(1)); constexpr ByteSize gb = ByteSize::GB(1); EXPECT_EQ(gb, ByteSize::GB(1)); constexpr ByteSize tb = ByteSize::TB(1); EXPECT_EQ(tb, ByteSize::TB(1)); constexpr ByteSize tb_copy(tb); EXPECT_EQ(tb_copy, tb); } TEST(ByteSizeTest, ConvertToBytes) { EXPECT_EQ(ByteSize::Bytes(0).ToUnsignedBytes(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleBytes(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleKB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleMB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleGB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleTB(), 0); EXPECT_EQ(ByteSize::Bytes(1).ToUnsignedBytes(), 1); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleBytes(), 1.0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleKB(), 1.0 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleMB(), 1.0 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleGB(), 1.0 / 1024 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleTB(), 1.0 / 1024 / 1024 / 1024 / 1024); EXPECT_EQ(ByteSize::KB(0.25).ToUnsignedBytes(), 0.25 * (size_t{1} << 10)); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleBytes(), 0.25 * 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleKB(), 0.25); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleMB(), 0.25 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleGB(), 0.25 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleTB(), 0.25 / 1024 / 1024 / 1024); EXPECT_EQ(ByteSize::MB(0.5).ToUnsignedBytes(), 0.5 * (size_t{1} << 20)); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleBytes(), 0.5 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleKB(), 0.5 * 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleMB(), 0.5); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleGB(), 0.5 / 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleTB(), 0.5 / 1024 / 1024); EXPECT_EQ(ByteSize::GB(10).ToUnsignedBytes(), 10.0 * (size_t{1} << 30)); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleBytes(), 10.0 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleKB(), 10.0 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleMB(), 10.0 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleGB(), 10.0); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleTB(), 10.0 / 1024); EXPECT_EQ(ByteSize::TB(1024).ToUnsignedBytes(), 1024 * (size_t{1} << 40)); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleBytes(), 1024.0 * 1024 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleKB(), 1024.0 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleMB(), 1024.0 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleGB(), 1024.0 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleTB(), 1024.0); } TEST(ByteSizeTest, Arithmetics) { EXPECT_EQ(ByteSize::Bytes(0) + ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) + ByteSize::Bytes(1), ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::Bytes(512) + ByteSize::Bytes(512), ByteSize::KB(1)); EXPECT_EQ(ByteSize::Bytes(512) + ByteSize::KB(1), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::KB(0.5) + ByteSize::KB(1), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::MB(1) + ByteSize::KB(512), ByteSize::MB(1.5)); EXPECT_EQ(ByteSize::MB(1) + ByteSize::Bytes(512), ByteSize::Bytes(1049088)); EXPECT_EQ(ByteSize::GB(0.5) + ByteSize::MB(256) + ByteSize::MB(256), ByteSize::GB(1)); std::vector<ByteSize> GBs(1024, ByteSize::GB(1)); EXPECT_EQ(absl::c_accumulate(GBs, ByteSize::Bytes(0)), ByteSize::TB(1)); EXPECT_EQ(ByteSize::TB(1) + ByteSize::TB(0.5) + ByteSize::GB(512), ByteSize::TB(2)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) - ByteSize::Bytes(512), ByteSize::KB(0.5)); EXPECT_EQ(ByteSize::MB(1) - ByteSize::KB(512) - ByteSize::KB(512), ByteSize::MB(0)); EXPECT_EQ(ByteSize::GB(1) - ByteSize::MB(512), ByteSize::GB(0.5)); EXPECT_EQ(ByteSize::GB(0.5) - ByteSize::MB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::GB(1) - ByteSize::MB(512) - ByteSize::MB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::TB(1) - ByteSize::GB(512) - ByteSize::GB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::GB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1) - ByteSize::GB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::GB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::TB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(1) * 1024, ByteSize::KB(1)); EXPECT_EQ(ByteSize::KB(1) * 1024, ByteSize::MB(1)); EXPECT_EQ(ByteSize::MB(1) * 1024, ByteSize::GB(1)); EXPECT_EQ(ByteSize::GB(1) * 1024, ByteSize::TB(1)); EXPECT_EQ(ByteSize::Bytes(1) * 1.1, ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::KB(1) * 1.2, ByteSize::KB(1.2)); EXPECT_EQ(ByteSize::MB(1) * 1.3, ByteSize::MB(1.3)); EXPECT_EQ(ByteSize::GB(1) * 1.4, ByteSize::GB(1.4)); EXPECT_EQ(ByteSize::TB(1) * 1.5, ByteSize::TB(1.5)); EXPECT_EQ(ByteSize::KB(1) * 0.5, ByteSize::Bytes(512)); EXPECT_EQ(ByteSize::MB(1) * 0.5, ByteSize::KB(512)); EXPECT_EQ(ByteSize::GB(1) * 0.5, ByteSize::MB(512)); EXPECT_EQ(ByteSize::TB(1) * 0.25, ByteSize::GB(256)); EXPECT_EQ(1024 * ByteSize::Bytes(1), ByteSize::KB(1)); EXPECT_EQ(1024 * ByteSize::KB(1), ByteSize::MB(1)); EXPECT_EQ(1024 * ByteSize::MB(1), ByteSize::GB(1)); EXPECT_EQ(1024 * ByteSize::GB(1), ByteSize::TB(1)); EXPECT_EQ(0.9 * ByteSize::TB(1), ByteSize::GB(921.6)); EXPECT_EQ(0 * ByteSize::TB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) / 1, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) / 2, ByteSize::KB(0.5)); EXPECT_EQ(ByteSize::MB(1) / 2, ByteSize::KB(512)); EXPECT_EQ(ByteSize::GB(1) / 2, ByteSize::MB(512)); EXPECT_EQ(ByteSize::TB(1.5) / 2, ByteSize::GB(768)); EXPECT_EQ(ByteSize::KB(1) / 0.5, ByteSize::KB(2)); EXPECT_EQ(ByteSize::MB(1) / 0.5, ByteSize::MB(2)); EXPECT_EQ(ByteSize::GB(1) / 0.5, ByteSize::GB(2)); EXPECT_EQ(ByteSize::TB(1) / 0.25, ByteSize::TB(4)); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0) / ByteSize::KB(1), 0.0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1) / ByteSize::TB(1), 1.0 / 1024 / 1024 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(1) / ByteSize::KB(2), 0.5); EXPECT_DOUBLE_EQ(ByteSize::KB(512) / ByteSize::MB(1), 0.5); EXPECT_DOUBLE_EQ(ByteSize::KB(1) / ByteSize::MB(1), 1.0 / 1024.0); EXPECT_DOUBLE_EQ(ByteSize::MB(1) / ByteSize::GB(1), 1.0 / 1024.0); EXPECT_DOUBLE_EQ(ByteSize::GB(1) / ByteSize::TB(1), 1.0 / 1024.0); } TEST(ByteSizeTest, Assignments) { ByteSize byte_size; EXPECT_EQ(byte_size, ByteSize::Bytes(0)); byte_size = ByteSize::Bytes(1); EXPECT_EQ(byte_size, ByteSize::Bytes(1)); for (size_t i = 0; i < 1023; ++i) { byte_size += ByteSize::Bytes(1); } EXPECT_EQ(byte_size, ByteSize::KB(1)); for (size_t i = 0; i < 10; ++i) { byte_size *= 2; } EXPECT_EQ(byte_size, ByteSize::MB(1)); byte_size *= 1024 * 1024; EXPECT_EQ(byte_size, ByteSize::TB(1)); for (size_t i = 0; i < 10; ++i) { byte_size /= 2; } EXPECT_EQ(byte_size, ByteSize::GB(1)); for (size_t i = 0; i < 4; ++i) { byte_size -= ByteSize::MB(256); } EXPECT_EQ(byte_size, ByteSize::Bytes(0)); byte_size -= ByteSize::Bytes(1); EXPECT_EQ(byte_size, ByteSize::Bytes(0)); } TEST(ByteSizeTest, Comparisons) { EXPECT_LE(ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::Bytes(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::Bytes(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::Bytes(1), ByteSize::Bytes(1024)); EXPECT_LE(ByteSize::Bytes(1), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::Bytes(1024), ByteSize::Bytes(1024 * 1024)); EXPECT_LE(ByteSize::Bytes(1024), ByteSize::Bytes(1024 * 1024)); EXPECT_LT(ByteSize::Bytes(1024), ByteSize::KB(1.1)); EXPECT_LE(ByteSize::Bytes(1024), ByteSize::KB(1.1)); EXPECT_LE(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_LE(ByteSize::KB(1), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::KB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::KB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::KB(0.9), ByteSize::Bytes(1024)); EXPECT_LE(ByteSize::KB(0.9), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::KB(1), ByteSize::KB(1024)); EXPECT_LE(ByteSize::KB(1), ByteSize::KB(1024)); EXPECT_LT(ByteSize::KB(1), ByteSize::MB(1)); EXPECT_LE(ByteSize::KB(1), ByteSize::MB(1)); EXPECT_LT(ByteSize::KB(1024), ByteSize::MB(1.1)); EXPECT_LE(ByteSize::KB(1024), ByteSize::MB(1.1)); EXPECT_LE(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::MB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::MB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::MB(0.9), ByteSize::KB(1024)); EXPECT_LE(ByteSize::MB(0.9), ByteSize::KB(1024)); EXPECT_LT(ByteSize::MB(1), ByteSize::MB(1024)); EXPECT_LE(ByteSize::MB(1), ByteSize::MB(1024)); EXPECT_LT(ByteSize::MB(1), ByteSize::GB(1)); EXPECT_LE(ByteSize::MB(1), ByteSize::GB(1)); EXPECT_LT(ByteSize::MB(1024), ByteSize::GB(1.1)); EXPECT_LE(ByteSize::MB(1024), ByteSize::GB(1.1)); EXPECT_LE(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::GB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::GB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::GB(0.9), ByteSize::MB(1024)); EXPECT_LE(ByteSize::GB(0.9), ByteSize::MB(1024)); EXPECT_LT(ByteSize::GB(1), ByteSize::GB(1024)); EXPECT_LE(ByteSize::GB(1), ByteSize::GB(1024)); EXPECT_LT(ByteSize::GB(1), ByteSize::TB(1)); EXPECT_LE(ByteSize::GB(1), ByteSize::TB(1)); EXPECT_LT(ByteSize::GB(1024), ByteSize::TB(1.1)); EXPECT_LE(ByteSize::GB(1024), ByteSize::TB(1.1)); EXPECT_LE(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::TB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::TB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::TB(0.9), ByteSize::GB(1024)); EXPECT_LE(ByteSize::TB(0.9), ByteSize::GB(1024)); EXPECT_LT(ByteSize::TB(1), ByteSize::TB(1024)); EXPECT_LE(ByteSize::TB(1), ByteSize::TB(1024)); EXPECT_LT(ByteSize::TB(1024), ByteSize::TB(1025)); EXPECT_LE(ByteSize::TB(1024), ByteSize::TB(1025)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1)); EXPECT_GT(ByteSize::GB(1), ByteSize::MB(1)); EXPECT_GT(ByteSize::MB(1), ByteSize::KB(1)); EXPECT_GT(ByteSize::KB(1), ByteSize::Bytes(1)); EXPECT_GT(ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1) + ByteSize::MB(1) + ByteSize::KB(1) + ByteSize::Bytes(1)); EXPECT_GT(ByteSize::GB(1), 0.0000001 * ByteSize::TB(1)); EXPECT_GT(ByteSize::MB(1), ByteSize::KB(1) * 1023); EXPECT_GT(ByteSize::KB(1), ByteSize::KB(3) / 4); EXPECT_GT(ByteSize::Bytes(1), ByteSize::TB(0)); EXPECT_GE(ByteSize::TB(0.5), ByteSize::GB(0.5)); EXPECT_GE(ByteSize::GB(0.5), ByteSize::MB(0.5)); EXPECT_GE(ByteSize::MB(0.5), ByteSize::KB(0.5)); EXPECT_GE(ByteSize::KB(0.5), ByteSize::Bytes(1)); EXPECT_GE(ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::Bytes(0), ByteSize::Bytes(0)); } TEST(ByteSizeTest, DebugString) { EXPECT_EQ(ByteSize::Bytes(0).DebugString(), "0B"); EXPECT_EQ(ByteSize::Bytes(1).DebugString(), "1B"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 10).DebugString(), "1KB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 20).DebugString(), "1MB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 30).DebugString(), "1GB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 40).DebugString(), "1TB"); EXPECT_EQ(ByteSize::KB(0.5).DebugString(), "512B"); EXPECT_EQ(ByteSize::KB(1).DebugString(), "1KB"); EXPECT_EQ(ByteSize::KB(1.5).DebugString(), "1.5KB"); EXPECT_EQ(ByteSize::KB(1024).DebugString(), "1MB"); EXPECT_EQ(ByteSize::KB(1024 * 1024).DebugString(), "1GB"); EXPECT_EQ(ByteSize::KB(1024 * 1024 * 1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::MB(0.5).DebugString(), "512KB"); EXPECT_EQ(ByteSize::MB(1).DebugString(), "1MB"); EXPECT_EQ(ByteSize::MB(1.5).DebugString(), "1.5MB"); EXPECT_EQ(ByteSize::MB(1024).DebugString(), "1GB"); EXPECT_EQ(ByteSize::MB(1024 * 1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::GB(0.5).DebugString(), "512MB"); EXPECT_EQ(ByteSize::GB(1).DebugString(), "1GB"); EXPECT_EQ(ByteSize::GB(1.5).DebugString(), "1.5GB"); EXPECT_EQ(ByteSize::GB(1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::TB(0.5).DebugString(), "512GB"); EXPECT_EQ(ByteSize::TB(1).DebugString(), "1TB"); EXPECT_EQ(ByteSize::TB(1.5).DebugString(), "1.5TB"); EXPECT_EQ(ByteSize::TB(1024).DebugString(), "1024TB"); } } } }
1,742
cpp
tensorflow/tensorflow
worker_client
tensorflow/core/data/service/worker_client.cc
tensorflow/core/data/service/worker_client_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_WORKER_CLIENT_H_ #define TENSORFLOW_CORE_DATA_SERVICE_WORKER_CLIENT_H_ #include <memory> #include <string> #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { constexpr const char kLocalTransferProtocol[] = "local"; constexpr const char kGrpcTransferProtocol[] = "grpc"; class DataServiceWorkerClient : public DataServiceClientBase { public: DataServiceWorkerClient( const std::string& address, const std::string& protocol, const std::string& transfer_protocol, const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator) : DataServiceClientBase(address, protocol), transfer_protocol_(transfer_protocol), accelerator_device_info_(accelerator_device_info), allocator_(allocator) {} Status GetElement(const GetElementRequest& req, GetElementResult& result); void TryCancel(); Status CheckCompatibility( const std::string& server_compatibility_info) const { return client_->CheckCompatibility(server_compatibility_info); } std::string GetDataTransferProtocol() const; protected: Status EnsureInitialized() override; private: std::string transfer_protocol_; const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info_; Allocator* allocator_; mutex mu_; std::unique_ptr<DataTransferClient> client_; }; absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> CreateDataServiceWorkerClient( const std::string& dispatcher_protocol, const DataTransferServerInfo& info, const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator); } } #endif #include "tensorflow/core/data/service/worker_client.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "grpcpp/support/status.h" #include "absl/container/flat_hash_set.h" #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/worker.grpc.pb.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace data { absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> CreateDataServiceWorkerClient( const std::string& dispatcher_protocol, const DataTransferServerInfo& info, const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator) { auto client = std::make_unique<DataServiceWorkerClient>( info.address(), dispatcher_protocol, info.protocol(), accelerator_device_info, allocator); TF_RETURN_IF_ERROR(client->Initialize()); TF_RETURN_WITH_CONTEXT_IF_ERROR( client->CheckCompatibility(info.compatibility_info()), "for data transfer protocol '", client->GetDataTransferProtocol(), "', the compatibility check between the trainer worker and the ", "tf.data service worker at ", info.address(), "failed"); return client; } Status DataServiceWorkerClient::GetElement(const GetElementRequest& req, GetElementResult& result) { TF_RETURN_IF_ERROR(EnsureInitialized()); return client_->GetElement(req, result); } Status DataServiceWorkerClient::EnsureInitialized() { mutex_lock l(mu_); if (client_) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(DataTransferClient::Build( GetDataTransferProtocol(), {protocol_, address_, accelerator_device_info_, allocator_}, &client_)); return absl::OkStatus(); } std::string DataServiceWorkerClient::GetDataTransferProtocol() const { if (LocalWorkers::Get(address_) != nullptr) { return kLocalTransferProtocol; } return transfer_protocol_; } void DataServiceWorkerClient::TryCancel() { client_->TryCancel(); } class GrpcDataTransferClient : public DataTransferClient { public: GrpcDataTransferClient(std::shared_ptr<grpc::ChannelCredentials> credentials, std::string address) { VLOG(2) << "Create GrpcDataTransferClient for worker " << address << "."; grpc::ChannelArguments args; args.SetMaxReceiveMessageSize(-1); auto channel = grpc::CreateCustomChannel(address, credentials, args); stub_ = WorkerService::NewStub(channel); } Status GetElement(const GetElementRequest& req, GetElementResult& result) override { VLOG(3) << "GetElement for task " << req.task_id() << " from gRPC worker " << "server."; { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled("Client was cancelled."); } } grpc::ClientContext ctx; gtl::Cleanup<std::function<void()>> cleanup; { mutex_lock l(mu_); active_contexts_.insert(&ctx); cleanup = gtl::MakeCleanup([this, &ctx] { mutex_lock l(mu_); active_contexts_.erase(&ctx); }); } GetElementResponse resp; int64_t start_time_us = env_->NowMicros(); grpc::Status s = stub_->GetElement(&ctx, req, &resp); int64_t end_time_us = env_->NowMicros(); if (!s.ok()) { return grpc_util::WrapError("Failed to get element", s); } metrics::RecordTFDataServiceGetElementDuration(kGrpcTransferProtocol, end_time_us - start_time_us); result.end_of_sequence = resp.end_of_sequence(); result.skip = resp.skip_task(); switch (resp.element_case()) { case GetElementResponse::kCompressed: { Tensor tensor(DT_VARIANT, TensorShape{}); tensor.scalar<Variant>()() = std::move(resp.compressed()); result.components.push_back(tensor); break; } case GetElementResponse::kUncompressed: for (const auto& component : resp.uncompressed().components()) { result.components.emplace_back(); if (!result.components.back().FromProto(component)) { return errors::Internal("Failed to parse tensor."); } } break; case GetElementResponse::ELEMENT_NOT_SET: break; } return absl::OkStatus(); } void TryCancel() override { VLOG(2) << "Cancel GrpcDataTransferClient."; mutex_lock l(mu_); cancelled_ = true; for (const auto& ctx : active_contexts_) { ctx->TryCancel(); } } private: mutex mu_; std::unique_ptr<WorkerService::Stub> stub_; absl::flat_hash_set<::grpc::ClientContext*> active_contexts_ TF_GUARDED_BY(mu_); bool cancelled_ TF_GUARDED_BY(mu_) = false; }; class GrpcTransferClientRegistrar { public: GrpcTransferClientRegistrar() { DataTransferClient::Register( kGrpcTransferProtocol, [](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* out) { std::shared_ptr<grpc::ChannelCredentials> credentials; TF_RETURN_IF_ERROR(CredentialsFactory::CreateClientCredentials( config.protocol, &credentials)); *out = std::make_unique<GrpcDataTransferClient>(credentials, config.address); return absl::OkStatus(); }); } }; static GrpcTransferClientRegistrar gprc_client_registrar; class LocalDataTransferClient : public DataTransferClient { public: explicit LocalDataTransferClient(absl::string_view worker_address) : worker_address_(worker_address) { VLOG(2) << "Create LocalDataTransferClient for worker " << worker_address_ << "."; } Status GetElement(const GetElementRequest& req, GetElementResult& result) override { VLOG(3) << "GetElement for task " << req.task_id() << " from local worker."; TF_RETURN_IF_ERROR(VerifyClientIsNotCancelled()); TF_ASSIGN_OR_RETURN(std::shared_ptr<DataServiceWorkerImpl> worker, GetWorker(req)); int64_t start_time_us = env_->NowMicros(); Status s = worker->GetElementResult(&req, &result); int64_t end_time_us = env_->NowMicros(); TF_RETURN_IF_ERROR(s); metrics::RecordTFDataServiceGetElementDuration(kLocalTransferProtocol, end_time_us - start_time_us); return s; } void TryCancel() override { VLOG(2) << "Cancel LocalDataTransferClient for worker " << worker_address_ << "."; mutex_lock l(mu_); cancelled_ = true; } private: Status VerifyClientIsNotCancelled() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled(absl::Substitute( "Client for worker $0 has been cancelled.", worker_address_)); } return absl::OkStatus(); } absl::StatusOr<std::shared_ptr<DataServiceWorkerImpl>> GetWorker( const GetElementRequest& req) const { std::shared_ptr<DataServiceWorkerImpl> worker = LocalWorkers::Get(worker_address_); if (!worker) { return errors::Cancelled(absl::Substitute( "Local worker at address $0 is no longer available; cancel request " "for task $1.", worker_address_, req.task_id())); } return worker; } const std::string worker_address_; mutex mu_; bool cancelled_ TF_GUARDED_BY(mu_) = false; }; class LocalTransferClientRegistrar { public: LocalTransferClientRegistrar() { DataTransferClient::Register( kLocalTransferProtocol, [](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* out) { *out = std::make_unique<LocalDataTransferClient>(config.address); return absl::OkStatus(); }); } }; static LocalTransferClientRegistrar local_client_registrar; } }
#include "tensorflow/core/data/service/worker_client.h" #include <memory> #include <optional> #include <string> #include <utility> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/substitute.h" #include "absl/types/optional.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::testing::RangeSquareDataset; using ::tensorflow::testing::StatusIs; using ::testing::MatchesRegex; constexpr const char kProtocol[] = "grpc"; constexpr const char kAltTransferProtocol[] = "alt"; class WorkerClientTest : public ::testing::TestWithParam<std::string> { protected: void SetUp() override { InitializeTestCluster(); } void InitializeTestCluster( std::optional<std::string> data_transfer_protocol = std::nullopt) { test_cluster_ = std::make_unique<TestCluster>(1, data_transfer_protocol); TF_ASSERT_OK(test_cluster_->Initialize()); dispatcher_client_ = std::make_unique<DataServiceDispatcherClient>( test_cluster_->DispatcherAddress(), kProtocol); } absl::StatusOr<std::string> RegisterDataset(const int64_t range) { const auto dataset_def = RangeSquareDataset(range); std::string dataset_id; TF_RETURN_IF_ERROR(dispatcher_client_->RegisterDataset( dataset_def, DataServiceMetadata(), std::nullopt, dataset_id)); return dataset_id; } absl::StatusOr<int64_t> CreateIteration(const std::string& dataset_id) { ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); int64_t job_id = 0; TF_RETURN_IF_ERROR(dispatcher_client_->GetOrCreateJob( dataset_id, processing_mode, std::nullopt, std::nullopt, false, TARGET_WORKERS_AUTO, job_id)); int64_t iteration_client_id = 0; TF_RETURN_IF_ERROR(dispatcher_client_->GetOrCreateIteration( job_id, 0, iteration_client_id)); return iteration_client_id; } absl::StatusOr<int64_t> GetTaskToRead(const int64_t iteration_client_id) { ClientHeartbeatRequest request; ClientHeartbeatResponse response; request.set_iteration_client_id(iteration_client_id); TF_RETURN_IF_ERROR(dispatcher_client_->ClientHeartbeat(request, response)); if (response.task_info().empty()) { return errors::NotFound(absl::Substitute( "No task found for iteration $0.", iteration_client_id)); } return response.task_info(0).task_id(); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> GetWorkerClient( const std::string& data_transfer_protocol) { DataTransferServerInfo info; info.set_address(GetWorkerAddress()); info.set_protocol(data_transfer_protocol); return CreateDataServiceWorkerClient(kProtocol, info, nullptr, nullptr); } absl::StatusOr<GetElementResult> GetElement(DataServiceWorkerClient& client, const int64_t task_id) { GetElementRequest request; GetElementResult result; request.set_task_id(task_id); TF_RETURN_IF_ERROR(client.GetElement(request, result)); return result; } std::string GetDispatcherAddress() const { return test_cluster_->DispatcherAddress(); } std::string GetWorkerAddress() const { return test_cluster_->WorkerAddress(0); } std::unique_ptr<TestCluster> test_cluster_; std::unique_ptr<DataServiceDispatcherClient> dispatcher_client_; }; class AltDataTransferServer : public DataTransferServer { public: explicit AltDataTransferServer(DataTransferServer::GetElementT get_element) : get_element_(get_element) {} absl::Status GetElement(const GetElementRequest& req, GetElementResult& result) { return get_element_(&req, &result); } absl::Status Start(const experimental::WorkerConfig& config) override { return absl::OkStatus(); } int Port() const override { return -1; } private: DataTransferServer::GetElementT get_element_; }; class AltDataTransferClient : public DataTransferClient { public: explicit AltDataTransferClient(std::shared_ptr<AltDataTransferServer> server) : server_(server) {} absl::Status GetElement(const GetElementRequest& req, GetElementResult& result) override { return server_->GetElement(req, result); } void TryCancel() override {} private: std::shared_ptr<AltDataTransferServer> server_; }; class AltDataTransferRegistrar { public: AltDataTransferRegistrar() { DataTransferServer::Register( kAltTransferProtocol, [this](DataTransferServer::GetElementT get_element, std::shared_ptr<DataTransferServer>* server) { server_ = std::make_shared<AltDataTransferServer>(get_element); *server = server_; return absl::OkStatus(); }); DataTransferClient::Register( kAltTransferProtocol, [this](DataTransferClient::Config config, std::unique_ptr<DataTransferClient>* client) { *client = std::make_unique<AltDataTransferClient>(server_); return absl::OkStatus(); }); } private: std::shared_ptr<AltDataTransferServer> server_ = nullptr; }; static AltDataTransferRegistrar alt_data_transfer_registrar; class DataTransferProtocolWorkerClientTest : public WorkerClientTest { protected: void SetUp() override { std::string data_transfer_protocol = GetParam(); InitializeTestCluster(data_transfer_protocol); } }; TEST_F(WorkerClientTest, LocalRead) { const int64_t range = 5; TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(range)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); for (int64_t i = 0; i < range; ++i) { TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); test::ExpectEqual(result.components[0], Tensor(int64_t{i * i})); EXPECT_FALSE(result.end_of_sequence); } LocalWorkers::Remove(GetWorkerAddress()); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_F(WorkerClientTest, LocalReadEmptyDataset) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(0)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); EXPECT_TRUE(result.end_of_sequence); LocalWorkers::Remove(GetWorkerAddress()); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_P(DataTransferProtocolWorkerClientTest, NetworkRead) { std::string data_transfer_protocol = GetParam(); LocalWorkers::Remove(GetWorkerAddress()); const int64_t range = 5; TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(range)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(data_transfer_protocol)); for (int64_t i = 0; i < range; ++i) { TF_ASSERT_OK_AND_ASSIGN(GetElementResult result, GetElement(*client, task_id)); test::ExpectEqual(result.components[0], Tensor(int64_t{i * i})); EXPECT_FALSE(result.end_of_sequence); } } INSTANTIATE_TEST_SUITE_P( NetworkProtocols, DataTransferProtocolWorkerClientTest, ::testing::Values(kGrpcTransferProtocol, kAltTransferProtocol), [](const ::testing::TestParamInfo< DataTransferProtocolWorkerClientTest::ParamType>& info) { return info.param; }); TEST_F(WorkerClientTest, LocalServerShutsDown) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(5)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); test_cluster_->StopWorkers(); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Local worker.*is no longer available.*"))); } TEST_F(WorkerClientTest, CancelClient) { TF_ASSERT_OK_AND_ASSIGN(const std::string dataset_id, RegisterDataset(5)); TF_ASSERT_OK_AND_ASSIGN(const int64_t iteration_client_id, CreateIteration(dataset_id)); TF_ASSERT_OK_AND_ASSIGN(const int64_t task_id, GetTaskToRead(iteration_client_id)); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<DataServiceWorkerClient> client, GetWorkerClient(kLocalTransferProtocol)); client->TryCancel(); EXPECT_THAT(GetElement(*client, task_id), StatusIs(error::CANCELLED, MatchesRegex("Client for worker.*has been cancelled."))); } } } }
1,743
cpp
tensorflow/tensorflow
grpc_worker_impl
tensorflow/core/data/service/grpc_worker_impl.cc
tensorflow/core/data/service/grpc_worker_impl_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_GRPC_WORKER_IMPL_H_ #define TENSORFLOW_CORE_DATA_SERVICE_GRPC_WORKER_IMPL_H_ #include <functional> #include <memory> #include <string> #include <vector> #include "grpcpp/server_builder.h" #include "tensorflow/core/data/service/export.pb.h" #include "tensorflow/core/data/service/worker.grpc.pb.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { class GrpcWorkerImpl : public WorkerService::Service { public: explicit GrpcWorkerImpl(const experimental::WorkerConfig& config, ::grpc::ServerBuilder& server_builder); ~GrpcWorkerImpl() override { Stop(); } Status Start(const std::string& worker_address, const std::vector<DataTransferServerInfo>& transfer_servers); void Stop(); std::function<Status(const GetElementRequest*, GetElementResult*)> get_element_getter() { return [this](const GetElementRequest* request, GetElementResult* result) { return impl_->GetElementResult(request, result); }; } WorkerStateExport ExportState() const; #define HANDLER(method) \ ::grpc::Status method(::grpc::ServerContext* context, \ const method##Request* request, \ method##Response* response) override; HANDLER(ProcessTask); HANDLER(GetElement); HANDLER(GetWorkerTasks); HANDLER(GetSnapshotTaskProgresses); #undef HANDLER private: std::string worker_address_; std::shared_ptr<DataServiceWorkerImpl> impl_; GrpcWorkerImpl(const GrpcWorkerImpl&) = delete; void operator=(const GrpcWorkerImpl&) = delete; }; } } #endif #include "tensorflow/core/data/service/grpc_worker_impl.h" #include <memory> #include <string> #include <vector> #include "grpcpp/server_builder.h" #include "grpcpp/server_context.h" #include "tensorflow/core/data/service/export.pb.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { using ::grpc::ServerBuilder; using ::grpc::ServerContext; GrpcWorkerImpl::GrpcWorkerImpl(const experimental::WorkerConfig& config, ServerBuilder& server_builder) : impl_(std::make_shared<DataServiceWorkerImpl>(config)) { server_builder.RegisterService(this); VLOG(1) << "Registered data service worker"; } Status GrpcWorkerImpl::Start( const std::string& worker_address, const std::vector<DataTransferServerInfo>& transfer_servers) { worker_address_ = worker_address; TF_RETURN_IF_ERROR(impl_->Start(worker_address, transfer_servers)); LocalWorkers::Add(worker_address, impl_); return absl::OkStatus(); } void GrpcWorkerImpl::Stop() { LocalWorkers::Remove(worker_address_); impl_->Stop(); } WorkerStateExport GrpcWorkerImpl::ExportState() const { return impl_->ExportState(); } #define HANDLER(method) \ ::grpc::Status GrpcWorkerImpl::method(ServerContext* context, \ const method##Request* request, \ method##Response* response) { \ return ToGrpcStatus(impl_->method(request, response)); \ } HANDLER(ProcessTask); HANDLER(GetElement); HANDLER(GetWorkerTasks); HANDLER(GetSnapshotTaskProgresses); #undef HANDLER } }
#include "tensorflow/core/data/service/grpc_worker_impl.h" #include <limits> #include <memory> #include <string> #include <utility> #include "grpcpp/channel.h" #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/credentials_factory.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/server_lib.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { namespace { using ::grpc::Channel; using ::grpc::ChannelArguments; using ::grpc::ChannelCredentials; using ::grpc::ClientContext; constexpr const char kHostAddress[] = "localhost"; constexpr const char kProtocol[] = "grpc"; class GrpcWorkerImplTest : public ::testing::Test { protected: void SetUp() override { TF_ASSERT_OK(SetUpDispatcherServer()); TF_ASSERT_OK(SetUpWorkerServer()); TF_ASSERT_OK(SetUpWorkerClientStub()); } Status SetUpDispatcherServer() { experimental::DispatcherConfig config; config.set_protocol(kProtocol); TF_RETURN_IF_ERROR(NewDispatchServer(config, dispatcher_server_)); return dispatcher_server_->Start(); } Status SetUpWorkerServer() { experimental::WorkerConfig config; config.set_protocol(kProtocol); config.set_dispatcher_address(GetDispatcherAddress()); config.set_worker_address(absl::StrCat(kHostAddress, ":%port%")); TF_RETURN_IF_ERROR(NewWorkerServer(config, worker_server_)); return worker_server_->Start(); } Status SetUpWorkerClientStub() { std::shared_ptr<ChannelCredentials> credentials; TF_RETURN_IF_ERROR( CredentialsFactory::CreateClientCredentials(kProtocol, &credentials)); ChannelArguments args; args.SetMaxReceiveMessageSize(std::numeric_limits<int32>::max()); args.SetInt(GRPC_ARG_USE_LOCAL_SUBCHANNEL_POOL, true); std::shared_ptr<Channel> channel = ::grpc::CreateCustomChannel(GetWorkerAddress(), credentials, args); worker_client_stub_ = WorkerService::NewStub(channel); return absl::OkStatus(); } std::string GetDispatcherAddress() const { return absl::StrCat(kHostAddress, ":", dispatcher_server_->BoundPort()); } std::string GetWorkerAddress() const { return absl::StrCat(kHostAddress, ":", worker_server_->BoundPort()); } std::unique_ptr<DispatchGrpcDataServer> dispatcher_server_; std::unique_ptr<WorkerGrpcDataServer> worker_server_; std::unique_ptr<WorkerService::Stub> worker_client_stub_; }; TEST_F(GrpcWorkerImplTest, GetWorkerTasks) { ClientContext ctx; GetWorkerTasksRequest req; GetWorkerTasksResponse resp; TF_ASSERT_OK( FromGrpcStatus(worker_client_stub_->GetWorkerTasks(&ctx, req, &resp))); EXPECT_EQ(resp.tasks_size(), 0); } } } }
1,744
cpp
tensorflow/tensorflow
journal
tensorflow/core/data/service/journal.cc
tensorflow/core/data/service/journal_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_JOURNAL_H_ #define TENSORFLOW_CORE_DATA_SERVICE_JOURNAL_H_ #include <memory> #include <string> #include "tensorflow/core/data/service/journal.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/platform/env.h" namespace tensorflow { namespace data { std::string DataServiceJournalFile(const std::string& journal_dir, int64_t sequence_number); class JournalWriter { public: virtual ~JournalWriter() = default; virtual Status Write(const Update& update) = 0; virtual Status EnsureInitialized() = 0; }; class FileJournalWriter : public JournalWriter { public: explicit FileJournalWriter(Env* env, const std::string& journal_dir); FileJournalWriter(const FileJournalWriter&) = delete; FileJournalWriter& operator=(const FileJournalWriter&) = delete; Status Write(const Update& update) override; Status EnsureInitialized() override; private: Env* env_; const std::string journal_dir_; std::unique_ptr<WritableFile> file_; std::unique_ptr<io::RecordWriter> writer_; }; class JournalReader { public: virtual ~JournalReader() = default; virtual Status Read(Update& update, bool& end_of_journal) = 0; }; class FileJournalReader : public JournalReader { public: explicit FileJournalReader(Env* env, StringPiece journal_dir); FileJournalReader(const FileJournalReader&) = delete; FileJournalReader& operator=(const FileJournalReader&) = delete; Status Read(Update& update, bool& end_of_journal) override; private: Status EnsureInitialized(); Status UpdateFile(const std::string& filename); Env* env_; const std::string journal_dir_; int64_t sequence_number_ = 0; std::unique_ptr<RandomAccessFile> file_; std::unique_ptr<io::SequentialRecordReader> reader_; }; } } #endif #include "tensorflow/core/data/service/journal.h" #include <algorithm> #include <memory> #include <string> #include <vector> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "tensorflow/core/data/service/journal.pb.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/lib/io/record_writer.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/regexp.h" namespace tensorflow { namespace data { namespace { constexpr StringPiece kJournal = "journal"; Status ParseSequenceNumber(const std::string& journal_file, int64_t* sequence_number) { if (!RE2::FullMatch(journal_file, ".*_(\\d+)", sequence_number)) { return errors::InvalidArgument("Failed to parse journal file name: ", journal_file); } return absl::OkStatus(); } } std::string DataServiceJournalFile(const std::string& journal_dir, int64_t sequence_number) { return io::JoinPath(journal_dir, absl::StrCat(kJournal, "_", sequence_number)); } FileJournalWriter::FileJournalWriter(Env* env, const std::string& journal_dir) : env_(env), journal_dir_(journal_dir) {} Status FileJournalWriter::EnsureInitialized() { if (writer_) { return absl::OkStatus(); } std::vector<std::string> journal_files; TF_RETURN_IF_ERROR(env_->RecursivelyCreateDir(journal_dir_)); TF_RETURN_IF_ERROR(env_->GetChildren(journal_dir_, &journal_files)); int64_t latest_sequence_number = -1; for (const auto& file : journal_files) { int64_t sequence_number; TF_RETURN_IF_ERROR(ParseSequenceNumber(file, &sequence_number)); latest_sequence_number = std::max(latest_sequence_number, sequence_number); } std::string journal_file = DataServiceJournalFile(journal_dir_, latest_sequence_number + 1); TF_RETURN_IF_ERROR(env_->NewAppendableFile(journal_file, &file_)); writer_ = std::make_unique<io::RecordWriter>(file_.get()); VLOG(1) << "Created journal writer to write to " << journal_file; return absl::OkStatus(); } Status FileJournalWriter::Write(const Update& update) { TF_RETURN_IF_ERROR(EnsureInitialized()); std::string s = update.SerializeAsString(); if (s.empty()) { return errors::Internal("Failed to serialize update ", update.DebugString(), " to string"); } TF_RETURN_IF_ERROR(writer_->WriteRecord(s)); TF_RETURN_IF_ERROR(writer_->Flush()); TF_RETURN_IF_ERROR(file_->Sync()); if (VLOG_IS_ON(4)) { VLOG(4) << "Wrote journal entry: " << update.DebugString(); } return absl::OkStatus(); } FileJournalReader::FileJournalReader(Env* env, StringPiece journal_dir) : env_(env), journal_dir_(journal_dir) {} Status FileJournalReader::EnsureInitialized() { if (reader_) { return absl::OkStatus(); } return UpdateFile(DataServiceJournalFile(journal_dir_, 0)); } Status FileJournalReader::Read(Update& update, bool& end_of_journal) { TF_RETURN_IF_ERROR(EnsureInitialized()); while (true) { tstring record; Status s = reader_->ReadRecord(&record); if (absl::IsOutOfRange(s)) { sequence_number_++; std::string next_journal_file = DataServiceJournalFile(journal_dir_, sequence_number_); if (absl::IsNotFound(env_->FileExists(next_journal_file))) { VLOG(3) << "Next journal file " << next_journal_file << " does not exist. End of journal reached."; end_of_journal = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateFile(next_journal_file)); continue; } TF_RETURN_IF_ERROR(s); if (!update.ParseFromString(record)) { return errors::DataLoss("Failed to parse journal record."); } if (VLOG_IS_ON(4)) { VLOG(4) << "Read journal entry: " << update.DebugString(); } end_of_journal = false; return absl::OkStatus(); } } Status FileJournalReader::UpdateFile(const std::string& filename) { VLOG(1) << "Reading from journal file " << filename; TF_RETURN_IF_ERROR(env_->NewRandomAccessFile(filename, &file_)); io::RecordReaderOptions opts; opts.buffer_size = 2 << 20; reader_ = std::make_unique<io::SequentialRecordReader>(file_.get(), opts); return absl::OkStatus(); } } }
#include "tensorflow/core/data/service/journal.h" #include <memory> #include <string> #include <vector> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/journal.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/data_service.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; bool NewJournalDir(std::string& journal_dir) { std::string filename = testing::TmpDir(); if (!Env::Default()->CreateUniqueFileName(&filename, "journal_dir")) { return false; } journal_dir = filename; return true; } Update MakeCreateIterationUpdate() { Update update; CreateIterationUpdate* create_iteration = update.mutable_create_iteration(); create_iteration->set_job_id(3); create_iteration->set_iteration_id(8); create_iteration->set_repetition(5); return update; } Update MakeFinishTaskUpdate() { Update update; FinishTaskUpdate* finish_task = update.mutable_finish_task(); finish_task->set_task_id(8); return update; } Update MakeRegisterDatasetUpdate() { Update update; RegisterDatasetUpdate* register_dataset = update.mutable_register_dataset(); register_dataset->set_dataset_id("dataset_id"); register_dataset->set_fingerprint(3); return update; } Status CheckJournalContent(StringPiece journal_dir, const std::vector<Update>& expected) { FileJournalReader reader(Env::Default(), journal_dir); for (const auto& update : expected) { Update result; bool end_of_journal = true; TF_RETURN_IF_ERROR(reader.Read(result, end_of_journal)); EXPECT_FALSE(end_of_journal); EXPECT_EQ(result.SerializeAsString(), update.SerializeAsString()); } Update result; bool end_of_journal = false; TF_RETURN_IF_ERROR(reader.Read(result, end_of_journal)); EXPECT_TRUE(end_of_journal); return absl::OkStatus(); } } TEST(Journal, RoundTripMultiple) { std::string journal_dir; EXPECT_TRUE(NewJournalDir(journal_dir)); std::vector<Update> updates = {MakeCreateIterationUpdate(), MakeRegisterDatasetUpdate(), MakeFinishTaskUpdate()}; FileJournalWriter writer(Env::Default(), journal_dir); for (const auto& update : updates) { TF_EXPECT_OK(writer.Write(update)); } TF_EXPECT_OK(CheckJournalContent(journal_dir, updates)); } TEST(Journal, AppendExistingJournal) { std::string journal_dir; EXPECT_TRUE(NewJournalDir(journal_dir)); std::vector<Update> updates = {MakeCreateIterationUpdate(), MakeRegisterDatasetUpdate(), MakeFinishTaskUpdate()}; for (const auto& update : updates) { FileJournalWriter writer(Env::Default(), journal_dir); TF_EXPECT_OK(writer.Write(update)); } TF_EXPECT_OK(CheckJournalContent(journal_dir, updates)); } TEST(Journal, MissingFile) { std::string journal_dir; EXPECT_TRUE(NewJournalDir(journal_dir)); FileJournalReader reader(Env::Default(), journal_dir); Update result; bool end_of_journal = true; Status s = reader.Read(result, end_of_journal); EXPECT_TRUE(absl::IsNotFound(s)); } TEST(Journal, NonRecordData) { std::string journal_dir; EXPECT_TRUE(NewJournalDir(journal_dir)); TF_ASSERT_OK(Env::Default()->RecursivelyCreateDir(journal_dir)); { std::unique_ptr<WritableFile> file; TF_ASSERT_OK(Env::Default()->NewAppendableFile( DataServiceJournalFile(journal_dir, 0), &file)); TF_ASSERT_OK(file->Append("not record data")); } FileJournalReader reader(Env::Default(), journal_dir); Update result; bool end_of_journal = true; Status s = reader.Read(result, end_of_journal); EXPECT_THAT(s.message(), HasSubstr("corrupted record")); EXPECT_EQ(s.code(), error::DATA_LOSS); } TEST(Journal, InvalidRecordData) { std::string journal_dir; EXPECT_TRUE(NewJournalDir(journal_dir)); TF_ASSERT_OK(Env::Default()->RecursivelyCreateDir(journal_dir)); { std::unique_ptr<WritableFile> file; TF_ASSERT_OK(Env::Default()->NewAppendableFile( DataServiceJournalFile(journal_dir, 0), &file)); auto writer = std::make_unique<io::RecordWriter>(file.get()); TF_ASSERT_OK(writer->WriteRecord("not serialized proto")); } FileJournalReader reader(Env::Default(), journal_dir); Update result; bool end_of_journal = true; Status s = reader.Read(result, end_of_journal); EXPECT_THAT(s.message(), HasSubstr("Failed to parse journal record")); EXPECT_EQ(s.code(), error::DATA_LOSS); } } }
1,745
cpp
tensorflow/tensorflow
graph_rewriters
tensorflow/core/data/service/graph_rewriters.cc
tensorflow/core/data/service/graph_rewriters_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_GRAPH_REWRITERS_H_ #define TENSORFLOW_CORE_DATA_SERVICE_GRAPH_REWRITERS_H_ #include <cstdint> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace data { class RemoveCompressionMapRewriter { public: absl::StatusOr<GraphDef> ApplyRemoveCompressionMapRewrite( const GraphDef& graph_def); private: tensorflow::RewriterConfig::CustomGraphOptimizer GetRewriteConfig() const; }; class AutoShardRewriter { public: static absl::StatusOr<AutoShardRewriter> Create(const TaskDef& task_def); absl::StatusOr<GraphDef> ApplyAutoShardRewrite(const GraphDef& graph_def); private: AutoShardRewriter(AutoShardPolicy auto_shard_policy, int64_t num_workers, int64_t worker_index); tensorflow::RewriterConfig::CustomGraphOptimizer GetRewriteConfig() const; const AutoShardPolicy auto_shard_policy_; const int64_t num_workers_; const int64_t worker_index_; }; class WorkerIndexResolver { public: template <class T> explicit WorkerIndexResolver(const T& worker_addresses) : worker_addresses_(worker_addresses.cbegin(), worker_addresses.cend()) {} Status ValidateWorker(absl::string_view worker_address) const; void AddWorker(absl::string_view worker_address); absl::StatusOr<int64_t> GetWorkerIndex( absl::string_view worker_address) const; private: std::vector<std::string> worker_addresses_; }; } } #endif #include "tensorflow/core/data/service/graph_rewriters.h" #include <cstdlib> #include <iterator> #include <memory> #include <string> #include <unordered_map> #include <utility> #include "absl/algorithm/container.h" #include "absl/strings/match.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/types/optional.h" #include "tensorflow/core/data/rewrite_utils.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/url.h" #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/grappler_item_builder.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer.h" #include "tensorflow/core/grappler/optimizers/data/auto_shard.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/optimizers/data/optimizer_base.h" #include "tensorflow/core/grappler/optimizers/data/remove_compression_map.h" #include "tensorflow/core/kernels/data/experimental/auto_shard_dataset_op.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/device_properties.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::experimental::AutoShardDatasetOp; constexpr bool kApplyGeneralGrapplerOptimizations = false; bool HasDynamicPort(absl::string_view address) { URL url(address); return url.has_port() && absl::StartsWith(url.port(), "%port") && absl::EndsWith(url.port(), "%"); } bool ShouldReplaceDynamicPort(absl::string_view config_address, absl::string_view worker_address) { URL config_url(config_address), worker_url(worker_address); return (!config_url.has_port() || HasDynamicPort(config_address)) && worker_url.has_port() && config_url.host() == worker_url.host(); } } absl::StatusOr<GraphDef> RemoveCompressionMapRewriter::ApplyRemoveCompressionMapRewrite( const GraphDef& graph_def) { grappler::RemoveCompressionMap remove_compression_map; tensorflow::RewriterConfig::CustomGraphOptimizer config = GetRewriteConfig(); TF_RETURN_IF_ERROR(remove_compression_map.Init(&config)); GraphDef input_graph = graph_def; TF_ASSIGN_OR_RETURN(std::string dataset_node, GetDatasetNode(input_graph)); std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = GetGrapplerItem(&input_graph, &dataset_node, false, kApplyGeneralGrapplerOptimizations); GraphDef rewritten_graph; std::unordered_map<std::string, tensorflow::DeviceProperties> device_map; tensorflow::grappler::VirtualCluster cluster(device_map); grappler::AutoShard::OptimizationStats stats; TF_RETURN_IF_ERROR(remove_compression_map.OptimizeAndCollectStats( &cluster, *grappler_item, &rewritten_graph, &stats)); return rewritten_graph; } tensorflow::RewriterConfig::CustomGraphOptimizer RemoveCompressionMapRewriter::GetRewriteConfig() const { tensorflow::RewriterConfig::CustomGraphOptimizer config; config.set_name("tf-data-service-remove-compression-map"); return config; } absl::StatusOr<AutoShardRewriter> AutoShardRewriter::Create( const TaskDef& task_def) { TF_ASSIGN_OR_RETURN( AutoShardPolicy auto_shard_policy, ToAutoShardPolicy(task_def.processing_mode_def().sharding_policy())); return AutoShardRewriter(auto_shard_policy, task_def.num_workers(), task_def.worker_index()); } absl::StatusOr<GraphDef> AutoShardRewriter::ApplyAutoShardRewrite( const GraphDef& graph_def) { if (auto_shard_policy_ == AutoShardPolicy::OFF) { return graph_def; } VLOG(2) << "Applying auto-shard policy " << AutoShardPolicy_Name(auto_shard_policy_) << ". Number of workers: " << num_workers_ << "; worker index: " << worker_index_ << "."; grappler::AutoShard autoshard; tensorflow::RewriterConfig::CustomGraphOptimizer config = GetRewriteConfig(); TF_RETURN_IF_ERROR(autoshard.Init(&config)); GraphDef input_graph = graph_def; TF_ASSIGN_OR_RETURN(std::string dataset_node, GetDatasetNode(input_graph)); std::unique_ptr<tensorflow::grappler::GrapplerItem> grappler_item = GetGrapplerItem(&input_graph, &dataset_node, false, kApplyGeneralGrapplerOptimizations); GraphDef rewritten_graph; std::unordered_map<std::string, tensorflow::DeviceProperties> device_map; tensorflow::grappler::VirtualCluster cluster(device_map); grappler::AutoShard::OptimizationStats stats; TF_RETURN_IF_ERROR(autoshard.OptimizeAndCollectStats( &cluster, *grappler_item, &rewritten_graph, &stats)); return rewritten_graph; } AutoShardRewriter::AutoShardRewriter(AutoShardPolicy auto_shard_policy, int64_t num_workers, int64_t worker_index) : auto_shard_policy_(auto_shard_policy), num_workers_(num_workers), worker_index_(worker_index) {} tensorflow::RewriterConfig::CustomGraphOptimizer AutoShardRewriter::GetRewriteConfig() const { tensorflow::RewriterConfig::CustomGraphOptimizer config; config.set_name("tf-data-service-auto-shard"); (*config.mutable_parameter_map())[AutoShardDatasetOp::kNumWorkers].set_i( num_workers_); (*config.mutable_parameter_map())[AutoShardDatasetOp::kIndex].set_i( worker_index_); (*config.mutable_parameter_map())[AutoShardDatasetOp::kAutoShardPolicy].set_i( auto_shard_policy_); (*config.mutable_parameter_map())[AutoShardDatasetOp::kNumReplicas].set_i(1); return config; } Status WorkerIndexResolver::ValidateWorker( absl::string_view worker_address) const { if (worker_addresses_.empty()) { return absl::OkStatus(); } for (absl::string_view config_address : worker_addresses_) { if (config_address == worker_address || ShouldReplaceDynamicPort(config_address, worker_address)) { return absl::OkStatus(); } } return errors::FailedPrecondition(absl::Substitute( "Failed to assign an index for worker $0. Configured workers list: [$1]. " "The worker's address is not configured, or other workers are already " "running at the configured host. If your worker has restarted, make sure " "it runs at the same address and port.", worker_address, absl::StrJoin(worker_addresses_, ", "))); } void WorkerIndexResolver::AddWorker(absl::string_view worker_address) { for (std::string& config_address : worker_addresses_) { if (config_address == worker_address) { return; } if (ShouldReplaceDynamicPort(config_address, worker_address)) { config_address = std::string(worker_address); return; } } } absl::StatusOr<int64_t> WorkerIndexResolver::GetWorkerIndex( absl::string_view worker_address) const { const auto it = absl::c_find(worker_addresses_, worker_address); if (it == worker_addresses_.cend()) { return errors::NotFound(absl::Substitute( "Failed to shard dataset in tf.data service: Worker $0 is not in the " "workers list. Got workers list $1.", worker_address, absl::StrJoin(worker_addresses_, ","))); } return std::distance(worker_addresses_.cbegin(), it); } } }
#include "tensorflow/core/data/service/graph_rewriters.h" #include <string> #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::testing::EqualsProto; using ::tensorflow::data::testing::RangeDatasetWithShardHint; using ::tensorflow::data::testing::RangeSquareDataset; using ::tensorflow::testing::IsOkAndHolds; using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; using ::testing::SizeIs; absl::StatusOr<NodeDef> GetNode(const GraphDef& graph_def, absl::string_view name) { for (const NodeDef& node : graph_def.node()) { if (node.name() == name) { return node; } } return errors::NotFound(absl::Substitute("Node $0 not found in graph $1.", name, graph_def.ShortDebugString())); } absl::StatusOr<int64_t> GetValue(const GraphDef& graph_def, absl::string_view name) { for (const NodeDef& node : graph_def.node()) { if (node.name() == name) { return node.attr().at("value").tensor().int64_val()[0]; } } return errors::NotFound(absl::Substitute("Node $0 not found in graph $1.", name, graph_def.ShortDebugString())); } TaskDef GetTaskDef(const ProcessingModeDef::ShardingPolicy sharding_policy, const int64_t num_workers, const int64_t worker_index) { TaskDef task_def; task_def.mutable_processing_mode_def()->set_sharding_policy(sharding_policy); task_def.set_num_workers(num_workers); task_def.set_worker_index(worker_index); return task_def; } TEST(AutoShardRewriterTest, AutoShard) { TaskDef task_def = GetTaskDef(ProcessingModeDef::FILE_OR_DATA, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); TF_ASSERT_OK_AND_ASSIGN(GraphDef rewritten_graph, rewriter.ApplyAutoShardRewrite(dataset.graph())); TF_ASSERT_OK_AND_ASSIGN(NodeDef shard_node, GetNode(rewritten_graph, "ShardDataset")); ASSERT_THAT(shard_node.input(), SizeIs(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(1)), IsOkAndHolds(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(2)), IsOkAndHolds(1)); } TEST(AutoShardRewriterTest, ShardByData) { TaskDef task_def = GetTaskDef(ProcessingModeDef::DATA, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); TF_ASSERT_OK_AND_ASSIGN(GraphDef rewritten_graph, rewriter.ApplyAutoShardRewrite(dataset.graph())); TF_ASSERT_OK_AND_ASSIGN(NodeDef shard_node, GetNode(rewritten_graph, "ShardDataset")); ASSERT_THAT(shard_node.input(), SizeIs(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(1)), IsOkAndHolds(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(2)), IsOkAndHolds(1)); } TEST(AutoShardRewriterTest, ShardByFile) { TaskDef task_def = GetTaskDef(ProcessingModeDef::FILE, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); EXPECT_THAT(rewriter.ApplyAutoShardRewrite(dataset.graph()), StatusIs(error::NOT_FOUND, HasSubstr("Found an unshardable source dataset"))); } TEST(AutoShardRewriterTest, ShardByHint) { TaskDef task_def = GetTaskDef(ProcessingModeDef::HINT, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeDatasetWithShardHint(10); TF_ASSERT_OK_AND_ASSIGN(GraphDef rewritten_graph, rewriter.ApplyAutoShardRewrite(dataset.graph())); TF_ASSERT_OK_AND_ASSIGN(NodeDef shard_node, GetNode(rewritten_graph, "ShardDataset")); ASSERT_THAT(shard_node.input(), SizeIs(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(1)), IsOkAndHolds(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(2)), IsOkAndHolds(1)); } TEST(AutoShardRewriterTest, NoShard) { TaskDef task_def = GetTaskDef(ProcessingModeDef::OFF, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); EXPECT_THAT(rewriter.ApplyAutoShardRewrite(dataset.graph()), IsOkAndHolds(EqualsProto(dataset.graph()))); } TEST(AutoShardRewriterTest, EmptyDataset) { TaskDef task_def = GetTaskDef(ProcessingModeDef::FILE_OR_DATA, 3, 1); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(0); TF_ASSERT_OK_AND_ASSIGN(GraphDef rewritten_graph, rewriter.ApplyAutoShardRewrite(dataset.graph())); TF_ASSERT_OK_AND_ASSIGN(NodeDef shard_node, GetNode(rewritten_graph, "ShardDataset")); ASSERT_THAT(shard_node.input(), SizeIs(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(1)), IsOkAndHolds(3)); EXPECT_THAT(GetValue(rewritten_graph, shard_node.input(2)), IsOkAndHolds(1)); } TEST(AutoShardRewriterTest, NoWorkers) { TaskDef task_def = GetTaskDef(ProcessingModeDef::FILE_OR_DATA, 0, 0); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); EXPECT_THAT(rewriter.ApplyAutoShardRewrite(dataset.graph()), StatusIs(error::INVALID_ARGUMENT, "num_workers should be >= 1, currently 0")); } TEST(AutoShardRewriterTest, NoWorkersWhenShardIsOff) { TaskDef task_def = GetTaskDef(ProcessingModeDef::OFF, 0, 0); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); EXPECT_THAT(rewriter.ApplyAutoShardRewrite(dataset.graph()), IsOkAndHolds(EqualsProto(dataset.graph()))); } TEST(AutoShardRewriterTest, WorkerIndexOutOfRange) { TaskDef task_def = GetTaskDef(ProcessingModeDef::FILE_OR_DATA, 2, 5); TF_ASSERT_OK_AND_ASSIGN(AutoShardRewriter rewriter, AutoShardRewriter::Create(task_def)); DatasetDef dataset = RangeSquareDataset(10); EXPECT_THAT(rewriter.ApplyAutoShardRewrite(dataset.graph()), StatusIs(error::INVALID_ARGUMENT, "index should be >= 0 and < 2, currently 5")); } TEST(WorkerIndexResolverTest, AddOneWorker) { WorkerIndexResolver resolver(std::vector<std::string>{"localhost"}); EXPECT_THAT(resolver.GetWorkerIndex("localhost:12345"), StatusIs(error::NOT_FOUND)); TF_EXPECT_OK(resolver.ValidateWorker("localhost:12345")); resolver.AddWorker("localhost:12345"); EXPECT_THAT(resolver.GetWorkerIndex("localhost:12345"), IsOkAndHolds(0)); } TEST(WorkerIndexResolverTest, AddMultipleWorkers) { WorkerIndexResolver resolver(std::vector<std::string>{ "/worker/task/0", "/worker/task/1", "/worker/task/2"}); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:12345")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:23456")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:34567")); resolver.AddWorker("/worker/task/2:12345"); resolver.AddWorker("/worker/task/1:23456"); resolver.AddWorker("/worker/task/0:34567"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:34567"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:12345"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, NamedPorts) { WorkerIndexResolver resolver( std::vector<std::string>{"/worker/task/0:worker", "/worker/task/1:worker", "/worker/task/2:worker"}); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:worker")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:worker")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:worker")); resolver.AddWorker("/worker/task/2:worker"); resolver.AddWorker("/worker/task/1:worker"); resolver.AddWorker("/worker/task/0:worker"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:worker"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:worker"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:worker"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, DynamicPorts) { WorkerIndexResolver resolver(std::vector<std::string>{ "/worker/task/0:%port_worker%", "/worker/task/1:%port_worker%", "/worker/task/2:%port_worker%"}); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:worker")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:worker")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:worker")); resolver.AddWorker("/worker/task/2:worker"); resolver.AddWorker("/worker/task/1:worker"); resolver.AddWorker("/worker/task/0:worker"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:worker"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:worker"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:worker"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, AnonymousPorts) { WorkerIndexResolver resolver( std::vector<std::string>{"/worker/task/0:%port%", "/worker/task/1:%port%", "/worker/task/2:%port%"}); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:10000")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:10001")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:10002")); resolver.AddWorker("/worker/task/2:10000"); resolver.AddWorker("/worker/task/1:10001"); resolver.AddWorker("/worker/task/0:10002"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:10002"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:10001"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:10000"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, NumericPorts) { WorkerIndexResolver resolver(std::vector<std::string>{ "/worker/task/0:12345", "/worker/task/1:23456", "/worker/task/2:34567"}); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:34567"), IsOkAndHolds(2)); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:34567")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:23456")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:12345")); resolver.AddWorker("/worker/task/2:34567"); resolver.AddWorker("/worker/task/1:23456"); resolver.AddWorker("/worker/task/0:12345"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:34567"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, IPv6Addresses) { WorkerIndexResolver resolver(std::vector<std::string>{ "[1080:0:0:0:8:800:200C:417A]", "[1080:0:0:0:8:800:200C:417B]", "[1080:0:0:0:8:800:200C:417C]"}); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417A]:12345")); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417B]:23456")); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417C]:34567")); resolver.AddWorker("[1080:0:0:0:8:800:200C:417A]:12345"); resolver.AddWorker("[1080:0:0:0:8:800:200C:417B]:23456"); resolver.AddWorker("[1080:0:0:0:8:800:200C:417C]:34567"); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417A]:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417B]:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417C]:34567"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, IPv6AddressesWithDynamicPort) { WorkerIndexResolver resolver( std::vector<std::string>{"[1080:0:0:0:8:800:200C:417A]:%port%", "[1080:0:0:0:8:800:200C:417B]:%port%", "[1080:0:0:0:8:800:200C:417C]:%port%"}); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417A]:12345")); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417B]:23456")); TF_EXPECT_OK(resolver.ValidateWorker("[1080:0:0:0:8:800:200C:417C]:34567")); resolver.AddWorker("[1080:0:0:0:8:800:200C:417A]:12345"); resolver.AddWorker("[1080:0:0:0:8:800:200C:417B]:23456"); resolver.AddWorker("[1080:0:0:0:8:800:200C:417C]:34567"); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417A]:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417B]:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("[1080:0:0:0:8:800:200C:417C]:34567"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, AddressesWithProtocols) { WorkerIndexResolver resolver(std::vector<std::string>{ "http: TF_EXPECT_OK(resolver.ValidateWorker("http: TF_EXPECT_OK(resolver.ValidateWorker("http: TF_EXPECT_OK(resolver.ValidateWorker("http: resolver.AddWorker("http: resolver.AddWorker("http: resolver.AddWorker("http: EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, AddressesWithProtocolsAndDynamicPorts) { WorkerIndexResolver resolver(std::vector<std::string>{ "http: "http: TF_EXPECT_OK(resolver.ValidateWorker("http: TF_EXPECT_OK(resolver.ValidateWorker("http: TF_EXPECT_OK(resolver.ValidateWorker("http: resolver.AddWorker("http: resolver.AddWorker("http: resolver.AddWorker("http: EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("http: IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, HostNameHasColons) { WorkerIndexResolver resolver( std::vector<std::string>{":worker:task:0:%port%", ":worker:task:1:%port%", ":worker:task:2:34567"}); TF_EXPECT_OK(resolver.ValidateWorker(":worker:task:0:12345")); TF_EXPECT_OK(resolver.ValidateWorker(":worker:task:1:23456")); TF_EXPECT_OK(resolver.ValidateWorker(":worker:task:2:34567")); resolver.AddWorker(":worker:task:0:12345"); resolver.AddWorker(":worker:task:1:23456"); resolver.AddWorker(":worker:task:2:34567"); EXPECT_THAT(resolver.GetWorkerIndex(":worker:task:0:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex(":worker:task:1:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex(":worker:task:2:34567"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, ChangeWorkerPort) { WorkerIndexResolver resolver(std::vector<std::string>{ "/worker/task/0", "/worker/task/1", "/worker/task/2"}); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:12345")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:23456")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:34567")); resolver.AddWorker("/worker/task/2:12345"); resolver.AddWorker("/worker/task/1:23456"); resolver.AddWorker("/worker/task/0:34567"); EXPECT_THAT(resolver.ValidateWorker("/worker/task/0:99999"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("already running at the configured host"))); EXPECT_THAT(resolver.ValidateWorker("/worker/task/1:99999"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("already running at the configured host"))); EXPECT_THAT(resolver.ValidateWorker("/worker/task/2:99999"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("already running at the configured host"))); } TEST(WorkerIndexResolverTest, WorkerNotFound) { WorkerIndexResolver resolver(std::vector<std::string>{ "/worker/task/0", "/worker/task/1", "/worker/task/2"}); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:34567"), StatusIs(error::NOT_FOUND)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:23456"), StatusIs(error::NOT_FOUND)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:12345"), StatusIs(error::NOT_FOUND)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/3:45678"), StatusIs(error::NOT_FOUND)); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/2:12345")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/1:23456")); TF_EXPECT_OK(resolver.ValidateWorker("/worker/task/0:34567")); EXPECT_THAT(resolver.ValidateWorker("/worker/task/3:45678"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("The worker's address is not configured"))); resolver.AddWorker("/worker/task/3:45678"); resolver.AddWorker("/worker/task/2:12345"); resolver.AddWorker("/worker/task/1:23456"); resolver.AddWorker("/worker/task/0:34567"); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/0:34567"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/1:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("/worker/task/2:12345"), IsOkAndHolds(2)); EXPECT_THAT( resolver.GetWorkerIndex("/worker/task/3:45678"), StatusIs(error::NOT_FOUND, HasSubstr( "Worker /worker/task/3:45678 is not in the workers list."))); } TEST(WorkerIndexResolverTest, MultipleWorkersInOneHost) { WorkerIndexResolver resolver( std::vector<std::string>{"localhost", "localhost", "localhost"}); TF_EXPECT_OK(resolver.ValidateWorker("localhost:12345")); resolver.AddWorker("localhost:12345"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:23456")); resolver.AddWorker("localhost:23456"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:34567")); resolver.AddWorker("localhost:34567"); EXPECT_THAT(resolver.GetWorkerIndex("localhost:12345"), IsOkAndHolds(0)); EXPECT_THAT(resolver.GetWorkerIndex("localhost:23456"), IsOkAndHolds(1)); EXPECT_THAT(resolver.GetWorkerIndex("localhost:34567"), IsOkAndHolds(2)); } TEST(WorkerIndexResolverTest, MoreWorkersThanConfigured) { WorkerIndexResolver resolver(std::vector<std::string>{ "localhost:%port%", "localhost:%port%", "localhost:%port%"}); TF_EXPECT_OK(resolver.ValidateWorker("localhost:12345")); resolver.AddWorker("localhost:12345"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:23456")); resolver.AddWorker("localhost:23456"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:34567")); resolver.AddWorker("localhost:34567"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:12345")); resolver.AddWorker("localhost:12345"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:23456")); resolver.AddWorker("localhost:23456"); TF_EXPECT_OK(resolver.ValidateWorker("localhost:34567")); resolver.AddWorker("localhost:34567"); EXPECT_THAT(resolver.ValidateWorker("localhost:45678"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("already running at the configured host"))); EXPECT_THAT(resolver.ValidateWorker("localhost:56789"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("already running at the configured host"))); } TEST(WorkerIndexResolverTest, WorkerNotConfigured) { WorkerIndexResolver resolver(std::vector<std::string>{""}); EXPECT_THAT(resolver.GetWorkerIndex("localhost:12345"), StatusIs(error::NOT_FOUND)); EXPECT_THAT(resolver.ValidateWorker("localhost:12345"), StatusIs(error::FAILED_PRECONDITION, HasSubstr("The worker's address is not configured"))); resolver.AddWorker("localhost:12345"); EXPECT_THAT(resolver.GetWorkerIndex("localhost:12345"), StatusIs(error::NOT_FOUND)); } } } }
1,746
cpp
tensorflow/tensorflow
worker_impl
tensorflow/core/data/service/worker_impl.cc
tensorflow/core/data/service/worker_impl_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_WORKER_IMPL_H_ #define TENSORFLOW_CORE_DATA_SERVICE_WORKER_IMPL_H_ #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/hash/hash.h" #include "absl/strings/string_view.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/export.pb.h" #include "tensorflow/core/data/service/snapshot/snapshot_stream_writer.h" #include "tensorflow/core/data/service/task_runner.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { class DataServiceWorkerImpl { public: explicit DataServiceWorkerImpl(const experimental::WorkerConfig& config); ~DataServiceWorkerImpl(); Status Start(const std::string& worker_address, const std::vector<DataTransferServerInfo>& transfer_servers); void Stop(); Status GetElementResult(const GetElementRequest* request, GetElementResult* result); void DeleteLocalTask(const TaskInfo& task_info); Status ProcessTask(const ProcessTaskRequest* request, ProcessTaskResponse* response); Status GetElement(const GetElementRequest* request, GetElementResponse* response); Status GetWorkerTasks(const GetWorkerTasksRequest* request, GetWorkerTasksResponse* response); Status GetSnapshotTaskProgresses( const GetSnapshotTaskProgressesRequest* request, GetSnapshotTaskProgressesResponse* response); WorkerStateExport ExportState() const; private: struct Task { explicit Task(TaskDef task_def) : task_def(std::move(task_def)) {} TaskDef task_def; mutex mu; bool initialized TF_GUARDED_BY(mu) = false; int64_t outstanding_requests TF_GUARDED_BY(&DataServiceWorkerImpl::mu_) = 0; std::unique_ptr<TaskRunner> task_runner; }; struct SnapshotTask { std::string base_path; int64_t stream_index = 0; template <typename H> friend H AbslHashValue(H h, const SnapshotTask& task) { return H::combine(std::move(h), task.base_path, task.stream_index); } friend bool operator==(const SnapshotTask& task1, const SnapshotTask& task2) { return task1.base_path == task2.base_path && task1.stream_index == task2.stream_index; } }; Status ValidateWorkerConfig() const; absl::StatusOr<std::unique_ptr<DataServiceDispatcherClient>> CreateDispatcherClient() const TF_LOCKS_EXCLUDED(mu_); Status SendTaskUpdates() TF_LOCKS_EXCLUDED(mu_); Status ProcessTaskInternal(const TaskDef& task) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Status EnsureTaskInitialized(Task& task); void StopTask(Task& task) TF_LOCKS_EXCLUDED(mu_); void TaskCompletionThread() TF_LOCKS_EXCLUDED(mu_); void HeartbeatThread() TF_LOCKS_EXCLUDED(mu_); Status Heartbeat(); absl::StatusOr<bool> DisableCompressionAtRuntime( const std::string& dataset_id) const; std::vector<ActiveTask> GetActiveTasks() const TF_LOCKS_EXCLUDED(mu_); std::vector<int64_t> GetTaskIds( const std::vector<ActiveTask>& active_tasks) const; WorkerHeartbeatRequest BuildWorkerHeartbeatRequest() const TF_LOCKS_EXCLUDED(mu_); void UpdateTasks(const WorkerHeartbeatResponse& response) TF_LOCKS_EXCLUDED(mu_); Status UpdateSnapshotWriters(const WorkerHeartbeatResponse& response) TF_LOCKS_EXCLUDED(mu_); absl::StatusOr<std::unique_ptr<StandaloneTaskIterator>> MakeSnapshotTaskIterator(const SnapshotTaskDef& snapshot_task, const DatasetDef& dataset_def) const; std::vector<SnapshotTaskProgress> GetSnapshotTaskProgress() const; absl::StatusOr<DatasetDef> GetDatasetDef(const TaskDef& task_def) const; absl::StatusOr<std::unique_ptr<standalone::Dataset>> MakeDataset( const DatasetDef& dataset_def, const TaskDef& task_def) const; absl::StatusOr<std::unique_ptr<standalone::Iterator>> MakeDatasetIterator( standalone::Dataset& dataset, const TaskDef& task_def) const; const experimental::WorkerConfig config_; const int64_t worker_uid_; std::string worker_address_; std::vector<DataTransferServerInfo> transfer_servers_; std::unique_ptr<DataServiceDispatcherClient> dispatcher_; mutable mutex mu_; condition_variable cv_; absl::flat_hash_map<int64_t, std::shared_ptr<Task>> tasks_ TF_GUARDED_BY(mu_); absl::flat_hash_set<int64_t> finished_tasks_ TF_GUARDED_BY(mu_); absl::flat_hash_set<int64_t> pending_completed_tasks_ TF_GUARDED_BY(mu_); absl::flat_hash_set<int64_t> deleted_tasks_ TF_GUARDED_BY(mu_); bool cancelled_ TF_GUARDED_BY(mu_) = false; bool registered_ TF_GUARDED_BY(mu_) = false; condition_variable task_completion_cv_ TF_GUARDED_BY(mu_); condition_variable heartbeat_cv_ TF_GUARDED_BY(mu_); CancellationManager cancellation_manager_; absl::flat_hash_map<SnapshotTask, std::unique_ptr<SnapshotStreamWriter>, absl::Hash<SnapshotTask>> snapshot_writers_ TF_GUARDED_BY(mu_); std::unique_ptr<Thread> task_completion_thread_; std::unique_ptr<Thread> heartbeat_thread_; DataServiceWorkerImpl(const DataServiceWorkerImpl&) = delete; void operator=(const DataServiceWorkerImpl&) = delete; }; class LocalWorkers { public: static void Add(absl::string_view worker_address, std::shared_ptr<DataServiceWorkerImpl> worker); static std::shared_ptr<DataServiceWorkerImpl> Get( absl::string_view worker_address); static bool Empty(); static void Remove(absl::string_view worker_address); private: using AddressToWorkerMap = absl::flat_hash_map<std::string, std::shared_ptr<DataServiceWorkerImpl>>; static mutex mu_; static AddressToWorkerMap* local_workers_ TF_GUARDED_BY(mu_); }; } } #endif #include "tensorflow/core/data/service/worker_impl.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "grpcpp/create_channel.h" #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/export.pb.h" #include "tensorflow/core/data/service/graph_rewriters.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/snapshot_split_provider.h" #include "tensorflow/core/data/service/snapshot/snapshot_stream_writer.h" #include "tensorflow/core/data/service/split_provider.h" #include "tensorflow/core/data/service/task_runner.h" #include "tensorflow/core/data/service/utils.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/env_time.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/host_info.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/service_config.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/protobuf/status.pb.h" namespace tensorflow { namespace data { namespace { constexpr absl::Duration kRetryInterval = absl::Seconds(5); constexpr absl::Duration kDefaultHeartBeatInterval = absl::Seconds(30); constexpr absl::Duration kDefaultDispatcherTimeout = absl::Hours(1); using WorkerConfig = experimental::WorkerConfig; Status MoveElementToResponse(std::vector<Tensor>&& element, GetElementResponse& resp) { if (element.size() != 1 || element[0].dtype() != DT_VARIANT || !TensorShapeUtils::IsScalar(element[0].shape())) { for (const auto& component : element) { UncompressedElement* uncompressed = resp.mutable_uncompressed(); component.AsProtoTensorContent(uncompressed->add_components()); } return absl::OkStatus(); } Variant& variant = element[0].scalar<Variant>()(); CompressedElement* compressed = variant.get<CompressedElement>(); if (compressed == nullptr) { return errors::FailedPrecondition( "Expected dataset to produce a CompressedElement variant tensor, but " "it produced ", variant.TypeName()); } *resp.mutable_compressed() = *compressed; return absl::OkStatus(); } WorkerConfig ApplyWorkerDefaults(const WorkerConfig& config) { WorkerConfig new_config(config); if (new_config.heartbeat_interval_ms() == 0) { new_config.set_heartbeat_interval_ms( absl::ToInt64Milliseconds(kDefaultHeartBeatInterval)); } if (new_config.dispatcher_timeout_ms() == 0) { new_config.set_dispatcher_timeout_ms( absl::ToInt64Milliseconds(kDefaultDispatcherTimeout)); } if (new_config.snapshot_max_chunk_size_bytes() == 0) { new_config.set_snapshot_max_chunk_size_bytes( kDefaultMaxChunkSize.ToUnsignedBytes()); } return new_config; } TaskDef Export(const TaskDef& task) { TaskDef result; switch (task.dataset_case()) { case TaskDef::kDatasetDef: result.set_path( "In-memory dataset graphs are omitted for brevity. To view datasets " "stored on the dispatcher, configure a `work_dir`."); break; case TaskDef::kPath: result.set_path(task.path()); break; default: break; } result.set_dataset_id(task.dataset_id()); result.set_task_id(task.task_id()); result.set_iteration_id(task.iteration_id()); result.set_num_split_providers(task.num_split_providers()); result.set_worker_address(task.worker_address()); *result.mutable_processing_mode_def() = task.processing_mode_def(); switch (task.optional_num_consumers_case()) { case TaskDef::kNumConsumers: result.set_num_consumers(task.num_consumers()); break; default: break; } result.set_num_workers(task.num_workers()); result.set_worker_index(task.worker_index()); return result; } } mutex LocalWorkers::mu_(LINKER_INITIALIZED); LocalWorkers::AddressToWorkerMap* LocalWorkers::local_workers_ = new AddressToWorkerMap(); DataServiceWorkerImpl::DataServiceWorkerImpl(const WorkerConfig& config) : config_(ApplyWorkerDefaults(config)), worker_uid_(port::JobUid()) { metrics::RecordTFDataServiceWorkerCreated(); } DataServiceWorkerImpl::~DataServiceWorkerImpl() { mutex_lock l(mu_); cancelled_ = true; task_completion_cv_.notify_one(); heartbeat_cv_.notify_one(); } Status DataServiceWorkerImpl::Start( const std::string& worker_address, const std::vector<DataTransferServerInfo>& transfer_servers) { VLOG(3) << "Starting tf.data service worker at address " << worker_address; TF_RETURN_IF_ERROR(ValidateWorkerConfig()); worker_address_ = worker_address; transfer_servers_ = transfer_servers; TF_ASSIGN_OR_RETURN(dispatcher_, CreateDispatcherClient()); auto should_retry = [this]() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !cancelled_; }; TF_RETURN_IF_ERROR(grpc_util::Retry([this]() { return Heartbeat(); }, should_retry, "Worker heartbeat.", kint64max)); LOG(INFO) << "Worker registered with dispatcher running at " << config_.dispatcher_address() << ". Worker config: " << config_.DebugString(); task_completion_thread_ = absl::WrapUnique( Env::Default()->StartThread({}, "data-service-worker-task-completion", [this]() { TaskCompletionThread(); })); heartbeat_thread_ = absl::WrapUnique(Env::Default()->StartThread( {}, "data-service-worker-heartbeat", [this]() { HeartbeatThread(); })); mutex_lock l(mu_); registered_ = true; return absl::OkStatus(); } void DataServiceWorkerImpl::Stop() { absl::flat_hash_map<int64_t, std::shared_ptr<Task>> tasks; absl::flat_hash_map<SnapshotTask, std::unique_ptr<SnapshotStreamWriter>, absl::Hash<SnapshotTask>> snapshot_writers; { mutex_lock l(mu_); cancelled_ = true; tasks.swap(tasks_); snapshot_writers.swap(snapshot_writers_); } for (const auto& [task_id, task] : tasks) { StopTask(*task); } for (const auto& [unused, snapshot_writer] : snapshot_writers) { snapshot_writer->Cancel(); } Env::Default()->SleepForMicroseconds(config_.shutdown_quiet_period_ms() * 1000); } Status DataServiceWorkerImpl::ValidateWorkerConfig() const { const bool any_tag_is_empty = absl::c_any_of( config_.worker_tags(), [](const std::string& worker_tag) { return worker_tag.empty(); }); if (any_tag_is_empty) { return errors::FailedPrecondition( "Worker tags cannot be empty. Got tags {", absl::StrJoin(config_.worker_tags().begin(), config_.worker_tags().end(), ", "), "}"); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<DataServiceDispatcherClient>> DataServiceWorkerImpl::CreateDispatcherClient() const TF_LOCKS_EXCLUDED(mu_) { auto dispatcher = std::make_unique<DataServiceDispatcherClient>( config_.dispatcher_address(), config_.protocol()); auto should_retry = [this]() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !cancelled_; }; TF_RETURN_IF_ERROR( grpc_util::Retry([&dispatcher]() { return dispatcher->Initialize(); }, should_retry, "Initialize dispatcher client.", kint64max)); return dispatcher; } Status DataServiceWorkerImpl::GetElementResult( const GetElementRequest* request, struct GetElementResult* result) { Task* task = nullptr; { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled("Worker is shutting down"); } if (!registered_) { return errors::Unavailable( "Worker has not yet registered with dispatcher."); } auto it = tasks_.find(request->task_id()); if (it == tasks_.end()) { if (deleted_tasks_.contains(request->task_id())) { return errors::FailedPrecondition( "Got request for local task ", request->task_id(), " of worker ", worker_address_, ", which has been deleted. You may be creating ", "a duplicate iteration which has already finished. To fix this, " "make sure to create your dataset only once, as opposed to " "re-creating it repeatedly inside a loop."); } if (finished_tasks_.contains(request->task_id())) { VLOG(3) << "Task is already finished"; result->end_of_sequence = true; result->skip = false; return absl::OkStatus(); } return errors::Unavailable("Task ", request->task_id(), " not found"); } task = it->second.get(); task->outstanding_requests++; } auto cleanup = gtl::MakeCleanup([&] { mutex_lock l(mu_); task->outstanding_requests--; cv_.notify_all(); }); TF_RETURN_IF_ERROR(EnsureTaskInitialized(*task)); TF_RETURN_IF_ERROR(task->task_runner->GetNext(*request, *result)); if (result->end_of_sequence) { mutex_lock l(mu_); VLOG(3) << "Reached end_of_sequence for task " << request->task_id(); pending_completed_tasks_.insert(request->task_id()); task_completion_cv_.notify_one(); } return absl::OkStatus(); } Status DataServiceWorkerImpl::ProcessTask(const ProcessTaskRequest* request, ProcessTaskResponse* response) { mutex_lock l(mu_); const TaskDef& task = request->task(); VLOG(3) << "Received request to process task " << task.task_id(); return ProcessTaskInternal(task); } Status DataServiceWorkerImpl::ProcessTaskInternal(const TaskDef& task_def) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { std::shared_ptr<Task>& task = tasks_[task_def.task_id()]; if (task) { VLOG(1) << "Received request to process already-processed task " << task->task_def.task_id(); return absl::OkStatus(); } task = std::make_unique<Task>(task_def); VLOG(3) << "Began processing for task " << task_def.task_id() << " with processing mode " << task_def.processing_mode_def().DebugString(); return absl::OkStatus(); } Status DataServiceWorkerImpl::EnsureTaskInitialized( DataServiceWorkerImpl::Task& task) { if (task.task_def.worker_address() != worker_address_) { return errors::Internal(absl::Substitute( "Dispatcher's worker address $0 does not match worker's address $1.", task.task_def.worker_address(), worker_address_)); } mutex_lock l(task.mu); if (task.initialized) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(DatasetDef dataset_def, GetDatasetDef(task.task_def)); TF_ASSIGN_OR_RETURN(std::unique_ptr<standalone::Dataset> dataset, MakeDataset(dataset_def, task.task_def)); TF_ASSIGN_OR_RETURN(std::unique_ptr<standalone::Iterator> iterator, MakeDatasetIterator(*dataset, task.task_def)); auto task_iterator = std::make_unique<StandaloneTaskIterator>( std::move(dataset), std::move(iterator)); TF_RETURN_IF_ERROR(TaskRunner::Create( config_, task.task_def, std::move(task_iterator), task.task_runner)); task.initialized = true; VLOG(3) << "Created iterator for task " << task.task_def.task_id(); return absl::OkStatus(); } absl::StatusOr<DatasetDef> DataServiceWorkerImpl::GetDatasetDef( const TaskDef& task_def) const { switch (task_def.dataset_case()) { case TaskDef::kDatasetDef: return task_def.dataset_def(); case TaskDef::kPath: { DatasetDef def; Status s = ReadDatasetDef(task_def.path(), def); if (!s.ok()) { LOG(INFO) << "Failed to read dataset from " << task_def.path() << ": " << s << ". Falling back to reading from dispatcher."; TF_RETURN_IF_ERROR( dispatcher_->GetDatasetDef(task_def.dataset_id(), def)); } return def; } case TaskDef::DATASET_NOT_SET: return errors::Internal("Unrecognized dataset case: ", task_def.dataset_case()); } } absl::StatusOr<bool> DataServiceWorkerImpl::DisableCompressionAtRuntime( const std::string& dataset_id) const { DisableCompressionAtRuntimeResponse response; absl::Time deadline = absl::FromUnixMicros(EnvTime::NowMicros()) + kDefaultDispatcherTimeout; auto should_retry = [this]() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !cancelled_; }; TF_RETURN_IF_ERROR(grpc_util::Retry( [&]() { return dispatcher_->DisableCompressionAtRuntime( dataset_id, false, response); }, should_retry, "Disable compression at runtime.", absl::ToUnixMicros(deadline))); if (response.no_compression_to_disable()) { return false; } metrics::RecordTFDataServiceRuntimeCompressionDecision( response.compression_disabled_at_runtime()); return response.compression_disabled_at_runtime(); } absl::StatusOr<std::unique_ptr<standalone::Dataset>> DataServiceWorkerImpl::MakeDataset(const DatasetDef& dataset_def, const TaskDef& task_def) const { TF_ASSIGN_OR_RETURN(bool compression_disabled_at_runtime, DisableCompressionAtRuntime(task_def.dataset_id())); GraphDef graph = dataset_def.graph(); if (VLOG_IS_ON(1)) { std::string prefix = absl::StrCat(task_def.dataset_id(), "_", worker_uid_); DumpGraphDefToFile(absl::StrCat(prefix, "-prerewrite_GraphDef"), graph); DumpProtoToFile(absl::StrCat(prefix, "-prerewrite_TaskDef"), task_def); } if (compression_disabled_at_runtime) { RemoveCompressionMapRewriter remove_compression_map_rewriter; TF_ASSIGN_OR_RETURN( graph, remove_compression_map_rewriter.ApplyRemoveCompressionMapRewrite( graph)); } TF_ASSIGN_OR_RETURN(AutoShardRewriter auto_shard_rewriter, AutoShardRewriter::Create(task_def)); TF_ASSIGN_OR_RETURN(graph, auto_shard_rewriter.ApplyAutoShardRewrite(graph)); std::unique_ptr<standalone::Dataset> dataset; TF_RETURN_IF_ERROR(standalone::Dataset::FromGraph( standalone::Dataset::Params(), graph, &dataset)); return dataset; } absl::StatusOr<std::unique_ptr<standalone::Iterator>> DataServiceWorkerImpl::MakeDatasetIterator(standalone::Dataset& dataset, const TaskDef& task_def) const { std::unique_ptr<standalone::Iterator> iterator; if (IsNoShard(task_def.processing_mode_def()) || IsStaticShard(task_def.processing_mode_def())) { TF_RETURN_IF_ERROR(dataset.MakeIterator(&iterator)); return iterator; } if (IsDynamicShard(task_def.processing_mode_def())) { std::vector<std::unique_ptr<SplitProvider>> split_providers; split_providers.reserve(task_def.num_split_providers()); for (int i = 0; i < task_def.num_split_providers(); ++i) { split_providers.push_back(std::make_unique<DataServiceSplitProvider>( config_.dispatcher_address(), config_.protocol(), task_def.iteration_id(), i, config_.dispatcher_timeout_ms())); } TF_RETURN_IF_ERROR( dataset.MakeIterator(std::move(split_providers), &iterator)); return iterator; } return errors::InvalidArgument("Unrecognized processing mode: ", task_def.processing_mode_def().DebugString()); } void DataServiceWorkerImpl::StopTask(Task& task) TF_LOCKS_EXCLUDED(mu_) { { mutex_lock l(task.mu); task.initialized = true; } if (task.task_runner) { task.task_runner->Cancel(); } mutex_lock l(mu_); while (task.outstanding_requests > 0) { cv_.wait(l); } } Status DataServiceWorkerImpl::GetElement(const GetElementRequest* request, GetElementResponse* response) { VLOG(3) << "Received GetElement request for task " << request->task_id(); struct GetElementResult result; TF_RETURN_IF_ERROR(GetElementResult(request, &result)); response->set_end_of_sequence(result.end_of_sequence); response->set_skip_task(result.skip); if (!response->end_of_sequence() && !response->skip_task()) { TF_RETURN_IF_ERROR( MoveElementToResponse(std::move(result.components), *response)); VLOG(3) << "Producing an element for task " << request->task_id(); } return absl::OkStatus(); } Status DataServiceWorkerImpl::GetWorkerTasks( const GetWorkerTasksRequest* request, GetWorkerTasksResponse* response) { mutex_lock l(mu_); for (const auto& it : tasks_) { Task* task = it.second.get(); TaskInfo* task_info = response->add_tasks(); task_info->set_worker_address(worker_address_); task_info->set_task_id(task->task_def.task_id()); task_info->set_iteration_id(task->task_def.iteration_id()); } return absl::OkStatus(); } Status DataServiceWorkerImpl::GetSnapshotTaskProgresses( const GetSnapshotTaskProgressesRequest* request, GetSnapshotTaskProgressesResponse* response) { for (const auto& snapshot_task_progress : GetSnapshotTaskProgress()) { *response->add_snapshot_task_progresses() = snapshot_task_progress; } return absl::OkStatus(); } void DataServiceWorkerImpl::TaskCompletionThread() TF_LOCKS_EXCLUDED(mu_) { while (true) { { mutex_lock l(mu_); while (!cancelled_ && pending_completed_tasks_.empty()) { task_completion_cv_.wait(l); } if (cancelled_ && pending_completed_tasks_.empty()) { VLOG(3) << "Task completion thread shutting down"; return; } } Status s = SendTaskUpdates(); if (!s.ok()) { LOG(WARNING) << "Failed to send task updates to dispatcher: " << s; mutex_lock l(mu_); if (cancelled_) { VLOG(3) << "Task completion thread shutting down"; return; } else { task_completion_cv_.wait_for( l, absl::ToChronoMicroseconds(kRetryInterval)); } } } } Status DataServiceWorkerImpl::SendTaskUpdates() TF_LOCKS_EXCLUDED(mu_) { std::vector<TaskProgress> task_progress; { mutex_lock l(mu_); VLOG(3) << "Sending " << pending_completed_tasks_.size() << " task updates to dispatcher"; task_progress.reserve(pending_completed_tasks_.size()); for (int task_id : pending_completed_tasks_) { task_progress.emplace_back(); task_progress.back().set_task_id(task_id); task_progress.back().set_completed(true); } } TF_RETURN_IF_ERROR(dispatcher_->WorkerUpdate(worker_address_, task_progress)); mutex_lock l(mu_); for (const auto& update : task_progress) { pending_completed_tasks_.erase(update.task_id()); } VLOG(3) << "Sent " << task_progress.size() << " task updates "; return absl::OkStatus(); } void DataServiceWorkerImpl::HeartbeatThread() TF_LOCKS_EXCLUDED(mu_) { while (true) { int64_t next_heartbeat_micros = Env::Default()->NowMicros() + (config_.heartbeat_interval_ms() * 1000); { mutex_lock l(mu_); while (!cancelled_ && Env::Default()->NowMicros() < next_heartbeat_micro
#include "tensorflow/core/data/service/worker_impl.h" #include <memory> #include <string> #include <vector> #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::IsNull; using ::testing::NotNull; class LocalWorkersTest : public ::testing::Test { protected: void SetUp() override { test_cluster_ = std::make_unique<TestCluster>(0); TF_ASSERT_OK(test_cluster_->Initialize()); } std::unique_ptr<TestCluster> test_cluster_; }; TEST_F(LocalWorkersTest, AddRemoveLocalWorkers) { EXPECT_TRUE(LocalWorkers::Empty()); TF_ASSERT_OK(test_cluster_->AddWorker()); TF_ASSERT_OK(test_cluster_->AddWorker()); TF_ASSERT_OK(test_cluster_->AddWorker()); std::vector<std::string> worker_addresses = {test_cluster_->WorkerAddress(0), test_cluster_->WorkerAddress(1), test_cluster_->WorkerAddress(2)}; EXPECT_FALSE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[0]), NotNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[1]), NotNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[2]), NotNull()); test_cluster_->StopWorker(0); EXPECT_FALSE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[0]), IsNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[1]), NotNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[2]), NotNull()); test_cluster_->StopWorkers(); EXPECT_TRUE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[0]), IsNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[1]), IsNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[2]), IsNull()); } TEST_F(LocalWorkersTest, NoLocalWorker) { EXPECT_TRUE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(""), IsNull()); EXPECT_THAT(LocalWorkers::Get("Invalid address"), IsNull()); EXPECT_TRUE(LocalWorkers::Empty()); LocalWorkers::Remove(""); LocalWorkers::Remove("Invalid address"); EXPECT_TRUE(LocalWorkers::Empty()); } } } }
1,747
cpp
tensorflow/tensorflow
task_runner
tensorflow/core/data/service/task_runner.cc
tensorflow/core/data/service/task_runner_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_TASK_RUNNER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_TASK_RUNNER_H_ #include <memory> #include <optional> #include <vector> #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/cross_trainer_cache.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/thread_safe_buffer.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { class TaskIterator { public: virtual ~TaskIterator() = default; virtual Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) = 0; virtual int64_t Cardinality() const = 0; virtual absl::StatusOr<std::vector<Tensor>> Save() { return errors::Unimplemented( "Serializing a tf.data service task iterator is unsupported."); } virtual Status Restore(const std::vector<Tensor>& saved_iterator) { return errors::Unimplemented( "Restoring from a tf.data service task iterator is unsupported."); } virtual std::shared_ptr<model::Model> model() const { return nullptr; } }; class StandaloneTaskIterator : public TaskIterator { public: StandaloneTaskIterator(std::unique_ptr<standalone::Dataset> dataset, std::unique_ptr<standalone::Iterator> iterator); Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) override; int64_t Cardinality() const override; absl::StatusOr<std::vector<Tensor>> Save() override; Status Restore(const std::vector<Tensor>& saved_iterator) override; std::shared_ptr<model::Model> model() const override; private: std::unique_ptr<standalone::Dataset> dataset_; std::unique_ptr<standalone::Iterator> iterator_; }; class TaskRunner { public: static Status Create(const experimental::WorkerConfig& worker_config, const TaskDef& task_def, std::unique_ptr<TaskIterator> iterator, std::unique_ptr<TaskRunner>& out); virtual ~TaskRunner() = default; virtual Status GetNext(const GetElementRequest& req, GetElementResult& result) = 0; virtual void Cancel() = 0; virtual std::shared_ptr<model::Model> model() const = 0; }; class FirstComeFirstServedTaskRunner : public TaskRunner { public: explicit FirstComeFirstServedTaskRunner( std::unique_ptr<TaskIterator> iterator); ~FirstComeFirstServedTaskRunner() override; Status GetNext(const GetElementRequest& req, GetElementResult& result) override; Status GetNext(GetElementResult& result); void Cancel() override; std::shared_ptr<model::Model> model() const override; private: Status PrefetchFn(); void RunPrefetchThread(); absl::StatusOr<GetElementResult> GetNextFromInputIterator() TF_LOCKS_EXCLUDED(mu_); const std::shared_ptr<model::Model> model_; mutex mu_; std::unique_ptr<TaskIterator> iterator_ TF_GUARDED_BY(mu_); int64_t element_index_ TF_GUARDED_BY(mu_) = 0; ThreadSafeBuffer<GetElementResult> buffer_; std::unique_ptr<Thread> prefetch_thread_; FirstComeFirstServedTaskRunner(const FirstComeFirstServedTaskRunner&) = delete; void operator=(const FirstComeFirstServedTaskRunner&) = delete; }; class CachingTaskRunner : public TaskRunner { public: explicit CachingTaskRunner(std::unique_ptr<TaskIterator> iterator, size_t max_cache_size_bytes); ~CachingTaskRunner() override; Status GetNext(const GetElementRequest& req, GetElementResult& result) override; void Cancel() override; std::shared_ptr<model::Model> model() const override; private: class GetElementResultSequence : public CachableSequence<GetElementResult> { public: explicit GetElementResultSequence( FirstComeFirstServedTaskRunner& fcfs_task_runner); absl::StatusOr<GetElementResult> GetNext() override; size_t GetElementSizeBytes(const GetElementResult& element) const override; private: FirstComeFirstServedTaskRunner& fcfs_task_runner_; }; FirstComeFirstServedTaskRunner fcfs_task_runner_; CrossTrainerCache<GetElementResult> cache_; CachingTaskRunner(const CachingTaskRunner&) = delete; void operator=(const CachingTaskRunner&) = delete; }; struct Element { explicit Element(std::vector<Tensor>&& components, int64_t index) : components(components), index(index) {} std::vector<Tensor> components; int64_t index; }; class PrefetchThread { public: explicit PrefetchThread(std::unique_ptr<TaskIterator> iterator, int64_t round_size); ~PrefetchThread(); void Run(); Status FillBuffer(int64_t wait_us, std::vector<std::unique_ptr<Element>>& out); Status GetStatus(); std::shared_ptr<model::Model> model() const; private: const std::unique_ptr<TaskIterator> iterator_; const int64_t round_size_; mutex mu_; int64_t index_ TF_GUARDED_BY(mu_) = 0; std::vector<std::unique_ptr<Element>> buffer_ TF_GUARDED_BY(mu_); Status status_ TF_GUARDED_BY(mu_) = absl::OkStatus(); condition_variable cv_; bool cancelled_ TF_GUARDED_BY(mu_) = false; std::unique_ptr<Thread> thread_; }; class RoundRobinTaskRunner : public TaskRunner { public: RoundRobinTaskRunner(std::unique_ptr<TaskIterator> iterator, int64_t num_consumers, string worker_address); Status GetNext(const GetElementRequest& req, GetElementResult& result) override; void Cancel() override; std::shared_ptr<model::Model> model() const override; private: Status PrepareFullRound(int64_t wait_us) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Status PreparePartialRound() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Status ValidateRequest(const GetElementRequest& req); Status PrepareRound(const GetElementRequest& req); const int64_t num_consumers_; const string worker_address_; mutex mu_; bool cancelled_ TF_GUARDED_BY(mu_) = false; condition_variable new_round_cv_; absl::flat_hash_map<int64_t, absl::flat_hash_map<int64_t, const GetElementRequest*>> requests_ TF_GUARDED_BY(mu_); int64_t first_round_ TF_GUARDED_BY(mu_) = kint64max; int64_t current_round_ TF_GUARDED_BY(mu_) = -1; bool round_skipped_ TF_GUARDED_BY(mu_) = false; std::vector<std::unique_ptr<Element>> buffer_ TF_GUARDED_BY(mu_); PrefetchThread prefetch_thread_; }; } } #endif #include "tensorflow/core/data/service/task_runner.h" #include <algorithm> #include <memory> #include <optional> #include <utility> #include <vector> #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/cross_trainer_cache.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/thread_safe_buffer.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/protobuf/service_config.pb.h" namespace tensorflow { namespace data { namespace { constexpr int64_t kWaitBeforeSkipUs = 100 * 1000; constexpr size_t kDefaultCrossTrainerCacheSizeBytes = 10 * (size_t{1} << 30); } StandaloneTaskIterator::StandaloneTaskIterator( std::unique_ptr<standalone::Dataset> dataset, std::unique_ptr<standalone::Iterator> iterator) : dataset_(std::move(dataset)), iterator_(std::move(iterator)) {} Status StandaloneTaskIterator::GetNext(std::vector<Tensor>& element, bool& end_of_sequence) { return iterator_->GetNext(&element, &end_of_sequence); } int64_t StandaloneTaskIterator::Cardinality() const { return dataset_->Get()->Cardinality(); } absl::StatusOr<std::vector<Tensor>> StandaloneTaskIterator::Save() { return iterator_->Save(); } Status StandaloneTaskIterator::Restore( const std::vector<Tensor>& saved_iterator) { return iterator_->Restore(saved_iterator); } std::shared_ptr<model::Model> StandaloneTaskIterator::model() const { return iterator_->model(); } Status TaskRunner::Create(const experimental::WorkerConfig& worker_config, const TaskDef& task_def, std::unique_ptr<TaskIterator> iterator, std::unique_ptr<TaskRunner>& out) { if (task_def.optional_num_consumers_case() == TaskDef::kNumConsumers) { int64_t cardinality = iterator->Cardinality(); if (cardinality != kInfiniteCardinality && cardinality != kUnknownCardinality) { return errors::FailedPrecondition( "Round robin reads require that the input dataset has infinite " "cardinality, but the dataset has cardinality ", cardinality, ". Consider adding a `.repeat()` transformation to the dataset."); } out = std::make_unique<RoundRobinTaskRunner>(std::move(iterator), task_def.num_consumers(), task_def.worker_address()); } else if (task_def.use_cross_trainer_cache()) { const size_t max_cache_size_bytes = worker_config.cross_trainer_cache_size_bytes() > 0 ? worker_config.cross_trainer_cache_size_bytes() : kDefaultCrossTrainerCacheSizeBytes; out = std::make_unique<CachingTaskRunner>(std::move(iterator), max_cache_size_bytes); } else { out = std::make_unique<FirstComeFirstServedTaskRunner>(std::move(iterator)); } return absl::OkStatus(); } FirstComeFirstServedTaskRunner::FirstComeFirstServedTaskRunner( std::unique_ptr<TaskIterator> iterator) : iterator_(std::move(iterator)), buffer_(1) { RunPrefetchThread(); } FirstComeFirstServedTaskRunner::~FirstComeFirstServedTaskRunner() { Cancel(); } Status FirstComeFirstServedTaskRunner::GetNext(const GetElementRequest& req, GetElementResult& result) { if (req.allow_skip() && buffer_.Empty()) { result.skip = true; return absl::OkStatus(); } return GetNext(result); } Status FirstComeFirstServedTaskRunner::GetNext(GetElementResult& result) { TF_ASSIGN_OR_RETURN(result, buffer_.Pop()); return absl::OkStatus(); } Status FirstComeFirstServedTaskRunner::PrefetchFn() { while (true) { TF_RETURN_IF_ERROR(buffer_.Push(GetNextFromInputIterator())); } return absl::OkStatus(); } void FirstComeFirstServedTaskRunner::RunPrefetchThread() { auto prefetch_fn = [this] { Status status = PrefetchFn(); if (!status.ok()) { buffer_.Cancel(status); } }; prefetch_thread_ = absl::WrapUnique(Env::Default()->StartThread( {}, "tf_data_service_fcfs_prefetch_thread", prefetch_fn)); } absl::StatusOr<GetElementResult> FirstComeFirstServedTaskRunner::GetNextFromInputIterator() TF_LOCKS_EXCLUDED(mu_) { GetElementResult result; std::vector<Tensor> element; bool end_of_task = false; result.skip = false; { mutex_lock l(mu_); TF_RETURN_IF_ERROR(iterator_->GetNext(element, end_of_task)); result.end_of_sequence = end_of_task; result.element_index = element_index_++; } if (!end_of_task) { result.components = std::move(element); } return result; } void FirstComeFirstServedTaskRunner::Cancel() { VLOG(2) << "Cancelling tf.data service FCFS task."; buffer_.Cancel(errors::Cancelled("tf.data service FCFS task is cancelled.")); } std::shared_ptr<model::Model> FirstComeFirstServedTaskRunner::model() const { return model_; } CachingTaskRunner::CachingTaskRunner(std::unique_ptr<TaskIterator> iterator, size_t max_cache_size_bytes) : fcfs_task_runner_(std::move(iterator)), cache_(max_cache_size_bytes, std::make_unique<GetElementResultSequence>(fcfs_task_runner_)) { LOG(INFO) << "Initialized tf.data service cross-trainer cache with " << ByteSize::Bytes(max_cache_size_bytes) << " of memory."; } CachingTaskRunner::~CachingTaskRunner() { Cancel(); } Status CachingTaskRunner::GetNext(const GetElementRequest& req, GetElementResult& result) { TF_ASSIGN_OR_RETURN(std::shared_ptr<const GetElementResult> element, cache_.Get(req.trainer_id())); result = element->Copy(); return absl::OkStatus(); } CachingTaskRunner::GetElementResultSequence::GetElementResultSequence( FirstComeFirstServedTaskRunner& fcfs_task_runner) : fcfs_task_runner_(fcfs_task_runner) {} absl::StatusOr<GetElementResult> CachingTaskRunner::GetElementResultSequence::GetNext() { GetElementResult result; TF_RETURN_IF_ERROR(fcfs_task_runner_.GetNext(result)); if (result.end_of_sequence) { return errors::InvalidArgument( "Cross-trainer caching requires the input dataset to be infinite. " "However, it reached the end of sequence."); } return result; } size_t CachingTaskRunner::GetElementResultSequence::GetElementSizeBytes( const GetElementResult& element) const { return element.EstimatedMemoryUsageBytes(); } void CachingTaskRunner::Cancel() { VLOG(2) << "Cancelling tf.data service cross-trainer cache task."; if (!cache_.IsCancelled()) { cache_.Cancel(errors::Cancelled( "tf.data service cross-trainer cache task is cancelled.")); } fcfs_task_runner_.Cancel(); } std::shared_ptr<model::Model> CachingTaskRunner::model() const { return fcfs_task_runner_.model(); } RoundRobinTaskRunner::RoundRobinTaskRunner( std::unique_ptr<TaskIterator> iterator, int64_t num_consumers, string worker_address) : num_consumers_(num_consumers), worker_address_(worker_address), buffer_(num_consumers_), prefetch_thread_(std::move(iterator), num_consumers_) { VLOG(1) << "Creating task runner for distributing data round-robin to " << num_consumers << " consumers"; } Status RoundRobinTaskRunner::ValidateRequest(const GetElementRequest& req) { if (req.consumer_index() < 0 || req.round_index() < 0) { return errors::FailedPrecondition( "RoundRobinTaskRunner needs to know the consumer index and element " "index of each request."); } if (req.consumer_index() >= num_consumers_) { return errors::FailedPrecondition( "Requesting data for consumer index ", req.consumer_index(), ", but the task is configured for only ", num_consumers_, " consumers"); } return absl::OkStatus(); } Status RoundRobinTaskRunner::PrepareFullRound(int64_t wait_us) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { VLOG(1) << worker_address_ << ": Preparing full round for round " << current_round_; TF_RETURN_IF_ERROR(prefetch_thread_.FillBuffer(wait_us, buffer_)); round_skipped_ = buffer_.empty(); new_round_cv_.notify_all(); return absl::OkStatus(); } Status RoundRobinTaskRunner::PreparePartialRound() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { VLOG(1) << worker_address_ << ": Starting partial round " << first_round_ << " for " << requests_[first_round_].size() << " consumers"; current_round_ = first_round_; new_round_cv_.notify_all(); auto next_round_request = *(requests_[first_round_ + 1].begin()->second); if (next_round_request.skipped_previous_round()) { VLOG(1) << "Skipping partial round"; round_skipped_ = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(prefetch_thread_.FillBuffer(-1, buffer_)); round_skipped_ = false; return absl::OkStatus(); } Status RoundRobinTaskRunner::PrepareRound(const GetElementRequest& req) { mutex_lock l(mu_); first_round_ = std::min(first_round_, req.round_index()); absl::flat_hash_map<int64_t, const GetElementRequest*>& round = requests_[req.round_index()]; round[req.consumer_index()] = &req; auto cleanup = gtl::MakeCleanup([&]() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { requests_[req.round_index()].erase(req.consumer_index()); }); if (current_round_ < req.round_index() && round.size() == num_consumers_) { current_round_ = req.round_index(); int64_t wait_us = kWaitBeforeSkipUs; if (!req.allow_skip()) { wait_us = -1; } TF_RETURN_IF_ERROR(PrepareFullRound(wait_us)); } if (current_round_ < 0 && requests_[first_round_].size() + requests_[first_round_ + 1].size() == num_consumers_) { TF_RETURN_IF_ERROR(PreparePartialRound()); } while (!cancelled_ && current_round_ < req.round_index()) { TF_RETURN_IF_ERROR(prefetch_thread_.GetStatus()); new_round_cv_.wait(l); } if (current_round_ < req.round_index() && cancelled_) { return errors::Cancelled("Worker is shutting down."); } if (current_round_ != req.round_index()) { return errors::FailedPrecondition( "Consumer ", req.consumer_index(), " requested data for round ", req.round_index(), ", but the current round has already reached ", current_round_, ". This may indicate that the consumer was restarted with the same " "iteration " "name.`"); } return prefetch_thread_.GetStatus(); } Status RoundRobinTaskRunner::GetNext(const GetElementRequest& req, GetElementResult& result) { TF_RETURN_IF_ERROR(ValidateRequest(req)); result.end_of_sequence = false; VLOG(2) << worker_address_ << ": Received request from consumer index " << req.consumer_index() << " for round " << req.round_index(); TF_RETURN_IF_ERROR(PrepareRound(req)); tf_shared_lock l(mu_); result.skip = round_skipped_; if (round_skipped_) { VLOG(1) << worker_address_ << ": Buffer not ready, skipping round " << current_round_ << " for consumer " << req.consumer_index(); return absl::OkStatus(); } auto& buffer_result = buffer_[req.consumer_index()]; result.element_index = buffer_result->index; std::vector<Tensor> element; for (auto& component : buffer_result->components) { element.push_back(tensor::DeepCopy(component)); } if (VLOG_IS_ON(2)) { int64_t size = 0; for (auto& component : element) { size += component.TotalBytes(); } VLOG(2) << worker_address_ << ": Returning element " << result.element_index << " to consumer " << req.consumer_index() << " for round " << req.round_index() << ". element size " << size; } result.components = std::move(element); return absl::OkStatus(); } void RoundRobinTaskRunner::Cancel() { mutex_lock l(mu_); cancelled_ = true; new_round_cv_.notify_all(); } std::shared_ptr<model::Model> RoundRobinTaskRunner::model() const { return prefetch_thread_.model(); } PrefetchThread::PrefetchThread(std::unique_ptr<TaskIterator> iterator, int64_t round_size) : iterator_(std::move(iterator)), round_size_(round_size) { thread_ = absl::WrapUnique( Env::Default()->StartThread({}, "round-robin-prefetch", [&] { Run(); })); } PrefetchThread::~PrefetchThread() { mutex_lock l(mu_); cancelled_ = true; cv_.notify_all(); } void PrefetchThread::Run() { while (true) { { mutex_lock l(mu_); while (!cancelled_ && buffer_.size() >= round_size_) { cv_.wait(l); } if (cancelled_) { return; } } std::vector<Tensor> element; bool end_of_sequence; Status s = iterator_->GetNext(element, end_of_sequence); if (!s.ok()) { mutex_lock l(mu_); status_ = s; cv_.notify_all(); return; } if (end_of_sequence) { mutex_lock l(mu_); status_ = errors::FailedPrecondition( "Encountered end of sequence on a round-robin read iterator. " "Please ensure that the dataset used for round-robin reading has " "infinite cardinality, e.g. by adding a .repeat() transformation " "at the end."); cv_.notify_all(); return; } mutex_lock l(mu_); buffer_.push_back(std::make_unique<Element>(std::move(element), index_++)); cv_.notify_all(); } } Status PrefetchThread::FillBuffer(int64_t wait_us, std::vector<std::unique_ptr<Element>>& out) { int64_t start_us = Env::Default()->NowMicros(); out.clear(); mutex_lock l(mu_); while (buffer_.size() < round_size_ && !cancelled_ && status_.ok()) { int64_t remaining_us = start_us + wait_us - Env::Default()->NowMicros(); if (wait_us >= 0 && remaining_us <= 0) { break; } cv_.wait_for(l, std::chrono::microseconds(remaining_us)); } TF_RETURN_IF_ERROR(status_); if (cancelled_) { return errors::Cancelled("Prefetch thread cancelled"); } if (buffer_.size() < round_size_) { DCHECK_GE(wait_us, 0); return absl::OkStatus(); } for (auto& elem : buffer_) { out.push_back(std::move(elem)); } buffer_.clear(); cv_.notify_all(); return absl::OkStatus(); } Status PrefetchThread::GetStatus() { mutex_lock l(mu_); return status_; } std::shared_ptr<model::Model> PrefetchThread::model() const { return iterator_->model(); } } }
#include "tensorflow/core/data/service/task_runner.h" #include <algorithm> #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::testing::IsOkAndHolds; using ::tensorflow::testing::StatusIs; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::Gt; using ::testing::HasSubstr; using ::testing::SizeIs; using ::testing::UnorderedElementsAreArray; constexpr size_t kSmallCache = 100; constexpr size_t kLargeCache = 10 * (size_t{1} << 30); class RangeIterator : public TaskIterator { public: explicit RangeIterator(const int64_t range, const bool repeat) : range_(range), repeat_(repeat) {} Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) override { end_of_sequence = (next_ >= range_); if (end_of_sequence) { return absl::OkStatus(); } element = {Tensor{next_++}}; if (repeat_) { next_ = next_ % range_; } return absl::OkStatus(); } int64_t Cardinality() const override { return repeat_ ? kInfiniteCardinality : range_; } private: const int64_t range_; const bool repeat_; int64_t next_ = 0; }; class InfiniteRangeIterator : public TaskIterator { public: InfiniteRangeIterator() = default; Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) override { element = {Tensor{next_++}}; return absl::OkStatus(); } int64_t Cardinality() const override { return kInfiniteCardinality; } private: int64_t next_ = 0; }; template <class T> class ElementOrErrorIterator : public TaskIterator { public: explicit ElementOrErrorIterator(const std::vector<StatusOr<T>>& elements) : elements_(elements) {} Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) override { end_of_sequence = (next_ >= elements_.size()); if (end_of_sequence) { return absl::OkStatus(); } const StatusOr<T>& next_element = elements_[next_++]; TF_RETURN_IF_ERROR(next_element.status()); element = {Tensor{*next_element}}; return absl::OkStatus(); } int64_t Cardinality() const override { return elements_.size(); } private: const std::vector<StatusOr<T>> elements_; int64_t next_ = 0; }; template <class T> StatusOr<std::vector<T>> GetTaskRunnerOutput(TaskRunner& runner, const GetElementRequest& request) { std::vector<T> output; for (bool end_of_sequence = false; !end_of_sequence;) { GetElementResult result; TF_RETURN_IF_ERROR(runner.GetNext(request, result)); end_of_sequence = result.end_of_sequence; if (end_of_sequence) { break; } if (result.components.size() != 1) { return errors::Internal("GetElementResult Tensor size should be 1."); } output.push_back(result.components[0].unaligned_flat<T>().data()[0]); } return output; } template <class T> StatusOr<T> GetNextFromTaskRunner(TaskRunner& runner, const GetElementRequest& request) { GetElementResult result; TF_RETURN_IF_ERROR(runner.GetNext(request, result)); if (result.end_of_sequence) { return errors::OutOfRange("TaskRunner has reached the end of sequence."); } if (result.components.size() != 1) { return errors::Internal("GetElementResult Tensor size should be 1."); } return result.components[0].unaligned_flat<T>().data()[0]; } template <class T> StatusOr<std::vector<T>> GetElementsFromTaskRunner( TaskRunner& runner, const GetElementRequest& request, const size_t num_elements) { std::vector<T> output; for (size_t i = 0; i < num_elements; ++i) { TF_ASSIGN_OR_RETURN(T next, GetNextFromTaskRunner<T>(runner, request)); output.push_back(next); } return output; } std::vector<int64_t> GetRange(const size_t range) { std::vector<int64_t> result; for (int64_t i = 0; i < range; ++i) { result.push_back(i); } return result; } Status RunConsumer(int64_t consumer_index, int64_t start_index, int64_t end_index, TaskRunner& task_runner, std::vector<int64_t>& output) { for (int64_t next_index = start_index; next_index < end_index; ++next_index) { GetElementRequest request; request.set_round_index(next_index); request.set_consumer_index(consumer_index); request.set_skipped_previous_round(false); request.set_allow_skip(false); GetElementResult result; do { TF_RETURN_IF_ERROR(task_runner.GetNext(request, result)); if (!result.end_of_sequence) { output.push_back(result.components[0].flat<int64_t>()(0)); } } while (result.skip); } return absl::OkStatus(); } } TEST(FirstComeFirstServedTaskRunnerTest, GetNext) { size_t range = 10; FirstComeFirstServedTaskRunner runner( std::make_unique<RangeIterator>(range, false)); TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> output, GetTaskRunnerOutput<int64_t>(runner, GetElementRequest())); EXPECT_THAT(output, ElementsAreArray(GetRange(range))); GetElementResult result; TF_ASSERT_OK(runner.GetNext(GetElementRequest(), result)); EXPECT_TRUE(result.end_of_sequence); } TEST(FirstComeFirstServedTaskRunnerTest, EmptyDataset) { FirstComeFirstServedTaskRunner runner( std::make_unique<RangeIterator>(0, false)); for (int i = 0; i < 5; ++i) { GetElementResult result; TF_ASSERT_OK(runner.GetNext(GetElementRequest(), result)); EXPECT_TRUE(result.end_of_sequence); } } TEST(FirstComeFirstServedTaskRunnerTest, Cancel) { size_t range = 10; FirstComeFirstServedTaskRunner runner( std::make_unique<RangeIterator>(range, false)); runner.Cancel(); for (int i = 0; i < range; ++i) { GetElementResult result; EXPECT_THAT(runner.GetNext(GetElementRequest(), result), testing::StatusIs(error::CANCELLED)); } } TEST(FirstComeFirstServedTaskRunnerTest, ConcurrentReaders) { size_t range = 1000; size_t num_readers = 10; FirstComeFirstServedTaskRunner runner( std::make_unique<RangeIterator>(range, false)); mutex mu; std::vector<int64_t> results; std::vector<std::unique_ptr<Thread>> reader_threads; for (int i = 0; i < num_readers; ++i) { reader_threads.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("Trainer_", i), [&runner, &results, &mu]() { TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> output, GetTaskRunnerOutput<int64_t>(runner, GetElementRequest())); GetElementResult result; TF_ASSERT_OK(runner.GetNext(GetElementRequest(), result)); EXPECT_TRUE(result.end_of_sequence); mutex_lock l(mu); std::move(output.begin(), output.end(), std::back_inserter(results)); }))); } for (auto& thread : reader_threads) { thread.reset(); } EXPECT_THAT(results, UnorderedElementsAreArray(GetRange(range))); } TEST(FirstComeFirstServedTaskRunnerTest, GetNextAndCancel) { size_t range = 10; FirstComeFirstServedTaskRunner runner( std::make_unique<RangeIterator>(range, false)); int64_t i; for (i = 0; i < range / 2; ++i) { EXPECT_THAT(GetNextFromTaskRunner<int64_t>(runner, GetElementRequest()), IsOkAndHolds(i)); } runner.Cancel(); for (; i < range; ++i) { GetElementResult result; EXPECT_THAT(runner.GetNext(GetElementRequest(), result), testing::StatusIs(error::CANCELLED)); } } TEST(FirstComeFirstServedTaskRunnerTest, Error) { FirstComeFirstServedTaskRunner runner( std::make_unique<ElementOrErrorIterator<tstring>>( std::vector<absl::StatusOr<tstring>>{ tstring("First element"), errors::InvalidArgument("Invalid argument"), tstring("Second element"), errors::Aborted("Aborted")})); EXPECT_THAT(GetNextFromTaskRunner<tstring>(runner, GetElementRequest()), IsOkAndHolds("First element")); EXPECT_THAT(GetNextFromTaskRunner<tstring>(runner, GetElementRequest()), testing::StatusIs(error::INVALID_ARGUMENT)); EXPECT_THAT(GetNextFromTaskRunner<tstring>(runner, GetElementRequest()), IsOkAndHolds("Second element")); EXPECT_THAT(GetNextFromTaskRunner<tstring>(runner, GetElementRequest()), testing::StatusIs(error::ABORTED)); } TEST(CachingTaskRunnerTest, GetNext) { size_t range = 10; CachingTaskRunner runner(std::make_unique<InfiniteRangeIterator>(), kLargeCache); size_t num_trainers = 10; for (size_t i = 0; i < num_trainers; ++i) { GetElementRequest request; request.set_trainer_id(absl::StrCat("Trainer ", i)); TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> output, GetElementsFromTaskRunner<int64_t>(runner, request, range)); EXPECT_THAT(output, ElementsAreArray(GetRange(range))); GetElementResult result; TF_ASSERT_OK(runner.GetNext(request, result)); EXPECT_FALSE(result.end_of_sequence); } } TEST(CachingTaskRunnerTest, EmptyDataset) { CachingTaskRunner runner( std::make_unique<RangeIterator>(0, false), kLargeCache); GetElementRequest request; request.set_trainer_id("Trainer ID"); GetElementResult result; EXPECT_THAT(runner.GetNext(request, result), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Cross-trainer caching requires the input " "dataset to be infinite."))); } TEST(CachingTaskRunnerTest, SlowClientSkipsData) { size_t range = 1000; CachingTaskRunner runner(std::make_unique<InfiniteRangeIterator>(), kSmallCache); GetElementRequest request; request.set_trainer_id("Fast trainer"); TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> fast_trainer_output, GetElementsFromTaskRunner<int64_t>(runner, request, range)); EXPECT_THAT(fast_trainer_output, ElementsAreArray(GetRange(range))); request.set_trainer_id("Slow trainer"); TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> slow_trainer_output, GetElementsFromTaskRunner<int64_t>(runner, request, range)); EXPECT_THAT(slow_trainer_output, SizeIs(range)); EXPECT_THAT(slow_trainer_output[0], Gt(0)); } TEST(CachingTaskRunnerTest, ConcurrentTrainers) { size_t range = 100; size_t num_readers = 10; CachingTaskRunner runner(std::make_unique<InfiniteRangeIterator>(), kLargeCache); std::vector<std::unique_ptr<Thread>> reader_threads; for (int i = 0; i < num_readers; ++i) { reader_threads.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("Trainer_", i), [&runner, range, i]() { GetElementRequest request; request.set_trainer_id(absl::StrCat("Trainer_", i)); TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> output, GetElementsFromTaskRunner<int64_t>(runner, request, range)); EXPECT_THAT(output, ElementsAreArray(GetRange(range))); GetElementResult result; TF_ASSERT_OK(runner.GetNext(request, result)); EXPECT_FALSE(result.end_of_sequence); }))); } } TEST(CachingTaskRunnerTest, Cancel) { CachingTaskRunner runner(std::make_unique<InfiniteRangeIterator>(), kLargeCache); GetElementRequest request; request.set_trainer_id("Trainer ID"); int i; for (i = 0; i < 10; ++i) { EXPECT_THAT(GetNextFromTaskRunner<int64_t>(runner, request), IsOkAndHolds(i)); } runner.Cancel(); for (; i < 10; ++i) { GetElementResult result; EXPECT_THAT(runner.GetNext(request, result), testing::StatusIs(error::CANCELLED)); } } TEST(CachingTaskRunnerTest, CancelConcurrentReaders) { size_t num_readers = 10; CachingTaskRunner runner(std::make_unique<InfiniteRangeIterator>(), kSmallCache); std::vector<std::unique_ptr<Thread>> reader_threads; for (size_t i = 0; i < num_readers; ++i) { reader_threads.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("Trainer_", i), [&runner]() { for (size_t j = 0; true; ++j) { GetElementRequest request; request.set_trainer_id(absl::StrCat("Trainer_", (j % 100))); GetElementResult result; Status status = runner.GetNext(request, result); if (!status.ok()) { return; } ASSERT_FALSE(result.end_of_sequence); ASSERT_EQ(result.components.size(), 1); } }))); } Env::Default()->SleepForMicroseconds(1000000); runner.Cancel(); for (auto& thread : reader_threads) { thread.reset(); } GetElementRequest request; GetElementResult result; request.set_trainer_id(absl::StrCat("Trainer_", 0)); EXPECT_THAT(runner.GetNext(request, result), testing::StatusIs(error::CANCELLED)); } TEST(CachingTaskRunnerTest, Errors) { size_t num_readers = 10; CachingTaskRunner runner( std::make_unique<ElementOrErrorIterator<tstring>>( std::vector<absl::StatusOr<tstring>>{ tstring("First element"), errors::Cancelled("Cancelled"), tstring("Second element"), errors::FailedPrecondition("FailedPrecondition"), tstring("Third element"), errors::Unavailable("Unavailable"), }), kLargeCache); std::vector<std::unique_ptr<Thread>> reader_threads; std::vector<std::vector<tstring>> results; results.reserve(num_readers); for (size_t i = 0; i < num_readers; ++i) { results.emplace_back(); std::vector<tstring>& result = results.back(); reader_threads.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("Trainer_", i), [&runner, &result, i]() { GetElementRequest request; request.set_trainer_id(absl::StrCat("Trainer_", i)); while (true) { absl::StatusOr<tstring> element = GetNextFromTaskRunner<tstring>(runner, request); if (element.ok()) { result.push_back(*element); } if (errors::IsInvalidArgument(element.status())) { EXPECT_THAT( element.status(), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Cross-trainer caching requires the input " "dataset to be infinite."))); return; } } }))); } for (auto& thread : reader_threads) { thread.reset(); } EXPECT_EQ(results.size(), num_readers); for (const std::vector<tstring>& result : results) { EXPECT_THAT(result, ElementsAre(tstring("First element"), tstring("Second element"), tstring("Third element"))); } } class ConsumeParallelTest : public ::testing::Test, public ::testing::WithParamInterface<std::tuple<int64_t, int64_t>> {}; TEST_P(ConsumeParallelTest, ConsumeParallel) { int64_t num_elements = std::get<0>(GetParam()); int64_t num_consumers = std::get<1>(GetParam()); RoundRobinTaskRunner runner( std::make_unique<RangeIterator>(num_elements, true), num_consumers, "test_worker_address"); std::vector<std::vector<int64_t>> per_consumer_results; std::vector<std::unique_ptr<Thread>> consumers; mutex mu; Status error; for (int consumer = 0; consumer < num_consumers; ++consumer) { mutex_lock l(mu); per_consumer_results.emplace_back(); consumers.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("consumer_", consumer), [&, consumer] { std::vector<int64_t> results; Status s = RunConsumer(consumer, 0, num_elements, runner, results); mutex_lock l(mu); if (!s.ok()) { error = s; return; } per_consumer_results[consumer] = std::move(results); }))); } consumers.clear(); mutex_lock l(mu); TF_ASSERT_OK(error); for (int i = 0; i < num_elements; ++i) { int consumer = i % num_consumers; int round = i / num_consumers; EXPECT_EQ(per_consumer_results[consumer][round], i); } } INSTANTIATE_TEST_SUITE_P(ConsumeParallelTests, ConsumeParallelTest, ::testing::Values(std::make_tuple(1000, 5), std::make_tuple(1003, 5), std::make_tuple(1000, 20), std::make_tuple(4, 20), std::make_tuple(0, 20))); TEST(RoundRobinTaskRunner, ConsumeParallelPartialRound) { int64_t num_consumers = 5; std::vector<int64_t> starting_rounds = {12, 11, 11, 12, 12}; int64_t end_index = 15; std::vector<std::vector<int64_t>> expected_consumer_results = { {5, 10, 15}, {1, 6, 11, 16}, {2, 7, 12, 17}, {8, 13, 18}, {9, 14, 19}}; RoundRobinTaskRunner runner( std::make_unique<RangeIterator>(30, true), num_consumers, "test_worker_address"); std::vector<std::vector<int64_t>> per_consumer_results; std::vector<std::unique_ptr<Thread>> consumers; mutex mu; Status error; for (int consumer = 0; consumer < num_consumers; ++consumer) { mutex_lock l(mu); per_consumer_results.emplace_back(); consumers.push_back(absl::WrapUnique(Env::Default()->StartThread( {}, absl::StrCat("consumer_", consumer), [&, consumer] { std::vector<int64_t> results; Status s = RunConsumer(consumer, starting_rounds[consumer], end_index, runner, results); mutex_lock l(mu); if (!s.ok()) { error = s; return; } per_consumer_results[consumer] = std::move(results); }))); } consumers.clear(); mutex_lock l(mu); TF_ASSERT_OK(error); for (int consumer = 0; consumer < num_consumers; ++consumer) { EXPECT_EQ(per_consumer_results[consumer], expected_consumer_results[consumer]); } } } }
1,748
cpp
tensorflow/tensorflow
auto_scaler
tensorflow/core/data/service/auto_scaler.cc
tensorflow/core/data/service/auto_scaler_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_AUTO_SCALER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_AUTO_SCALER_H_ #include <cstdint> #include <memory> #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/time/time.h" #include "tsl/platform/mutex.h" #include "tsl/platform/status.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { class AutoScaler { public: AutoScaler() = default; std::optional<int64_t> GetOptimalNumberOfWorkers() const TF_LOCKS_EXCLUDED(mu_); absl::Status ReportProcessingTime(const std::string& worker_address, absl::Duration processing_time) TF_LOCKS_EXCLUDED(mu_); absl::Status ReportTargetProcessingTime(int64_t consumer_id, absl::Duration target_processing_time) TF_LOCKS_EXCLUDED(mu_); absl::Status RemoveWorker(const std::string& worker_address) TF_LOCKS_EXCLUDED(mu_); absl::Status RemoveConsumer(int64_t consumer_id) TF_LOCKS_EXCLUDED(mu_); private: mutable tsl::mutex mu_; absl::flat_hash_map<std::string, double> worker_throughputs_ TF_GUARDED_BY(mu_); absl::flat_hash_map<int64_t, double> consumption_rates_ TF_GUARDED_BY(mu_); }; class MultipleIterationsAutoScaler { public: MultipleIterationsAutoScaler() = default; absl::Status UnregisterIteration(int64_t iteration_id) TF_LOCKS_EXCLUDED(mu_); absl::Status UpdateOptimalNumberOfWorkersMetric( int64_t current_number_of_workers) TF_LOCKS_EXCLUDED(mu_); std::optional<int64_t> GetOptimalNumberOfWorkers() const TF_LOCKS_EXCLUDED(mu_); absl::Status ReportProcessingTime(int64_t iteration_id, const std::string& worker_address, absl::Duration processing_time) TF_LOCKS_EXCLUDED(mu_); absl::Status ReportTargetProcessingTime(int64_t iteration_id, int64_t consumer_id, absl::Duration target_processing_time) TF_LOCKS_EXCLUDED(mu_); absl::Status RemoveWorker(int64_t iteration_id, const std::string& worker_address) TF_LOCKS_EXCLUDED(mu_); absl::Status RemoveConsumer(int64_t iteration_id, int64_t consumer_id) TF_LOCKS_EXCLUDED(mu_); private: void EnsureIterationIsRegistered(int64_t iteration_id) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); mutable tsl::mutex mu_; absl::flat_hash_map<int64_t, std::unique_ptr<AutoScaler>> auto_scalers_ TF_GUARDED_BY(mu_); }; } } #endif #include "tensorflow/core/data/service/auto_scaler.h" #include <algorithm> #include <cmath> #include <cstdint> #include <memory> #include <numeric> #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "tensorflow/core/framework/metrics.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr double kAutoScalerOutlierSigmas = 1.0; template <typename T> double GetMedian(const absl::flat_hash_map<T, double>& rates) { std::vector<double> sorted_rates; for (const auto& [id, rate] : rates) { sorted_rates.push_back(rate); } std::sort(sorted_rates.begin(), sorted_rates.end()); return sorted_rates[sorted_rates.size() / 2]; } template <typename T> double GetMean(const absl::flat_hash_map<T, double>& rates) { double rates_sum = 0.0; for (const auto& [id, rate] : rates) { rates_sum += rate; } if (rates_sum == 0.0) return 0.0; return rates_sum / static_cast<double>(rates.size()); } template <typename T> double GetStandardDeviation(const absl::flat_hash_map<T, double>& rates, double mean) { double squared_distances_sum = 0.0; for (const auto& [id, rate] : rates) { squared_distances_sum += (rate - mean) * (rate - mean); } if (squared_distances_sum == 0.0 || rates.size() <= 1) return 0.0; return std::sqrt(squared_distances_sum / static_cast<double>(rates.size() - 1)); } template <typename T> void ReplaceOutliers(const absl::flat_hash_map<T, double>& rates, std::vector<double>& rates_without_outliers, double outlier_sigmas) { if (rates.empty()) return; double mean = GetMean(rates); double median = GetMedian(rates); double standard_deviation = GetStandardDeviation(rates, mean); double lower_threshold = mean - standard_deviation * outlier_sigmas; double upper_threshold = mean + standard_deviation * outlier_sigmas; for (const auto& [id, rate] : rates) { if (rate >= lower_threshold && rate <= upper_threshold) { rates_without_outliers.push_back(rate); } else { rates_without_outliers.push_back(median); } } } std::optional<int64_t> AutoScaler::GetOptimalNumberOfWorkers() const TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (worker_throughputs_.empty() || consumption_rates_.empty()) return std::nullopt; std::vector<double> consumption_rates_without_outliers; ReplaceOutliers(consumption_rates_, consumption_rates_without_outliers, kAutoScalerOutlierSigmas); double consumption_rates_sum_ = std::accumulate(consumption_rates_without_outliers.begin(), consumption_rates_without_outliers.end(), 0.0); std::vector<double> worker_throughputs_without_outliers; ReplaceOutliers(worker_throughputs_, worker_throughputs_without_outliers, kAutoScalerOutlierSigmas); double worker_throughputs_sum_ = std::accumulate(worker_throughputs_without_outliers.begin(), worker_throughputs_without_outliers.end(), 0.0); double average_worker_throughput = worker_throughputs_sum_ / static_cast<double>(worker_throughputs_.size()); int64_t optimal_number_of_workers = ceil(consumption_rates_sum_ / average_worker_throughput); return std::max(int64_t{1}, optimal_number_of_workers); } absl::Status AutoScaler::ReportProcessingTime(const std::string& worker_address, absl::Duration processing_time) TF_LOCKS_EXCLUDED(mu_) { if (processing_time <= absl::ZeroDuration()) { return absl::InvalidArgumentError(absl::StrCat( "Cannot update processing_time with a ZeroDuration or negative value: ", absl::FormatDuration(processing_time))); } double worker_throughput = 1.0 / absl::ToDoubleSeconds(processing_time); tsl::mutex_lock l(mu_); worker_throughputs_[worker_address] = worker_throughput; return absl::OkStatus(); } absl::Status AutoScaler::ReportTargetProcessingTime( int64_t consumer_id, absl::Duration target_processing_time) TF_LOCKS_EXCLUDED(mu_) { if (target_processing_time <= absl::ZeroDuration()) { return absl::InvalidArgumentError( absl::StrCat("Cannot update target_processing_time with a ZeroDuration " "or negative value: ", absl::FormatDuration(target_processing_time))); } double consumption_rate = 1.0 / absl::ToDoubleSeconds(target_processing_time); tsl::mutex_lock l(mu_); consumption_rates_[consumer_id] = consumption_rate; return absl::OkStatus(); } absl::Status AutoScaler::RemoveWorker(const std::string& worker_address) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!worker_throughputs_.contains(worker_address)) return absl::NotFoundError( absl::StrCat("Worker with address ", worker_address, " not found")); worker_throughputs_.erase(worker_address); return absl::OkStatus(); } absl::Status AutoScaler::RemoveConsumer(int64_t consumer_id) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!consumption_rates_.contains(consumer_id)) return absl::NotFoundError( absl::StrCat("Consumer with ID ", consumer_id, " not found")); consumption_rates_.erase(consumer_id); return absl::OkStatus(); } void MultipleIterationsAutoScaler::EnsureIterationIsRegistered( int64_t iteration_id) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!auto_scalers_.contains(iteration_id)) { auto_scalers_[iteration_id] = std::make_unique<AutoScaler>(); } } absl::Status MultipleIterationsAutoScaler::UnregisterIteration( int64_t iteration_id) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!auto_scalers_.contains(iteration_id)) return absl::NotFoundError(absl::StrCat("AutoScaler for iteration_id ", iteration_id, " does not exist")); auto_scalers_.erase(iteration_id); return absl::OkStatus(); } absl::Status MultipleIterationsAutoScaler::UpdateOptimalNumberOfWorkersMetric( int64_t current_number_of_workers) TF_LOCKS_EXCLUDED(mu_) { if (current_number_of_workers <= 0) return absl::InvalidArgumentError( "The current number of workers must be positive"); std::optional<int64_t> optimal_number_of_workers = GetOptimalNumberOfWorkers(); if (!optimal_number_of_workers) return absl::UnavailableError( "Cannot update the optimal number of workers metric because there are " "no reported processing and target processing times for at least one " "iteration"); VLOG(3) << "Estimated optimal number of workers: " << optimal_number_of_workers.value(); int64_t bound_optimal_number_of_workers = optimal_number_of_workers.value(); if (bound_optimal_number_of_workers > current_number_of_workers * 4 || bound_optimal_number_of_workers > current_number_of_workers + 500) { bound_optimal_number_of_workers = std::min(current_number_of_workers * 4, current_number_of_workers + 500); } bound_optimal_number_of_workers = std::min(bound_optimal_number_of_workers, int64_t{100000}); VLOG(3) << "Bound optimal number of workers: " << bound_optimal_number_of_workers; metrics::RecordTFDataServiceOptimalNumberOfWorkers( bound_optimal_number_of_workers); return absl::OkStatus(); } std::optional<int64_t> MultipleIterationsAutoScaler::GetOptimalNumberOfWorkers() const TF_LOCKS_EXCLUDED(mu_) { int64_t optimal_number_of_workers = 0; { tsl::tf_shared_lock l(mu_); for (const auto& [iteration_id, auto_scaler] : auto_scalers_) { std::optional<int64_t> current_optimal_number_of_workers = auto_scaler->GetOptimalNumberOfWorkers(); if (!current_optimal_number_of_workers.has_value()) continue; optimal_number_of_workers = std::max( optimal_number_of_workers, current_optimal_number_of_workers.value()); } } if (optimal_number_of_workers == 0) return std::nullopt; else return optimal_number_of_workers; } absl::Status MultipleIterationsAutoScaler::ReportProcessingTime( int64_t iteration_id, const std::string& worker_address, absl::Duration processing_time) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); EnsureIterationIsRegistered(iteration_id); absl::Status status = auto_scalers_[iteration_id]->ReportProcessingTime( worker_address, processing_time); return status; } absl::Status MultipleIterationsAutoScaler::ReportTargetProcessingTime( int64_t iteration_id, int64_t consumer_id, absl::Duration target_processing_time) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); EnsureIterationIsRegistered(iteration_id); absl::Status status = auto_scalers_[iteration_id]->ReportTargetProcessingTime( consumer_id, target_processing_time); return status; } absl::Status MultipleIterationsAutoScaler::RemoveWorker( int64_t iteration_id, const std::string& worker_address) TF_LOCKS_EXCLUDED(mu_) { tsl::tf_shared_lock l(mu_); if (!auto_scalers_.contains(iteration_id)) return absl::NotFoundError(absl::StrCat( "There are no reported times for iteration_id ", iteration_id)); absl::Status status = auto_scalers_[iteration_id]->RemoveWorker(worker_address); return status; } absl::Status MultipleIterationsAutoScaler::RemoveConsumer(int64_t iteration_id, int64_t consumer_id) TF_LOCKS_EXCLUDED(mu_) { tsl::tf_shared_lock l(mu_); if (!auto_scalers_.contains(iteration_id)) return absl::NotFoundError(absl::StrCat( "There are no reported times for iteration_id ", iteration_id)); absl::Status status = auto_scalers_[iteration_id]->RemoveConsumer(consumer_id); return status; } } }
#include "tensorflow/core/data/service/auto_scaler.h" #include <optional> #include "absl/time/time.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using ::tsl::testing::StatusIs; TEST(AutoScalerTest, GetOptimalNumberOfWorkersInitialState) { AutoScaler auto_scaler; EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredWorkers) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredConsumers) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate1) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(0, absl::Seconds(0.025))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 8); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate2) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Seconds(0.15))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(0, absl::Seconds(0.025))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(1, absl::Seconds(0.05))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 11); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate3) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Seconds(0.1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(0, absl::Seconds(0.01))); TF_ASSERT_OK(auto_scaler.ReportTargetProcessingTime(1, absl::Seconds(0.02))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 20); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersRemoveOutliersTPT) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Nanoseconds(80000000))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Nanoseconds(500))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Nanoseconds(3000000))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, absl::Nanoseconds(2000000))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 107); } TEST(AutoScalerTest, GetOptimalNumberOfWorkersRemoveOutliersPT) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Nanoseconds(80000000))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Nanoseconds(70000000))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/2:20000", absl::Nanoseconds(1000))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Nanoseconds(300000))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 244); } TEST(AutoScalerTest, ReportProcessingTimeNewWorker) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); } TEST(AutoScalerTest, ReportProcessingTimeExistingWorker) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(20))); } TEST(AutoScalerTest, ReportProcessingTimeNewAndExisting) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/2:20000", absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/2:20000", absl::Microseconds(10))); } TEST(AutoScalerTest, ReportProcessingTimeZeroDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, ReportProcessingTimeNegativeDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime( "/worker/task/0:20000", absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, ReportTargetProcessingTimeNewConsumer) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); } TEST(AutoScalerTest, ReportTargetProcessingTimeExistingConsumer) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(20))); } TEST(AutoScalerTest, ReportTargetProcessingTimeNewAndExisting) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, absl::Microseconds(10))); } TEST(AutoScalerTest, ReportTargetProcessingTimeZeroDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, ReportTargetProcessingTimeNegativeDuration) { AutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(AutoScalerTest, RemoveWorkerSuccessful) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/1:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker("/worker/task/0:20000")); TF_ASSERT_OK(auto_scaler.RemoveWorker("/worker/task/1:20000")); } TEST(AutoScalerTest, RemoveNonexistentWorker) { AutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveWorker("/worker/task/0:20000"), StatusIs(absl::StatusCode::kNotFound)); } TEST(AutoScalerTest, RemoveWorkerAfterNewPTReported) { AutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime("/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker("/worker/task/0:20000")); } TEST(AutoScalerTest, RemoveConsumerSuccessful) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0)); TF_ASSERT_OK(auto_scaler.RemoveConsumer(1)); } TEST(AutoScalerTest, RemoveNonexistentConsumer) { AutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveConsumer(0), StatusIs(absl::StatusCode::kNotFound)); } TEST(AutoScalerTest, RemoveConsumerAfterNewTPTReported) { AutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0)); } TEST(MultipleIterationsAutoScalerTest, UnregisterExistingIteration) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK(auto_scaler.UnregisterIteration(0)); } TEST(MultipleIterationsAutoScalerTest, UnregisterNonexistentIteration) { MultipleIterationsAutoScaler auto_scaler; EXPECT_THAT(auto_scaler.UnregisterIteration(0), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricInvalidCurrentWorkers) { MultipleIterationsAutoScaler auto_scaler; absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(0); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument)); status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(-1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricNoReportedTimes) { MultipleIterationsAutoScaler auto_scaler; absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kUnavailable)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricNoReportedPTs) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(5))); absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kUnavailable)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricNoReportedTPTs) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); absl::Status status = auto_scaler.UpdateOptimalNumberOfWorkersMetric(1); EXPECT_THAT(status, StatusIs(absl::StatusCode::kUnavailable)); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricWithReportedTimes) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(5))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(1)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_GT(cell_reader.Read(), 0); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricIncreaseWithinLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(500))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(15)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 50); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetric4xIncreaseLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(2)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 8); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetric500IncreaseLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10000))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(1000)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 1500); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, UpdateOptimalNumberOfWorkersMetricMaxLimit) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(200000))); TF_ASSERT_OK(auto_scaler.UpdateOptimalNumberOfWorkersMetric(99700)); monitoring::testing::CellReader<int64_t> cell_reader( "/tensorflow/data/service/optimal_number_of_workers"); EXPECT_EQ(cell_reader.Read(), 100000); metrics::RecordTFDataServiceOptimalNumberOfWorkers(0); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersInitialState) { MultipleIterationsAutoScaler auto_scaler; EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredWorkers) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(5))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(5))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersNoRegisteredConsumers) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), std::nullopt); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate1) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Seconds(0.025))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Seconds(0.15))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Seconds(0.025))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Seconds(0.05))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 11); } TEST(MultipleIterationsAutoScalerTest, GetOptimalNumberOfWorkersExpectedEstimate2) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Seconds(0.025))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Seconds(0.2))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Seconds(0.15))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Seconds(0.025))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Seconds(0.05))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(2, "/worker/task/0:20000", absl::Seconds(0.1))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(2, "/worker/task/1:20000", absl::Seconds(0.2))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, 0, absl::Seconds(0.01))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(2, 1, absl::Seconds(0.02))); EXPECT_EQ(auto_scaler.GetOptimalNumberOfWorkers(), 20); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNewIteration) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNewWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/1:20000", absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeExistingWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNewAndExisting) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/1:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/1:20000", absl::Microseconds(30))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/1:20000", absl::Microseconds(30))); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeZeroDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime( 0, "/worker/task/0:20000", absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, ReportProcessingTimeNegativeDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportProcessingTime( 0, "/worker/task/0:20000", absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNewIteration) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNewConsumer) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 1, absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeExistingWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(10))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNewAndExisting) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 1, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 1, absl::Microseconds(30))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(20))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 1, absl::Microseconds(30))); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeZeroDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, 0, absl::ZeroDuration()); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, ReportTargetProcessingTimeNegativeDuration) { MultipleIterationsAutoScaler auto_scaler; absl::Status result = auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(-10)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(MultipleIterationsAutoScalerTest, RemoveWorkerUnregisteredIteration) { MultipleIterationsAutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveWorker(0, "/worker/task/1:20000"), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(auto_scaler.RemoveWorker(1, "/worker/task/1:20000"), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveWorkerSuccessful) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(1, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker(0, "/worker/task/0:20000")); TF_ASSERT_OK(auto_scaler.RemoveWorker(1, "/worker/task/0:20000")); } TEST(MultipleIterationsAutoScalerTest, RemoveNonexistentWorker) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); EXPECT_THAT(auto_scaler.RemoveWorker(0, "/worker/task/1:20000"), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveWorkerAfterNewPTReported) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(10))); TF_ASSERT_OK(auto_scaler.ReportProcessingTime(0, "/worker/task/0:20000", absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveWorker(0, "/worker/task/0:20000")); } TEST(MultipleIterationsAutoScalerTest, RemoveConsumerUnregisteredIteration) { MultipleIterationsAutoScaler auto_scaler; EXPECT_THAT(auto_scaler.RemoveConsumer(0, 0), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(auto_scaler.RemoveConsumer(1, 0), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveConsumerSuccessful) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(1, 0, absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0, 0)); TF_ASSERT_OK(auto_scaler.RemoveConsumer(1, 0)); } TEST(MultipleIterationsAutoScalerTest, RemoveNonexistentConsumer) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); EXPECT_THAT(auto_scaler.RemoveConsumer(0, 1), StatusIs(absl::StatusCode::kNotFound)); } TEST(MultipleIterationsAutoScalerTest, RemoveConsumerAfterNewTPTReported) { MultipleIterationsAutoScaler auto_scaler; TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(10))); TF_ASSERT_OK( auto_scaler.ReportTargetProcessingTime(0, 0, absl::Microseconds(20))); TF_ASSERT_OK(auto_scaler.RemoveConsumer(0, 0)); } } } }
1,749
cpp
tensorflow/tensorflow
split_provider
tensorflow/core/data/service/split_provider.cc
tensorflow/core/data/service/split_provider_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_SPLIT_PROVIDER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_SPLIT_PROVIDER_H_ #include <functional> #include <memory> #include <string> #include <vector> #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/thread_annotations.h" namespace tensorflow { namespace data { class DataServiceSplitProvider : public SplitProvider { public: DataServiceSplitProvider(const std::string& address, const std::string& protocol, int64_t iteration_id, int64_t split_provider_index, int64_t timeout_ms) : address_(address), protocol_(protocol), iteration_id_(iteration_id), split_provider_index_(split_provider_index), timeout_ms_(timeout_ms) {} Status GetNext(Tensor* split, bool* end_of_splits) override; Status Reset() override; Status Save(std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) override; Status Restore(std::function<std::string(std::string)> full_name, IteratorStateReader* reader) override; private: const std::string address_; const std::string protocol_; const int64_t iteration_id_; const int64_t split_provider_index_; const int64_t timeout_ms_; mutex mu_; int64_t repetition_ TF_GUARDED_BY(mu_) = 0; std::unique_ptr<DataServiceDispatcherClient> dispatcher_ TF_GUARDED_BY(mu_); }; Status CreateSplitProviders( const DatasetDef& dataset_def, std::vector<std::unique_ptr<SplitProvider>>& split_providers); } } #endif #include "tensorflow/core/data/service/split_provider.h" #include <functional> #include <memory> #include <string> #include <vector> #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/thread_annotations.h" namespace tensorflow { namespace data { Status DataServiceSplitProvider::GetNext(Tensor* split, bool* end_of_splits) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); if (!dispatcher_) { dispatcher_ = std::make_unique<DataServiceDispatcherClient>(address_, protocol_); } TF_RETURN_IF_ERROR(grpc_util::Retry( [this, split, end_of_splits]() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return dispatcher_->GetSplit(iteration_id_, repetition_, split_provider_index_, *split, *end_of_splits); }, "get next split", Env::Default()->NowMicros() + (timeout_ms_ * EnvTime::kMillisToMicros))); if (*end_of_splits) { VLOG(1) << "Reached end of splits for iteration_id=" << iteration_id_ << ", repetition=" << repetition_; } else { VLOG(1) << "Requested split: " << split->DebugString() << "; with iteration_id=" << iteration_id_ << ", repetition=" << repetition_; } return absl::OkStatus(); } Status DataServiceSplitProvider::Reset() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); repetition_++; return absl::OkStatus(); } Status DataServiceSplitProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) { return errors::Unimplemented( "Save is not implemented for DataServiceSplitProvider"); } Status DataServiceSplitProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) { return errors::Unimplemented( "Restore is not implemented for DataServiceSplitProvider"); } Status CreateSplitProviders( const DatasetDef& dataset_def, std::vector<std::unique_ptr<SplitProvider>>& split_providers) { standalone::Dataset::Params params; std::unique_ptr<standalone::Dataset> standalone_dataset; TF_RETURN_IF_ERROR(standalone::Dataset::FromGraph(params, dataset_def.graph(), &standalone_dataset)); TF_RETURN_IF_ERROR(standalone_dataset->MakeSplitProviders(&split_providers)); return absl::OkStatus(); } } }
#include "tensorflow/core/data/service/split_provider.h" #include <array> #include <cstdint> #include <memory> #include <tuple> #include <vector> #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/dataset.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::ElementsAre; using ::testing::UnorderedElementsAre; std::vector<int64_t> GetCardinalities( const std::vector<std::unique_ptr<SplitProvider>>& split_providers) { std::vector<int64_t> cardinalities; for (const auto& split_provider : split_providers) { cardinalities.push_back(split_provider->Cardinality()); } return cardinalities; } TEST(SplitProviderTest, RangeCardinality) { DatasetDef range_dataset = testing::RangeDataset(10); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_ASSERT_OK(CreateSplitProviders(range_dataset, split_providers)); EXPECT_THAT(GetCardinalities(split_providers), UnorderedElementsAre(10)); } class RepeatedSplitProviderTest : public ::testing::TestWithParam<std::tuple<int64_t, int64_t, int64_t>> { public: int64_t Range() const { return std::get<0>(GetParam()); } int64_t RepeatCount() const { return std::get<1>(GetParam()); } int64_t ExpectedCardinality() const { return std::get<2>(GetParam()); } }; constexpr std::array<std::tuple<int64_t, int64_t, int64_t>, 5> kRepeatedSplitProviderTestCases{{{9, 9, 81}, {9, 0, 0}, {9, -1, kInfiniteCardinality}, {0, -1, 0}, {-1, 1, 0}}}; TEST_P(RepeatedSplitProviderTest, RepeatedDatasetCardinality) { TF_ASSERT_OK_AND_ASSIGN( DatasetDef repeated_dataset, testing::GetTestDataset( "repeated_dataset", {absl::StrCat(Range()), absl::StrCat(RepeatCount())})); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_ASSERT_OK(CreateSplitProviders(repeated_dataset, split_providers)); EXPECT_THAT(GetCardinalities(split_providers), ElementsAre(ExpectedCardinality())); } INSTANTIATE_TEST_SUITE_P(MyGroup, RepeatedSplitProviderTest, ::testing::ValuesIn(kRepeatedSplitProviderTestCases)); TEST(SplitProviderTest, EnumerateCardinality) { TF_ASSERT_OK_AND_ASSIGN(DatasetDef enumerate_dataset, testing::GetTestDataset("enumerate_dataset")); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_ASSERT_OK(CreateSplitProviders(enumerate_dataset, split_providers)); EXPECT_THAT(GetCardinalities(split_providers), UnorderedElementsAre(3, kInfiniteCardinality)); } TEST(SplitProviderTest, ChooseFromDatasetsCardinality) { TF_ASSERT_OK_AND_ASSIGN(DatasetDef sample_from_datasets, testing::GetTestDataset("choose_from_datasets")); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_ASSERT_OK(CreateSplitProviders(sample_from_datasets, split_providers)); EXPECT_THAT(GetCardinalities(split_providers), UnorderedElementsAre(5, 5, 5, kInfiniteCardinality)); } TEST(SplitProviderTest, SampleFromDatasetsCardinality) { TF_ASSERT_OK_AND_ASSIGN(DatasetDef sample_from_datasets, testing::GetTestDataset("sample_from_datasets")); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_ASSERT_OK(CreateSplitProviders(sample_from_datasets, split_providers)); EXPECT_THAT(GetCardinalities(split_providers), UnorderedElementsAre(5, 5, 5, kInfiniteCardinality)); } } } }
1,750
cpp
tensorflow/tensorflow
snapshot_stream_writer
tensorflow/core/data/service/snapshot/snapshot_stream_writer.cc
tensorflow/core/data/service/snapshot/snapshot_stream_writer_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_STREAM_WRITER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_STREAM_WRITER_H_ #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/substitute.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/task_runner.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/protobuf/service_config.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr ByteSize kDefaultMaxChunkSize = ByteSize::GB(6); constexpr absl::Duration kDefaultCheckpointInterval = absl::Minutes(30); struct SnapshotWriterParams { std::string snapshot_path; int64_t stream_index = 0; std::string compression; Env* env = nullptr; ByteSize max_chunk_size = kDefaultMaxChunkSize; absl::Duration checkpoint_interval = kDefaultCheckpointInterval; bool test_only_keep_temp_files = false; std::string StreamDirectory() const { return tensorflow::data::StreamDirectory(snapshot_path, stream_index); } std::string CommittedChunksDirectory() const { return tensorflow::data::CommittedChunksDirectory(snapshot_path); } std::string UncommittedChunksDirectory() const { return tensorflow::data::UncommittedChunksDirectory(snapshot_path, stream_index); } std::string CheckpointsDirectory() const { return tensorflow::data::CheckpointsDirectory(snapshot_path, stream_index); } std::string DebugString() const { return absl::Substitute( "SnapshotWriterParams { base_path: $0, stream: $1, compression: $2 }", snapshot_path, stream_index, compression); } }; class SnapshotStreamWriter { public: explicit SnapshotStreamWriter(const SnapshotWriterParams& params, std::unique_ptr<TaskIterator> iterator); virtual ~SnapshotStreamWriter() = default; SnapshotStreamWriter(const SnapshotStreamWriter&) = delete; SnapshotStreamWriter& operator=(const SnapshotStreamWriter&) = delete; absl::StatusOr<bool> Completed() const; absl::StatusOr<bool> Wait(); void Cancel(); private: void WriteSnapshotAndLog(); absl::Status WriteSnapshot(); bool StreamAlreadyCompleted() const; absl::Status InitializeDirectories(); bool ShouldWriteChunks() const; absl::Status WriteChunks(); bool ShouldWriteRecord() const; absl::Status WriteRecord(ParallelTFRecordWriter& writer); absl::Status Commit(const ParallelTFRecordWriter::FileToStatsMap& file_stats); absl::Status FinalizeStream(absl::Status status); absl::Status WriteDoneFile(); absl::Status WriteErrorFile(const absl::Status& status); absl::Status Save(const ParallelTFRecordWriter::FileToStatsMap& file_stats); absl::Status DeleteOutdatedCheckpoints(int64_t checkpoint_index); absl::Status DeleteCheckpoints(); absl::Status Restore(); absl::StatusOr<std::string> LastCheckpointName() const; absl::Status SyncCheckpointWithChunks(std::optional<int64_t> checkpoint_index, int64_t checkpoint_num_elements); absl::StatusOr<int64_t> LastCommittedChunkIndex(); std::string CheckpointPath(int64_t chunk_index, int64_t chunk_num_elements) const; std::string CheckpointPath(const std::string& checkpoint_name) const; const SnapshotWriterParams params_; std::unique_ptr<TaskIterator> iterator_; int64_t chunk_index_ = 0; absl::Time last_commit_time_ = absl::Now(); bool end_of_sequence_ = false; mutable mutex mu_; absl::StatusOr<bool> completed_ TF_GUARDED_BY(mu_) = false; std::unique_ptr<Thread> snapshot_thread_; }; } } #endif #include "tensorflow/core/data/service/snapshot/snapshot_stream_writer.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/utils.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/data/utils.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/mutex.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace tensorflow { namespace data { namespace { constexpr ByteSize kTFRecordReaderOutputBufferSize = ByteSize::GB(1); constexpr int64_t kUnknownNumElements = -1; constexpr const char kFileShardDelimiter[] = "_CHUNK_SHARDS_"; absl::StatusOr<int64_t> GetUncommittedChunkIndex(const std::string& filename) { std::vector<std::string> tokens = absl::StrSplit(filename, kFileShardDelimiter); if (tokens.size() != 2) { return absl::InternalError( absl::StrCat("Invalid tf.data snapshot chunk file: ", filename, ". Expected sharded chunk files.")); } tokens = absl::StrSplit(tokens[0], '_'); int64_t chunk_index = 0; if (tokens.size() != 2 || tokens[0] != "chunk" || !absl::SimpleAtoi(tokens[1], &chunk_index) || chunk_index < 0) { return absl::InternalError( absl::StrCat("Invalid tf.data snapshot chunk file: ", filename, ". Expected chunk_<chunk_index>.")); } return chunk_index; } size_t TotalNumElements( const ParallelTFRecordWriter::FileToStatsMap& file_stats) { size_t num_elements = 0; for (const auto& [file, stats] : file_stats) { num_elements += stats.num_records; } return num_elements; } ByteSize TotalBytes(const ParallelTFRecordWriter::FileToStatsMap& file_stats) { ByteSize bytes; for (const auto& [file, stats] : file_stats) { bytes += stats.estimated_size; } return bytes; } } SnapshotStreamWriter::SnapshotStreamWriter( const SnapshotWriterParams& params, std::unique_ptr<TaskIterator> iterator) : params_(params), iterator_(std::move(iterator)) { DCHECK_NE(iterator_.get(), nullptr); last_commit_time_ = absl::FromUnixMicros(params_.env->NowMicros()); snapshot_thread_ = absl::WrapUnique(params_.env->StartThread( {}, "tf_data_service_snapshot_thread", [this]() { WriteSnapshotAndLog(); })); } void SnapshotStreamWriter::WriteSnapshotAndLog() TF_LOCKS_EXCLUDED(mu_) { if (StreamAlreadyCompleted()) { LOG(INFO) << "Distributed tf.data snapshot stream has already been " << "completed for " << params_.DebugString(); mutex_lock l(mu_); completed_ = true; return; } LOG(INFO) << "Writing distributed tf.data snapshot stream: " << params_.DebugString(); absl::Status status = WriteSnapshot(); if (IsPreemptedError(status)) { LOG(INFO) << "tf.data service snapshot writer is cancelled: " << status; return; } status = FinalizeStream(status); mutex_lock l(mu_); if (!status.ok()) { LOG(ERROR) << "Failed to write distributed tf.data snapshot stream: " << params_.DebugString() << ". Status: " << status; completed_ = std::move(status); return; } LOG(INFO) << "Finished writing distributed tf.data snapshot stream: " << params_.DebugString(); completed_ = true; iterator_ = nullptr; } absl::Status SnapshotStreamWriter::WriteSnapshot() TF_LOCKS_EXCLUDED(mu_) { TF_RETURN_IF_ERROR(InitializeDirectories()); TF_RETURN_IF_ERROR(Restore()); while (ShouldWriteChunks()) { TF_RETURN_IF_ERROR(WriteChunks()); } mutex_lock l(mu_); return completed_.status(); } bool SnapshotStreamWriter::StreamAlreadyCompleted() const { std::string done_file_path = StreamDoneFilePath(params_.snapshot_path, params_.stream_index); return params_.env->FileExists(done_file_path).ok(); } absl::Status SnapshotStreamWriter::InitializeDirectories() { TF_RETURN_IF_ERROR( params_.env->RecursivelyCreateDir(params_.UncommittedChunksDirectory())); TF_RETURN_IF_ERROR( params_.env->RecursivelyCreateDir(params_.CheckpointsDirectory())); return absl::OkStatus(); } bool SnapshotStreamWriter::ShouldWriteChunks() const TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !end_of_sequence_ && completed_.ok(); } absl::Status SnapshotStreamWriter::WriteChunks() { LOG(INFO) << "Writing distributed tf.data snapshot " << params_.snapshot_path << ", stream " << params_.stream_index << ", chunk " << chunk_index_ << "."; std::string chunks_prefix = tsl::io::JoinPath( params_.UncommittedChunksDirectory(), absl::StrCat("chunk_", chunk_index_, kFileShardDelimiter)); ParallelTFRecordWriter writer(TranslateFileName(chunks_prefix), params_.compression, params_.env, params_.max_chunk_size); do { TF_RETURN_IF_ERROR(WriteRecord(writer)); } while (ShouldWriteRecord()); TF_ASSIGN_OR_RETURN(const ParallelTFRecordWriter::FileToStatsMap file_stats, writer.Finalize()); TF_RETURN_IF_ERROR(Completed().status()); TF_RETURN_IF_ERROR(Commit(file_stats)); metrics::RecordTFDataServiceSnapshotBytesCommitted( TotalBytes(file_stats).ToUnsignedBytes()); return absl::OkStatus(); } bool SnapshotStreamWriter::ShouldWriteRecord() const { mutex_lock l(mu_); if (!completed_.ok() || end_of_sequence_) { return false; } const absl::Time now = absl::FromUnixMicros(params_.env->NowMicros()); const absl::Duration adjusted_checkpoint_interval = std::min( params_.checkpoint_interval, absl::Minutes(0.5 * chunk_index_ + 5)); return now < last_commit_time_ + adjusted_checkpoint_interval; } absl::Status SnapshotStreamWriter::WriteRecord(ParallelTFRecordWriter& writer) { std::vector<Tensor> element; TF_RETURN_IF_ERROR(iterator_->GetNext(element, end_of_sequence_)); if (end_of_sequence_) { return absl::OkStatus(); } return writer.Write(std::move(element)); } absl::Status SnapshotStreamWriter::Commit( const ParallelTFRecordWriter::FileToStatsMap& file_stats) { TF_RETURN_IF_ERROR(Save(file_stats)); for (const auto& [file, stats] : file_stats) { std::string committed_chunk_path = tsl::io::JoinPath(params_.CommittedChunksDirectory(), absl::StrCat("chunk_", params_.stream_index, "_", chunk_index_++, "_", stats.num_records)); TF_RETURN_IF_ERROR(params_.env->RenameFile(file, committed_chunk_path)); } last_commit_time_ = absl::FromUnixMicros(params_.env->NowMicros()); return absl::OkStatus(); } absl::Status SnapshotStreamWriter::FinalizeStream(absl::Status status) { if (status.ok()) { status = WriteDoneFile(); } if (!status.ok()) { WriteErrorFile(status).IgnoreError(); } absl::Status s = DeleteCheckpoints(); if (!s.ok()) { LOG(ERROR) << "Failed to clean up checkpoints at " << params_.CheckpointsDirectory() << ": " << s; } return status; } absl::Status SnapshotStreamWriter::WriteDoneFile() { std::string done_file_path = StreamDoneFilePath(params_.snapshot_path, params_.stream_index); return AtomicallyWriteStringToFile(done_file_path, "", params_.env); } absl::Status SnapshotStreamWriter::WriteErrorFile(const absl::Status& status) { std::string error_file_path = tsl::io::JoinPath(params_.StreamDirectory(), "ERROR"); return AtomicallyWriteStringToFile(error_file_path, status.ToString(), params_.env); } absl::StatusOr<bool> SnapshotStreamWriter::Completed() const TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return completed_; } absl::StatusOr<bool> SnapshotStreamWriter::Wait() TF_LOCKS_EXCLUDED(mu_) { snapshot_thread_.reset(); mutex_lock l(mu_); return completed_; } void SnapshotStreamWriter::Cancel() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); completed_ = absl::CancelledError( "The tf.data service snapshot writer has been cancelled."); } absl::Status SnapshotStreamWriter::Save( const ParallelTFRecordWriter::FileToStatsMap& file_stats) { const size_t num_elements = TotalNumElements(file_stats); const ByteSize byte_size = TotalBytes(file_stats); LOG(INFO) << "Checkpointing distributed tf.data snapshot writer for snapshot " << params_.DebugString() << ". Stream " << params_.stream_index << ", chunk " << chunk_index_ << ", number of elements in chunk: " << num_elements << ", chunk size: " << byte_size << "."; tsl::profiler::TraceMe activity("SnapshotCheckpoint", tsl::profiler::TraceMeLevel::kInfo); absl::Time start_time = absl::FromUnixMicros(params_.env->NowMicros()); int64_t checkpoint_index = chunk_index_ + file_stats.size(); std::string checkpoint_path = CheckpointPath(checkpoint_index, num_elements); TF_ASSIGN_OR_RETURN(std::vector<Tensor> serialized_iterator, iterator_->Save()); TF_RETURN_IF_ERROR(AtomicallyWriteTFRecords( checkpoint_path, serialized_iterator, params_.compression, params_.env)); absl::Time end_time = absl::FromUnixMicros(params_.env->NowMicros()); LOG(INFO) << "Wrote checkpoint file " << checkpoint_path << ". " << "Checkpointing distributed tf.data snapshot writer took " << (end_time - start_time); return DeleteOutdatedCheckpoints(checkpoint_index); } absl::Status SnapshotStreamWriter::DeleteOutdatedCheckpoints( int64_t checkpoint_index) { if (params_.test_only_keep_temp_files) { return absl::OkStatus(); } std::vector<std::string> checkpoint_filenames; TF_RETURN_IF_ERROR(params_.env->GetChildren(params_.CheckpointsDirectory(), &checkpoint_filenames)); for (const std::string& checkpoint_filename : checkpoint_filenames) { std::string checkpoint_filepath = tsl::io::JoinPath(params_.CheckpointsDirectory(), checkpoint_filename); if (IsTemporaryFile(checkpoint_filename)) { TF_RETURN_IF_ERROR(params_.env->DeleteFile(checkpoint_filepath)); continue; } TF_ASSIGN_OR_RETURN(auto checkpoint_filename_tokens, ParseCheckpointFilename(checkpoint_filename)); auto [checkpoint_file_index, _] = checkpoint_filename_tokens; if (checkpoint_file_index < checkpoint_index) { TF_RETURN_IF_ERROR(params_.env->DeleteFile(checkpoint_filepath)); } } return absl::OkStatus(); } absl::Status SnapshotStreamWriter::DeleteCheckpoints() { if (params_.test_only_keep_temp_files) { return absl::OkStatus(); } LOG(INFO) << "Deleting tf.data snapshot checkpoints directory: " << params_.CheckpointsDirectory(); if (params_.env->FileExists(params_.CheckpointsDirectory()).ok()) { int64_t undeleted_files, undeleted_dirs; return params_.env->DeleteRecursively(params_.CheckpointsDirectory(), &undeleted_files, &undeleted_dirs); } return absl::OkStatus(); } absl::Status SnapshotStreamWriter::Restore() { absl::StatusOr<std::string> checkpoint_name = LastCheckpointName(); if (absl::IsNotFound(checkpoint_name.status())) { return SyncCheckpointWithChunks(std::nullopt, kUnknownNumElements); } TF_RETURN_IF_ERROR(checkpoint_name.status()); snapshot_util::TFRecordReaderImpl reader( CheckpointPath(*checkpoint_name), params_.compression, kTFRecordReaderOutputBufferSize.ToUnsignedBytes()); TF_RETURN_IF_ERROR(reader.Initialize(params_.env)); TF_ASSIGN_OR_RETURN(std::vector<Tensor> serialized_tensors, reader.GetTensors()); TF_RETURN_IF_ERROR(iterator_->Restore(serialized_tensors)); TF_ASSIGN_OR_RETURN(auto checkpoint_name_tokens, ParseCheckpointFilename(*checkpoint_name)); auto [checkpoint_index, checkpoint_num_elements] = checkpoint_name_tokens; TF_RETURN_IF_ERROR( SyncCheckpointWithChunks(checkpoint_index, checkpoint_num_elements)); chunk_index_ = checkpoint_index; LOG(INFO) << "Restored distributed tf.data snapshot writer. Snapshot " << params_.snapshot_path << ", stream " << params_.stream_index << ", chunk " << checkpoint_index << "."; return absl::OkStatus(); } absl::StatusOr<std::string> SnapshotStreamWriter::LastCheckpointName() const { TF_ASSIGN_OR_RETURN(std::vector<std::string> checkpoint_names, GetChildren(params_.CheckpointsDirectory(), params_.env)); if (checkpoint_names.empty()) { return absl::NotFoundError( absl::StrCat("No checkpoint has been written in directory ", params_.CheckpointsDirectory())); } int64_t last_index = -1; std::string last_checkpoint_name = ""; for (const std::string& checkpoint_name : checkpoint_names) { TF_ASSIGN_OR_RETURN(auto checkpoint_name_tokens, ParseCheckpointFilename(checkpoint_name)); auto [checkpoint_index, unused] = checkpoint_name_tokens; if (checkpoint_index > last_index) { last_index = checkpoint_index; last_checkpoint_name = checkpoint_name; } } return last_checkpoint_name; } absl::Status SnapshotStreamWriter::SyncCheckpointWithChunks( std::optional<int64_t> checkpoint_index, int64_t checkpoint_num_elements) { TF_ASSIGN_OR_RETURN( std::vector<std::string> uncommitted_chunks, GetChildren(params_.UncommittedChunksDirectory(), params_.env)); TF_ASSIGN_OR_RETURN(int64_t last_committed_chunk_index, LastCommittedChunkIndex()); int64_t next_chunk_index = last_committed_chunk_index + 1; for (const std::string& uncommitted_chunk : uncommitted_chunks) { std::string uncommitted_chunk_filename = tsl::io::JoinPath( params_.UncommittedChunksDirectory(), uncommitted_chunk); TF_ASSIGN_OR_RETURN(int64_t uncommitted_chunk_index, GetUncommittedChunkIndex(uncommitted_chunk)); if (checkpoint_index.has_value() && uncommitted_chunk_index < *checkpoint_index) { int64_t chunk_num_elements = (next_chunk_index == *checkpoint_index - 1) ? checkpoint_num_elements : kUnknownNumElements; std::string committed_chunk_filename = tsl::io::JoinPath( params_.CommittedChunksDirectory(), absl::StrCat("chunk_", params_.stream_index, "_", next_chunk_index, "_", chunk_num_elements)); TF_RETURN_IF_ERROR(params_.env->RenameFile(uncommitted_chunk_filename, committed_chunk_filename)); ++next_chunk_index; } else { TF_RETURN_IF_ERROR(params_.env->DeleteFile(uncommitted_chunk_filename)); } } if (checkpoint_index.has_value() && next_chunk_index != *checkpoint_index) { return absl::InternalError(absl::StrCat( "Failed to recover tf.data snapshot writer: Unable to find chunks [", next_chunk_index, ", ", *checkpoint_index, ").")); } return absl::OkStatus(); } absl::StatusOr<int64_t> SnapshotStreamWriter::LastCommittedChunkIndex() { std::string committed_chunks_directory = params_.CommittedChunksDirectory(); TF_ASSIGN_OR_RETURN( std::vector<std::string> committed_chunks, GetChildren(params_.CommittedChunksDirectory(), params_.env)); int64_t last_committed_chunk_index = -1; for (const std::string& committed_chunk : committed_chunks) { TF_ASSIGN_OR_RETURN(auto chunk_filename_tokens, ParseChunkFilename(committed_chunk)); const auto [stream_index, chunk_index, _] = chunk_filename_tokens; if (stream_index != params_.stream_index) { continue; } if (chunk_index > last_committed_chunk_index) { last_committed_chunk_index = chunk_index; } } return last_committed_chunk_index; } std::string SnapshotStreamWriter::CheckpointPath( int64_t chunk_index, int64_t chunk_num_elements) const { return tsl::io::JoinPath( params_.CheckpointsDirectory(), absl::StrCat("checkpoint_", chunk_index, "_", chunk_num_elements)); } std::string SnapshotStreamWriter::CheckpointPath( const std::string& checkpoint_name) const { return tsl::io::JoinPath(params_.CheckpointsDirectory(), checkpoint_name); } } }
#include "tensorflow/core/data/service/snapshot/snapshot_stream_writer.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/test_utils.h" #include "tensorflow/core/data/service/task_runner.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/lib/io/compression.h" #include "tsl/lib/monitoring/cell_reader.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; using ::testing::ValuesIn; using ::tsl::monitoring::testing::CellReader; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::unique_ptr<StandaloneTaskIterator>> TestIterator( const DatasetDef& dataset_def) { std::unique_ptr<standalone::Dataset> dataset; TF_RETURN_IF_ERROR(standalone::Dataset::FromGraph( standalone::Dataset::Params(), dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_RETURN_IF_ERROR(dataset->MakeIterator(&iterator)); return std::make_unique<StandaloneTaskIterator>(std::move(dataset), std::move(iterator)); } template <class T> class ElementOrErrorIterator : public TaskIterator { public: explicit ElementOrErrorIterator( const std::vector<absl::StatusOr<T>>& elements) : elements_(elements) {} absl::Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) override { end_of_sequence = (next_ >= elements_.size()); if (end_of_sequence) { return absl::OkStatus(); } const absl::StatusOr<T>& next_element = elements_[next_++]; TF_RETURN_IF_ERROR(next_element.status()); element = {Tensor{*next_element}}; return absl::OkStatus(); } absl::StatusOr<std::vector<Tensor>> Save() override { return std::vector<Tensor>{}; } absl::Status Restore(const std::vector<Tensor>& saved_iterator) override { return absl::OkStatus(); } int64_t Cardinality() const override { return elements_.size(); } private: const std::vector<absl::StatusOr<T>> elements_; int64_t next_ = 0; }; absl::StatusOr<std::string> CreateSnapshotDirectory() { std::string snapshot_path; if (!Env::Default()->LocalTempFilename(&snapshot_path)) { return absl::FailedPreconditionError( "Failed to create local temp file for snapshot."); } TF_RETURN_IF_ERROR(Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); return snapshot_path; } absl::StatusOr<std::unique_ptr<snapshot_util::Reader>> CreateSnapshotReader( const std::string& snapshot_path, int64_t num_elements, const std::string& compression, Env* env) { static constexpr int kTFRecordReader = 2; DataTypeVector dtypes(num_elements, DT_INT64); std::unique_ptr<snapshot_util::Reader> reader; TF_RETURN_IF_ERROR(snapshot_util::Reader::Create( env, snapshot_path, compression, kTFRecordReader, dtypes, &reader)); return reader; } template <class T> absl::StatusOr<std::vector<T>> ReadSnapshot(const std::string& snapshot_path, const std::string& compression, int64_t num_elements) { TF_ASSIGN_OR_RETURN(std::unique_ptr<snapshot_util::Reader> reader, CreateSnapshotReader(snapshot_path, num_elements, compression, Env::Default())); std::vector<Tensor> tensors; TF_RETURN_IF_ERROR(reader->ReadTensors(&tensors)); std::vector<T> result; for (const Tensor& tensor : tensors) { result.push_back(tensor.unaligned_flat<T>().data()[0]); } return result; } absl::StatusOr<std::string> ReadStringFromFile(const std::string& filename) { std::string data; TF_RETURN_IF_ERROR(ReadFileToString(Env::Default(), filename, &data)); return data; } class SnapshotStreamWriterParameterizedTest : public ::testing::TestWithParam<std::string> { public: std::string Compression() const { return GetParam(); } }; TEST_P(SnapshotStreamWriterParameterizedTest, WriteSnapshot) { CellReader<int64_t> cell_reader( "/tensorflow/data/service/snapshot_bytes_committed"); EXPECT_EQ(cell_reader.Delta(), 0); int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); EXPECT_THAT( GetChildren(writer_params.UncommittedChunksDirectory(), Env::Default()), IsOkAndHolds(IsEmpty())); EXPECT_GE(cell_reader.Delta(), 80); } TEST_P(SnapshotStreamWriterParameterizedTest, StreamAlreadyCompleted) { int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); TF_ASSERT_OK_AND_ASSIGN(iterator, TestIterator(testing::RangeDataset(range))); SnapshotStreamWriter duplicate_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); } TEST_P(SnapshotStreamWriterParameterizedTest, WriteSnapshotChunks) { int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default(), ByteSize::Bytes(1)}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT( GetChildren(writer_params.CommittedChunksDirectory(), Env::Default()), IsOkAndHolds(SizeIs(range))); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); } TEST_P(SnapshotStreamWriterParameterizedTest, WriteDoneFile) { int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::string done_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "DONE"); std::string error_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "ERROR"); EXPECT_THAT(Env::Default()->FileExists(done_file_path), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(Env::Default()->FileExists(error_file_path), StatusIs(absl::StatusCode::kNotFound)); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default(), ByteSize::Bytes(1)}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); TF_EXPECT_OK(Env::Default()->FileExists(done_file_path)); EXPECT_THAT(Env::Default()->FileExists(error_file_path), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(snapshot_writer.Completed(), IsOkAndHolds(true)); } TEST_P(SnapshotStreamWriterParameterizedTest, WriteErrorFile) { auto error_iterator = std::make_unique<ElementOrErrorIterator<tstring>>( std::vector<absl::StatusOr<tstring>>{ tstring("First element"), absl::InvalidArgumentError("Invalid argument"), tstring("Second element"), absl::AbortedError("Aborted")}); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::string done_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "DONE"); std::string error_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "ERROR"); EXPECT_THAT(Env::Default()->FileExists(done_file_path), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(Env::Default()->FileExists(error_file_path), StatusIs(absl::StatusCode::kNotFound)); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default(), ByteSize::Bytes(1)}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(error_iterator)); EXPECT_THAT(snapshot_writer.Wait(), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Env::Default()->FileExists(done_file_path), StatusIs(absl::StatusCode::kNotFound)); TF_EXPECT_OK(Env::Default()->FileExists(error_file_path)); EXPECT_THAT(ReadStringFromFile(error_file_path), IsOkAndHolds(HasSubstr("Invalid argument"))); EXPECT_THAT(snapshot_writer.Completed(), StatusIs(absl::StatusCode::kInvalidArgument)); } INSTANTIATE_TEST_SUITE_P(Compression, SnapshotStreamWriterParameterizedTest, ValuesIn<std::string>({tsl::io::compression::kNone, tsl::io::compression::kGzip, tsl::io::compression::kSnappy, tsl::io::compression::kZlib})); TEST(SnapshotStreamWriterTest, EmptyDataset) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(0))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, tsl::io::compression::kSnappy, Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, tsl::io::compression::kSnappy), IsOkAndHolds(IsEmpty())); } TEST(SnapshotStreamWriterTest, Cancel) { const int64_t range = 10000; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, tsl::io::compression::kSnappy, Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); snapshot_writer.Cancel(); EXPECT_THAT(snapshot_writer.Wait(), StatusIs(absl::StatusCode::kCancelled)); } } } }
1,751
cpp
tensorflow/tensorflow
snapshot_chunk_provider
tensorflow/core/data/service/snapshot/snapshot_chunk_provider.cc
tensorflow/core/data/service/snapshot/snapshot_chunk_provider_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_CHUNK_PROVIDER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_CHUNK_PROVIDER_H_ #include <cstdint> #include <functional> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/btree_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" namespace tensorflow { namespace data { class SnapshotChunkProvider : public SplitProvider { public: SnapshotChunkProvider(absl::string_view snapshot_path, tsl::Env* env); ~SnapshotChunkProvider() override = default; SnapshotChunkProvider(const SnapshotChunkProvider&) = delete; SnapshotChunkProvider& operator=(const SnapshotChunkProvider&) = delete; absl::Status GetNext(Tensor* split, bool* end_of_splits) override; absl::Status Reset() override; absl::Status Save(std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) override; absl::Status Restore(std::function<std::string(std::string)> full_name, IteratorStateReader* reader) override; int64_t Cardinality() const override; void Cancel() override; private: struct SnapshotState { SnapshotState() = default; explicit SnapshotState(bool snapshot_is_done) : snapshot_is_done(snapshot_is_done) {} explicit SnapshotState(absl::Status status) : status(std::move(status)) {} bool snapshot_is_done = false; absl::Status status = absl::OkStatus(); }; struct ChunkOrder { bool operator()(const std::string& chunk1, const std::string& chunk2) const; }; using OrderedChunkSet = absl::btree_set<std::string, ChunkOrder>; static std::string SetToString(const OrderedChunkSet& s); static OrderedChunkSet SetFromString(absl::string_view s); absl::Status UpdateSnapshot(); absl::StatusOr<SnapshotState> GetSnapshotState(); absl::StatusOr<std::vector<std::string>> GetAvailableChunks(); const std::string snapshot_path_; tsl::Env* const env_; mutable absl::Mutex mu_; OrderedChunkSet chunks_read_ ABSL_GUARDED_BY(mu_); OrderedChunkSet chunks_unread_ ABSL_GUARDED_BY(mu_); SnapshotState snapshot_state_ ABSL_GUARDED_BY(mu_); }; } } #endif #include "tensorflow/core/data/service/snapshot/snapshot_chunk_provider.h" #include <cstdint> #include <functional> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/btree_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/retrying_utils.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/tstring.h" #include "tsl/protobuf/status.pb.h" namespace tensorflow { namespace data { namespace { constexpr char kChunksRead[] = "chunks_read"; constexpr absl::string_view kSetElementDelimiter = ","; Tensor ConvertToTensor(absl::string_view s) { Tensor tensor(DT_STRING, TensorShape({})); tensor.scalar<tsl::tstring>()() = tsl::tstring(s); return tensor; } std::string AbsPath(absl::string_view snapshot_path, absl::string_view chunk) { return tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk); } void Backoff(int num_retries, tsl::Env* env) { if (num_retries >= 1) { absl::Duration retry_backoff = tsl::ComputeRetryBackoff(num_retries - 1); env->SleepForMicroseconds(absl::ToInt64Microseconds(retry_backoff)); } } } SnapshotChunkProvider::SnapshotChunkProvider(absl::string_view snapshot_path, tsl::Env* env) : snapshot_path_(snapshot_path), env_(env) {} absl::Status SnapshotChunkProvider::GetNext(Tensor* split, bool* end_of_splits) ABSL_LOCKS_EXCLUDED(mu_) { for (int num_retries = 0;; ++num_retries) { Backoff(num_retries, env_); absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR(snapshot_state_.status); if (!chunks_unread_.empty()) { std::string next_chunk = *chunks_unread_.begin(); chunks_read_.insert(next_chunk); chunks_unread_.erase(next_chunk); *split = ConvertToTensor(AbsPath(snapshot_path_, next_chunk)); *end_of_splits = false; return absl::OkStatus(); } if (snapshot_state_.snapshot_is_done) { *end_of_splits = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateSnapshot()); } } absl::Status SnapshotChunkProvider::UpdateSnapshot() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_ASSIGN_OR_RETURN(snapshot_state_, GetSnapshotState()); TF_RETURN_IF_ERROR(snapshot_state_.status); TF_ASSIGN_OR_RETURN(std::vector<std::string> chunks, GetAvailableChunks()); for (const std::string& chunk : chunks) { if (!chunks_read_.contains(chunk)) { chunks_unread_.insert(std::string(chunk)); } } return absl::OkStatus(); } absl::StatusOr<SnapshotChunkProvider::SnapshotState> SnapshotChunkProvider::GetSnapshotState() { std::string error_file_path = SnapshotErrorFilePath(snapshot_path_); if (env_->FileExists(error_file_path).ok()) { StatusProto status_proto; TF_RETURN_IF_ERROR(ReadTextProto(env_, error_file_path, &status_proto)); absl::Status status = tsl::StatusFromProto(status_proto); if (status.ok()) { return absl::InternalError(absl::StrCat( "Unexpected snapshot ERROR file contains an OK status at ", error_file_path, ".")); } return SnapshotState(status); } return SnapshotState( env_->FileExists(SnapshotDoneFilePath(snapshot_path_)).ok()); } absl::StatusOr<std::vector<std::string>> SnapshotChunkProvider::GetAvailableChunks() { absl::StatusOr<std::vector<std::string>> status_or_chunks = GetChildren(CommittedChunksDirectory(snapshot_path_), env_); if (status_or_chunks.ok()) { return *std::move(status_or_chunks); } else if (absl::IsNotFound(status_or_chunks.status())) { return std::vector<std::string>{}; } return status_or_chunks.status(); } absl::Status SnapshotChunkProvider::Reset() { absl::MutexLock l(&mu_); chunks_read_.clear(); chunks_unread_.clear(); return UpdateSnapshot(); } absl::Status SnapshotChunkProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) { absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kChunksRead), SetToString(chunks_read_))); return absl::OkStatus(); } absl::Status SnapshotChunkProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) { absl::MutexLock l(&mu_); tsl::tstring chunks_read; TF_RETURN_IF_ERROR(reader->ReadScalar(full_name(kChunksRead), &chunks_read)); chunks_read_ = SetFromString(chunks_read); return UpdateSnapshot(); } int64_t SnapshotChunkProvider::Cardinality() const { return SnapshotChunksCardinality(snapshot_path_, env_); } void SnapshotChunkProvider::Cancel() { absl::MutexLock l(&mu_); if (snapshot_state_.snapshot_is_done || !snapshot_state_.status.ok()) { return; } snapshot_state_.status = absl::CancelledError( absl::StrCat("Cancelled loading tf.data snapshot at ", snapshot_path_)); VLOG(2) << snapshot_state_.status; } std::string SnapshotChunkProvider::SetToString( const SnapshotChunkProvider::OrderedChunkSet& s) { return absl::StrJoin(s, kSetElementDelimiter); } SnapshotChunkProvider::OrderedChunkSet SnapshotChunkProvider::SetFromString( absl::string_view s) { if (s.empty()) { return {}; } std::vector<std::string> split = absl::StrSplit(s, kSetElementDelimiter); return OrderedChunkSet(split.begin(), split.end()); } bool SnapshotChunkProvider::ChunkOrder::operator()( const std::string& chunk1, const std::string& chunk2) const { absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> tokens1 = ParseChunkFilename(chunk1); absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> tokens2 = ParseChunkFilename(chunk2); if (!tokens1.status().ok()) { LOG_EVERY_N_SEC(ERROR, 60) << "Failed to parse tf.data snapshot chunk file " << chunk1 << ": " << tokens1.status(); return chunk1 < chunk2; } if (!tokens2.status().ok()) { LOG_EVERY_N_SEC(ERROR, 60) << "Failed to parse tf.data snapshot chunk file " << chunk2 << ": " << tokens2.status(); return chunk1 < chunk2; } auto [stream_index1, chunk_index1, num_records1] = *tokens1; auto [stream_index2, chunk_index2, num_records2] = *tokens2; if (chunk_index1 != chunk_index2) { return chunk_index1 < chunk_index2; } return stream_index1 < stream_index2; } } }
#include "tensorflow/core/data/service/snapshot/snapshot_chunk_provider.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/tstring.h" #include "tsl/protobuf/status.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::UnorderedElementsAreArray; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::string> CreateSnapshotDirectory() { std::string snapshot_path; if (!tsl::Env::Default()->LocalTempFilename(&snapshot_path)) { return absl::FailedPreconditionError( "Failed to create local temp file for snapshot."); } TF_RETURN_IF_ERROR(tsl::Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); return snapshot_path; } absl::Status WriteChunk(absl::string_view snapshot_path, absl::string_view chunk_file) { return AtomicallyWriteStringToFile( tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk_file), "", tsl::Env::Default()); } absl::Status SetDone(absl::string_view snapshot_path) { return AtomicallyWriteStringToFile(SnapshotDoneFilePath(snapshot_path), "", tsl::Env::Default()); } absl::Status SetStatus(absl::string_view snapshot_path, const absl::Status& status) { return AtomicallyWriteTextProto(SnapshotErrorFilePath(snapshot_path), tsl::StatusToProto(status), tsl::Env::Default()); } absl::StatusOr<std::string> GetChunk( SnapshotChunkProvider& snapshot_chunk_provider) { Tensor split; bool end_of_splits = false; TF_RETURN_IF_ERROR(snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { return absl::OutOfRangeError("No more available chunks."); } return split.unaligned_flat<tsl::tstring>().data()[0]; } absl::StatusOr<std::vector<std::string>> GetAllChunks( SnapshotChunkProvider& snapshot_chunk_provider) { std::vector<std::string> chunks; while (true) { Tensor split; bool end_of_splits = false; TF_RETURN_IF_ERROR(snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { return chunks; } chunks.push_back(split.unaligned_flat<tsl::tstring>().data()[0]); } return chunks; } std::vector<std::string> JoinPaths(absl::string_view snapshot_path, const std::vector<std::string> chunks) { std::vector<std::string> joined_chunks; for (absl::string_view chunk : chunks) { joined_chunks.push_back( tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk)); } return joined_chunks; } std::string full_name(const std::string& name) { return FullName("test", name); } absl::Status SaveAndRestore(SplitProvider& split_provider) { VariantTensorDataWriter writer; TF_RETURN_IF_ERROR(split_provider.Save(full_name, &writer)); std::vector<const VariantTensorData*> variants; writer.GetData(&variants); VariantTensorDataReader reader(variants); TF_RETURN_IF_ERROR(split_provider.Restore(full_name, &reader)); return absl::OkStatus(); } TEST(SnapshotChunkProviderTest, EmptySnapshot) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(IsEmpty())); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(IsEmpty())); } TEST(SnapshotChunkProviderTest, SingleReader) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::vector<std::string> chunks = {"chunk_4_4_4", "chunk_3_3_3", "chunk_2_2_2", "chunk_1_1_1", "chunk_0_0_0"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); absl::c_reverse(chunks); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(ElementsAreArray(JoinPaths(snapshot_path, chunks)))); } TEST(SnapshotChunkProviderTest, Cardinality) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_EQ(snapshot_chunk_provider.Cardinality(), kUnknownCardinality); std::vector<std::string> chunks = {"chunk_1_1_1", "chunk_2_2_2", "chunk_3_3_3", "chunk_4_4_4"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } EXPECT_EQ(snapshot_chunk_provider.Cardinality(), kUnknownCardinality); TF_ASSERT_OK(SetDone(snapshot_path)); EXPECT_EQ(snapshot_chunk_provider.Cardinality(), 5); } TEST(SnapshotChunkProviderTest, WaitForSnapshot) { std::string snapshot_path; ASSERT_TRUE(tsl::Env::Default()->LocalTempFilename(&snapshot_path)); absl::Mutex mu; std::vector<std::string> result; std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_path, &mu, &result]() { SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> chunks, GetAllChunks(snapshot_chunk_provider)); absl::MutexLock l(&mu); result = std::move(chunks); })); { absl::MutexLock l(&mu); EXPECT_TRUE(result.empty()); } TF_ASSERT_OK(tsl::Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(SetDone(snapshot_path)); reader_thread.reset(); absl::MutexLock l(&mu); EXPECT_THAT(result, ElementsAreArray(JoinPaths(snapshot_path, {"chunk_0_0_0"}))); } TEST(SnapshotChunkProviderTest, ConcurrentReadWrite) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); const int num_readers = 10; absl::Mutex mu; SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); std::vector<std::string> result; std::vector<std::unique_ptr<tsl::Thread>> reader_threads; for (int i = 0; i < num_readers; ++i) { reader_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Reader_", i), [&snapshot_chunk_provider, &mu, &result]() { while (true) { tsl::Env::Default()->SleepForMicroseconds(25); Tensor split; bool end_of_splits = false; TF_ASSERT_OK( snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { break; } absl::MutexLock l(&mu); result.push_back(split.unaligned_flat<tsl::tstring>().data()[0]); } }))); } int num_streams = 10, num_chunks_per_stream = 50; std::vector<std::unique_ptr<tsl::Thread>> stream_threads; for (int i = 0; i < num_streams; ++i) { stream_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Writer_", i), [&snapshot_path, num_chunks_per_stream, i]() { for (int j = 0; j < num_chunks_per_stream; ++j) { std::string filename = absl::StrCat("chunk_", i, "_", j, "_1"); TF_ASSERT_OK(WriteChunk(snapshot_path, filename)); tsl::Env::Default()->SleepForMicroseconds(35); } }))); } stream_threads.clear(); TF_ASSERT_OK(SetDone(snapshot_path)); reader_threads.clear(); std::vector<std::string> expected; for (int i = 0; i < num_streams; ++i) { for (int j = 0; j < num_chunks_per_stream; ++j) { expected.push_back(absl::StrCat("chunk_", i, "_", j, "_1")); } } EXPECT_THAT(result, UnorderedElementsAreArray(JoinPaths(snapshot_path, expected))); } TEST(SnapshotChunkProviderTest, SaveRestore) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::vector<std::string> chunks = {"chunk_4_4_4", "chunk_3_3_3", "chunk_2_2_2", "chunk_1_1_1", "chunk_0_0_0"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT(GetChunk(snapshot_chunk_provider), IsOkAndHolds(tsl::io::JoinPath( CommittedChunksDirectory(snapshot_path), "chunk_0_0_0"))); TF_ASSERT_OK(SaveAndRestore(snapshot_chunk_provider)); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(ElementsAreArray( JoinPaths(snapshot_path, {"chunk_1_1_1", "chunk_2_2_2", "chunk_3_3_3", "chunk_4_4_4"})))); } TEST(SnapshotChunkProviderTest, SnapshotError) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_path]() { SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT( GetAllChunks(snapshot_chunk_provider), StatusIs(absl::StatusCode::kFailedPrecondition, "Test error.")); })); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_1_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_2_0_0")); TF_ASSERT_OK( SetStatus(snapshot_path, absl::FailedPreconditionError("Test error."))); reader_thread.reset(); } TEST(SnapshotChunkProviderTest, Cancel) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_chunk_provider]() { EXPECT_THAT( GetAllChunks(snapshot_chunk_provider), StatusIs(absl::StatusCode::kCancelled, HasSubstr("Cancelled loading tf.data snapshot at"))); })); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_1_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_2_0_0")); snapshot_chunk_provider.Cancel(); reader_thread.reset(); } } } }
1,752
cpp
tensorflow/tensorflow
parallel_tfrecord_writer
tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.cc
tensorflow/core/data/service/snapshot/parallel_tfrecord_writer_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_PARALLEL_TFRECORD_WRITER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_PARALLEL_TFRECORD_WRITER_H_ #include <cstdint> #include <deque> #include <memory> #include <optional> #include <string> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/threadpool.h" namespace tensorflow { namespace data { class ParallelTFRecordWriter { public: explicit ParallelTFRecordWriter(const std::string& file_prefix, const std::string& compression, tsl::Env* env, ByteSize max_file_size = ByteSize::GB(6), int64_t num_write_threads = 2, int64_t buffer_size = 1); virtual ~ParallelTFRecordWriter(); ParallelTFRecordWriter(const ParallelTFRecordWriter&) = delete; ParallelTFRecordWriter& operator=(const ParallelTFRecordWriter&) = delete; absl::Status Write(std::vector<Tensor> record); struct FileStats { int64_t num_records = 0; ByteSize estimated_size; }; using FileToStatsMap = absl::flat_hash_map<std::string, FileStats>; absl::StatusOr<FileToStatsMap> Finalize(); private: void WriteFiles(); bool HasNext() const; absl::Status WriteFile(); bool ShouldWriteFile(const std::string& filename) const; absl::Status WriteRecord(const std::string& filename, snapshot_util::TFRecordWriter& writer); absl::StatusOr<std::optional<std::vector<Tensor>>> GetNextRecord( const std::string& filename); absl::Status DeleteEmptyFile(const std::string& filename); absl::StatusOr<std::string> GetUniqueFile() const; void UpdateStatus(absl::Status status); tsl::Env* const env_; const std::string file_prefix_; const std::string compression_; const ByteSize max_file_size_; const int64_t buffer_size_; mutable absl::Mutex mu_; mutable absl::CondVar ready_to_push_; mutable absl::CondVar ready_to_pop_; bool finalized_ ABSL_GUARDED_BY(mu_) = false; absl::Status status_ ABSL_GUARDED_BY(mu_); FileToStatsMap file_stats_ ABSL_GUARDED_BY(mu_); std::deque<std::vector<Tensor>> buffer_ ABSL_GUARDED_BY(mu_); std::unique_ptr<tsl::thread::ThreadPool> thread_pool_; }; } } #endif #include "tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/snapshot/utils.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/random.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/traceme.h" namespace tensorflow { namespace data { ParallelTFRecordWriter::ParallelTFRecordWriter(const std::string& file_prefix, const std::string& compression, tsl::Env* env, ByteSize max_file_size, int64_t num_write_threads, int64_t buffer_size) : env_(env), file_prefix_(file_prefix), compression_(compression), max_file_size_(max_file_size), buffer_size_(buffer_size) { thread_pool_ = std::make_unique<tsl::thread::ThreadPool>( env_, tsl::ThreadOptions{}, "write_tfrecord_thread", num_write_threads); for (int64_t i = 0; i < num_write_threads; ++i) { thread_pool_->Schedule([this]() { WriteFiles(); }); } } ParallelTFRecordWriter::~ParallelTFRecordWriter() { absl::Status status = Finalize().status(); if (!status.ok()) { LOG(ERROR) << "Parallel TFRecord writer failed with error: " << status; } } absl::Status ParallelTFRecordWriter::Write(std::vector<Tensor> record) ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); while (status_.ok() && !finalized_ && buffer_.size() >= buffer_size_) { ready_to_push_.Wait(&mu_); } TF_RETURN_IF_ERROR(status_); if (finalized_) { return absl::FailedPreconditionError(absl::StrCat( "Trying to write a closed TFRecord file at ", file_prefix_, ".")); } buffer_.push_back(std::move(record)); ready_to_pop_.Signal(); return absl::OkStatus(); } absl::StatusOr<ParallelTFRecordWriter::FileToStatsMap> ParallelTFRecordWriter::Finalize() ABSL_LOCKS_EXCLUDED(mu_) { { absl::MutexLock l(&mu_); finalized_ = true; ready_to_push_.SignalAll(); ready_to_pop_.SignalAll(); } thread_pool_.reset(); absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR(status_); return file_stats_; } void ParallelTFRecordWriter::WriteFiles() { while (HasNext()) { UpdateStatus(WriteFile()); } } bool ParallelTFRecordWriter::HasNext() const ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); if (!status_.ok()) { return false; } return !finalized_ || !buffer_.empty(); } absl::Status ParallelTFRecordWriter::WriteFile() ABSL_LOCKS_EXCLUDED(mu_) { TF_ASSIGN_OR_RETURN(const std::string filename, GetUniqueFile()); snapshot_util::TFRecordWriter writer(filename, compression_); TF_RETURN_IF_ERROR(writer.Initialize(env_)); while (ShouldWriteFile(filename)) { TF_RETURN_IF_ERROR(WriteRecord(filename, writer)); } TF_RETURN_IF_ERROR(writer.Close()); return DeleteEmptyFile(filename); } bool ParallelTFRecordWriter::ShouldWriteFile(const std::string& filename) const ABSL_LOCKS_EXCLUDED(mu_) { if (!HasNext()) { return false; } absl::MutexLock l(&mu_); auto iterator = file_stats_.find(filename); return iterator == file_stats_.end() || iterator->second.estimated_size < max_file_size_; } absl::Status ParallelTFRecordWriter::WriteRecord( const std::string& filename, snapshot_util::TFRecordWriter& writer) { TF_ASSIGN_OR_RETURN(std::optional<std::vector<Tensor>> record, GetNextRecord(filename)); if (!record.has_value()) { return absl::OkStatus(); } tsl::profiler::TraceMe activity("WriteTFRecord", tsl::profiler::TraceMeLevel::kInfo); TF_RETURN_IF_ERROR(writer.WriteTensors(*std::move(record))); return absl::OkStatus(); } absl::StatusOr<std::optional<std::vector<Tensor>>> ParallelTFRecordWriter::GetNextRecord(const std::string& filename) ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); while (status_.ok() && !finalized_ && buffer_.empty()) { ready_to_pop_.Wait(&mu_); } TF_RETURN_IF_ERROR(status_); if (buffer_.empty()) { return std::nullopt; } std::vector<Tensor> record = std::move(buffer_.front()); ByteSize estimated_size = EstimatedSize(record); LOG_EVERY_N_SEC(INFO, 1) << "Writing TFRecord of " << estimated_size << " to file " << filename << "*."; ++file_stats_[filename].num_records; file_stats_[filename].estimated_size += estimated_size; buffer_.pop_front(); ready_to_push_.SignalAll(); return record; } absl::Status ParallelTFRecordWriter::DeleteEmptyFile( const std::string& filename) ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); auto iterator = file_stats_.find(filename); if (iterator != file_stats_.end() && iterator->second.num_records > 0) { return absl::OkStatus(); } TF_RETURN_IF_ERROR(env_->DeleteFile(filename)); if (iterator != file_stats_.end()) { file_stats_.erase(iterator); } return absl::OkStatus(); } absl::StatusOr<std::string> ParallelTFRecordWriter::GetUniqueFile() const { std::string filename = absl::StrCat(file_prefix_, "__shard__", absl::Hex(tsl::random::New64()), "_"); if (!env_->CreateUniqueFileName(&filename, ".tfrecord")) { return absl::InternalError( absl::StrCat("Failed to write file ", filename, ": Unable to open temporary files.")); } return filename; } void ParallelTFRecordWriter::UpdateStatus(absl::Status status) ABSL_LOCKS_EXCLUDED(mu_) { if (status.ok()) { return; } absl::MutexLock l(&mu_); status_.Update(std::move(status)); ready_to_push_.SignalAll(); ready_to_pop_.SignalAll(); } } }
#include "tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.h" #include <cstdint> #include <iterator> #include <limits> #include <memory> #include <numeric> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/lib/io/compression.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::Each; using ::testing::Eq; using ::testing::Field; using ::testing::Gt; using ::testing::IsEmpty; using ::testing::Le; using ::testing::SizeIs; using ::testing::UnorderedElementsAreArray; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::string> TestDir() { std::string test_dir; if (!tsl::Env::Default()->LocalTempFilename(&test_dir)) { return absl::FailedPreconditionError("Failed to create local temp file."); } TF_RETURN_IF_ERROR(tsl::Env::Default()->RecursivelyCreateDir(test_dir)); return test_dir; } class RangeIterator { public: explicit RangeIterator(const int64_t range) : range_(range) {} absl::Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) { end_of_sequence = (next_ >= range_); if (end_of_sequence) { return absl::OkStatus(); } element = {Tensor{next_++}}; return absl::OkStatus(); } int64_t Cardinality() const { return range_; } private: const int64_t range_; int64_t next_ = 0; }; absl::StatusOr<ParallelTFRecordWriter::FileToStatsMap> WriteRecords( ParallelTFRecordWriter& writer, RangeIterator& iterator, bool finalize_writer = true) { std::vector<Tensor> record; bool end_of_sequence = false; TF_RETURN_IF_ERROR(iterator.GetNext(record, end_of_sequence)); while (!end_of_sequence) { TF_RETURN_IF_ERROR(writer.Write(record)); TF_RETURN_IF_ERROR(iterator.GetNext(record, end_of_sequence)); } if (finalize_writer) { return writer.Finalize(); } return ParallelTFRecordWriter::FileToStatsMap(); } template <class T> absl::StatusOr<std::vector<T>> ReadRecords(const std::string& filename, const std::string& compression) { snapshot_util::TFRecordReader reader(filename, compression, DataTypeVector{DT_INT64}); TF_RETURN_IF_ERROR(reader.Initialize(tsl::Env::Default())); std::vector<T> result; while (true) { std::vector<Tensor> record; absl::Status status = reader.ReadTensors(&record); if (absl::IsOutOfRange(status)) { break; } TF_RETURN_IF_ERROR(status); for (const Tensor& tensor : record) { result.push_back(tensor.unaligned_flat<T>().data()[0]); } } return result; } template <class T> absl::StatusOr<std::vector<T>> ReadRecords( const std::vector<std::string>& filenames, const std::string& compression) { std::vector<T> result; for (const std::string& filename : filenames) { TF_ASSIGN_OR_RETURN(std::vector<T> records, ReadRecords<T>(filename, compression)); absl::c_move(records, std::back_inserter(result)); } return result; } std::vector<int64_t> Range(int64_t range) { std::vector<int64_t> result(range); std::iota(result.begin(), result.end(), 0); return result; } std::vector<int64_t> Repeat(const std::vector<int64_t>& values, int64_t repeat) { std::vector<int64_t> result; for (int64_t i = 0; i < repeat; ++i) { absl::c_copy(values, std::back_inserter(result)); } return result; } template <class K, class V> std::pair<std::vector<K>, std::vector<V>> Unzip( const absl::flat_hash_map<K, V>& m) { std::vector<K> keys; std::vector<V> values; for (const auto& [k, v] : m) { keys.push_back(k); values.push_back(v); } return std::make_pair(keys, values); } class ParallelTFRecordWriterParamTest : public ::testing::TestWithParam<std::tuple< int64_t, int64_t, ByteSize, int64_t, int64_t, std::string>> { protected: int64_t NumElements() const { return std::get<0>(GetParam()); } int64_t NumClients() const { return std::get<1>(GetParam()); } ByteSize MaxFileSize() const { return std::get<2>(GetParam()); } int64_t NumWriteThreads() const { return std::get<3>(GetParam()); } int64_t BufferSize() const { return std::get<4>(GetParam()); } std::string Compression() const { return std::get<5>(GetParam()); } void VerifyFileStats( const std::vector<ParallelTFRecordWriter::FileStats>& file_stats, int64_t expected_num_elements) const { auto add_num_elements = [](int64_t num_elements, const ParallelTFRecordWriter::FileStats& stats) { return num_elements + stats.num_records; }; EXPECT_EQ(absl::c_accumulate(file_stats, 0, add_num_elements), expected_num_elements); EXPECT_THAT( file_stats, Each(Field(&ParallelTFRecordWriter::FileStats::num_records, Gt(0)))); EXPECT_THAT(file_stats, Each(Field(&ParallelTFRecordWriter::FileStats::estimated_size, Le(MaxFileSize() + ByteSize::Bytes(16))))); if (MaxFileSize() <= ByteSize::Bytes(1)) { EXPECT_THAT( file_stats, Each(Field(&ParallelTFRecordWriter::FileStats::num_records, Eq(1)))); EXPECT_THAT(file_stats, SizeIs(expected_num_elements)); } if (MaxFileSize() >= ByteSize::GB(1)) { EXPECT_THAT(file_stats, SizeIs(Le(NumWriteThreads()))); } } }; TEST_P(ParallelTFRecordWriterParamTest, WriteRecords) { TF_ASSERT_OK_AND_ASSIGN(std::string test_dir, TestDir()); ParallelTFRecordWriter parallel_tfrecord_writer( test_dir, Compression(), tsl::Env::Default(), MaxFileSize(), NumWriteThreads(), BufferSize()); RangeIterator range_iterator(NumElements()); TF_ASSERT_OK_AND_ASSIGN( ParallelTFRecordWriter::FileToStatsMap file_stats, WriteRecords(parallel_tfrecord_writer, range_iterator)); const auto [files, stats] = Unzip(file_stats); EXPECT_THAT(ReadRecords<int64_t>(files, Compression()), IsOkAndHolds(UnorderedElementsAreArray(Range(NumElements())))); VerifyFileStats(stats, NumElements()); } TEST_P(ParallelTFRecordWriterParamTest, ConcurrentWrites) { TF_ASSERT_OK_AND_ASSIGN(std::string test_dir, TestDir()); ParallelTFRecordWriter parallel_tfrecord_writer( test_dir, Compression(), tsl::Env::Default(), MaxFileSize(), NumWriteThreads(), BufferSize()); std::vector<std::unique_ptr<tsl::Thread>> client_threads; for (int i = 0; i < NumClients(); ++i) { client_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Client_", i), [this, &parallel_tfrecord_writer]() { RangeIterator range_iterator(NumElements()); TF_ASSERT_OK(WriteRecords(parallel_tfrecord_writer, range_iterator, false) .status()); }))); } client_threads.clear(); TF_ASSERT_OK_AND_ASSIGN(ParallelTFRecordWriter::FileToStatsMap file_stats, parallel_tfrecord_writer.Finalize()); const auto [files, stats] = Unzip(file_stats); EXPECT_THAT(ReadRecords<int64_t>(files, Compression()), IsOkAndHolds(UnorderedElementsAreArray( Repeat(Range(NumElements()), NumClients())))); VerifyFileStats(stats, NumElements() * NumClients()); } INSTANTIATE_TEST_SUITE_P(ParallelTFRecordWriterParams, ParallelTFRecordWriterParamTest, ::testing::Combine( ::testing::Values(0, 1, 100), ::testing::Values(1, 5), ::testing::Values(ByteSize::Bytes(1), ByteSize::Bytes(100), ByteSize::GB(1)), ::testing::Values(1, 5), ::testing::Values(1, 10000), ::testing::Values(tsl::io::compression::kNone, tsl::io::compression::kSnappy, tsl::io::compression::kZlib))); TEST(ParallelTFRecordWriterTest, WriteNoRecord) { TF_ASSERT_OK_AND_ASSIGN(std::string test_dir, TestDir()); ParallelTFRecordWriter parallel_tfrecord_writer( test_dir, tsl::io::compression::kNone, tsl::Env::Default()); TF_ASSERT_OK_AND_ASSIGN(ParallelTFRecordWriter::FileToStatsMap file_stats, parallel_tfrecord_writer.Finalize()); const auto [files, stats] = Unzip(file_stats); EXPECT_THAT(ReadRecords<int64_t>(files, tsl::io::compression::kNone), IsOkAndHolds(IsEmpty())); } TEST(ParallelTFRecordWriterTest, CannotWriteFinalizedWriter) { TF_ASSERT_OK_AND_ASSIGN(std::string test_dir, TestDir()); std::string file_prefix = "file"; ParallelTFRecordWriter parallel_tfrecord_writer( test_dir, tsl::io::compression::kNone, tsl::Env::Default()); std::unique_ptr<tsl::Thread> client_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Client", [&parallel_tfrecord_writer]() { RangeIterator range_iterator(std::numeric_limits<int64_t>::max()); EXPECT_THAT(WriteRecords(parallel_tfrecord_writer, range_iterator), StatusIs(absl::StatusCode::kFailedPrecondition)); })); parallel_tfrecord_writer.Finalize().status().IgnoreError(); client_thread.reset(); } TEST(ParallelTFRecordWriterTest, DirectoryDoesNotExist) { ParallelTFRecordWriter parallel_tfrecord_writer("/directory/does/not/exists", tsl::io::compression::kNone, tsl::Env::Default()); RangeIterator range_iterator(10); std::vector<Tensor> element; bool end_of_sequence = false; TF_ASSERT_OK(range_iterator.GetNext(element, end_of_sequence)); parallel_tfrecord_writer.Write(element).IgnoreError(); EXPECT_THAT(parallel_tfrecord_writer.Finalize().status(), StatusIs(absl::StatusCode::kNotFound)); } } } }
1,753
cpp
tensorflow/tensorflow
snapshot_split_provider
tensorflow/core/data/service/snapshot/snapshot_split_provider.cc
tensorflow/core/data/service/snapshot/snapshot_split_provider_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_SPLIT_PROVIDER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_SPLIT_PROVIDER_H_ #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include "absl/container/btree_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { class SnapshotSplitProvider : public SplitProvider { public: SnapshotSplitProvider(const std::string& worker_address, const SnapshotTaskDef& snapshot_task, int64_t source_index, absl::Duration timeout, std::unique_ptr<DataServiceDispatcherClient> dispatcher, Env* env); absl::Status GetNext(Tensor* split, bool* end_of_splits) override; absl::Status Reset() override; absl::Status Save(std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) override; absl::Status Restore(std::function<std::string(std::string)> full_name, IteratorStateReader* reader) override; private: const std::string worker_address_; const SnapshotTaskDef snapshot_task_; const int64_t source_index_; const absl::Duration timeout_; Env* const env_; absl::Status GetAndValidateSplit(Tensor* split, bool* end_of_splits); absl::Status GetSplitFromFile(const std::string& split_file, Tensor* split, bool* end_of_splits); absl::StatusOr<int64_t> GetSplitFromDispatcher(Tensor* split, bool* end_of_splits); absl::StatusOr<absl::btree_map<int64_t, std::string>> GetSplitsFiles( int64_t start_index) const; absl::Status ValidateSplitFiles( const absl::btree_map<int64_t, std::string>& split_files, int64_t start_index) const; absl::Status ValidateSplitFiles( const absl::btree_map<int64_t, std::string>& split_files, int64_t start_index, int64_t end_index, bool end_of_splits) const; mutable mutex mu_; std::unique_ptr<DataServiceDispatcherClient> dispatcher_ TF_GUARDED_BY(mu_); int64_t next_split_index_ TF_GUARDED_BY(mu_) = 0; int64_t repetition_index_ TF_GUARDED_BY(mu_) = 0; absl::btree_map<int64_t, std::string> split_to_file_map_ TF_GUARDED_BY(mu_); }; } } #endif #include "tensorflow/core/data/service/snapshot/snapshot_split_provider.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/btree_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/path.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { namespace { constexpr char kNextSplitIndex[] = "next_split_index"; constexpr char kRepetitionIndex[] = "repetition_index"; absl::StatusOr<int64_t> GetRepetitionIndex(const std::string& split_file) { tsl::StringPiece repetition_dir_path = tsl::io::Dirname(split_file); tsl::StringPiece repetition_dir_name = tsl::io::Basename(repetition_dir_path); return ParseRepetitionDirectoryName(repetition_dir_name); } } SnapshotSplitProvider::SnapshotSplitProvider( const std::string& worker_address, const SnapshotTaskDef& snapshot_task, int64_t source_index, absl::Duration timeout, std::unique_ptr<DataServiceDispatcherClient> dispatcher, Env* env) : worker_address_(worker_address), snapshot_task_(snapshot_task), source_index_(source_index), timeout_(timeout), env_(env) { mutex_lock l(mu_); dispatcher_ = std::move(dispatcher); } absl::Status SnapshotSplitProvider::GetNext(Tensor* split, bool* end_of_splits) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); TF_RETURN_IF_ERROR(GetAndValidateSplit(split, end_of_splits)); if (!*end_of_splits) { ++next_split_index_; } return absl::OkStatus(); } absl::Status SnapshotSplitProvider::GetAndValidateSplit(Tensor* split, bool* end_of_splits) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (split_to_file_map_.contains(next_split_index_)) { return GetSplitFromFile(split_to_file_map_[next_split_index_], split, end_of_splits); } TF_ASSIGN_OR_RETURN(int64_t dispatcher_split_index, GetSplitFromDispatcher(split, end_of_splits)); if (dispatcher_split_index == next_split_index_) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(split_to_file_map_, GetSplitsFiles(next_split_index_)); TF_RETURN_IF_ERROR(ValidateSplitFiles(split_to_file_map_, next_split_index_, dispatcher_split_index, *end_of_splits)); return GetSplitFromFile(split_to_file_map_[next_split_index_], split, end_of_splits); } absl::Status SnapshotSplitProvider::GetSplitFromFile( const std::string& split_file, Tensor* split, bool* end_of_splits) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { VLOG(3) << "Getting the next split from file: " << split_file; TF_ASSIGN_OR_RETURN(int64_t repetition_index, GetRepetitionIndex(split_file)); if (repetition_index_ < repetition_index) { *end_of_splits = true; return absl::OkStatus(); } snapshot_util::TFRecordReaderImpl reader(split_file, tsl::io::compression::kNone); TF_RETURN_IF_ERROR(reader.Initialize(env_)); TF_ASSIGN_OR_RETURN(std::vector<Tensor> tensors, reader.GetTensors()); if (tensors.size() != 1) { return absl::InternalError(absl::StrCat( "A snapshot split file is expected to contain 1 tensor. Got ", tensors.size(), " tensors from ", split_file, ".")); } *split = std::move(tensors[0]); *end_of_splits = false; return absl::OkStatus(); } absl::StatusOr<int64_t> SnapshotSplitProvider::GetSplitFromDispatcher( Tensor* split, bool* end_of_splits) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { int64_t local_split_index = 0; TF_RETURN_IF_ERROR(grpc_util::Retry( [this, split, &local_split_index, end_of_splits]() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return dispatcher_->GetSnapshotSplit( worker_address_, snapshot_task_.base_path(), snapshot_task_.stream_index(), source_index_, repetition_index_, *split, local_split_index, *end_of_splits); }, "Get next split for snapshot", env_->NowMicros() + absl::ToInt64Microseconds(timeout_))); return local_split_index; } absl::StatusOr<absl::btree_map<int64_t, std::string>> SnapshotSplitProvider::GetSplitsFiles(int64_t start_index) const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { absl::btree_map<int64_t, std::string> split_to_file_map; std::string splits_directory = SourceDirectory( snapshot_task_.base_path(), snapshot_task_.stream_index(), source_index_); TF_ASSIGN_OR_RETURN(std::vector<std::string> repetition_directories, GetChildren(splits_directory, env_)); for (const std::string& repetition : repetition_directories) { std::string repetition_dir = io::JoinPath(splits_directory, repetition); TF_ASSIGN_OR_RETURN(std::vector<std::string> split_files, GetChildren(repetition_dir, env_)); for (const std::string& split_file : split_files) { TF_ASSIGN_OR_RETURN(auto split_index, ParseSplitFilename(split_file)); auto [local_split_index, global_split_index] = split_index; if (local_split_index >= start_index) { split_to_file_map[local_split_index] = tsl::io::JoinPath(repetition_dir, split_file); } } } TF_RETURN_IF_ERROR(ValidateSplitFiles(split_to_file_map, start_index)); return split_to_file_map; } absl::Status SnapshotSplitProvider::ValidateSplitFiles( const absl::btree_map<int64_t, std::string>& split_files, int64_t start_index) const { if (split_files.empty()) { return absl::OkStatus(); } if (split_files.cbegin()->first != start_index) { return absl::InternalError(absl::StrCat("Failed to get split ", start_index, " for snapshot ", snapshot_task_.DebugString())); } int64_t end_index = split_files.rbegin()->first; if (end_index - start_index + 1 != split_files.size()) { return absl::InternalError(absl::StrCat( "Failed to get split ", start_index, ". Some splits between [", start_index, ", ", end_index, "] are missing for snapshot ", snapshot_task_.DebugString())); } return absl::OkStatus(); } absl::Status SnapshotSplitProvider::ValidateSplitFiles( const absl::btree_map<int64_t, std::string>& split_files, int64_t start_index, int64_t end_index, bool end_of_splits) const { TF_RETURN_IF_ERROR(ValidateSplitFiles(split_files, start_index)); if (end_index < start_index) { return absl::InternalError(absl::StrCat( "The tf.data service worker is expected to read split ", start_index, ", but the dispatcher returns split ", end_index, " for snapshot ", snapshot_task_.DebugString())); } if (end_of_splits) { end_index = end_index - 1; } if (split_files.empty() || split_files.cbegin()->first != start_index || split_files.rbegin()->first < end_index) { return absl::InternalError(absl::StrCat( "The tf.data service dispatcher has written split ", end_index, ". However, not all splits between [", start_index, ", ", end_index, "] are found for snapshot ", snapshot_task_.DebugString())); } return absl::OkStatus(); } absl::Status SnapshotSplitProvider::Reset() { mutex_lock l(mu_); ++repetition_index_; LOG(INFO) << "Reset tf.data snapshot split provider for snapshot " << snapshot_task_.ShortDebugString() << ", repetition " << repetition_index_ << "."; return absl::OkStatus(); } absl::Status SnapshotSplitProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kNextSplitIndex), next_split_index_)); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kRepetitionIndex), repetition_index_)); return absl::OkStatus(); } absl::Status SnapshotSplitProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) TF_LOCKS_EXCLUDED(mu_) { int64_t next_split_index = 0; int64_t repetition_index = 0; TF_RETURN_IF_ERROR( reader->ReadScalar(full_name(kNextSplitIndex), &next_split_index)); TF_RETURN_IF_ERROR( reader->ReadScalar(full_name(kRepetitionIndex), &repetition_index)); mutex_lock l(mu_); next_split_index_ = next_split_index; repetition_index_ = repetition_index; TF_ASSIGN_OR_RETURN(split_to_file_map_, GetSplitsFiles(next_split_index_)); LOG(INFO) << "Restored snapshot split provider for snapshot " << snapshot_task_.ShortDebugString() << ", next split " << next_split_index_ << ", repetition " << repetition_index_ << "."; return absl::OkStatus(); } } }
#include "tensorflow/core/data/service/snapshot/snapshot_split_provider.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/protobuf/snapshot.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/lib/io/compression.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::_; using testing::CreateDummyDistributedSnapshotMetadata; using ::testing::DoAll; using ::testing::HasSubstr; using testing::LocalTempFilename; using ::testing::Return; using ::testing::SetArgReferee; using tsl::testing::StatusIs; class MockDispatcherClient : public DataServiceDispatcherClient { public: explicit MockDispatcherClient() : DataServiceDispatcherClient("localhost", "grpc") {} MOCK_METHOD(absl::Status, GetSnapshotSplit, (const std::string& worker_address, const std::string& base_path, int64_t stream_index, int64_t source_index, int64_t repetition_index, Tensor& split, int64_t& local_split_index, bool& end_of_splits), (override)); }; SnapshotTaskDef TestSnapshotTask() { SnapshotTaskDef snapshot_task; snapshot_task.set_base_path(LocalTempFilename()); snapshot_task.set_stream_index(0); snapshot_task.set_num_sources(1); *snapshot_task.mutable_metadata() = CreateDummyDistributedSnapshotMetadata(); return snapshot_task; } absl::Status WriteSplits(const SnapshotTaskDef& snapshot_task, int64_t num_splits) { std::string source_dir = RepetitionDirectory(snapshot_task.base_path(), snapshot_task.stream_index(), 0, 0); TF_RETURN_IF_ERROR(Env::Default()->RecursivelyCreateDir(source_dir)); for (int64_t i = 0; i < num_splits; ++i) { std::string split_filename = absl::StrCat("split_", i, "_", i); std::string split_path = tsl::io::JoinPath(source_dir, split_filename); Tensor split(int64_t{i}); TF_RETURN_IF_ERROR(AtomicallyWriteTFRecords( split_path, {split}, tsl::io::compression::kNone, Env::Default())); } return absl::OkStatus(); } TEST(SnapshotSplitProviderTest, GetSplitFromDispatcher) { const SnapshotTaskDef snapshot_task = TestSnapshotTask(); Tensor split(int64_t{0}); auto mock_dispatcher_ptr = std::make_unique<MockDispatcherClient>(); MockDispatcherClient* mock_dispatcher = mock_dispatcher_ptr.get(); EXPECT_CALL(*mock_dispatcher, GetSnapshotSplit(_, _, _, _, _, _, _, _)) .WillOnce(DoAll(SetArgReferee<5>(split), SetArgReferee<6>(0), SetArgReferee<7>(false), Return(absl::OkStatus()))); Tensor result; bool end_of_splits = false; SnapshotSplitProvider split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::move(mock_dispatcher_ptr), Env::Default()); TF_EXPECT_OK(split_provider.GetNext(&result, &end_of_splits)); test::ExpectTensorEqual<int64_t>(result, split); EXPECT_FALSE(end_of_splits); } TEST(SnapshotSplitProviderTest, GetSplitFromFile) { const SnapshotTaskDef snapshot_task = TestSnapshotTask(); Tensor split(int64_t{9}); auto mock_dispatcher_ptr = std::make_unique<MockDispatcherClient>(); MockDispatcherClient* mock_dispatcher = mock_dispatcher_ptr.get(); EXPECT_CALL(*mock_dispatcher, GetSnapshotSplit(_, _, _, _, _, _, _, _)) .WillOnce(DoAll(SetArgReferee<5>(split), SetArgReferee<6>(9), SetArgReferee<7>(false), Return(absl::OkStatus()))); TF_ASSERT_OK(WriteSplits(snapshot_task, 10)); SnapshotSplitProvider split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::move(mock_dispatcher_ptr), Env::Default()); for (int64_t i = 0; i < 10; ++i) { Tensor result; bool end_of_splits = false; TF_EXPECT_OK(split_provider.GetNext(&result, &end_of_splits)); test::ExpectTensorEqual<int64_t>(result, Tensor(int64_t{i})); EXPECT_FALSE(end_of_splits); } } TEST(SnapshotSplitProviderTest, EndOfSplits) { const SnapshotTaskDef snapshot_task = TestSnapshotTask(); auto mock_dispatcher_ptr = std::make_unique<MockDispatcherClient>(); MockDispatcherClient* mock_dispatcher = mock_dispatcher_ptr.get(); EXPECT_CALL(*mock_dispatcher, GetSnapshotSplit(_, _, _, _, _, _, _, _)) .WillOnce(DoAll(SetArgReferee<6>(0), SetArgReferee<7>(true), Return(absl::OkStatus()))); SnapshotSplitProvider split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::move(mock_dispatcher_ptr), Env::Default()); Tensor result; bool end_of_splits = false; TF_EXPECT_OK(split_provider.GetNext(&result, &end_of_splits)); EXPECT_TRUE(end_of_splits); } TEST(SnapshotSplitProviderTest, SplitNotFound) { const SnapshotTaskDef snapshot_task = TestSnapshotTask(); Tensor split(int64_t{10}); auto mock_dispatcher_ptr = std::make_unique<MockDispatcherClient>(); MockDispatcherClient* mock_dispatcher = mock_dispatcher_ptr.get(); EXPECT_CALL(*mock_dispatcher, GetSnapshotSplit(_, _, _, _, _, _, _, _)) .WillOnce(DoAll(SetArgReferee<5>(split), SetArgReferee<6>(10), SetArgReferee<7>(false), Return(absl::OkStatus()))); TF_ASSERT_OK(WriteSplits(snapshot_task, 0)); SnapshotSplitProvider split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::move(mock_dispatcher_ptr), Env::Default()); Tensor result; bool end_of_splits = false; EXPECT_THAT(split_provider.GetNext(&result, &end_of_splits), StatusIs(absl::StatusCode::kInternal, HasSubstr("not all splits between [0, 10] are found"))); } std::string full_name(const std::string& name) { return FullName("test", name); } TEST(SnapshotSplitProviderTest, SaveRestore) { const SnapshotTaskDef snapshot_task = TestSnapshotTask(); Tensor split(int64_t{9}); auto mock_dispatcher_ptr = std::make_unique<MockDispatcherClient>(); MockDispatcherClient* mock_dispatcher = mock_dispatcher_ptr.get(); EXPECT_CALL(*mock_dispatcher, GetSnapshotSplit(_, _, _, _, _, _, _, _)) .WillOnce(DoAll(SetArgReferee<5>(split), SetArgReferee<6>(9), SetArgReferee<7>(false), Return(absl::OkStatus()))); TF_ASSERT_OK(WriteSplits(snapshot_task, 10)); SnapshotSplitProvider split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::move(mock_dispatcher_ptr), Env::Default()); for (int64_t i = 0; i < 5; ++i) { Tensor result; bool end_of_splits = false; TF_EXPECT_OK(split_provider.GetNext(&result, &end_of_splits)); test::ExpectTensorEqual<int64_t>(result, Tensor(int64_t{i})); EXPECT_FALSE(end_of_splits); } VariantTensorDataWriter writer; TF_ASSERT_OK(split_provider.Save(full_name, &writer)); std::vector<const VariantTensorData*> variants; writer.GetData(&variants); VariantTensorDataReader reader(variants); SnapshotSplitProvider restored_split_provider( "worker_address", snapshot_task, 0, absl::Seconds(10), std::make_unique<MockDispatcherClient>(), Env::Default()); TF_ASSERT_OK(restored_split_provider.Restore(full_name, &reader)); for (int64_t i = 5; i <= 9; ++i) { Tensor result; bool end_of_splits = false; TF_EXPECT_OK(split_provider.GetNext(&result, &end_of_splits)); test::ExpectTensorEqual<int64_t>(result, Tensor(int64_t{i})); EXPECT_FALSE(end_of_splits); } } } } }
1,754
cpp
tensorflow/tensorflow
path_utils
tensorflow/core/data/service/snapshot/path_utils.cc
tensorflow/core/data/service/snapshot/path_utils_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_PATH_UTILS_H_ #define TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_PATH_UTILS_H_ #include <cstdint> #include <string> #include <tuple> #include <utility> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" namespace tensorflow { namespace data { std::string StreamsDirectory(absl::string_view snapshot_path); std::string StreamDirectory(absl::string_view snapshot_path, int64_t stream_index); std::string SplitsDirectory(absl::string_view snapshot_path, int64_t stream_index); std::string SourceDirectory(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index); std::string RepetitionDirectory(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index, int64_t repetition_index); std::string SplitPath(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index, int64_t repetition_index, int64_t local_index, int64_t global_index); absl::StatusOr<int64_t> ParseStreamDirectoryName( absl::string_view stream_directory_name); absl::StatusOr<int64_t> ParseSourceDirectoryName( absl::string_view source_directory_name); absl::StatusOr<int64_t> ParseRepetitionDirectoryName( absl::string_view repetition_directory_name); absl::StatusOr<std::pair<int64_t, int64_t>> ParseSplitFilename( absl::string_view split_filename); absl::StatusOr<std::pair<int64_t, int64_t>> ParseCheckpointFilename( absl::string_view checkpoint_filename); absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> ParseChunkFilename( absl::string_view chunk_filename); std::string StreamDoneFilePath(absl::string_view snapshot_path, int64_t stream_index); std::string StreamWorkerFilePath(absl::string_view snapshot_path, int64_t stream_index); std::string StreamWorkerFilePath(absl::string_view stream_path); std::string SnapshotDoneFilePath(absl::string_view snapshot_path); std::string SnapshotErrorFilePath(absl::string_view snapshot_path); std::string SnapshotMetadataFilePath(absl::string_view snapshot_path); std::string DatasetDefFilePath(absl::string_view snapshot_path); std::string DatasetSpecFilePath(absl::string_view snapshot_path); std::string CheckpointsDirectory(absl::string_view snapshot_path, int64_t stream_index); std::string CommittedChunksDirectory(absl::string_view snapshot_path); std::string UncommittedChunksDirectory(absl::string_view snapshot_path, int64_t stream_index); } } #endif #include "tensorflow/core/data/service/snapshot/path_utils.h" #include <cstdint> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "tsl/platform/path.h" namespace tensorflow { namespace data { namespace { constexpr const char kDoneFileName[] = "DONE"; constexpr const char kErrorFileName[] = "ERROR"; constexpr const char kWorkerFileName[] = "owner_worker"; constexpr const char kSnapshotMetadataFileName[] = "snapshot.metadata"; constexpr const char kDatasetDefFileName[] = "dataset_def.proto"; constexpr const char kDatasetSpecFileName[] = "dataset_spec.pb"; constexpr const char kStreamsDirectoryName[] = "streams"; constexpr const char kSplitsDirectoryName[] = "splits"; constexpr const char kCheckpointsDirectoryName[] = "checkpoints"; constexpr const char kCommittedChunksDirectoryName[] = "chunks"; constexpr const char kUncommittedChunksDirectoryName[] = "uncommitted_chunks"; constexpr int64_t kUnknownNumElements = -1; } std::string StreamsDirectory(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kStreamsDirectoryName); } std::string StreamDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamsDirectory(snapshot_path), absl::StrCat("stream_", stream_index)); } std::string SplitsDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kSplitsDirectoryName); } std::string SourceDirectory(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index) { return tsl::io::JoinPath(SplitsDirectory(snapshot_path, stream_index), absl::StrCat("source_", source_index)); } std::string RepetitionDirectory(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index, int64_t repetition_index) { return tsl::io::JoinPath( SourceDirectory(snapshot_path, stream_index, source_index), absl::StrCat("repetition_", repetition_index)); } std::string SplitPath(absl::string_view snapshot_path, int64_t stream_index, int64_t source_index, int64_t repetition_index, int64_t local_index, int64_t global_index) { return tsl::io::JoinPath( RepetitionDirectory(snapshot_path, stream_index, source_index, repetition_index), absl::StrCat("split_", local_index, "_", global_index)); } absl::StatusOr<int64_t> ParseStreamDirectoryName( absl::string_view stream_directory_name) { std::vector<std::string> tokens = absl::StrSplit(stream_directory_name, '_'); int64_t stream_index = 0; if (tokens.size() != 2 || tokens[0] != "stream" || !absl::SimpleAtoi(tokens[1], &stream_index) || stream_index < 0) { return absl::InvalidArgumentError( absl::StrCat("Invalid stream directory name: ", stream_directory_name, ". Expected stream_<stream_index>.")); } return stream_index; } absl::StatusOr<int64_t> ParseSourceDirectoryName( absl::string_view source_directory_name) { std::vector<std::string> tokens = absl::StrSplit(source_directory_name, '_'); int64_t source_index = 0; if (tokens.size() != 2 || tokens[0] != "source" || !absl::SimpleAtoi(tokens[1], &source_index) || source_index < 0) { return absl::InvalidArgumentError( absl::StrCat("Invalid source directory name: ", source_directory_name, ". Expected source_<source_index>.")); } return source_index; } absl::StatusOr<int64_t> ParseRepetitionDirectoryName( absl::string_view repetition_directory_name) { std::vector<std::string> tokens = absl::StrSplit(repetition_directory_name, '_'); int64_t repetition_index = 0; if (tokens.size() != 2 || tokens[0] != "repetition" || !absl::SimpleAtoi(tokens[1], &repetition_index) || repetition_index < 0) { return absl::InvalidArgumentError(absl::StrCat( "Invalid repetition directory name: ", repetition_directory_name, ". Expected repetition_<repetition_index>.")); } return repetition_index; } absl::StatusOr<std::pair<int64_t, int64_t>> ParseSplitFilename( absl::string_view split_filename) { std::vector<std::string> tokens = absl::StrSplit(tsl::io::Basename(split_filename), '_'); int64_t local_split_index = 0, global_split_index = 0; if (tokens.size() != 3 || tokens[0] != "split" || !absl::SimpleAtoi(tokens[1], &local_split_index) || local_split_index < 0 || !absl::SimpleAtoi(tokens[2], &global_split_index) || global_split_index < 0) { return absl::InvalidArgumentError(absl::StrCat( "Invalid split file name: ", split_filename, ". Expected split_<local_split_index>_<global_split_index>.")); } if (local_split_index > global_split_index) { return absl::InvalidArgumentError(absl::StrCat( "Invalid split file name: ", split_filename, ". The local split index ", local_split_index, " exceeds the global split index ", global_split_index, ".")); } return std::make_pair(local_split_index, global_split_index); } absl::StatusOr<std::pair<int64_t, int64_t>> ParseCheckpointFilename( absl::string_view checkpoint_filename) { std::vector<std::string> tokens = absl::StrSplit(checkpoint_filename, '_'); int64_t checkpoint_index = 0, checkpoint_num_elements = 0; if (tokens.size() != 3 || tokens[0] != "checkpoint" || !absl::SimpleAtoi(tokens[1], &checkpoint_index) || checkpoint_index < 0 || !absl::SimpleAtoi(tokens[2], &checkpoint_num_elements) || (checkpoint_num_elements < 0 && checkpoint_num_elements != kUnknownNumElements)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid checkpoint file name: ", checkpoint_filename, ". Expected checkpoint_<checkpoint_index>_<checkpoint_num_elements>.")); } return std::make_pair(checkpoint_index, checkpoint_num_elements); } absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> ParseChunkFilename( absl::string_view chunk_filename) { std::vector<std::string> tokens = absl::StrSplit(chunk_filename, '_'); int64_t stream_index = 0, stream_chunk_index = 0, chunk_num_elements = 0; if (tokens.size() != 4 || tokens[0] != "chunk" || !absl::SimpleAtoi(tokens[1], &stream_index) || stream_index < 0 || !absl::SimpleAtoi(tokens[2], &stream_chunk_index) || stream_chunk_index < 0 || !absl::SimpleAtoi(tokens[3], &chunk_num_elements) || (chunk_num_elements < 0 && chunk_num_elements != kUnknownNumElements)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid chunk file name: ", chunk_filename, ". Expected " "chunk_<stream_index>_<stream_chunk_index>_<chunk_num_elements>.")); } return std::make_tuple(stream_index, stream_chunk_index, chunk_num_elements); } std::string SnapshotMetadataFilePath(absl::string_view snapshot_path_) { return tsl::io::JoinPath(snapshot_path_, kSnapshotMetadataFileName); } std::string DatasetDefFilePath(absl::string_view snapshot_path_) { return tsl::io::JoinPath(snapshot_path_, kDatasetDefFileName); } std::string DatasetSpecFilePath(absl::string_view snapshot_path_) { return tsl::io::JoinPath(snapshot_path_, kDatasetSpecFileName); } std::string StreamDoneFilePath(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kDoneFileName); } std::string StreamWorkerFilePath(absl::string_view snapshot_path, int64_t stream_index) { return StreamWorkerFilePath(StreamDirectory(snapshot_path, stream_index)); } std::string StreamWorkerFilePath(absl::string_view stream_path) { return tsl::io::JoinPath(stream_path, kWorkerFileName); } std::string SnapshotDoneFilePath(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kDoneFileName); } std::string SnapshotErrorFilePath(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kErrorFileName); } std::string CheckpointsDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kCheckpointsDirectoryName); } std::string CommittedChunksDirectory(absl::string_view snapshot_path) { return tsl::io::JoinPath(snapshot_path, kCommittedChunksDirectoryName); } std::string UncommittedChunksDirectory(absl::string_view snapshot_path, int64_t stream_index) { return tsl::io::JoinPath(StreamDirectory(snapshot_path, stream_index), kUncommittedChunksDirectoryName); } } }
#include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::FieldsAre; using ::testing::HasSubstr; using ::testing::MatchesRegex; using ::testing::Pair; using tsl::testing::IsOkAndHolds; using tsl::testing::StatusIs; TEST(PathUtilsTest, StreamsDirectory) { EXPECT_THAT(StreamsDirectory("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.streams")); } TEST(PathUtilsTest, StreamDirectory) { EXPECT_THAT(StreamDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0")); } TEST(PathUtilsTest, SplitsDirectory) { EXPECT_THAT(SplitsDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.splits")); } TEST(PathUtilsTest, SourceDirectory) { EXPECT_THAT( SourceDirectory("/path/to/snapshot", 0, 1), MatchesRegex("/path/to/snapshot.streams.stream_0.splits.source_1")); } TEST(PathUtilsTest, RepetitionDirectory) { EXPECT_THAT( RepetitionDirectory("/path/to/snapshot", 0, 1, 2), MatchesRegex( "/path/to/snapshot.streams.stream_0.splits.source_1.repetition_2")); } TEST(PathUtilsTest, SplitPath) { EXPECT_THAT( SplitPath("/path/to/snapshot", 0, 1, 2, 3, 4), MatchesRegex( "/path/to/" "snapshot.streams.stream_0.splits.source_1.repetition_2.split_3_4")); } TEST(PathUtilsTest, ParseStreamDirectoryName) { EXPECT_THAT(ParseStreamDirectoryName("stream_1"), IsOkAndHolds(1)); } TEST(PathUtilsTest, ParseSourceDirectoryName) { EXPECT_THAT(ParseSourceDirectoryName("source_1"), IsOkAndHolds(1)); EXPECT_THAT(ParseSourceDirectoryName(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected source_<source_index>"))); EXPECT_THAT(ParseSourceDirectoryName("source_-1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected source_<source_index>"))); EXPECT_THAT(ParseSourceDirectoryName("chunk_1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected source_<source_index>"))); } TEST(PathUtilsTest, ParseRepetitionDirectoryName) { EXPECT_THAT(ParseRepetitionDirectoryName("repetition_1"), IsOkAndHolds(1)); EXPECT_THAT(ParseRepetitionDirectoryName(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected repetition_<repetition_index>"))); EXPECT_THAT(ParseRepetitionDirectoryName("repetition_-1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected repetition_<repetition_index>"))); EXPECT_THAT(ParseRepetitionDirectoryName("chunk_1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected repetition_<repetition_index>"))); } TEST(PathUtilsTest, InvalidStreamDirectoryName) { EXPECT_THAT(ParseStreamDirectoryName(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected stream_<stream_index>"))); EXPECT_THAT(ParseStreamDirectoryName("stream_-1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected stream_<stream_index>"))); EXPECT_THAT(ParseStreamDirectoryName("chunk_1"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected stream_<stream_index>"))); } TEST(PathUtilsTest, ParseSplitFilename) { EXPECT_THAT(ParseSplitFilename("split_0_1"), IsOkAndHolds(Pair(0, 1))); } TEST(PathUtilsTest, InvalidSplitFilename) { EXPECT_THAT( ParseSplitFilename(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("split_123"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("split_-1_(-1)"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("chunk_1_2"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected split_<local_split_index>_<global_split_index>"))); EXPECT_THAT( ParseSplitFilename("split_5_0"), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "The local split index 5 exceeds the global split index 0"))); } TEST(PathUtilsTest, ParseCheckpointFilename) { EXPECT_THAT(ParseCheckpointFilename("checkpoint_0_1"), IsOkAndHolds(Pair(0, 1))); EXPECT_THAT(ParseCheckpointFilename("checkpoint_0_-1"), IsOkAndHolds(Pair(0, -1))); } TEST(PathUtilsTest, InvalidCheckpointFilename) { EXPECT_THAT( ParseCheckpointFilename(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); EXPECT_THAT( ParseCheckpointFilename("checkpoint_123"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); EXPECT_THAT( ParseCheckpointFilename("checkpoint_-1_(-1)"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); EXPECT_THAT( ParseCheckpointFilename("chunk_1_2"), StatusIs(error::INVALID_ARGUMENT, HasSubstr( "Expected " "checkpoint_<checkpoint_index>_<checkpoint_num_elements>"))); } TEST(PathUtilsTest, ParseChunkFilename) { EXPECT_THAT(ParseChunkFilename("chunk_0_1_2"), IsOkAndHolds(FieldsAre(0, 1, 2))); EXPECT_THAT(ParseChunkFilename("chunk_0_1_-1"), IsOkAndHolds(FieldsAre(0, 1, -1))); } TEST(PathUtilsTest, InvalidChunkFilename) { EXPECT_THAT(ParseChunkFilename(""), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); EXPECT_THAT(ParseChunkFilename("chunk_123_0"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); EXPECT_THAT(ParseChunkFilename("chunk_-1_(-1)_0"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); EXPECT_THAT(ParseChunkFilename("split_1_2_3"), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Expected " "chunk_<stream_index>_<stream_chunk_index>_<" "chunk_num_elements>"))); } TEST(PathUtilsTest, StreamDoneFilePath) { EXPECT_THAT(StreamDoneFilePath("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.DONE")); } TEST(PathUtilsTest, StreamWorkerFilePath) { EXPECT_THAT(StreamWorkerFilePath("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.owner_worker")); EXPECT_THAT(StreamWorkerFilePath("/path/to/snapshot/streams/stream_0"), MatchesRegex("/path/to/snapshot.streams.stream_0.owner_worker")); } TEST(PathUtilsTest, SnapshotDoneFilePath) { EXPECT_THAT(SnapshotDoneFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.DONE")); } TEST(PathUtilsTest, SnapshotErrorFilePath) { EXPECT_THAT(SnapshotErrorFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.ERROR")); } TEST(PathUtilsTest, SnapshotMetadataFilePath) { EXPECT_THAT(SnapshotMetadataFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.snapshot.metadata")); } TEST(PathUtilsTest, DatasetDefFilePath) { EXPECT_THAT(DatasetDefFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.dataset_def.proto")); } TEST(PathUtilsTest, DatasetSpefFilePath) { EXPECT_THAT(DatasetSpecFilePath("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.dataset_spec.pb")); } TEST(PathUtilsTest, CheckpointsDirectory) { EXPECT_THAT(CheckpointsDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.checkpoints")); } TEST(PathUtilsTest, CommittedChunksDirectory) { EXPECT_THAT(CommittedChunksDirectory("/path/to/snapshot"), MatchesRegex("/path/to/snapshot.chunks")); } TEST(PathUtilsTest, UncommittedChunksDirectory) { EXPECT_THAT( UncommittedChunksDirectory("/path/to/snapshot", 0), MatchesRegex("/path/to/snapshot.streams.stream_0.uncommitted_chunks")); } } } }
1,755
cpp
tensorflow/tensorflow
prefetched_split_provider
tensorflow/core/data/service/snapshot/prefetched_split_provider.cc
tensorflow/core/data/service/snapshot/prefetched_split_provider_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_PREFETCHED_SPLIT_PROVIDER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_PREFETCHED_SPLIT_PROVIDER_H_ #include <cstddef> #include <memory> #include <optional> #include <string> #include "absl/base/thread_annotations.h" #include "absl/container/btree_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/env.h" #include "tsl/platform/threadpool.h" namespace tensorflow { namespace data { class PrefetchedSplitProvider { public: explicit PrefetchedSplitProvider( std::unique_ptr<SplitProvider> split_provider, const std::string& directory, tsl::Env* env, size_t num_write_threads = 20, size_t buffer_size_per_thread = 5); virtual ~PrefetchedSplitProvider(); PrefetchedSplitProvider(const PrefetchedSplitProvider&) = delete; PrefetchedSplitProvider& operator=(const PrefetchedSplitProvider&) = delete; absl::StatusOr<std::optional<Tensor>> GetNext(const std::string& split_path); absl::Status Reset(); void Cancel(); private: struct SplitAndIndex { Tensor split; size_t index = 0; std::string SplitPath(const std::string& directory) const { return tsl::io::JoinPath(directory, absl::StrCat("split_", index, ".tfrecord")); } friend bool operator<(const SplitAndIndex& lhs, const SplitAndIndex& rhs) { return lhs.index < rhs.index; } }; absl::Status InitDirs(); std::unique_ptr<tsl::thread::ThreadPool> RunPrefetchThreads(); void PrefetchLoop(); bool ShouldPrefetchSplit() const; absl::StatusOr<bool> PrefetchSplit(); absl::StatusOr<std::optional<SplitAndIndex>> GetSplitFromProvider(); void UpdateStatus(absl::Status status); tsl::Env* const env_; const std::string directory_; const size_t num_write_threads_; const size_t buffer_size_; mutable absl::Mutex mu_; mutable absl::CondVar ready_to_push_; mutable absl::CondVar ready_to_pop_; std::unique_ptr<SplitProvider> split_provider_; absl::Status status_ ABSL_GUARDED_BY(mu_); bool reset_ ABSL_GUARDED_BY(mu_) = false; size_t split_index_to_read_ ABSL_GUARDED_BY(mu_) = 0; size_t split_index_to_write_ ABSL_GUARDED_BY(mu_) = 0; size_t finished_threads_ ABSL_GUARDED_BY(mu_) = 0; absl::btree_set<SplitAndIndex> buffer_ ABSL_GUARDED_BY(mu_); std::unique_ptr<tsl::thread::ThreadPool> thread_pool_ ABSL_GUARDED_BY(mu_); }; } } #endif #include "tensorflow/core/data/service/snapshot/prefetched_split_provider.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/lib/io/compression.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace tensorflow { namespace data { PrefetchedSplitProvider::PrefetchedSplitProvider( std::unique_ptr<SplitProvider> split_provider, const std::string& directory, tsl::Env* env, size_t num_write_threads, size_t buffer_size_per_thread) : env_(env), directory_(directory), num_write_threads_(num_write_threads), buffer_size_(num_write_threads_ * buffer_size_per_thread), split_provider_(std::move(split_provider)) { absl::Status status = InitDirs(); if (!status.ok()) { UpdateStatus(std::move(status)); return; } absl::MutexLock l(&mu_); thread_pool_ = RunPrefetchThreads(); } PrefetchedSplitProvider::~PrefetchedSplitProvider() { Cancel(); } absl::StatusOr<std::optional<Tensor>> PrefetchedSplitProvider::GetNext( const std::string& split_path) ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); while (status_.ok() && (buffer_.empty() || buffer_.begin()->index != split_index_to_read_) && (finished_threads_ < num_write_threads_ || reset_)) { ready_to_pop_.Wait(&mu_); } TF_RETURN_IF_ERROR(status_); if (buffer_.empty()) { return std::nullopt; } if (buffer_.begin()->index != split_index_to_read_) { return absl::InternalError(absl::StrCat( "Failed to get tf.data snapshot split. Expected split ", split_index_to_read_, ", got split ", buffer_.begin()->index, ". This is likely a tf.data bug.")); } auto it = buffer_.begin(); SplitAndIndex split = std::move(*it); buffer_.erase(it); TF_RETURN_IF_ERROR(env_->RenameFile(split.SplitPath(directory_), split_path)); ++split_index_to_read_; ready_to_push_.Signal(); return std::move(split.split); } std::unique_ptr<tsl::thread::ThreadPool> PrefetchedSplitProvider::RunPrefetchThreads() { auto thread_pool = std::make_unique<tsl::thread::ThreadPool>( env_, tsl::ThreadOptions{}, "tf_data_prefetch_splits_thread", num_write_threads_); for (size_t i = 0; i < num_write_threads_; ++i) { thread_pool->Schedule([this]() { PrefetchLoop(); }); } return thread_pool; } void PrefetchedSplitProvider::PrefetchLoop() ABSL_LOCKS_EXCLUDED(mu_) { while (ShouldPrefetchSplit()) { absl::StatusOr<bool> has_next = PrefetchSplit(); if (!has_next.status().ok()) { UpdateStatus(has_next.status()); break; } if (!*has_next) { break; } } absl::MutexLock l(&mu_); if (++finished_threads_ >= num_write_threads_) { ready_to_pop_.SignalAll(); } } bool PrefetchedSplitProvider::ShouldPrefetchSplit() const ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); return status_.ok() && !reset_; } absl::StatusOr<bool> PrefetchedSplitProvider::PrefetchSplit() ABSL_LOCKS_EXCLUDED(mu_) { TF_ASSIGN_OR_RETURN(std::optional<SplitAndIndex> split, GetSplitFromProvider()); if (!split.has_value()) { return false; } TF_RETURN_IF_ERROR( AtomicallyWriteTFRecords(split->SplitPath(directory_), {split->split}, tsl::io::compression::kNone, env_)); absl::MutexLock l(&mu_); buffer_.insert(std::move(*split)); ready_to_pop_.Signal(); return true; } absl::StatusOr<std::optional<PrefetchedSplitProvider::SplitAndIndex>> PrefetchedSplitProvider::GetSplitFromProvider() ABSL_LOCKS_EXCLUDED(mu_) { absl::MutexLock l(&mu_); while (status_.ok() && buffer_.size() >= buffer_size_ && !reset_) { ready_to_push_.Wait(&mu_); } TF_RETURN_IF_ERROR(status_); if (reset_) { return std::nullopt; } Tensor split; bool end_of_splits = false; TF_RETURN_IF_ERROR(split_provider_->GetNext(&split, &end_of_splits)); if (end_of_splits) { return std::nullopt; } return SplitAndIndex{split, split_index_to_write_++}; } absl::Status PrefetchedSplitProvider::Reset() ABSL_LOCKS_EXCLUDED(mu_) { std::unique_ptr<tsl::thread::ThreadPool> thread_pool; { absl::MutexLock l(&mu_); reset_ = true; ready_to_push_.SignalAll(); ready_to_pop_.SignalAll(); thread_pool = std::move(thread_pool_); } thread_pool.reset(); TF_RETURN_IF_ERROR(split_provider_->Reset()); absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR(status_); reset_ = false; split_index_to_read_ = 0; split_index_to_write_ = 0; finished_threads_ = 0; buffer_.clear(); TF_RETURN_IF_ERROR(InitDirs()); thread_pool_ = RunPrefetchThreads(); return absl::OkStatus(); } void PrefetchedSplitProvider::Cancel() { UpdateStatus( absl::CancelledError("tf.data prefetched split provider is shut down.")); std::unique_ptr<tsl::thread::ThreadPool> thread_pool; { absl::MutexLock l(&mu_); thread_pool = std::move(thread_pool_); } } absl::Status PrefetchedSplitProvider::InitDirs() { if (env_->FileExists(directory_).ok()) { int64_t undeleted_files, undeleted_dirs; TF_RETURN_IF_ERROR( env_->DeleteRecursively(directory_, &undeleted_files, &undeleted_dirs)); } return env_->RecursivelyCreateDir(directory_); } void PrefetchedSplitProvider::UpdateStatus(absl::Status status) ABSL_LOCKS_EXCLUDED(mu_) { if (status.ok()) { return; } absl::MutexLock l(&mu_); status_.Update(std::move(status)); ready_to_push_.SignalAll(); ready_to_pop_.SignalAll(); } } }
#include "tensorflow/core/data/service/snapshot/prefetched_split_provider.h" #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <numeric> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/split_provider.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/lib/io/compression.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::ElementsAreArray; using ::testing::IsSupersetOf; using ::testing::UnorderedElementsAreArray; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::vector<std::string>> TestDirs(size_t num_dirs) { std::vector<std::string> test_dirs; std::string base_dir; if (!tsl::Env::Default()->LocalTempFilename(&base_dir)) { return absl::FailedPreconditionError("Failed to create local temp file."); } TF_RETURN_IF_ERROR(tsl::Env::Default()->RecursivelyCreateDir(base_dir)); for (size_t i = 0; i < num_dirs; ++i) { std::string test_dir = tsl::io::JoinPath(base_dir, absl::StrCat("test_dir_", i)); TF_RETURN_IF_ERROR(tsl::Env::Default()->RecursivelyCreateDir(test_dir)); test_dirs.push_back(std::move(test_dir)); } return test_dirs; } absl::StatusOr<std::unique_ptr<SplitProvider>> RangeSplitProvider( int64_t range) { DatasetDef range_dataset = testing::RangeDataset(range); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_RETURN_IF_ERROR(CreateSplitProviders(range_dataset, split_providers)); if (split_providers.size() != 1) { return absl::InternalError( absl::StrCat("Range dataset should have one split provider, got ", split_providers.size(), ".")); } return std::move(split_providers[0]); } template <class T> T GetValue(const Tensor& tensor) { return tensor.unaligned_flat<T>().data()[0]; } template <class T> absl::StatusOr<T> GetValueFromFile(const std::string& filename) { snapshot_util::TFRecordReaderImpl reader(filename, tsl::io::compression::kNone); TF_RETURN_IF_ERROR(reader.Initialize(tsl::Env::Default())); TF_ASSIGN_OR_RETURN(std::vector<Tensor> tensors, reader.GetTensors()); if (tensors.size() != 1) { return absl::InternalError(absl::StrCat( "A snapshot split file is expected to contain 1 tensor. Got ", tensors.size(), " tensors from ", filename, ".")); } return GetValue<T>(tensors[0]); } template <class T> absl::StatusOr<std::vector<T>> GetSplits( PrefetchedSplitProvider& prefetched_split_provider, const std::string& test_dir) { std::vector<T> splits; for (size_t i = 0;; ++i) { std::string target_split_path = tsl::io::JoinPath(test_dir, absl::StrCat("split_", i)); TF_ASSIGN_OR_RETURN(std::optional<Tensor> split, prefetched_split_provider.GetNext(target_split_path)); if (!split.has_value()) { return splits; } T split_value = GetValue<T>(*split); TF_ASSIGN_OR_RETURN(T split_from_file, GetValueFromFile<T>(target_split_path)); if (split_value != split_from_file) { return absl::InternalError( absl::StrCat("Inconsistent splits. From buffer: ", split_value, ", from file: ", split_from_file, ".")); } splits.push_back(split_value); } return splits; } std::vector<int64_t> Range(int64_t range) { std::vector<int64_t> result(range); std::iota(result.begin(), result.end(), 0); return result; } class PrefetchedSplitProviderParamTest : public ::testing::TestWithParam< std::tuple<int64_t, size_t, size_t, size_t>> { protected: int64_t NumElements() const { return std::get<0>(GetParam()); } size_t NumClients() const { return std::get<1>(GetParam()); } size_t NumWriteThreads() const { return std::get<2>(GetParam()); } size_t BufferSizePerThread() const { return std::get<3>(GetParam()); } }; TEST_P(PrefetchedSplitProviderParamTest, GetSplits) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(NumElements())); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(2)); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default(), NumWriteThreads(), BufferSizePerThread()); EXPECT_THAT(GetSplits<int64_t>(prefetched_split_provider, test_dirs[1]), IsOkAndHolds(ElementsAreArray(Range(NumElements())))); } TEST_P(PrefetchedSplitProviderParamTest, ConcurrentGetSplits) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(NumElements())); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(1 + NumClients())); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default(), NumWriteThreads(), BufferSizePerThread()); absl::Mutex mu; std::vector<int64_t> splits; std::vector<std::unique_ptr<tsl::Thread>> client_threads; for (int i = 0; i < NumClients(); ++i) { client_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Client_", i), [i, &prefetched_split_provider, &splits, &test_dirs, &mu]() { TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> splits_per_thread, GetSplits<int64_t>(prefetched_split_provider, test_dirs[1 + i])); EXPECT_TRUE(absl::c_is_sorted(splits_per_thread)); absl::MutexLock l(&mu); absl::c_move(splits_per_thread, std::back_inserter(splits)); }))); } client_threads.clear(); EXPECT_THAT(splits, UnorderedElementsAreArray(Range(NumElements()))); } TEST_P(PrefetchedSplitProviderParamTest, Reset) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(NumElements())); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(2)); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default(), NumWriteThreads(), BufferSizePerThread()); for (int i = 0; i < 3; ++i) { EXPECT_THAT(GetSplits<int64_t>(prefetched_split_provider, test_dirs[1]), IsOkAndHolds(ElementsAreArray(Range(NumElements())))); TF_EXPECT_OK(prefetched_split_provider.Reset()); } } TEST_P(PrefetchedSplitProviderParamTest, ConcurrentGetSplitsAndReset) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(NumElements())); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(1 + NumClients())); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default(), NumWriteThreads(), BufferSizePerThread()); absl::Mutex mu; std::vector<int64_t> splits; std::vector<std::unique_ptr<tsl::Thread>> client_threads; for (int i = 0; i < NumClients(); ++i) { client_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Client_", i), [i, &prefetched_split_provider, &splits, &test_dirs, &mu]() { TF_ASSERT_OK_AND_ASSIGN( std::vector<int64_t> splits_per_thread, GetSplits<int64_t>(prefetched_split_provider, test_dirs[1 + i])); absl::MutexLock l(&mu); absl::c_move(splits_per_thread, std::back_inserter(splits)); }))); } TF_EXPECT_OK(prefetched_split_provider.Reset()); client_threads.clear(); EXPECT_THAT(splits, IsSupersetOf(Range(NumElements()))); } INSTANTIATE_TEST_SUITE_P( PrefetchedSplitProviderParams, PrefetchedSplitProviderParamTest, ::testing::Combine( ::testing::Values(0, 10, 1000), ::testing::Values(1, 5), ::testing::Values(1, 10), ::testing::Values(1, 10000))); TEST(PrefetchedSplitProviderTest, Cancellation) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(999999)); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(2)); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default(), 2, 1); std::unique_ptr<tsl::Thread> client_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "client_thread", [&prefetched_split_provider, &test_dirs]() { EXPECT_THAT( GetSplits<int64_t>(prefetched_split_provider, test_dirs[1]), StatusIs(absl::StatusCode::kCancelled)); })); prefetched_split_provider.Cancel(); client_thread.reset(); } TEST(PrefetchedSplitProviderTest, ShutdownWithUnreadSplits) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<SplitProvider> split_provider, RangeSplitProvider(100)); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> test_dirs, TestDirs(2)); PrefetchedSplitProvider prefetched_split_provider( std::move(split_provider), test_dirs[0], tsl::Env::Default()); TF_EXPECT_OK(prefetched_split_provider.Reset()); } } } }
1,756
cpp
tensorflow/tensorflow
snapshot_manager
tensorflow/core/data/service/snapshot/snapshot_manager.cc
tensorflow/core/data/service/snapshot/snapshot_manager_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_MANAGER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_MANAGER_H_ #include <cstdint> #include <memory> #include <optional> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/snapshot/prefetched_split_provider.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/protobuf/snapshot.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" #include "tsl/protobuf/status.pb.h" namespace tensorflow { namespace data { class SnapshotAssignmentManager { public: explicit SnapshotAssignmentManager(int64_t worker_max_concurrent_snapshots) : worker_max_concurrent_snapshots_(worker_max_concurrent_snapshots) {} absl::StatusOr<bool> TryAddAssignment(absl::string_view snapshot_path, absl::string_view worker_address, int64_t stream_index); void RemoveAssignment(absl::string_view snapshot_path, absl::string_view worker_address, int64_t stream_index); void AddSnapshot(absl::string_view snapshot_path); std::vector<std::string> LoadBalanceSnapshots( absl::string_view worker_address); int64_t worker_max_concurrent_snapshots() const { return worker_max_concurrent_snapshots_; } private: struct Assignment { std::string snapshot_path; int64_t stream_index; template <typename H> friend H AbslHashValue(H h, const Assignment& a) { return H::combine(std::move(h), a.snapshot_path, a.stream_index); } friend bool operator==(const Assignment& lhs, const Assignment& rhs) { return lhs.snapshot_path == rhs.snapshot_path && lhs.stream_index == rhs.stream_index; } std::string DebugString() const { return absl::Substitute( "Assignment { snapshot_path: $0, stream_index: $1 }", snapshot_path, stream_index); } }; absl::flat_hash_map<std::string, absl::flat_hash_set<Assignment>> assignments_ TF_GUARDED_BY(mu_); absl::flat_hash_map<std::string, int64_t> snapshot_assignment_counts_ TF_GUARDED_BY(mu_); const int64_t worker_max_concurrent_snapshots_; mutable tsl::mutex mu_; }; class SnapshotManager { public: static absl::StatusOr<std::unique_ptr<SnapshotManager>> Start( const SnapshotRequest& request, SnapshotAssignmentManager& assignment_manager, Env* env); static absl::StatusOr<std::unique_ptr<SnapshotManager>> Resume( absl::string_view path, SnapshotAssignmentManager& assignment_manager, Env* env); absl::Status WorkerHeartbeat(const WorkerHeartbeatRequest& request, WorkerHeartbeatResponse& response); absl::Status GetSnapshotSplit(const GetSnapshotSplitRequest& request, GetSnapshotSplitResponse& response); absl::Status GetSnapshotStreams(GetSnapshotStreamsResponse& response); void Cancel(); private: SnapshotManager(absl::string_view path, SnapshotAssignmentManager& assignment_manager, Env* env) : path_(path), env_(env), last_progress_log_time_(absl::FromUnixMicros(env->NowMicros())), assignment_manager_(assignment_manager) {} absl::Status Start(const SnapshotRequest& request); absl::Status WriteOnDiskSkeleton(); absl::Status WriteOnDiskMetadata(const SnapshotRequest& request); absl::Status Resume(); absl::Status ReadOnDiskMetadata(); absl::Status ReadOnDiskStreams(); absl::StatusOr<std::optional<std::pair<int64_t, bool>>> MaybeGetOrCreateStreamAssignment( absl::string_view worker_address, const SnapshotTaskProgress* snapshot_progress); absl::Status HandleStreamCompletion(int64_t stream_index, absl::string_view worker_address); void ReassignPreviouslyAssignedStream(int64_t stream_index, absl::string_view worker_address); std::optional<int64_t> MaybeAssignOrphanStream( absl::string_view worker_address); absl::StatusOr<std::optional<int64_t>> MaybeCreateAndAssignNewStream( absl::string_view worker_address); absl::Status HandleStreamError(absl::string_view worker_address, const StatusProto& status_proto); mutable tsl::mutex mu_; mutable tsl::mutex get_split_mu_; const std::string path_; tsl::Env* const env_; experimental::DistributedSnapshotMetadata metadata_ TF_GUARDED_BY(mu_); absl::Time last_progress_log_time_ TF_GUARDED_BY(mu_); absl::flat_hash_set<std::string> dead_workers_ TF_GUARDED_BY(mu_); struct Stream { explicit Stream(int64_t num_sources) : num_assigned_splits_per_source(num_sources) {} enum class State { kActive, kDone, }; std::vector<int64_t> num_assigned_splits_per_source; int64_t num_assigned_splits() const { return absl::c_accumulate(num_assigned_splits_per_source, 0); } State state = State::kActive; }; struct Source { Source(std::unique_ptr<PrefetchedSplitProvider> split_provider, int64_t repetition_index, int64_t cardinality) : split_provider(std::move(split_provider)), repetition_index(repetition_index), cardinality(cardinality) {} std::unique_ptr<PrefetchedSplitProvider> split_provider; int64_t repetition_index = 0; const int64_t cardinality; }; class StreamRestorer { public: explicit StreamRestorer(tsl::Env* env, absl::string_view path, int64_t stream_index, int64_t num_sources, SnapshotAssignmentManager& assignment_manager) : env_(env), path_(path), stream_index_(stream_index), num_sources_(num_sources), assignment_manager_(assignment_manager) {} absl::Status ReadOnDiskStream(); const std::optional<Stream>& GetStream() const { return restored_stream_; } int64_t StreamIndex() const { return stream_index_; } const std::string& WorkerAddress() const { return worker_address_; } const absl::flat_hash_set<int64_t>& GlobalSplitIndices() const { return global_split_indices_; } private: absl::StatusOr<std::string> OwnerWorkerAddress() const; absl::Status ReadOnDiskSource(int64_t source_index); absl::Status ReadOnDiskSplit(int64_t source_index, const std::vector<std::string>& split_files, const std::string& split_file); absl::Status SkipSplit(SplitProvider& split_provider); tsl::Env* const env_; const std::string path_; const int64_t stream_index_; const int64_t num_sources_; SnapshotAssignmentManager& assignment_manager_; std::string worker_address_; std::optional<Stream> restored_stream_; absl::flat_hash_set<int64_t> global_split_indices_; }; absl::Status RestoreFrom( const StreamRestorer& stream_restorer, const std::vector<std::string>& stream_directories, std::vector<std::unique_ptr<SplitProvider>>& split_providers, std::vector<int64_t>& repetition_indices, absl::flat_hash_set<int64_t>& global_split_indices); Stream& GetStream(int64_t stream_index); absl::Status InitStreamDirectory( int64_t stream_index, const std::string& worker_address, const std::vector<int64_t>& repetitions_per_source); std::vector<Source> sources_ TF_GUARDED_BY(mu_); absl::StatusOr<std::vector<Source>> CreateSources( const DatasetDef& dataset_def) const; absl::StatusOr<int64> GetSplitsCardinality(); absl::Status ResetSource(Source& source, int64_t source_index); int64_t num_sources() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return sources_.size(); } absl::btree_map<int64_t, Stream> streams_ TF_GUARDED_BY(mu_); int64_t num_completed_streams_ TF_GUARDED_BY(mu_) = 0; absl::flat_hash_map<std::string, int64_t> assignments_ TF_GUARDED_BY(mu_); SnapshotAssignmentManager& assignment_manager_ TF_GUARDED_BY(mu_); int64_t num_assigned_splits_ TF_GUARDED_BY(mu_) = 0; int64_t num_total_splits_ TF_GUARDED_BY(mu_) = 0; enum class Mode { kActive, kWindingDown, kDone, kError, }; Mode mode_ TF_GUARDED_BY(mu_) = Mode::kActive; absl::Status status_ TF_GUARDED_BY(mu_); }; } } #endif #include "tensorflow/core/data/service/snapshot/snapshot_manager.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/prefetched_split_provider.h" #include "tensorflow/core/data/service/split_provider.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/status.h" #include "tsl/lib/io/compression.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/path.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/thread_annotations.h" #include "tsl/platform/threadpool.h" #include "tsl/protobuf/error_codes.pb.h" #include "tsl/protobuf/status.pb.h" namespace tensorflow { namespace data { namespace { const absl::Duration kProgressLoggingInterval = absl::Minutes(1); absl::StatusOr<int64_t> CountSplits(SplitProvider& split_provider) { if (split_provider.Cardinality() != kUnknownCardinality) { return split_provider.Cardinality(); } int64_t num_splits = 0; Tensor tensor; for (bool end_of_splits = false; !end_of_splits; ++num_splits) { TF_RETURN_IF_ERROR(split_provider.GetNext(&tensor, &end_of_splits)); } --num_splits; TF_RETURN_IF_ERROR(split_provider.Reset()); return num_splits; } absl::Status SkipSplit(SplitProvider& split_provider, int64_t& repetition_index) { Tensor tensor; bool end_of_splits = false; TF_RETURN_IF_ERROR(split_provider.GetNext(&tensor, &end_of_splits)); while (end_of_splits) { ++repetition_index; TF_RETURN_IF_ERROR(split_provider.Reset()); TF_RETURN_IF_ERROR(split_provider.GetNext(&tensor, &end_of_splits)); } return absl::OkStatus(); } std::string PrefetchedSplitDir(const std::string& snapshot_path, int64_t source_index) { return tsl::io::JoinPath(snapshot_path, "prefetched_splits", absl::StrCat("source_", source_index)); } } absl::StatusOr<bool> SnapshotAssignmentManager::TryAddAssignment( absl::string_view snapshot_path, absl::string_view worker_address, int64_t stream_index) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (assignments_[worker_address].size() >= worker_max_concurrent_snapshots()) { return false; } Assignment assignment{std::string(snapshot_path), stream_index}; auto [unused, success] = assignments_[worker_address].insert(assignment); if (!success) { return absl::InternalError(absl::StrCat("Worker ", worker_address, " already had an assignment for ", assignment.DebugString())); } ++snapshot_assignment_counts_[snapshot_path]; return true; } void SnapshotAssignmentManager::RemoveAssignment( absl::string_view snapshot_path, absl::string_view worker_address, int64_t stream_index) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); auto num_erased = assignments_[worker_address].erase( {std::string(snapshot_path), stream_index}); if ((snapshot_assignment_counts_[snapshot_path] -= num_erased) <= 0) { snapshot_assignment_counts_.erase(snapshot_path); } } void SnapshotAssignmentManager::AddSnapshot(absl::string_view snapshot_path) TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!snapshot_assignment_counts_.contains(snapshot_path)) { snapshot_assignment_counts_[snapshot_path] = 0; } } std::vector<std::string> SnapshotAssignmentManager::LoadBalanceSnapshots( absl::string_view worker_address) TF_LOCKS_EXCLUDED(mu_) { std::vector<std::string> result; tsl::mutex_lock l(mu_); result.reserve(snapshot_assignment_counts_.size()); const auto it = assignments_.find(worker_address); if (it != assignments_.end()) { for (const Assignment& assignment : it->second) { result.push_back(assignment.snapshot_path); } } if (result.size() >= worker_max_concurrent_snapshots()) { return result; } absl::btree_multimap<size_t, std::string> snapshots_by_count; for (const auto& [snapshot, count] : snapshot_assignment_counts_) { snapshots_by_count.emplace(count, snapshot); } for (const auto& [_, snapshot] : snapshots_by_count) { if (absl::c_find(result, snapshot) == result.end()) { result.push_back(snapshot); return result; } } return result; } absl::StatusOr<std::unique_ptr<SnapshotManager>> SnapshotManager::Start( const SnapshotRequest& request, SnapshotAssignmentManager& assignment_manager, Env* env) { std::unique_ptr<SnapshotManager> snapshot_manager{ new SnapshotManager{request.path(), assignment_manager, env}}; TF_RETURN_IF_ERROR(snapshot_manager->Start(request)); return snapshot_manager; } absl::Status SnapshotManager::Start(const SnapshotRequest& request) TF_LOCKS_EXCLUDED(mu_) { LOG(INFO) << "Starting to write tf.data snapshot at " << request.path(); if (env_->FileExists(request.path()).ok()) { return errors::AlreadyExists("tf.data snapshot at ", request.path(), " already exists."); } tsl::mutex_lock l(mu_); TF_RETURN_IF_ERROR(WriteOnDiskSkeleton()); TF_RETURN_IF_ERROR(WriteOnDiskMetadata(request)); TF_ASSIGN_OR_RETURN(sources_, CreateSources(request.dataset())); TF_ASSIGN_OR_RETURN(num_total_splits_, GetSplitsCardinality()); metadata_ = request.metadata(); LOG(INFO) << "Started writing tf.data distributed snapshot at " << path_; return absl::OkStatus(); } absl::StatusOr<std::vector<SnapshotManager::Source>> SnapshotManager::CreateSources(const DatasetDef& dataset_def) const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_RETURN_IF_ERROR(CreateSplitProviders(dataset_def, split_providers)); std::vector<SnapshotManager::Source> sources; sources.reserve(split_providers.size()); for (size_t i = 0; i < split_providers.size(); ++i) { TF_ASSIGN_OR_RETURN(size_t cardinality, CountSplits(*split_providers[i])); sources.emplace_back( std::make_unique<PrefetchedSplitProvider>( std::move(split_providers[i]), PrefetchedSplitDir(path_, i), env_), 0, cardinality); } return sources; } absl::StatusOr<int64_t> SnapshotManager::GetSplitsCardinality() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return absl::c_accumulate(sources_, 0, [](size_t cardinality, const Source& source) { return cardinality + source.cardinality; }); } absl::Status SnapshotManager::WriteOnDiskSkeleton() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_RETURN_IF_ERROR( env_->RecursivelyCreateDir(CommittedChunksDirectory(path_))); TF_RETURN_IF_ERROR(env_->RecursivelyCreateDir(StreamsDirectory(path_))); return absl::OkStatus(); } absl::Status SnapshotManager::WriteOnDiskMetadata( const SnapshotRequest& request) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_RETURN_IF_ERROR(AtomicallyWriteTextProto(SnapshotMetadataFilePath(path_), request.metadata(), env_)); TF_RETURN_IF_ERROR(AtomicallyWriteStringToFile( DatasetSpecFilePath(path_), request.metadata().element_spec(), env_)); TF_RETURN_IF_ERROR(AtomicallyWriteBinaryProto(DatasetDefFilePath(path_), request.dataset(), env_)); return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<SnapshotManager>> SnapshotManager::Resume( absl::string_view path, SnapshotAssignmentManager& assignment_manager, Env* env) { SnapshotManager* snapshot_manager = new SnapshotManager(path, assignment_manager, env); TF_RETURN_IF_ERROR(snapshot_manager->Resume()); return absl::WrapUnique(snapshot_manager); } absl::Status SnapshotManager::Resume() TF_LOCKS_EXCLUDED(mu_) { tsl::mutex_lock l(mu_); if (!env_->FileExists(path_).ok()) { return absl::InternalError( absl::StrCat("Failed to recover tf.data snapshot at ", path_, ": the snapshot path doesn't exist.")); } if (env_->FileExists(SnapshotDoneFilePath(path_)).ok()) { mode_ = Mode::kDone; LOG(INFO) << "Recovered finished tf.data snapshot at " << path_; return absl::OkStatus(); } if (env_->FileExists(SnapshotErrorFilePath(path_)).ok()) { mode_ = Mode::kError; StatusProto status_proto; TF_RETURN_IF_ERROR( ReadTextProto(env_, SnapshotErrorFilePath(path_), &status_proto)); status_ = tsl::StatusFromProto(status_proto); return absl::OkStatus(); } TF_RETURN_IF_ERROR(ReadOnDiskMetadata()); TF_RETURN_IF_ERROR(ReadOnDiskStreams()); LOG(INFO) << "Resumed writing tf.data distributed snapshot at " << path_; return absl::OkStatus(); } absl::Status SnapshotManager::ReadOnDiskMetadata() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!env_->FileExists(SnapshotMetadataFilePath(path_)).ok()) { return absl::InternalError( absl::StrCat("Failed to recover snapshot at ", path_, ": snapshot has no snapshot.metadata")); } TF_RETURN_IF_ERROR( ReadTextProto(env_, SnapshotMetadataFilePath(path_), &metadata_)); if (!env_->FileExists(DatasetDefFilePath(path_)).ok()) { return absl::InternalError( absl::StrCat("Failed to recovery snapshot at ", path_, ": snapshot has no dataset_def.proto")); } return absl::OkStatus(); } absl::Status SnapshotManager::ReadOnDiskStreams() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { std::string streams_path = StreamsDirectory(path_); TF_ASSIGN_OR_RETURN(const std::vector<std::string> stream_directories, GetChildren(streams_path, env_)); DatasetDef dataset_def; TF_RETURN_IF_ERROR( tsl::ReadBinaryProto(env_, DatasetDefFilePath(path_), &dataset_def)); std::vector<std::unique_ptr<SplitProvider>> split_providers; TF_RETURN_IF_ERROR(CreateSplitProviders(dataset_def, split_providers)); std::vector<int64_t> repetition_indices(split_providers.size(), 0); std::vector<int64_t> cardinalities; for (size_t i = 0; i < split_providers.size(); ++i) { TF_ASSIGN_OR_RETURN(int64_t cardinality, CountSplits(*split_providers[i])); cardinalities.push_back(cardinality); } tsl::mutex mu; absl::Status resume_status; absl::flat_hash_set<int64_t> global_split_indices; auto thread_pool = std::make_unique<tsl::thread::ThreadPool>( env_, tsl::ThreadOptions{}, "restore_snapshot_stream_thread", std::max(size_t{1}, stream_directories.size())); for (const auto& stream_directory : stream_directories) { std::string stream_path = tsl::io::JoinPath(streams_path, stream_directory); std::vector<std::string> tokens = absl::StrSplit(stream_directory, '_'); int64_t stream_index; if (tokens.size() != 2 || !absl::SimpleAtoi(tokens[1], &stream_index) || stream_index < 0) { return absl::InternalError(absl::StrCat( "Can't parse tf.data snapshot stream directory ", stream_path, ": filename must have the format stream_<stream_index>.")); } thread_pool->Schedule([this, &stream_directories, stream_index, &split_providers, &repetition_indices, &global_split_indices, &resume_status, &mu]() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { StreamRestorer stream_restorer(env_, path_, stream_index, split_providers.size(), assignment_manager_); absl::Status s = stream_restorer.ReadOnDiskStream(); tsl::mutex_lock l(mu); resume_status.Update(s); resume_status.Update(RestoreFrom(stream_restorer, stream_directories, split_providers, repetition_indices, global_split_indices)); }); } thread_pool.reset(); TF_RETURN_IF_ERROR(resume_status); for (int64_t i = 0; i < split_providers.size(); ++i) { sources_.emplace_back( std::make_unique<PrefetchedSplitProvider>( std::move(split_providers[i]), PrefetchedSplitDir(path_, i), env_), repetition_indices[i], cardinalities[i]); } TF_ASSIGN_OR_RETURN(num_total_splits_, GetSplitsCardinality()); for (int64_t i = 0; i < global_split_indices.size(); ++i) { if (!global_split_indices.contains(i)) { return absl::InternalError( absl::StrCat("Failed to restore tf.data snapshot at ", path_, ": Found missing global split index ", i, ".")); } } num_assigned_splits_ = global_split_indices.size(); if (!streams_.empty() && absl::c_all_of(streams_, [](const auto& stream) { return stream.second.state == Stream::State::kDone; })) { mode_ = Mode::kDone; TF_RETURN_IF_ERROR(AtomicallyWriteStringToFile(SnapshotDoneFilePath(path_), std::string(), env_)); LOG(INFO) << "Finished writing tf.data distributed snapshot at " << path_; } return absl::OkStatus(); } absl::StatusOr<std::string> SnapshotManager::StreamRestorer::OwnerWorkerAddress() const { std::string worker_address; TF_RETURN_IF_ERROR( env_->FileExists(StreamWorkerFilePath(path_, stream_index_))); TF_RETURN_IF_ERROR(tsl::ReadFileToString( env_, StreamWorkerFilePath(path_, stream_index_), &worker_address)); return worker_address; } absl::Status SnapshotManager::StreamRestorer::ReadOnDiskStream() { absl::StatusOr<std::string> worker_address = OwnerWorkerAddress(); if (!worker_address.ok()) { return absl::OkStatus(); } worker_address_ = *worker_address; restored_stream_.emplace(num_sources_); std::string splits_path = SplitsDirectory(path_, stream_index_); TF_ASSIGN_OR_RETURN(std::vector<std::string> source_directories, GetChildren(splits_path, env_)); for (const auto& source_directory : source_directories) { std::string source_path = tsl::io::JoinPath(splits_path, source_directory); std::vector<std::string> tokens = absl::StrSplit(source_directory, '_'); int64_t source_index = 0; if (tokens.size() != 2 || !absl::SimpleAtoi(tokens[1], &source_index) || source_index < 0) { return absl::InternalError(absl::StrCat( "Can't parse tf.data snapshot source directory ", source_path, ": filename must have the format source_<source_index>.")); } if (source_index >= num_sources_) { return absl::InternalError( absl::StrCat("Found conflict between the number of sources, ", num_sources_, ", and the filename of ", source_path)); } TF_RETURN_IF_ERROR(ReadOnDiskSource(source_index)); } if (env_->FileExists(StreamDoneFilePath(path_, stream_index_)).ok()) { restored_stream_->state = Stream::State::kDone; return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(bool assignment_added, assignment_manager_.TryAddAssignment( path_, *worker_address, stream_index_)); if (!assignment_added) { return absl::InternalError(absl::StrCat( "Failed to recover tf.data snapshot dispatcher: Worker ", *worker_address, " was assigned too many streams. At most ", assignment_manager_.worker_max_concurrent_snapshots(), " streams are allowed.")); } return absl::OkStatus(); } absl::Status SnapshotManager::StreamRestorer::ReadOnDiskSource( int64_t source_index) { std::string source_directory = SourceDirectory(path_, stream_index_, source_index); TF_ASSIGN_OR_RETURN(std::vector<std::string> repetition_directories,
#include "tensorflow/core/data/service/snapshot/snapshot_manager.h" #include <memory> #include <string> #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" #include "tsl/protobuf/status.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::_; using ::testing::ElementsAre; using ::testing::IsEmpty; using ::testing::Not; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; template <class T> T GetValue(const Tensor& tensor) { return tensor.unaligned_flat<T>().data()[0]; } TEST(SnapshotManagerTest, CreateStreamAssignment) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest request; *request.mutable_dataset() = testing::RangeDataset(10); request.set_path(snapshot_path); *request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(request, snapshot_assignment_manager, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); ASSERT_EQ(heartbeat_response.snapshot_tasks().size(), 1); EXPECT_EQ(heartbeat_response.snapshot_tasks(0).base_path(), snapshot_path); EXPECT_EQ(heartbeat_response.snapshot_tasks(0).stream_index(), 0); EXPECT_EQ(heartbeat_response.snapshot_tasks(0).num_sources(), 1); } TEST(SnapshotManagerTest, GetSnapshotSplit) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest request; *request.mutable_dataset() = testing::RangeDataset(10); request.set_path(snapshot_path); *request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(request, snapshot_assignment_manager, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); const SnapshotTaskDef& task = heartbeat_response.snapshot_tasks(0); GetSnapshotSplitRequest get_split_request; GetSnapshotSplitResponse get_split_response; get_split_request.set_worker_address("localhost"); get_split_request.set_base_path(task.base_path()); get_split_request.set_stream_index(task.stream_index()); get_split_request.set_source_index(0); for (int64_t i = 0; i < 10; ++i) { TF_ASSERT_OK(snapshot_manager->GetSnapshotSplit(get_split_request, get_split_response)); Tensor tensor; ASSERT_TRUE(tensor.FromProto(get_split_response.split())); EXPECT_EQ(GetValue<int64_t>(tensor), i); } } TEST(SnapshotManagerTest, HandleStreamCompletion) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest request; *request.mutable_dataset() = testing::RangeDataset(10); request.set_path(snapshot_path); *request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(request, snapshot_assignment_manager, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost:1"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); heartbeat_request.Clear(); heartbeat_response.Clear(); heartbeat_request.set_worker_address("localhost:2"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); ASSERT_EQ(heartbeat_response.snapshot_tasks().size(), 1); const SnapshotTaskDef& snapshot_task = heartbeat_response.snapshot_tasks(0); EXPECT_EQ(snapshot_task.base_path(), snapshot_path); EXPECT_EQ(snapshot_task.stream_index(), 1); EXPECT_EQ(snapshot_task.num_sources(), 1); heartbeat_request.Clear(); heartbeat_response.Clear(); heartbeat_request.set_worker_address("localhost:1"); SnapshotTaskProgress progress; *progress.mutable_snapshot_task() = snapshot_task; progress.set_completed(true); (*heartbeat_request.mutable_snapshot_task_progress())[snapshot_path] = progress; TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_TRUE(heartbeat_response.snapshot_tasks().empty()); heartbeat_request.Clear(); heartbeat_response.Clear(); heartbeat_request.set_worker_address("localhost:1"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_TRUE(heartbeat_response.snapshot_tasks().empty()); } TEST(SnapshotManagerTest, Resume) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest request; *request.mutable_dataset() = testing::RangeDataset(10); request.set_path(snapshot_path); *request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager_1( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(request, snapshot_assignment_manager_1, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_THAT(heartbeat_response.snapshot_tasks(), SizeIs(1)); heartbeat_response.Clear(); SnapshotAssignmentManager snapshot_assignment_manager_2( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> resumed_manager, SnapshotManager::Resume(snapshot_path, snapshot_assignment_manager_2, Env::Default())); TF_EXPECT_OK( resumed_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_THAT(heartbeat_response.snapshot_tasks(), SizeIs(1)); } TEST(SnapshotManagerTest, SnapshotStreamError) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest snapshot_request; *snapshot_request.mutable_dataset() = testing::RangeDataset(10); snapshot_request.set_path(snapshot_path); *snapshot_request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(snapshot_request, snapshot_assignment_manager, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); const SnapshotTaskDef& task = heartbeat_response.snapshot_tasks(0); heartbeat_response.Clear(); SnapshotTaskProgress snapshot_task_progress; *snapshot_task_progress.mutable_snapshot_task() = task; *snapshot_task_progress.mutable_status() = tsl::StatusToProto(errors::NotFound("Not found")); (*heartbeat_request.mutable_snapshot_task_progress())[snapshot_path] = snapshot_task_progress; TF_EXPECT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_THAT(heartbeat_response.snapshot_tasks(), IsEmpty()); TF_ASSERT_OK( Env::Default()->FileExists(SnapshotErrorFilePath(snapshot_path))); StatusProto status_proto; TF_ASSERT_OK(ReadTextProto( Env::Default(), SnapshotErrorFilePath(snapshot_path), &status_proto)); EXPECT_THAT(tsl::StatusFromProto(status_proto), StatusIs(error::NOT_FOUND, "Not found")); } TEST(SnapshotManagerTest, ResumeFromError) { std::string snapshot_path = testing::LocalTempFilename(); SnapshotRequest request; *request.mutable_dataset() = testing::RangeDataset(10); request.set_path(snapshot_path); *request.mutable_metadata() = testing::CreateDummyDistributedSnapshotMetadata(); SnapshotAssignmentManager snapshot_assignment_manager_1( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> snapshot_manager, SnapshotManager::Start(request, snapshot_assignment_manager_1, Env::Default())); WorkerHeartbeatRequest heartbeat_request; WorkerHeartbeatResponse heartbeat_response; heartbeat_request.set_worker_address("localhost"); TF_ASSERT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); ASSERT_THAT(heartbeat_response.snapshot_tasks(), SizeIs(1)); const SnapshotTaskDef& task = heartbeat_response.snapshot_tasks(0); heartbeat_response.Clear(); SnapshotTaskProgress snapshot_task_progress; *snapshot_task_progress.mutable_snapshot_task() = task; *snapshot_task_progress.mutable_status() = tsl::StatusToProto(errors::NotFound("Not found")); (*heartbeat_request.mutable_snapshot_task_progress())[snapshot_path] = snapshot_task_progress; TF_EXPECT_OK( snapshot_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_THAT(heartbeat_response.snapshot_tasks(), IsEmpty()); heartbeat_response.Clear(); SnapshotAssignmentManager snapshot_assignment_manager_2( 2); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<SnapshotManager> resumed_manager, SnapshotManager::Resume(snapshot_path, snapshot_assignment_manager_2, Env::Default())); TF_EXPECT_OK( resumed_manager->WorkerHeartbeat(heartbeat_request, heartbeat_response)); EXPECT_THAT(heartbeat_response.snapshot_tasks(), IsEmpty()); } TEST(SnapshotAssignmentManagerTest, LoadBalanceSnapshots) { SnapshotAssignmentManager snapshot_assignment_manager( 2); snapshot_assignment_manager.AddSnapshot("snapshot_1"); snapshot_assignment_manager.AddSnapshot("snapshot_2"); snapshot_assignment_manager.AddSnapshot("snapshot_3"); EXPECT_THAT(snapshot_assignment_manager.TryAddAssignment( "snapshot_3", "worker_1", 0), IsOkAndHolds(true)); EXPECT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_1"), ElementsAre("snapshot_3", _)); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_2"), ElementsAre(Not("snapshot_3"))); EXPECT_THAT(snapshot_assignment_manager.TryAddAssignment( "snapshot_2", "worker_1", 0), IsOkAndHolds(true)); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_1"), UnorderedElementsAre("snapshot_2", "snapshot_3")); EXPECT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_2"), ElementsAre("snapshot_1")); EXPECT_THAT(snapshot_assignment_manager.TryAddAssignment( "snapshot_1", "worker_1", 0), IsOkAndHolds(false)); EXPECT_THAT(snapshot_assignment_manager.TryAddAssignment( "snapshot_2", "worker_2", 0), IsOkAndHolds(true)); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_1"), UnorderedElementsAre("snapshot_2", "snapshot_3")); EXPECT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_2"), ElementsAre("snapshot_2", "snapshot_1")); snapshot_assignment_manager.RemoveAssignment("snapshot_2", "worker_1", 0); EXPECT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_1"), ElementsAre("snapshot_3", "snapshot_1")); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_2"), ElementsAre("snapshot_2", "snapshot_1")); snapshot_assignment_manager.RemoveAssignment("snapshot_3", "worker_1", 0); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_1"), ElementsAre("snapshot_1")); ASSERT_THAT(snapshot_assignment_manager.LoadBalanceSnapshots("worker_2"), ElementsAre("snapshot_2", "snapshot_1")); } } } }
1,757
cpp
tensorflow/tensorflow
data_service_client
tensorflow/core/data/service/client/data_service_client.cc
tensorflow/core/data/service/client/data_service_client_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_CLIENT_DATA_SERVICE_CLIENT_H_ #define TENSORFLOW_CORE_DATA_SERVICE_CLIENT_DATA_SERVICE_CLIENT_H_ #include <functional> #include <memory> #include <optional> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/data/service/client/common.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/worker_client.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" namespace tensorflow { namespace data { class DataServiceContext { public: virtual ~DataServiceContext() = default; virtual std::unique_ptr<Thread> StartThread(const string& name, std::function<void()> fn) = 0; virtual void RecordBufferEnqueue(const std::vector<Tensor>& element) = 0; virtual void RecordBufferDequeue(const std::vector<Tensor>& element) = 0; virtual double GetTargetProcessingTimeNsec() const = 0; virtual int64_t UpdateMaxOutstandingRequests( int64_t max_outstanding_requests, int64_t requested_outstanding_requests) = 0; }; using DataServiceContextFactory = std::function<std::unique_ptr<DataServiceContext>()>; class DataServiceClient { public: explicit DataServiceClient(const DataServiceParams& params); virtual ~DataServiceClient(); DataServiceClient(const DataServiceClient&) = delete; DataServiceClient& operator=(const DataServiceClient&) = delete; Status Initialize( const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator); virtual absl::StatusOr<GetNextResult> GetNext( DataServiceContextFactory context_factory); void Cancel(); TraceMeMetadata GetTraceMeMetadata() const; private: struct Task { Task(const TaskInfo& info, std::unique_ptr<DataServiceWorkerClient> worker) : info(info), worker(std::move(worker)) {} const TaskInfo info; std::unique_ptr<DataServiceWorkerClient> worker; int64_t round = 0; bool removed = false; bool skipped_previous_round = false; bool in_use TF_GUARDED_BY(&DataServiceClient::mu_) = false; bool end_of_sequence TF_GUARDED_BY(&DataServiceClient::mu_) = false; int64_t num_retries = 0; }; struct Result { Result() = default; Result(Result&&) = default; Result& operator=(Result&&) = default; Result(const Result&) = delete; Result& operator=(const Result&) = delete; bool ready TF_GUARDED_BY(&DataServiceClient::mu_) = false; std::vector<Tensor> element TF_GUARDED_BY(&DataServiceClient::mu_); int64_t element_index TF_GUARDED_BY(&DataServiceClient::mu_) = -1; int64_t task_id TF_GUARDED_BY(&DataServiceClient::mu_) = -1; bool end_of_sequence TF_GUARDED_BY(&DataServiceClient::mu_) = false; bool skip TF_GUARDED_BY(&DataServiceClient::mu_) = false; }; void EnsureThreadsStarted(); void CancelThreads(); bool Finished() const; bool ShouldWaitForNext() const; void DeleteLocalWorkerTasks(); bool ShouldDeleteLocalTask(const TaskInfo& task) const; void TaskThreadManager(); void TryBlockRound(int64_t round) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); void UpdateIterationFinished(bool iteration_finished); Status AddTask(const TaskInfo& task_info); absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> CreateWorkerClient( const TaskInfo& task_info); absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> CreateWorkerClient( const std::string& protocol, const TaskInfo& task_info); absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> CreateGrpcWorkerClient(const TaskInfo& task_info); absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> CreateAlternativeWorkerClientWithGrpcFallback( const DataTransferServerInfo& transfer_server, const TaskInfo& task_info); void Heartbeat(); void UpdateTasks(const ClientHeartbeatResponse& resp); bool ShouldReadFromTask(const TaskInfo& task) const; void RecordTFMetrics(const ClientHeartbeatResponse& resp); void UpdateBufferSize(); void UpdateWorkerThreads(); void RunWorkerThread(std::function<void()> done); bool ShouldProcessTask(); std::shared_ptr<Task> GetTaskToProcess(); void AdvanceTaskIndex(); Status TryGetElement(const Task& task, bool allow_skip, GetElementResult& result); void ProcessGetElementResponse(bool enqueue_result, GetElementResult& get_element_result, std::shared_ptr<Result> result, Task& task); Status GetElementTraced(Task* task, int64_t deadline_micros, bool enqueue_result, bool allow_skip, std::shared_ptr<Result> result); Status MaybeRemoveTask(Task& task, int64_t deadline_micros, Result& result); Status GetElement(Task* task, int64_t deadline_micros, bool enqueue_result, bool allow_skip, std::shared_ptr<Result> result); bool ResultReady() const; std::shared_ptr<Result> PopNextResult(); bool IsCoordinatedRead() const; std::string DebugString() const; const DataServiceParams params_; mutable mutex mu_; condition_variable get_next_cv_ TF_GUARDED_BY(mu_); condition_variable worker_thread_cv_ TF_GUARDED_BY(mu_); condition_variable manager_thread_cv_ TF_GUARDED_BY(mu_); bool cancelled_ TF_GUARDED_BY(mu_) = false; int64_t outstanding_requests_ TF_GUARDED_BY(mu_) = 0; int64_t max_outstanding_requests_ TF_GUARDED_BY(mu_); int64_t num_running_worker_threads_ TF_GUARDED_BY(mu_) = 0; int64_t next_task_index_ TF_GUARDED_BY(mu_) = 0; int64_t finished_tasks_ TF_GUARDED_BY(mu_) = 0; std::vector<std::shared_ptr<Task>> tasks_ TF_GUARDED_BY(mu_); int64_t current_round_ TF_GUARDED_BY(mu_) = 0; std::optional<int64_t> round_robin_round_limit_ TF_GUARDED_BY(mu_); Status status_ TF_GUARDED_BY(mu_) = absl::OkStatus(); std::queue<std::shared_ptr<Result>> results_ TF_GUARDED_BY(mu_); bool initialized_ = false; std::unique_ptr<DataServiceContext> ctx_ TF_GUARDED_BY(mu_); int64_t job_id_; int64_t iteration_client_id_; std::unique_ptr<DataServiceDispatcherClient> dispatcher_; const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info_; Allocator* allocator_; int64_t get_next_index_ TF_GUARDED_BY(mu_) = 0; bool iteration_finished_ TF_GUARDED_BY(mu_) = false; bool should_finish_iteration_ TF_GUARDED_BY(mu_) = true; absl::flat_hash_set<int64_t> worker_uids_ TF_GUARDED_BY(mu_); std::vector<std::unique_ptr<Thread>> worker_threads_ TF_GUARDED_BY(mu_); std::unique_ptr<Thread> task_thread_manager_ TF_GUARDED_BY(mu_); }; } } #endif #include "tensorflow/core/data/service/client/data_service_client.h" #include <algorithm> #include <functional> #include <limits> #include <memory> #include <optional> #include <random> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/strings/ascii.h" #include "absl/strings/substitute.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/client/common.h" #include "tensorflow/core/data/service/client/validate_utils.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/worker_client.h" #include "tensorflow/core/data/service/worker_impl.h" #include "tensorflow/core/data/utils.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/profiler/lib/traceme_encode.h" #include "tsl/platform/host_info.h" #include "tsl/platform/retrying_utils.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { bool IsColocatedTask(const TaskInfo& task) { return absl::c_any_of(task.worker_tags(), [](std::string_view worker_tag) { return absl::AsciiStrToUpper(worker_tag) == kColocatedWorkerTag; }); } absl::StatusOr<DataTransferServerInfo> GetTransferServer( const std::string& protocol, const TaskInfo& task_info) { for (const auto& transfer_server : task_info.transfer_servers()) { if (transfer_server.protocol() == protocol) { return transfer_server; } } return errors::NotFound("protocol ", protocol, " is not available for worker ", task_info.worker_address()); } } DataServiceClient::DataServiceClient(const DataServiceParams& params) : params_(params), max_outstanding_requests_(params.max_outstanding_requests) {} DataServiceClient::~DataServiceClient() { VLOG(2) << "Destroying data service client for iteration id " << iteration_client_id_; task_thread_manager_.reset(); if (initialized_) { Status s = dispatcher_->ReleaseIterationClient(iteration_client_id_); if (!s.ok()) { LOG(WARNING) << "Failed to release iteration client id: " << s; } } for (auto& worker_thread : worker_threads_) { worker_thread.reset(); } DeleteLocalWorkerTasks(); VLOG(2) << "Destroyed data service dataset iterator for iteration id " << iteration_client_id_; } Status DataServiceClient::Initialize( const DeviceBase::AcceleratorDeviceInfo* accelerator_device_info, Allocator* allocator) { accelerator_device_info_ = accelerator_device_info; allocator_ = allocator; TF_RETURN_IF_ERROR(ValidateDataServiceParams(params_)); VLOG(3) << "Connecting to " << params_.address << " in tf.data service client."; dispatcher_ = std::make_unique<DataServiceDispatcherClient>(params_.address, params_.protocol); int64_t deadline_micros = kint64max; std::optional<std::string> job_name; if (!params_.job_name.empty()) { job_name = params_.job_name; } TF_RETURN_IF_ERROR(grpc_util::Retry( [&]() { return dispatcher_->GetOrCreateJob( params_.dataset_id, params_.processing_mode, job_name, params_.num_consumers, params_.cross_trainer_cache_options.has_value(), params_.target_workers, job_id_); }, strings::StrCat("get or create job with dispatcher at ", params_.address), deadline_micros)); TF_RETURN_IF_ERROR(grpc_util::Retry( [&]() { return dispatcher_->GetOrCreateIteration(job_id_, params_.repetition, iteration_client_id_); }, strings::StrCat("get or create iteration with dispatcher at ", params_.address), deadline_micros)); initialized_ = true; return absl::OkStatus(); } absl::StatusOr<GetNextResult> DataServiceClient::GetNext( DataServiceContextFactory context_factory) TF_LOCKS_EXCLUDED(mu_) { VLOG(3) << "Getting the next element from tf.data service client."; mutex_lock l(mu_); if (ctx_ == nullptr) { ctx_ = context_factory(); } EnsureThreadsStarted(); std::shared_ptr<Result> result; do { while (!ResultReady() && !Finished() && !cancelled_ && status_.ok()) { VLOG(3) << "Blocking in GetNext: " << DebugString(); get_next_cv_.wait(l); } if (cancelled_) { VLOG(3) << "Returning from GetNext due to cancellation"; return errors::Cancelled("Data service iterator was cancelled"); } if (!status_.ok()) { VLOG(3) << "Returning from GetNext with error " << status_; return status_; } if (results_.empty()) { VLOG(3) << "Returning from GetNext with end_of_sequence"; return GetNextResult::EndOfSequence(); } if (!ResultReady()) { VLOG(3) << "Returning from GetNext with internal error"; return errors::Internal("Expected a result to be ready, but none were."); } result = PopNextResult(); worker_thread_cv_.notify_one(); if (result->skip) { VLOG(3) << "Skipping result from task " << result->task_id; } } while (result->skip); GetNextResult next; next.end_of_sequence = result->end_of_sequence; if (next.end_of_sequence) { VLOG(1) << "Returning end_of_sequence"; return next; } VLOG(1) << "Returning the next element from data service dataset's " << "Iterator: task " << result->task_id << ", element " << result->element_index; if (IsCoordinatedRead()) { VLOG(1) << "Consumer " << *params_.consumer_index << ": Result " << get_next_index_++; } next.tensors.swap(result->element); return next; } void DataServiceClient::Cancel() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); for (const auto& task : tasks_) { task->worker->TryCancel(); } cancelled_ = true; worker_thread_cv_.notify_all(); manager_thread_cv_.notify_all(); get_next_cv_.notify_all(); } TraceMeMetadata DataServiceClient::GetTraceMeMetadata() const { TraceMeMetadata result; int64_t num_tasks = -1; int64_t autotuned_max_outstanding_requests = model::kAutotune; if (mu_.try_lock()) { num_tasks = tasks_.size() - finished_tasks_; autotuned_max_outstanding_requests = max_outstanding_requests_; mu_.unlock(); } result.push_back(std::make_pair( "num_tasks", num_tasks == -1 ? kTraceInfoUnavailable : strings::Printf("%lld", static_cast<long long>(num_tasks)))); result.push_back(std::make_pair("job_name", params_.job_name)); result.push_back(std::make_pair( "max_outstanding_requests", strings::Printf( "%lld", static_cast<long long>(params_.max_outstanding_requests)))); if (params_.max_outstanding_requests == model::kAutotune) { result.push_back(std::make_pair( "autotuned_max_outstanding_requests", strings::Printf("%lld", static_cast<long long>( autotuned_max_outstanding_requests)))); } return result; } void DataServiceClient::EnsureThreadsStarted() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!task_thread_manager_ && !cancelled_) { task_thread_manager_ = ctx_->StartThread("task-thread-manager", [this]() { TaskThreadManager(); }); } } bool DataServiceClient::Finished() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return num_running_worker_threads_ == 0 && !ShouldWaitForNext(); } bool DataServiceClient::ShouldWaitForNext() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (should_finish_iteration_) { return !iteration_finished_; } return tasks_.empty() || finished_tasks_ < tasks_.size(); } void DataServiceClient::DeleteLocalWorkerTasks() TF_LOCKS_EXCLUDED(mu_) { std::vector<std::shared_ptr<Task>> tasks; { mutex_lock l(mu_); tasks = tasks_; } for (const std::shared_ptr<Task>& task : tasks) { std::shared_ptr<DataServiceWorkerImpl> worker = LocalWorkers::Get(task->info.worker_address()); if (worker && ShouldDeleteLocalTask(task->info)) { worker->DeleteLocalTask(task->info); } } } bool DataServiceClient::ShouldDeleteLocalTask(const TaskInfo& task) const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (IsCoordinatedRead()) { return false; } if (params_.target_workers == TARGET_WORKERS_LOCAL) { return true; } return params_.target_workers == TARGET_WORKERS_AUTO && IsColocatedTask(task); } void DataServiceClient::TaskThreadManager() TF_LOCKS_EXCLUDED(mu_) { auto cleanup = gtl::MakeCleanup([] { VLOG(1) << "Task thread manager exiting"; }); VLOG(1) << "Starting task thread manager"; uint64 next_check = Env::Default()->NowMicros(); while (true) { { mutex_lock l(mu_); while (!cancelled_ && Env::Default()->NowMicros() < next_check) { int64_t remaining_time = next_check - Env::Default()->NowMicros(); VLOG(4) << "Task thread manager waiting for " << remaining_time << "us"; manager_thread_cv_.wait_for(l, std::chrono::microseconds(remaining_time)); } if (cancelled_) { VLOG(3) << "Task thread manager finished"; return; } } Heartbeat(); UpdateBufferSize(); UpdateWorkerThreads(); next_check = Env::Default()->NowMicros() + absl::ToInt64Microseconds(params_.task_refresh_interval); } } void DataServiceClient::TryBlockRound(int64_t round) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (round_robin_round_limit_.has_value() && round_robin_round_limit_.value() == round) { return; } if (current_round_ >= round) { VLOG(1) << "Rejecting request to block round " << round << ", because processing has already begun for round " << current_round_; return; } VLOG(1) << "Accepting request to block round " << round; round_robin_round_limit_ = round; } void DataServiceClient::UpdateIterationFinished(bool iteration_finished) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!iteration_finished) { return; } iteration_finished_ = true; get_next_cv_.notify_all(); worker_thread_cv_.notify_all(); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> DataServiceClient::CreateWorkerClient(const std::string& protocol, const TaskInfo& task_info) { TF_ASSIGN_OR_RETURN(DataTransferServerInfo transfer_server, GetTransferServer(protocol, task_info)); return CreateDataServiceWorkerClient(params_.protocol, transfer_server, accelerator_device_info_, allocator_); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> DataServiceClient::CreateGrpcWorkerClient(const TaskInfo& task_info) { return CreateWorkerClient(kGrpcTransferProtocol, task_info); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> DataServiceClient::CreateAlternativeWorkerClientWithGrpcFallback( const DataTransferServerInfo& transfer_server, const TaskInfo& task_info) { absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> worker = CreateDataServiceWorkerClient(params_.protocol, transfer_server, accelerator_device_info_, allocator_); if (worker.ok()) { LOG(INFO) << "Successfully started client for data transfer protocol '" << transfer_server.protocol() << "' for worker '" << task_info.worker_address() << "'."; return worker; } LOG(INFO) << "Failed to start client for data transfer protocol '" << transfer_server.protocol() << "' for worker '" << task_info.worker_address() << "'; falling back to grpc. " << "Original error: " << worker.status(); metrics::RecordTFDataServiceDataTransferProtocolFallback( transfer_server.protocol(), static_cast<error::Code>(worker.status().raw_code()), std::string(worker.status().message())); return CreateGrpcWorkerClient(task_info); } absl::StatusOr<std::unique_ptr<DataServiceWorkerClient>> DataServiceClient::CreateWorkerClient(const TaskInfo& task_info) { if (params_.data_transfer_protocol == kLocalTransferProtocol || (tsl::port::JobUid() != -1 && LocalWorkers::Get(task_info.worker_address()) != nullptr)) { DataTransferServerInfo info; info.set_protocol(kLocalTransferProtocol); info.set_address(task_info.worker_address()); return CreateDataServiceWorkerClient(params_.protocol, info, accelerator_device_info_, allocator_); } if (!params_.data_transfer_protocol.empty()) { TF_ASSIGN_OR_RETURN( DataTransferServerInfo transfer_server, GetTransferServer(params_.data_transfer_protocol, task_info)); return CreateAlternativeWorkerClientWithGrpcFallback(transfer_server, task_info); } if (std::string default_protocol = DefaultDataTransferProtocol(); default_protocol != kGrpcTransferProtocol) { absl::StatusOr<DataTransferServerInfo> transfer_server = GetTransferServer(default_protocol, task_info); if (transfer_server.ok()) { return CreateAlternativeWorkerClientWithGrpcFallback(*transfer_server, task_info); } VLOG(1) << "Failed to find transfer server for default data transfer " "protocol '" << default_protocol << "' for worker '" << task_info.worker_address() << "'; falling back to grpc. Original error: " << transfer_server.status(); metrics::RecordTFDataServiceDataTransferProtocolFallback( default_protocol, error::Code::NOT_FOUND, "Failed to find transfer server for default protocol"); } return CreateGrpcWorkerClient(task_info); } Status DataServiceClient::AddTask(const TaskInfo& task_info) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_ASSIGN_OR_RETURN(std::unique_ptr<DataServiceWorkerClient> worker, CreateWorkerClient(task_info)); metrics::RecordTFDataServiceDataTransferProtocolUsed( worker->GetDataTransferProtocol(), !params_.data_transfer_protocol.empty()); tasks_.push_back(std::make_shared<Task>(task_info, std::move(worker))); worker_thread_cv_.notify_one(); if (IsCoordinatedRead()) { VLOG(1) << "Consumer " << params_.consumer_index.value() << " adding task " << task_info.task_id() << " to read from worker " << task_info.worker_address() << ". Task starting round: " << task_info.starting_round(); DCHECK_LE(current_round_, task_info.starting_round()); if (current_round_ == task_info.starting_round()) { DCHECK_EQ(next_task_index_, 0); } } if (!IsCoordinatedRead()) { std::mt19937 rng; std::shuffle(tasks_.begin(), tasks_.end(), rng); } return absl::OkStatus(); } void DataServiceClient::Heartbeat() TF_LOCKS_EXCLUDED(mu_) { ClientHeartbeatRequest req; req.set_iteration_client_id(iteration_client_id_); if (IsCoordinatedRead()) { mutex_lock l(mu_); req.set_current_round(current_round_); if (round_robin_round_limit_.has_value()) { req.set_blocked_round(round_robin_round_limit_.value()); } } { mutex_lock l(mu_); double target_processing_time_nsec = ctx_->GetTargetProcessingTimeNsec(); req.set_target_processing_time_nsec(target_processing_time_nsec); } ClientHeartbeatResponse resp; Status s = dispatcher_->ClientHeartbeat(req, resp); if (!s.ok()) { if (IsPreemptedError(s)) { LOG(WARNING) << "Failed to heartbeat to dispatcher from iteration client id " << iteration_client_id_ << ". Dispatcher address: " << params_.address << ". Error: " << s; return; } mutex_lock l(mu_); status_ = s; get_next_cv_.notify_all(); } mutex_lock l(mu_); UpdateIterationFinished(resp.iteration_finished()); if (resp.optional_block_round_case() == ClientHeartbeatResponse::kBlockRound) { TryBlockRound(resp.block_round()); } else { round_robin_round_limit_ = std::nullopt; worker_thread_cv_.notify_all(); } UpdateTasks(resp); RecordTFMetrics(resp); } void DataServiceClient::UpdateTasks(const ClientHeartbeatResponse& resp) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { absl::flat_hash_map<int64_t, TaskInfo> task_id_to_task; for (auto& task : resp.task_info()) { task_id_to_task[task.task_id()] = task; } if (iteration_finished_) { return; } int index = 0; while (index < tasks_.size()) { std::shared_ptr<Task> task = tasks_[index]; if (task_id_to_task.contains(task->info.task_id())) { task_id_to_task.erase(task->info.task_id()); ++index; } else { if (task->end_of_sequence) { finished_tasks_--; } tasks_.erase(tasks_.begin() + index); if (index < next_task_index_) { next_task_index_--; } if (!tasks_.empty() && next_task_index_ >= tasks_.size()) { AdvanceTaskIndex(); } } } for (auto& task : resp.task_info()) { auto it = task_id_to_task.find(task.task_id()); if (it == task_id_to_task.end()) { continue; } if (!ShouldReadFromTask(task)) { VLOG(3) << "Skipping untargeted worker task " << task.task_id(); should_finish_iteration_ = false; continue; } Status s = AddTask(it->second); if (!s.ok()) { status_ = s; get_next_cv_.notify_all(); break; } } } bool DataServiceClient::ShouldReadFromTask(const TaskInfo& task) const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (IsCoordinatedRead()) { return true; } const bool is_local_task = (LocalWorkers::Get(task.worker_address()) != nullptr); if (params_.target_workers == TARGET_WORKERS_LOCAL && !is_local_task) { return false; } const bool is_cross_tf_host_read = !is_local_task && IsColocatedTask(task); if (params_.target_workers == TARGET_WORKERS_AUTO && is_cross_tf_host_read) { return false; } return true; } void DataServiceClient::RecordTFMetrics(const ClientHeartbeatResponse& resp) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { for (const auto& task : resp.task_info()) { if (worker_uids_.contains(task.worker_uid())) { continue; } metrics::RecordTFDataServiceClientIterators( task.worker_uid(), resp.deployment_mode(), params_.processing_mode, IsCoordinatedRead()); worker_uids_.insert(task.worker_uid()); } } void DataServiceClient::UpdateBufferSize() TF_LOCKS_EXCLUDED(mu_) { if (params_.max_outstanding_requests == model::kAutotune) { mutex_lock l(mu_)
#include "tensorflow/core/data/service/client/data_service_client.h" #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/time/time.h" #include "tensorflow/core/data/service/client/common.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tsl/lib/core/status_test_util.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::data::testing::RangeDataset; using ::tensorflow::testing::IsOkAndHolds; using ::tensorflow::testing::StatusIs; using ::testing::_; using ::testing::AtLeast; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::UnorderedElementsAreArray; DataServiceParams GetDataServiceParams( const std::string& dataset_id, const std::string& data_service_address, const ProcessingModeDef::ShardingPolicy sharding_policy) { DataServiceParams params; params.dataset_id = dataset_id; params.processing_mode.set_sharding_policy(sharding_policy); params.address = data_service_address; params.protocol = "grpc"; params.data_transfer_protocol = "grpc"; params.job_name = "test_job"; params.repetition = 0; params.max_outstanding_requests = 100; params.task_refresh_interval = absl::Milliseconds(100); return params; } std::vector<int64_t> Range(const int64_t range) { std::vector<int64_t> result; for (int64_t i = 0; i < range; ++i) { result.push_back(i); } return result; } class TestDataServiceContext : public DataServiceContext { public: TestDataServiceContext() = default; ~TestDataServiceContext() override = default; std::unique_ptr<Thread> StartThread(const string& name, std::function<void()> fn) override { return absl::WrapUnique( Env::Default()->StartThread({}, name, std::move(fn))); } MOCK_METHOD(void, RecordBufferEnqueue, (const std::vector<Tensor>& element), (override)); MOCK_METHOD(void, RecordBufferDequeue, (const std::vector<Tensor>& element), (override)); double GetTargetProcessingTimeNsec() const override { return 1.0e6; } int64_t UpdateMaxOutstandingRequests(int64_t max_outstanding_requests, int64_t new_size) override { return new_size; } }; std::unique_ptr<TestDataServiceContext> GetTestDataServiceContext() { return std::make_unique<TestDataServiceContext>(); } template <class T> StatusOr<std::vector<T>> GetResults(DataServiceClient& client) { std::vector<T> results; while (true) { TF_ASSIGN_OR_RETURN(GetNextResult next, client.GetNext(GetTestDataServiceContext)); if (next.end_of_sequence) { return results; } results.push_back(next.tensors[0].unaligned_flat<T>().data()[0]); } return results; } template <class T> StatusOr<T> GetNext(DataServiceClient& client) { TF_ASSIGN_OR_RETURN(GetNextResult next, client.GetNext(GetTestDataServiceContext)); if (next.end_of_sequence) { return errors::OutOfRange( "The tf.data service has reached the end of sequence"); } return next.tensors[0].unaligned_flat<T>().data()[0]; } TEST(DataServiceClientTest, NoSharding) { TestCluster test_cluster(1); TF_ASSERT_OK(test_cluster.Initialize()); DatasetClient<int64_t> test_dataset(test_cluster); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_id, test_dataset.RegisterDataset(RangeDataset(10))); DataServiceParams params = GetDataServiceParams( dataset_id, test_cluster.DispatcherAddress(), ProcessingModeDef::OFF); DataServiceClient client(params); TF_ASSERT_OK(client.Initialize(nullptr, nullptr)); EXPECT_THAT(GetResults<int64_t>(client), IsOkAndHolds(ElementsAreArray(Range(10)))); client.Cancel(); } TEST(DataServiceClientTest, DynamicSharding) { TestCluster test_cluster(3); TF_ASSERT_OK(test_cluster.Initialize()); DatasetClient<int64_t> test_dataset(test_cluster); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_id, test_dataset.RegisterDataset(RangeDataset(10))); DataServiceParams params = GetDataServiceParams( dataset_id, test_cluster.DispatcherAddress(), ProcessingModeDef::DYNAMIC); DataServiceClient client(params); TF_ASSERT_OK(client.Initialize(nullptr, nullptr)); EXPECT_THAT(GetResults<int64_t>(client), IsOkAndHolds(UnorderedElementsAreArray(Range(10)))); client.Cancel(); } TEST(DataServiceClientTest, StaticSharding) { TestCluster test_cluster(3); TF_ASSERT_OK(test_cluster.Initialize()); DatasetClient<int64_t> dataset_client(test_cluster); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_id, dataset_client.RegisterDataset(RangeDataset(10))); DataServiceParams params = GetDataServiceParams(dataset_id, test_cluster.DispatcherAddress(), ProcessingModeDef::FILE_OR_DATA); DataServiceClient client(params); TF_ASSERT_OK(client.Initialize(nullptr, nullptr)); EXPECT_THAT(GetResults<int64_t>(client), IsOkAndHolds(UnorderedElementsAreArray(Range(10)))); client.Cancel(); } TEST(DataServiceClientTest, RecordBufferEvents) { TestCluster test_cluster(1); TF_ASSERT_OK(test_cluster.Initialize()); DatasetClient<int64_t> test_dataset(test_cluster); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_id, test_dataset.RegisterDataset(RangeDataset(10))); DataServiceParams params = GetDataServiceParams( dataset_id, test_cluster.DispatcherAddress(), ProcessingModeDef::OFF); DataServiceClient client(params); TF_ASSERT_OK(client.Initialize(nullptr, nullptr)); auto mock_context = std::make_unique<TestDataServiceContext>(); TestDataServiceContext* ctx = mock_context.get(); EXPECT_CALL(*ctx, RecordBufferEnqueue(_)).Times(AtLeast(1)); EXPECT_CALL(*ctx, RecordBufferDequeue(_)).Times(AtLeast(1)); TF_ASSERT_OK_AND_ASSIGN(GetNextResult next, client.GetNext([&mock_context]() { return std::move(mock_context); })); client.Cancel(); } TEST(DataServiceClientTest, Cancel) { TestCluster test_cluster(1); TF_ASSERT_OK(test_cluster.Initialize()); DatasetClient<int64_t> dataset_client(test_cluster); TF_ASSERT_OK_AND_ASSIGN(std::string dataset_id, dataset_client.RegisterDataset(RangeDataset(10))); DataServiceParams params = GetDataServiceParams( dataset_id, test_cluster.DispatcherAddress(), ProcessingModeDef::OFF); DataServiceClient client(params); TF_ASSERT_OK(client.Initialize(nullptr, nullptr)); client.Cancel(); EXPECT_THAT(client.GetNext(GetTestDataServiceContext), StatusIs(error::CANCELLED)); } TEST(DataServiceClientTest, ValidationError) { DataServiceParams params = GetDataServiceParams( "dataset_id", "tf_data_service_address", ProcessingModeDef::OFF); params.target_workers = TARGET_WORKERS_LOCAL; DataServiceClient client(params); EXPECT_THAT( client.Initialize(nullptr, nullptr), StatusIs( error::INVALID_ARGUMENT, HasSubstr( "Local reads require local tf.data workers, but no local worker " "is found."))); } } } }
1,758
cpp
tensorflow/tensorflow
ts_op_gen
tensorflow/js/ops/ts_op_gen.cc
tensorflow/js/ops/ts_op_gen_test.cc
#ifndef TENSORFLOW_JS_OPS_TS_OP_GEN_H_ #define TENSORFLOW_JS_OPS_TS_OP_GEN_H_ #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { void WriteTSOps(const OpList& ops, const ApiDefMap& api_def_map, const string& ts_filename); } #endif #include "tensorflow/js/ops/ts_op_gen.h" #include <memory> #include <unordered_map> #include <vector> #include "tensorflow/core/framework/api_def.pb.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { static bool IsListAttr(const OpDef_ArgDef& arg) { return !arg.type_list_attr().empty() || !arg.number_attr().empty(); } struct ArgDefs { ArgDefs(const OpDef::ArgDef& op_def_arg, const ApiDef::Arg& api_def_arg) : op_def_arg(op_def_arg), api_def_arg(api_def_arg) {} const OpDef::ArgDef& op_def_arg; const ApiDef::Arg& api_def_arg; }; struct OpAttrs { OpAttrs(const OpDef::AttrDef& op_def_attr, const ApiDef::Attr& api_def_attr) : op_def_attr(op_def_attr), api_def_attr(api_def_attr) {} const OpDef::AttrDef& op_def_attr; const ApiDef::Attr& api_def_attr; }; class GenTypeScriptOp { public: GenTypeScriptOp(const OpDef& op_def, const ApiDef& api_def); ~GenTypeScriptOp(); string Code(); private: void ProcessArgs(); void ProcessAttrs(); void AddAttrForArg(const string& attr, int arg_index); string InputForAttr(const OpDef::AttrDef& op_def_attr); void AddMethodSignature(); void AddOpAttrs(); void AddMethodReturnAndClose(); const OpDef& op_def_; const ApiDef& api_def_; string result_; std::vector<ArgDefs> input_op_args_; std::vector<OpAttrs> op_attrs_; typedef std::unordered_map<string, std::vector<int>> AttrArgIdxMap; AttrArgIdxMap attr_arg_idx_map_; int num_outputs_; }; GenTypeScriptOp::GenTypeScriptOp(const OpDef& op_def, const ApiDef& api_def) : op_def_(op_def), api_def_(api_def), num_outputs_(0) {} GenTypeScriptOp::~GenTypeScriptOp() = default; string GenTypeScriptOp::Code() { ProcessArgs(); ProcessAttrs(); AddMethodSignature(); AddOpAttrs(); AddMethodReturnAndClose(); strings::StrAppend(&result_, "\n"); return result_; } void GenTypeScriptOp::ProcessArgs() { for (int i = 0; i < api_def_.arg_order_size(); i++) { auto op_def_arg = FindInputArg(api_def_.arg_order(i), op_def_); if (op_def_arg == nullptr) { LOG(WARNING) << "Could not find OpDef::ArgDef for " << api_def_.arg_order(i); continue; } auto api_def_arg = FindInputArg(api_def_.arg_order(i), api_def_); if (api_def_arg == nullptr) { LOG(WARNING) << "Could not find ApiDef::Arg for " << api_def_.arg_order(i); continue; } if (!op_def_arg->type_attr().empty()) { AddAttrForArg(op_def_arg->type_attr(), i); } else if (!op_def_arg->type_list_attr().empty()) { AddAttrForArg(op_def_arg->type_list_attr(), i); } if (!op_def_arg->number_attr().empty()) { AddAttrForArg(op_def_arg->number_attr(), i); } input_op_args_.push_back(ArgDefs(*op_def_arg, *api_def_arg)); } num_outputs_ = api_def_.out_arg_size(); } void GenTypeScriptOp::ProcessAttrs() { for (int i = 0; i < op_def_.attr_size(); i++) { op_attrs_.push_back(OpAttrs(op_def_.attr(i), api_def_.attr(i))); } } void GenTypeScriptOp::AddAttrForArg(const string& attr, int arg_index) { auto iter = attr_arg_idx_map_.find(attr); if (iter == attr_arg_idx_map_.end()) { attr_arg_idx_map_.insert(AttrArgIdxMap::value_type(attr, {arg_index})); } else { iter->second.push_back(arg_index); } } string GenTypeScriptOp::InputForAttr(const OpDef::AttrDef& op_def_attr) { string inputs; auto arg_list = attr_arg_idx_map_.find(op_def_attr.name()); if (arg_list != attr_arg_idx_map_.end()) { for (auto iter = arg_list->second.begin(); iter != arg_list->second.end(); ++iter) { strings::StrAppend(&inputs, input_op_args_[*iter].op_def_arg.name()); } } return inputs; } void GenTypeScriptOp::AddMethodSignature() { strings::StrAppend(&result_, "export function ", api_def_.endpoint(0).name(), "("); bool is_first = true; for (auto& in_arg : input_op_args_) { if (is_first) { is_first = false; } else { strings::StrAppend(&result_, ", "); } auto op_def_arg = in_arg.op_def_arg; strings::StrAppend(&result_, op_def_arg.name(), ": "); if (IsListAttr(op_def_arg)) { strings::StrAppend(&result_, "tfc.Tensor[]"); } else { strings::StrAppend(&result_, "tfc.Tensor"); } } if (num_outputs_ == 1) { strings::StrAppend(&result_, "): tfc.Tensor {\n"); } else { strings::StrAppend(&result_, "): tfc.Tensor[] {\n"); } } void GenTypeScriptOp::AddOpAttrs() { strings::StrAppend(&result_, " const opAttrs = [\n"); bool is_first = true; for (auto& attr : op_attrs_) { if (is_first) { is_first = false; } else { strings::StrAppend(&result_, ",\n"); } strings::StrAppend(&result_, " "); if (attr.op_def_attr.type() == "type") { strings::StrAppend(&result_, "createTensorsTypeOpAttr('", attr.op_def_attr.name(), "', ", InputForAttr(attr.op_def_attr), ")"); } else if (attr.op_def_attr.type() == "int") { strings::StrAppend(&result_, "{name: '", attr.op_def_attr.name(), "', "); strings::StrAppend(&result_, "type: nodeBackend().binding.TF_ATTR_INT, "); strings::StrAppend(&result_, "value: ", InputForAttr(attr.op_def_attr), ".length}"); } } strings::StrAppend(&result_, "\n ];\n"); } void GenTypeScriptOp::AddMethodReturnAndClose() { strings::StrAppend(&result_, " return null;\n}\n"); } void WriteTSOp(const OpDef& op_def, const ApiDef& api_def, WritableFile* ts) { GenTypeScriptOp ts_op(op_def, api_def); TF_CHECK_OK(ts->Append(GenTypeScriptOp(op_def, api_def).Code())); } void StartFile(WritableFile* ts_file) { const string header = R"header( import * as tfc from '@tensorflow/tfjs-core'; import {createTensorsTypeOpAttr, nodeBackend} from './op_utils'; )header"; TF_CHECK_OK(ts_file->Append(header)); } } void WriteTSOps(const OpList& ops, const ApiDefMap& api_def_map, const string& ts_filename) { Env* env = Env::Default(); std::unique_ptr<WritableFile> ts_file = nullptr; TF_CHECK_OK(env->NewWritableFile(ts_filename, &ts_file)); StartFile(ts_file.get()); for (const auto& op_def : ops.op()) { if (op_def.has_deprecation() && op_def.deprecation().version() <= TF_GRAPH_DEF_VERSION) { continue; } const auto* api_def = api_def_map.GetApiDef(op_def.name()); if (api_def->visibility() == ApiDef::VISIBLE) { WriteTSOp(op_def, *api_def, ts_file.get()); } } TF_CHECK_OK(ts_file->Close()); } }
#include "tensorflow/js/ops/ts_op_gen.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { void ExpectContainsStr(StringPiece s, StringPiece expected) { EXPECT_TRUE(absl::StrContains(s, expected)) << "'" << s << "' does not contain '" << expected << "'"; } void ExpectDoesNotContainStr(StringPiece s, StringPiece expected) { EXPECT_FALSE(absl::StrContains(s, expected)) << "'" << s << "' does not contain '" << expected << "'"; } constexpr char kBaseOpDef[] = R"( op { name: "Foo" input_arg { name: "images" type_attr: "T" number_attr: "N" description: "Images to process." } input_arg { name: "dim" description: "Description for dim." type: DT_FLOAT } output_arg { name: "output" description: "Description for output." type: DT_FLOAT } attr { name: "T" type: "type" description: "Type for images" allowed_values { list { type: DT_UINT8 type: DT_INT8 } } default_value { i: 1 } } attr { name: "N" type: "int" has_minimum: true minimum: 1 } summary: "Summary for op Foo." description: "Description for op Foo." } )"; void GenerateTsOpFileText(const string& op_def_str, const string& api_def_str, string* ts_file_text) { Env* env = Env::Default(); OpList op_defs; protobuf::TextFormat::ParseFromString( op_def_str.empty() ? kBaseOpDef : op_def_str, &op_defs); ApiDefMap api_def_map(op_defs); if (!api_def_str.empty()) { TF_ASSERT_OK(api_def_map.LoadApiDef(api_def_str)); } const string& tmpdir = testing::TmpDir(); const auto ts_file_path = io::JoinPath(tmpdir, "test.ts"); WriteTSOps(op_defs, api_def_map, ts_file_path); TF_ASSERT_OK(ReadFileToString(env, ts_file_path, ts_file_text)); } TEST(TsOpGenTest, TestImports) { string ts_file_text; GenerateTsOpFileText("", "", &ts_file_text); const string expected = R"( import * as tfc from '@tensorflow/tfjs-core'; import {createTensorsTypeOpAttr, nodeBackend} from './op_utils'; )"; ExpectContainsStr(ts_file_text, expected); } TEST(TsOpGenTest, InputSingleAndList) { const string api_def = R"pb( op { graph_op_name: "Foo" arg_order: "dim" arg_order: "images" } )pb"; string ts_file_text; GenerateTsOpFileText("", api_def, &ts_file_text); const string expected = R"( export function Foo(dim: tfc.Tensor, images: tfc.Tensor[]): tfc.Tensor { )"; ExpectContainsStr(ts_file_text, expected); } TEST(TsOpGenTest, TestVisibility) { const string api_def = R"( op { graph_op_name: "Foo" visibility: HIDDEN } )"; string ts_file_text; GenerateTsOpFileText("", api_def, &ts_file_text); const string expected = R"( export function Foo(images: tfc.Tensor[], dim: tfc.Tensor): tfc.Tensor { )"; ExpectDoesNotContainStr(ts_file_text, expected); } TEST(TsOpGenTest, SkipDeprecated) { const string op_def = R"( op { name: "DeprecatedFoo" input_arg { name: "input" type_attr: "T" description: "Description for input." } output_arg { name: "output" description: "Description for output." type: DT_FLOAT } attr { name: "T" type: "type" description: "Type for input" allowed_values { list { type: DT_FLOAT } } } deprecation { explanation: "Deprecated." } } )"; string ts_file_text; GenerateTsOpFileText(op_def, "", &ts_file_text); ExpectDoesNotContainStr(ts_file_text, "DeprecatedFoo"); } TEST(TsOpGenTest, MultiOutput) { const string op_def = R"( op { name: "MultiOutputFoo" input_arg { name: "input" description: "Description for input." type_attr: "T" } output_arg { name: "output1" description: "Description for output 1." type: DT_FLOAT } output_arg { name: "output2" description: "Description for output 2." type: DT_FLOAT } attr { name: "T" type: "type" description: "Type for input" allowed_values { list { type: DT_FLOAT } } } summary: "Summary for op MultiOutputFoo." description: "Description for op MultiOutputFoo." } )"; string ts_file_text; GenerateTsOpFileText(op_def, "", &ts_file_text); const string expected = R"( export function MultiOutputFoo(input: tfc.Tensor): tfc.Tensor[] { )"; ExpectContainsStr(ts_file_text, expected); } TEST(TsOpGenTest, OpAttrs) { string ts_file_text; GenerateTsOpFileText("", "", &ts_file_text); const string expectedFooAttrs = R"( const opAttrs = [ createTensorsTypeOpAttr('T', images), {name: 'N', type: nodeBackend().binding.TF_ATTR_INT, value: images.length} ]; )"; ExpectContainsStr(ts_file_text, expectedFooAttrs); } } }
1,759
cpp
tensorflow/tensorflow
object
tensorflow/cc/experimental/libtf/object.cc
tensorflow/cc/experimental/libtf/tests/object_test.cc
#ifndef TENSORFLOW_CC_EXPERIMENTAL_LIBTF_OBJECT_H_ #define TENSORFLOW_CC_EXPERIMENTAL_LIBTF_OBJECT_H_ #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "tensorflow/cc/experimental/libtf/value.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" namespace tf { namespace libtf { using TaggedValue = impl::TaggedValue; class Handle; template <class T> Handle Convert(T value); class Handle { public: Handle() : value_(TaggedValue::None()) {} public: explicit Handle(TaggedValue value) : value_(std::move(value)) {} protected: TaggedValue value_; friend class Integer; friend class Float; friend class String; friend class Object; friend class List; friend class Dictionary; friend class Tuple; friend class Callable; friend class Tensor; template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); template <typename Fn, class TRET, class... ArgsOut> friend class UneraseCallHelper; }; template <class T> tensorflow::StatusOr<T> Cast(Handle handle); class None final : public Handle { public: None() : Handle(TaggedValue::None()) {} private: explicit None(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); }; class String final : public Handle { public: explicit String(const char* s) : Handle(TaggedValue(s)) {} const char* get() const { return value_.s(); } private: explicit String(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); }; class Object : public Handle { public: Object() : Handle(TaggedValue::Dict()) {} static const String& ParentKey(); template <class T = Handle> tensorflow::StatusOr<T> Get(const String& key) { auto& dict = value_.dict(); auto it = dict.find(key.value_); if (it != dict.end()) { return Cast<T>(Handle(it->second)); } else { auto it_class = dict.find(ParentKey().value_); if (it_class != dict.end()) { auto& class_dict_maybe = it_class->second; if (class_dict_maybe.type() == TaggedValue::DICT) { auto& dict = class_dict_maybe.dict(); auto it = dict.find(key.value_); if (it != dict.end()) { return Cast<T>(Handle(it->second)); } } } } return absl::NotFoundError("Key not in dictionary."); } void Set(const String& key, Handle h) { value_.dict()[key.value_] = std::move(h.value_); } void Unset(const String& key) { value_.dict().erase(key.value_); } private: explicit Object(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); }; class Dictionary final : public Handle { public: Dictionary() : Handle(TaggedValue::Dict()) {} template <class T> tensorflow::StatusOr<T> Get(const Handle& key) { auto it = value_.dict().find(key.value_); if (it != value_.dict().end()) return Cast<T>(Handle(it->second)); return absl::NotFoundError("Key not in dictionary."); } void Set(const String& key, Handle value) { value_.dict()[key.value_] = std::move(value.value_); } void Set(const Handle& key, Handle value) { value_.dict()[key.value_] = std::move(value.value_); } size_t size() const { return value_.dict().size(); } private: explicit Dictionary(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); }; class Integer final : public Handle { public: explicit Integer(Handle h) : Handle(h.value_) {} explicit Integer(int64_t i) : Handle(TaggedValue(i)) {} int64_t get() const { return value_.i64().get(); } private: explicit Integer(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); }; class Float final : public Handle { public: explicit Float(Handle h) : Handle(h.value_) {} explicit Float(float i) : Handle(TaggedValue(i)) {} float get() const { return value_.f32().get(); } private: explicit Float(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); }; class Tensor final : public Handle { public: explicit Tensor(Handle h) : Handle(h.value_) {} template <class T> tensorflow::Status GetValue(absl::Span<T> data) const; private: explicit Tensor(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); }; template <class T> tensorflow::Status Tensor::GetValue(absl::Span<T> data) const { tensorflow::AbstractTensorPtr t; { const auto abstract_t = value_.tensor().get(); if (!tensorflow::ImmediateExecutionTensorHandle::classof(abstract_t)) { return absl::InvalidArgumentError( "Attempting to get value of non eager tensor."); } auto imm_t = static_cast<tensorflow::ImmediateExecutionTensorHandle*>(abstract_t); tensorflow::Status status; t.reset(imm_t->Resolve(&status)); if (!status.ok()) { return status; } } if (data.size() != t->NumElements()) { return tensorflow::errors::InvalidArgument(absl::StrCat( "Mismatched number of elements: \n", "Expected: ", data.size(), "\n", "Actual: ", t->NumElements(), "\n")); } memcpy(data.data(), t->Data(), t->ByteSize()); return ::tensorflow::OkStatus(); } class Tuple : public Handle { public: template <class... T> explicit Tuple(T... args) : Handle(TaggedValue::Tuple()) { add(args...); } template <class T> tensorflow::StatusOr<T> Get(size_t i) { if (i >= value_.tuple().size()) return absl::InvalidArgumentError("Out of bounds index."); return Cast<T>(Handle(value_.tuple()[i])); } size_t size() const { return value_.tuple().size(); } private: void add() {} template <class T, class... T2> void add(T arg, T2... args) { value_.tuple().emplace_back(Convert(arg).value_); add(args...); } explicit Tuple(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); }; class List final : public Handle { public: template <class... T> explicit List(T... args) : Handle(TaggedValue::List()) {} template <class T> tensorflow::StatusOr<T> Get(size_t i) { if (i >= size()) { return absl::InvalidArgumentError("Out of bounds index."); } return Cast<T>(Handle(value_.list()[i])); } tensorflow::Status Set(size_t i, Handle h) { if (i >= size()) { return absl::InvalidArgumentError("Out of bounds index."); } value_.list()[i] = std::move(h.value_); return ::tensorflow::OkStatus(); } template <class T> void append(T arg) { value_.list().emplace_back(Convert(arg).value_); } size_t size() const { return value_.list().size(); } private: explicit List(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); }; class KeywordArg { public: explicit KeywordArg(const char* s) : key_(String(s)), value_() {} template <class T> KeywordArg& operator=(const T obj) { value_ = Convert(obj); return *this; } friend class Callable; private: String key_; Handle value_; }; class Callable final : public Handle { private: void CollectArgs(Tuple& args, Dictionary& kwargs, int idx) {} template <typename T, typename... Types> void CollectArgs(Tuple& args, Dictionary& kwargs, int idx, T v, Types... vars) { const Handle& o = Convert(v); args.value_.tuple().emplace_back(o.value_); CollectArgs(args, kwargs, idx + 1, vars...); } template <typename... Types> void CollectArgs(Tuple& args, Dictionary& kwargs, int idx, KeywordArg v, Types... vars) { kwargs.Set(v.key_, v.value_); CollectArgs(args, kwargs, idx + 1, vars...); } public: template <typename TReturn = Handle, typename... Types> tensorflow::StatusOr<TReturn> Call(Types... vars) { Dictionary kwargs = Dictionary(); Tuple args; CollectArgs(args, kwargs, 0, vars...); auto maybe_value = value_.func()(std::move(args.value_), std::move(kwargs.value_)); if (!maybe_value.ok()) { return maybe_value.status(); } return Cast<TReturn>(Handle(maybe_value.value())); } public: explicit Callable(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> Cast(Handle handle); }; namespace internal { class Capsule final : public Handle { public: template <class T> T cast() { return static_cast<T>(value_.capsule()); } private: explicit Capsule(TaggedValue v) : Handle(std::move(v)) {} template <class T> friend tensorflow::StatusOr<T> tf::libtf::Cast(Handle handle); }; } template <class T> inline TaggedValue::Type TypeToTaggedType() {} template <> inline TaggedValue::Type TypeToTaggedType<Handle>() { return TaggedValue::Type::NONE; } template <> inline TaggedValue::Type TypeToTaggedType<None>() { return TaggedValue::Type::NONE; } template <> inline TaggedValue::Type TypeToTaggedType<String>() { return TaggedValue::Type::STRING; } template <> inline TaggedValue::Type TypeToTaggedType<Callable>() { return TaggedValue::Type::FUNC; } template <> inline TaggedValue::Type TypeToTaggedType<Integer>() { return TaggedValue::Type::INT64; } template <> inline TaggedValue::Type TypeToTaggedType<Float>() { return TaggedValue::Type::FLOAT32; } template <> inline TaggedValue::Type TypeToTaggedType<Object>() { return TaggedValue::Type::DICT; } template <> inline TaggedValue::Type TypeToTaggedType<Dictionary>() { return TaggedValue::Type::DICT; } template <> inline TaggedValue::Type TypeToTaggedType<List>() { return TaggedValue::Type::LIST; } template <> inline TaggedValue::Type TypeToTaggedType<Tensor>() { return TaggedValue::Type::TENSOR; } template <> inline TaggedValue::Type TypeToTaggedType<internal::Capsule>() { return TaggedValue::Type::CAPSULE; } template <class T> tensorflow::StatusOr<T> Cast(Handle handle) { if (handle.value_.type() == TypeToTaggedType<T>() || std::is_same<T, Handle>::value) return T((std::move(handle.value_))); return absl::InvalidArgumentError("Incompatible cast."); } template <> inline Handle Convert(const char* value) { return String(value); } template <> inline Handle Convert(int32_t value) { return Integer(value); } template <> inline Handle Convert(int64_t value) { return Integer(value); } template <> inline Handle Convert(float value) { return Float(value); } template <class T> inline Handle Convert(T value) { return Handle(std::move(value)); } template <typename TF, typename TReturn, typename... TFuncArgs> class CallableWrapper; template <typename TLambda> class CallableWrapperUnpackArgs : public CallableWrapperUnpackArgs<decltype(&TLambda::operator())> { public: CallableWrapperUnpackArgs(TLambda fn, const char* name) : CallableWrapperUnpackArgs<decltype(&TLambda::operator())>(fn, name) {} }; template <typename TReturn, typename... TFuncArgs> class CallableWrapperUnpackArgs<TReturn (*)(TFuncArgs...)> : public CallableWrapper<TReturn (*)(TFuncArgs...), TReturn, TFuncArgs...> { using Fn = TReturn (*)(TFuncArgs...); public: CallableWrapperUnpackArgs(Fn fn, const char* name) : CallableWrapper<Fn, TReturn, TFuncArgs...>(fn, name) {} }; template <typename TClass, typename TReturn, typename... TFuncArgs> class CallableWrapperUnpackArgs<TReturn (TClass::*)(TFuncArgs...) const> : public CallableWrapper<TClass, TReturn, TFuncArgs...> { using Fn = TClass; public: CallableWrapperUnpackArgs(Fn fn, const char* name) : CallableWrapper<Fn, TReturn, TFuncArgs...>(fn, name) {} }; template <class Fn, typename TReturn, class... ArgsOut> class UneraseCallHelper; template <class Fn, typename TReturn> class UneraseCallHelper<Fn, TReturn> { public: template <typename... ArgsOut> static tensorflow::StatusOr<TaggedValue> Call(const char* name, Fn functor_, int argument_index, const TaggedValue& args_in, ArgsOut... args) { TReturn ret = functor_(args...); return ret.value_; } }; template <class Fn, typename TReturn, class TSignatureArg, class... TSignatureRest> class UneraseCallHelper<Fn, TReturn, TSignatureArg, TSignatureRest...> { public: template <typename... TArgsOut> static tensorflow::StatusOr<TaggedValue> Call(const char* name, Fn fn, int argument_index, TaggedValue& args_in, TArgsOut... args) { Handle h(std::move(args_in.tuple()[argument_index])); tensorflow::StatusOr<TSignatureArg> x = Cast<TSignatureArg>(std::move(h)); if (!x.ok()) return absl::InvalidArgumentError( absl::StrCat(std::string("Function ") + name + " Arg " + std::to_string(argument_index) + " cannot be cast to desired signature type ")); return UneraseCallHelper<Fn, TReturn, TSignatureRest...>::template Call( name, fn, argument_index + 1, args_in, args..., *x); } }; template <class Fn, typename TReturn, typename... TFuncArgs> class CallableWrapper { private: Fn functor_; const char* name_; public: explicit CallableWrapper(Fn fn, const char* name) : functor_(fn), name_(name) {} tensorflow::StatusOr<TaggedValue> operator()(TaggedValue args, TaggedValue kwargs) { constexpr size_t argument_count = sizeof...(TFuncArgs); if (argument_count != args.tuple().size()) return absl::InvalidArgumentError( absl::StrCat(std::string("Function ") + name_ + " expected " + std::to_string(argument_count) + " args.")); return UneraseCallHelper<Fn, TReturn, TFuncArgs...>::Call(name_, functor_, 0, args); } }; #define TFLIB_CALLABLE_ADAPTOR(x) ::tf::libtf::CreateCallableAdaptor(x, #x) template <class TF> TaggedValue CreateCallableAdaptor(TF x, const char* name) { return TaggedValue((CallableWrapperUnpackArgs<TF>(x, name))); } } } #endif #include "tensorflow/cc/experimental/libtf/object.h" #include <type_traits> namespace tf { namespace libtf { const String& Object::ParentKey() { static const String* key = new String("__parent__"); return *key; } } }
#include "tensorflow/cc/experimental/libtf/object.h" #include <cstdint> #include "tensorflow/cc/experimental/libtf/value.h" #include "tensorflow/cc/experimental/libtf/value_iostream.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" namespace tf { namespace libtf { TEST(ObjectTest, TestDictionary) { Dictionary foo; foo.Set(String("a"), Integer(33)); foo.Set(String("b"), Integer(33)); EXPECT_EQ(foo.Get<Integer>(String("b"))->get(), 33); } TEST(ObjectTest, TestTuple) { Tuple foo(String("a"), Integer(33), Float(10.f)); EXPECT_EQ(foo.size(), 3); EXPECT_EQ(foo.Get<Integer>(1)->get(), 33); } TEST(ObjectTest, TestList) { List l; EXPECT_EQ(l.size(), 0); l.append(Integer(3)); EXPECT_EQ(l.Get<Integer>(0)->get(), 3); EXPECT_EQ(l.size(), 1); } TaggedValue AddIntegers(TaggedValue args_, TaggedValue kwargs_) { auto& args = args_.tuple(); return TaggedValue(args[0].i64() + args[1].i64()); } TEST(ObjectTest, TestCast) { Integer i(3); auto result = Cast<String>(i); ASSERT_TRUE(!result.ok()); } TEST(ObjectTest, TestCall) { TaggedValue add_func(AddIntegers); Callable add(add_func); TF_ASSERT_OK_AND_ASSIGN(Integer i, add.Call<Integer>(Integer(1), Integer(10))); EXPECT_EQ(i.get(), 11); TF_ASSERT_OK_AND_ASSIGN( Integer i2, add.Call<Integer>(1, Integer(10), KeywordArg("foo") = 3)); EXPECT_EQ(i2.get(), 11); } TEST(ObjectTest, MakeObject) { Object parent; parent.Set(String("test3"), Integer(3)); Object child; child.Set(String("test1"), Integer(1)); child.Set(String("test2"), Integer(2)); child.Set(Object::ParentKey(), parent); EXPECT_EQ(child.Get<Integer>(String("test1"))->get(), 1); EXPECT_EQ(child.Get<Integer>(String("test2"))->get(), 2); EXPECT_EQ(child.Get<Integer>(String("test3"))->get(), 3); ASSERT_FALSE(child.Get<Integer>(String("test4")).status().ok()); TF_ASSERT_OK(child.Get(String("test3")).status()); } TEST(ObjectTest, CallFunctionOnObject) { Object module; module.Set(String("add"), Callable(TaggedValue(AddIntegers))); TF_ASSERT_OK_AND_ASSIGN(Callable method, module.Get<Callable>(String("add"))); TF_ASSERT_OK_AND_ASSIGN(Integer val, method.Call<Integer>(1, 2)); EXPECT_EQ(val.get(), 3); } TEST(ObjectTest, Capsule) { Object obj; int* hundred = new int(100); Handle capsule = Handle(TaggedValue::Capsule(static_cast<void*>(hundred), [](void* p) { delete static_cast<int*>(p); })); obj.Set(String("hundred"), capsule); EXPECT_EQ(*static_cast<int*>( obj.Get<internal::Capsule>(String("hundred"))->cast<int*>()), 100); } None AppendIntegerToList(List a, Integer b) { a.append(b); return None(); } Integer AddIntegersTyped(Integer a, Integer b) { return Integer(a.get() + b.get()); } Integer ReturnFive() { return Integer(5); } TEST(TypeUneraseCallTest, TestCallable) { Callable add(TFLIB_CALLABLE_ADAPTOR(AddIntegersTyped)); auto res = add.Call<Integer>(Integer(3), Integer(1)); EXPECT_EQ(res->get(), 4); } TEST(TypeUneraseCallTest, TestAppend) { Callable append(TFLIB_CALLABLE_ADAPTOR(AppendIntegerToList)); List l; TF_ASSERT_OK(append.Call<None>(l, Integer(3)).status()); TF_ASSERT_OK(append.Call<None>(l, Integer(6)).status()); EXPECT_EQ(l.size(), 2); EXPECT_EQ(l.Get<Integer>(0)->get(), 3); EXPECT_EQ(l.Get<Integer>(1)->get(), 6); } TEST(TypeUneraseCallTest, TestCallableWrongArgs) { Callable append(TFLIB_CALLABLE_ADAPTOR(AddIntegersTyped)); ASSERT_FALSE(append.Call<None>(Object(), Integer(3)).ok()); ASSERT_FALSE(append.Call<None>(Object(), Object()).ok()); ASSERT_FALSE(append.Call().ok()); ASSERT_FALSE(append.Call(Integer(3)).ok()); ASSERT_FALSE(append.Call(Integer(3), Integer(4), Integer(5)).ok()); } Handle Polymorph(Handle a) { auto i = Cast<Integer>(a); if (i.ok()) { return Integer(i->get() * 2); } auto f = Cast<Float>(a); if (f.ok()) { return Float(f->get() * 2.f); } return None(); } TEST(TypeUneraseCallTest, TestCallableGeneric) { Callable f(TFLIB_CALLABLE_ADAPTOR(Polymorph)); EXPECT_EQ(f.Call<Float>(Float(.2))->get(), .4f); EXPECT_EQ(Cast<Float>(*f.Call(Float(.2)))->get(), .4f); EXPECT_EQ(f.Call<Integer>(Integer(3))->get(), 6); } TEST(TypeUneraseCallTest, TestLambda) { Callable c( TFLIB_CALLABLE_ADAPTOR([](Integer a) { return Integer(a.get() * 2); })); EXPECT_EQ(c.Call<Integer>(Integer(3))->get(), 6); int call_count = 0; Callable f(TFLIB_CALLABLE_ADAPTOR([&call_count](Integer a, Integer b) { call_count++; return Integer(a.get() + b.get()); })); EXPECT_EQ(f.Call<Integer>(Integer(3), Integer(-1))->get(), 2); EXPECT_EQ(f.Call<Integer>(Integer(3), Integer(-3))->get(), 0); EXPECT_EQ(call_count, 2); } } }
1,760
cpp
tensorflow/tensorflow
module
tensorflow/cc/experimental/libtf/module.cc
tensorflow/cc/experimental/libtf/tests/module_test.cc
#ifndef TENSORFLOW_CC_EXPERIMENTAL_LIBTF_MODULE_H_ #define TENSORFLOW_CC_EXPERIMENTAL_LIBTF_MODULE_H_ #include "tensorflow/cc/experimental/libexport/load.h" #include "tensorflow/cc/experimental/libtf/runtime/runtime.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" namespace tf { namespace libtf { namespace impl { tensorflow::StatusOr<Handle> BuildSavedUserObject( tensorflow::SavedObject saved_object_proto); tensorflow::StatusOr<std::vector<Handle>> BuildObjects( tensorflow::libexport::TFPackage& tf_package); tensorflow::StatusOr<Handle> BuildProgram( runtime::Runtime runtime, tensorflow::libexport::TFPackage& tf_package); } } } #endif #include "tensorflow/cc/experimental/libtf/module.h" #include <string> #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" namespace tf { namespace libtf { namespace impl { using tensorflow::libexport::TFPackage; using tf::libtf::runtime::Runtime; tensorflow::StatusOr<std::vector<Handle>> BuildObjects(TFPackage& tf_package) { std::vector<Handle> objects; const tensorflow::SavedObjectGraph object_graph = tf_package.GetObjectGraph(); for (auto& node : object_graph.nodes()) { if (node.kind_case() == tensorflow::SavedObject::kUserObject) { tensorflow::StatusOr<Handle> result = BuildSavedUserObject(node); if (result.ok()) { objects.push_back(*result); } else { return result.status(); } } } return objects; } tensorflow::StatusOr<Handle> BuildSavedUserObject( tensorflow::SavedObject saved_object_proto) { if (saved_object_proto.kind_case() != tensorflow::SavedObject::kUserObject) { return tensorflow::errors::InvalidArgument("Not a UserObject."); } std::string identifier = saved_object_proto.user_object().identifier(); if (identifier == "trackable_list_wrapper") { tf::libtf::List user_list; return user_list; } if (identifier == "trackable_dict_wrapper") { tf::libtf::Dictionary user_dict; return user_dict; } if (identifier == "signature_map") { tf::libtf::Dictionary signature_map; return signature_map; } if (identifier == "_generic_user_object") { tf::libtf::Dictionary user_object; return user_object; } return tensorflow::errors::Unimplemented(absl::StrCat( "UserObject with identifier '", identifier, "' not implemented.")); } tensorflow::Status RegisterConcreteFunctions(Runtime runtime, TFPackage tf_package) { return tensorflow::errors::Unimplemented("Not implemented."); } tensorflow::Status InitializeVariables(Runtime runtime, TFPackage tf_package, std::vector<Handle> objects) { return tensorflow::errors::Unimplemented("Not implemented."); } tensorflow::Status SetupPolymorphicFunctions(Runtime runtime, TFPackage tf_package, std::vector<Handle> objects) { return tensorflow::errors::Unimplemented("Not implemented."); } tensorflow::Status SetupFunctionCaptures(Runtime runtime, TFPackage tf_package, std::vector<Handle> objects) { return tensorflow::errors::Unimplemented("Not implemented."); } tensorflow::StatusOr<Handle> BuildObjectHierarchy(TFPackage tf_package, std::vector<Handle> objects) { return tensorflow::errors::Unimplemented("Not implemented."); } tensorflow::StatusOr<Handle> BuildProgram(Runtime runtime, TFPackage& tf_package) { return tensorflow::errors::Unimplemented("Not implemented."); } } } }
#include "tensorflow/cc/experimental/libtf/module.h" #include <string> #include "tensorflow/cc/experimental/libtf/runtime/core/core.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" namespace tf { namespace libtf { namespace impl { using ::tensorflow::libexport::TFPackage; using ::tensorflow::testing::StatusIs; using ::tf::libtf::runtime::Runtime; TEST(ModuleTest, TestStubbedFunctions) { Runtime runtime = runtime::core::Runtime(); TFPackage tf_package; tensorflow::StatusOr<Handle> result = BuildProgram(runtime, tf_package); ASSERT_FALSE(result.status().ok()); } TEST(ModuleTest, TestBuildObjectsDataStructures) { const std::string path = tensorflow::GetDataDependencyFilepath( "tensorflow/cc/experimental/libtf/tests/testdata/data-structure-model"); TF_ASSERT_OK_AND_ASSIGN(TFPackage tf_package, TFPackage::Load(path)); TF_ASSERT_OK_AND_ASSIGN(std::vector<Handle> objects, BuildObjects(tf_package)); EXPECT_EQ(objects.size(), 7); TF_ASSERT_OK_AND_ASSIGN(tf::libtf::Dictionary node, Cast<tf::libtf::Dictionary>(objects.front())); for (unsigned int i = 1; i < 4; i++) { TF_ASSERT_OK_AND_ASSIGN(tf::libtf::List node, Cast<tf::libtf::List>(objects.at(i))); } for (unsigned int i = 4; i < 7; i++) { TF_ASSERT_OK_AND_ASSIGN(tf::libtf::Dictionary node, Cast<tf::libtf::Dictionary>(objects.at(i))); } } TEST(ModuleTest, TestBuildEmptyList) { tensorflow::SavedObject saved_object_proto; const std::string pb_txt = R"pb( user_object { identifier: "trackable_list_wrapper" version { producer: 1 min_consumer: 1 } } )pb"; ASSERT_TRUE(::tensorflow::protobuf::TextFormat::ParseFromString( pb_txt, &saved_object_proto)); TF_ASSERT_OK_AND_ASSIGN(Handle result, BuildSavedUserObject(saved_object_proto)); EXPECT_EQ(Cast<tf::libtf::List>(result)->size(), 0); } TEST(ModuleTest, TestBuildEmptyDict) { tensorflow::SavedObject saved_object_proto; const std::string pb_txt = R"pb( user_object { identifier: "trackable_dict_wrapper" version { producer: 1 min_consumer: 1 } } )pb"; ASSERT_TRUE(::tensorflow::protobuf::TextFormat::ParseFromString( pb_txt, &saved_object_proto)); TF_ASSERT_OK_AND_ASSIGN(Handle result, BuildSavedUserObject(saved_object_proto)); EXPECT_EQ(Cast<tf::libtf::Dictionary>(result)->size(), 0); } TEST(ModuleTest, TestBuildSignatureMap) { tensorflow::SavedObject saved_object_proto; const std::string pb_txt = R"pb( user_object { identifier: "signature_map" version { producer: 1 min_consumer: 1 } } )pb"; ASSERT_TRUE(::tensorflow::protobuf::TextFormat::ParseFromString( pb_txt, &saved_object_proto)); TF_ASSERT_OK_AND_ASSIGN(Handle result, BuildSavedUserObject(saved_object_proto)); EXPECT_EQ(Cast<tf::libtf::Dictionary>(result)->size(), 0); } TEST(ModuleTest, TestUnimplementedUserObject) { tensorflow::SavedObject saved_object_proto; const std::string pb_txt = R"pb( user_object { identifier: "foo" version { producer: 1 min_consumer: 1 } } )pb"; ASSERT_TRUE(::tensorflow::protobuf::TextFormat::ParseFromString( pb_txt, &saved_object_proto)); EXPECT_THAT( BuildSavedUserObject(saved_object_proto), StatusIs(tensorflow::error::UNIMPLEMENTED, ::testing::HasSubstr("foo"))); } } } }
1,761
cpp
tensorflow/tensorflow
mlir_transform
tensorflow/cc/experimental/libtf/mlir/mlir_transform.cc
tensorflow/cc/experimental/libtf/tests/mlir_transform_test.cc
#ifndef TENSORFLOW_CC_EXPERIMENTAL_LIBTF_MLIR_MLIR_TRANSFORM_H_ #define TENSORFLOW_CC_EXPERIMENTAL_LIBTF_MLIR_MLIR_TRANSFORM_H_ #include "tensorflow/cc/experimental/libtf/object.h" namespace tf { namespace libtf { Object MLIR(); } } #endif #include "tensorflow/cc/experimental/libtf/mlir/mlir_transform.h" #include <string> #include <utility> #include "tensorflow/cc/experimental/libtf/object.h" #include "tensorflow/cc/experimental/libtf/value.h" #include "tensorflow/cc/saved_model/bundle_v2.h" #include "tensorflow/compiler/mlir/tensorflow/translate/import_model.h" namespace tf { namespace libtf { Handle LoadModule(Object self, String saved_model) { tensorflow::SavedModelV2Bundle bundle; tensorflow::Status status = tensorflow::SavedModelV2Bundle::Load(saved_model.get(), &bundle); if (!status.ok()) { return None(); } auto* context = self.Get<internal::Capsule>(String("_context")) ->cast<mlir::MLIRContext*>(); absl::Span<std::string> exported_names(nullptr, 0); auto module_or = tensorflow::ConvertSavedModelToMlir(&bundle, context, exported_names); if (!module_or.status().ok()) { return None(); } Object obj; obj.Set( String("_module"), Handle(impl::TaggedValue::Capsule(new mlir::OwningOpRef<mlir::ModuleOp>( std::move(module_or).value())))); auto get_string = [](Object self) { auto ref = self.Get<internal::Capsule>(String("_module")) ->cast<mlir::OwningOpRef<mlir::ModuleOp>*>(); return String(tensorflow::MlirModuleToString(ref->get(), false).c_str()); }; obj.Set(String("ToString"), Callable(TFLIB_CALLABLE_ADAPTOR(get_string))); return obj; } None SaveModule(Object self, Object module, String directory) { return None(); } None Transform(Object self, Object module, List passes) { return None(); } Object MLIR() { Object obj; obj.Set(String("LoadSavedModel"), Callable(TFLIB_CALLABLE_ADAPTOR(LoadModule))); obj.Set(String("SaveSavedModel"), Callable(TFLIB_CALLABLE_ADAPTOR(SaveModule))); obj.Set(String("_context"), Handle(impl::TaggedValue::Capsule(new mlir::MLIRContext()))); return obj; } } }
#include "tensorflow/cc/experimental/libtf/mlir/mlir_transform.h" #include <iostream> #include <string> #include "tensorflow/cc/experimental/libtf/object.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" namespace tf { namespace libtf { TEST(TransformTest, LoadSavedModel) { Object mlir = MLIR(); TF_ASSERT_OK_AND_ASSIGN(Callable load, mlir.Get<Callable>(String("LoadSavedModel"))); TF_ASSERT_OK_AND_ASSIGN( Handle model_bad, load.Call<Handle>(mlir, String("/error/doesnotexist___31284382"))); TF_ASSERT_OK(Cast<None>(model_bad).status()); const std::string model_good_path = tensorflow::GetDataDependencyFilepath( "tensorflow/cc/experimental/libtf/tests/testdata/simple-model"); TF_ASSERT_OK_AND_ASSIGN( Object model_good, load.Call<Object>(mlir, String(model_good_path.c_str()))); TF_ASSERT_OK_AND_ASSIGN(Callable to_string, model_good.Get<Callable>(String("ToString"))); TF_ASSERT_OK_AND_ASSIGN(String s, to_string.Call<String>(model_good)); ASSERT_GT(strlen(s.get()), 0); } } }
1,762
cpp
tensorflow/tensorflow
string
tensorflow/cc/experimental/libtf/impl/string.cc
tensorflow/cc/experimental/libtf/impl/string_test.cc
#ifndef TENSORFLOW_CC_EXPERIMENTAL_LIBTF_IMPL_STRING_H_ #define TENSORFLOW_CC_EXPERIMENTAL_LIBTF_IMPL_STRING_H_ #include <iosfwd> #include <string> namespace tf { namespace libtf { namespace impl { class String final { public: explicit String(const char* s); String() : String("") {} String(const String& s) : value_(s.value_) {} bool operator==(const String& other) const { return value_ == other.value_; } const std::string& str() const { return *value_; } template <typename H> friend H AbslHashValue(H h, const String& s) { return H::combine(std::move(h), *s.value_); } private: const std::string* value_; }; std::ostream& operator<<(std::ostream& o, const String& str); } } } #endif #include "tensorflow/cc/experimental/libtf/impl/string.h" #include <unordered_set> using StringTable = std::unordered_set<std::string>; namespace tf { namespace libtf { namespace impl { String::String(const char* s) { static StringTable* table = new StringTable; value_ = &*table->insert(s).first; } } } }
#include "tensorflow/cc/experimental/libtf/impl/string.h" #include "tensorflow/core/platform/test.h" namespace tf { namespace libtf { namespace impl { TEST(StringTest, TestBasicInterning) { String s1("foo"); String s2("foo"); EXPECT_EQ(&s1.str(), &s2.str()); } } } }
1,763
cpp
tensorflow/tensorflow
none
tensorflow/cc/experimental/libtf/impl/none.cc
tensorflow/cc/experimental/libtf/impl/none_test.cc
#ifndef TENSORFLOW_CC_EXPERIMENTAL_LIBTF_IMPL_NONE_H_ #define TENSORFLOW_CC_EXPERIMENTAL_LIBTF_IMPL_NONE_H_ #include <iosfwd> #include <utility> namespace tf { namespace libtf { namespace impl { class None final { public: static None& GetInstance(); bool operator==(const None& other) const { return true; } template <typename H> friend H AbslHashValue(H h, const None& n) { return H::combine(std::move(h), 34559); } private: None() {} }; std::ostream& operator<<(std::ostream& o, const None& none); } } } #endif #include "tensorflow/cc/experimental/libtf/impl/none.h" namespace tf { namespace libtf { namespace impl { None& None::GetInstance() { static None* none_inst = new None(); return *none_inst; } } } }
#include "tensorflow/cc/experimental/libtf/impl/none.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/platform/test.h" namespace tf { namespace libtf { namespace impl { TEST(NoneTest, TestSingleton) { None& a = None::GetInstance(); None& b = None::GetInstance(); EXPECT_EQ(&a, &b); } TEST(NoneTest, TestSupportsAbslHash) { absl::flat_hash_set<None> none_set; None& a = None::GetInstance(); None& b = None::GetInstance(); none_set.insert(a); none_set.insert(b); EXPECT_EQ(none_set.size(), 1); } } } }
1,764
cpp
tensorflow/tensorflow
save
tensorflow/cc/experimental/libexport/save.cc
tensorflow/cc/experimental/libexport/save_test.cc
#ifndef TENSORFLOW_CC_EXPERIMENTAL_LIBEXPORT_SAVE_H_ #define TENSORFLOW_CC_EXPERIMENTAL_LIBEXPORT_SAVE_H_ #include <string> #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace libexport { TF_EXPORT Status Save(const std::string& export_dir); } } #endif #include "tensorflow/cc/experimental/libexport/save.h" #include "tensorflow/core/platform/env.h" namespace tensorflow { namespace libexport { Status Save(const std::string& export_dir) { TF_RETURN_IF_ERROR(Env::Default()->RecursivelyCreateDir(export_dir)); return absl::OkStatus(); } } }
#include "tensorflow/cc/experimental/libexport/save.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace libexport { namespace { TEST(SaveTest, TestDirectoryStructure) { const string base_dir = tensorflow::io::JoinPath( tensorflow::testing::TmpDir(), "test_directory_structure"); TF_ASSERT_OK(Save(base_dir)); TF_ASSERT_OK(Env::Default()->IsDirectory(base_dir)); } } } }
1,765
cpp
tensorflow/tensorflow
load
tensorflow/cc/experimental/libexport/load.cc
tensorflow/cc/experimental/libexport/load_test.cc
#ifndef TENSORFLOW_CC_EXPERIMENTAL_LIBEXPORT_LOAD_H_ #define TENSORFLOW_CC_EXPERIMENTAL_LIBEXPORT_LOAD_H_ #include <string> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/saved_model.pb.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" #include "tensorflow/core/protobuf/trackable_object_graph.pb.h" #include "tensorflow/core/util/tensor_bundle/tensor_bundle.h" namespace tensorflow { namespace libexport { class TFPackage { public: static tensorflow::StatusOr<TFPackage> Load(const std::string& path); tensorflow::StatusOr<std::string> GetVariableCheckpointKey(int index); const SavedObjectGraph& GetObjectGraph(); tensorflow::StatusOr<const tensorflow::NodeDef*> GetGraphDefNode( std::string name); const protobuf::RepeatedPtrField<FunctionDef>& GetFunctionDefs(); tensorflow::BundleReader* GetVariableReader() { return variable_reader_.get(); } bool HasCheckpoint() { return has_checkpoint_; } const std::string GetVariablesFilepath() const { return variables_filepath_; } private: SavedModel saved_model_proto_; TrackableObjectGraph trackable_object_graph_; std::unique_ptr<tensorflow::BundleReader> variable_reader_; std::string variables_filepath_; bool has_checkpoint_; absl::flat_hash_map<std::string, const NodeDef*> graph_def_nodes_by_name_; }; } } #endif #include "tensorflow/cc/experimental/libexport/load.h" #include "tensorflow/cc/saved_model/constants.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/util/tensor_bundle/tensor_bundle.h" namespace tensorflow { namespace libexport { using protobuf::RepeatedPtrField; tensorflow::StatusOr<TFPackage> TFPackage::Load(const std::string& path) { TFPackage tf_package; const string saved_model_pb_path = io::JoinPath(path, kSavedModelFilenamePb); const string saved_model_pbtxt_path = io::JoinPath(path, kSavedModelFilenamePbTxt); if (Env::Default()->FileExists(saved_model_pb_path).ok()) { TF_RETURN_IF_ERROR(ReadBinaryProto(Env::Default(), saved_model_pb_path, &tf_package.saved_model_proto_)); } else if (Env::Default()->FileExists(saved_model_pbtxt_path).ok()) { TF_RETURN_IF_ERROR(ReadTextProto(Env::Default(), saved_model_pbtxt_path, &tf_package.saved_model_proto_)); } else { return Status(absl::StatusCode::kNotFound, "Could not find SavedModel .pb or .pbtxt at supplied export " "directory path: " + path); } const std::string variables_dir = tensorflow::io::JoinPath(path, tensorflow::kSavedModelVariablesDirectory); if (Env::Default()->FileExists(variables_dir).ok()) { tf_package.has_checkpoint_ = true; tf_package.variables_filepath_ = tensorflow::io::JoinPath( variables_dir, tensorflow::kSavedModelVariablesFilename); tf_package.variable_reader_ = std::make_unique<tensorflow::BundleReader>( tensorflow::Env::Default(), tf_package.variables_filepath_); tensorflow::Tensor object_graph_tensor; TF_RETURN_IF_ERROR(tf_package.variable_reader_->Lookup( tensorflow::kObjectGraphProtoKey, &object_graph_tensor)); const auto* object_graph_string = reinterpret_cast<const tensorflow::tstring*>( object_graph_tensor.tensor_data().data()); tf_package.trackable_object_graph_.ParseFromString(*object_graph_string); } else { tf_package.has_checkpoint_ = false; LOG(INFO) << "No checkpoint found, assuming this is a program-only SavedModel"; } const auto& nodes = tf_package.saved_model_proto_.meta_graphs(0).graph_def().node(); for (const auto& node : nodes) { tf_package.graph_def_nodes_by_name_[node.name()] = &node; } return tf_package; } tensorflow::StatusOr<std::string> TFPackage::GetVariableCheckpointKey( int index) { const auto& trackable_object = trackable_object_graph_.nodes(index); const TrackableObjectGraph::TrackableObject::SerializedTensor* serialized_tensor = nullptr; for (auto& maybe_serialized_tensor : trackable_object.attributes()) { if (maybe_serialized_tensor.name() == "VARIABLE_VALUE") { serialized_tensor = &maybe_serialized_tensor; } } if (serialized_tensor == nullptr) { return tensorflow::Status(absl::StatusCode::kInternal, "Failed to find variable value field."); } return serialized_tensor->checkpoint_key(); } const SavedObjectGraph& TFPackage::GetObjectGraph() { return saved_model_proto_.mutable_meta_graphs(0)->object_graph_def(); } tensorflow::StatusOr<const tensorflow::NodeDef*> TFPackage::GetGraphDefNode( std::string name) { const auto& iter = graph_def_nodes_by_name_.find(name); if (iter == graph_def_nodes_by_name_.end()) { return tensorflow::Status(absl::StatusCode::kInternal, absl::StrCat("Failed to find node named ", name)); } return iter->second; } const RepeatedPtrField<FunctionDef>& TFPackage::GetFunctionDefs() { auto& function_library = saved_model_proto_.mutable_meta_graphs(0)->graph_def().library(); return function_library.function(); } } }
#include "tensorflow/cc/experimental/libexport/load.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace libexport { namespace { TEST(LoadTest, TestDiskSavedModelLoad) { StatusOr<TFPackage> result = TFPackage::Load("test"); EXPECT_FALSE(result.status().ok()); } } } }
1,766
cpp
tensorflow/tensorflow
freeze_saved_model
tensorflow/cc/tools/freeze_saved_model.cc
tensorflow/cc/tools/freeze_saved_model_test.cc
#ifndef TENSORFLOW_CC_TOOLS_FREEZE_SAVED_MODEL_H_ #define TENSORFLOW_CC_TOOLS_FREEZE_SAVED_MODEL_H_ #include <unordered_set> #include "tensorflow/cc/saved_model/loader.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { Status FreezeSavedModel(const SavedModelBundle& saved_model_bundle, GraphDef* frozen_graph_def, std::unordered_set<string>* inputs, std::unordered_set<string>* outputs); } #endif #include "tensorflow/cc/tools/freeze_saved_model.h" #include <iostream> #include <queue> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" namespace tensorflow { namespace { void GetTensorNamesFromTensorInfo(const TensorInfo& tensor_info, std::unordered_set<string>* tensor_names) { if (tensor_info.has_coo_sparse()) { const TensorInfo_CooSparse& coo_sparse = tensor_info.coo_sparse(); tensor_names->insert(coo_sparse.values_tensor_name()); tensor_names->insert(coo_sparse.indices_tensor_name()); tensor_names->insert(coo_sparse.dense_shape_tensor_name()); } else if (tensor_info.has_composite_tensor()) { for (const auto& component : tensor_info.composite_tensor().components()) { tensor_names->insert(component.name()); } } else { tensor_names->insert(tensor_info.name()); } } void GetSignatureDefsInputsAndOutputs( const SavedModelBundle& saved_model_bundle, std::unordered_set<string>* inputs, std::unordered_set<string>* outputs) { for (auto& sigdef_elem : saved_model_bundle.meta_graph_def.signature_def()) { const SignatureDef& signature_def = sigdef_elem.second; for (auto& input_elem : signature_def.inputs()) { GetTensorNamesFromTensorInfo(input_elem.second, inputs); } for (auto& output_elem : signature_def.outputs()) { GetTensorNamesFromTensorInfo(output_elem.second, outputs); } } } void GetNodeNameToNodeDefMap( GraphDef* graph_def, std::unordered_map<string, NodeDef*>* name_to_node_map) { for (size_t i = 0; i < graph_def->node_size(); i++) { NodeDef* node = graph_def->mutable_node(i); (*name_to_node_map)[node->name()] = node; } } const string GetNodeNameFromTensorName(string tensor_name) { if (tensor_name[0] == '^') { tensor_name.erase(0, 1); } std::vector<string> tensor_name_parts = str_util::Split(tensor_name, ':'); return tensor_name_parts[0]; } void GetReachableNodesAndVariables( GraphDef* graph_def, const std::unordered_set<string>& outputs, const std::unordered_map<string, NodeDef*>& name_to_node_map, std::unordered_set<string>* reachable_node_names, std::unordered_set<string>* variable_node_names) { static const std::unordered_set<string>* kVariableTypes = new std::unordered_set<string>({"Variable", "VariableV2", "VarHandleOp"}); std::queue<string> nodes_to_visit; for (const string& output_tensor_name : outputs) { nodes_to_visit.push(GetNodeNameFromTensorName(output_tensor_name)); } while (!nodes_to_visit.empty()) { const string node_name = nodes_to_visit.front(); nodes_to_visit.pop(); if (reachable_node_names->find(node_name) != reachable_node_names->end()) { continue; } reachable_node_names->insert(node_name); NodeDef* node = name_to_node_map.at(node_name); if (kVariableTypes->find(node->op()) != kVariableTypes->end()) { variable_node_names->insert(node->name()); } for (const string& input_tensor_name : node->input()) { nodes_to_visit.push(GetNodeNameFromTensorName(input_tensor_name)); } } } Status GetVariableNameToTensorMap( Session* session, const std::unordered_map<string, NodeDef*>& name_to_node_map, std::unordered_set<string> variable_names_set, std::unordered_map<string, Tensor>* variable_name_to_value_map) { if (variable_names_set.empty()) { return OkStatus(); } std::vector<string> variable_names; variable_names.reserve(variable_names_set.size()); std::vector<string> tensor_names; tensor_names.reserve(variable_names_set.size()); for (const string& node_name : variable_names_set) { variable_names.push_back(node_name); NodeDef* node_def = name_to_node_map.at(node_name); if (node_def->op() == "VarHandleOp") { tensor_names.push_back(node_name + "/Read/ReadVariableOp:0"); } else { tensor_names.push_back(node_name + ":0"); } } std::vector<Tensor> outputs; TF_RETURN_IF_ERROR( session->Run( {}, tensor_names, {}, &outputs)); for (size_t i = 0; i < variable_names.size(); i++) { (*variable_name_to_value_map)[variable_names[i]] = outputs[i]; } return OkStatus(); } void ConvertVariableToConstant(const NodeDef& variable_node, const Tensor& variable_value, NodeDef* const_node) { const_node->set_name(variable_node.name()); const_node->set_op("Const"); (*const_node->mutable_attr())["dtype"] = variable_node.attr().at("dtype"); variable_value.AsProtoTensorContent( (*const_node->mutable_attr())["value"].mutable_tensor()); } void ConvertReadVariableOpToIdentity(const NodeDef& node, NodeDef* identity_node) { identity_node->set_name(node.name()); identity_node->set_op("Identity"); (*identity_node->mutable_attr())["T"] = node.attr().at("dtype"); identity_node->add_input(node.input(0)); } StatusOr<string> GetVarHandleName( const std::unordered_map<string, NodeDef*>& name_to_node_map, string node_name) { const NodeDef* node = name_to_node_map.at(node_name); while (node->input_size() > 0) { auto parent = name_to_node_map.find(node->input(0)); if (parent == name_to_node_map.end()) break; node = parent->second; if (node->op() != "Identity") { VLOG(2) << "Stopping at non-identity node " << node->op(); break; } } if (node->op() == "VarHandleOp") { return node->name(); } return absl::NotFoundError("No VarHandleOp ancestor found"); } StatusOr<string> GetHandleNameIfNeedsToFreeze( const std::unordered_map<string, NodeDef*>& name_to_node_map, string node_name, const std::unordered_set<string>& variable_node_names) { StatusOr<string> var_handle_name = GetVarHandleName(name_to_node_map, node_name); if (var_handle_name.ok() && variable_node_names.count(*var_handle_name)) { return var_handle_name; } return absl::NotFoundError("No VarHandleOp ancestor found"); } Status FreezeGraphDef(const SavedModelBundle& saved_model_bundle, const std::unordered_set<string>& outputs, GraphDef* frozen_graph_def) { GraphDef graph_def = saved_model_bundle.meta_graph_def.graph_def(); *frozen_graph_def->mutable_versions() = graph_def.versions(); *frozen_graph_def->mutable_library() = graph_def.library(); if (graph_def.node_size() == 0) { return OkStatus(); } std::unordered_map<string, NodeDef*> name_to_node_map; GetNodeNameToNodeDefMap(&graph_def, &name_to_node_map); std::unordered_set<string> reachable_node_names; std::unordered_set<string> variable_node_names; GetReachableNodesAndVariables(&graph_def, outputs, name_to_node_map, &reachable_node_names, &variable_node_names); std::unordered_map<string, Tensor> variable_to_value_map; TF_RETURN_IF_ERROR(GetVariableNameToTensorMap( saved_model_bundle.session.get(), name_to_node_map, variable_node_names, &variable_to_value_map)); for (const NodeDef& node : graph_def.node()) { if (reachable_node_names.find(node.name()) == reachable_node_names.end()) { continue; } if (variable_node_names.find(node.name()) != variable_node_names.end()) { ConvertVariableToConstant(node, variable_to_value_map[node.name()], frozen_graph_def->add_node()); continue; } else if (node.op() == "ReadVariableOp" && GetHandleNameIfNeedsToFreeze(name_to_node_map, node.name(), variable_node_names) .ok()) { ConvertReadVariableOpToIdentity(node, frozen_graph_def->add_node()); continue; } else if (node.op() == "Identity") { StatusOr<string> handle_name = GetHandleNameIfNeedsToFreeze( name_to_node_map, node.name(), variable_node_names); if (handle_name.ok()) { NodeDef* new_node = frozen_graph_def->add_node(); *new_node = node; (*new_node->mutable_attr())["T"] = name_to_node_map.at(*handle_name)->attr().at("dtype"); continue; } } *frozen_graph_def->add_node() = node; } return OkStatus(); } } Status FreezeSavedModel(const SavedModelBundle& saved_model_bundle, GraphDef* frozen_graph_def, std::unordered_set<string>* inputs, std::unordered_set<string>* outputs) { GetSignatureDefsInputsAndOutputs(saved_model_bundle, inputs, outputs); TF_RETURN_IF_ERROR( FreezeGraphDef(saved_model_bundle, *outputs, frozen_graph_def)); return OkStatus(); } }
#include "tensorflow/cc/tools/freeze_saved_model.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { class FreezeTest : public ::testing::Test { protected: void GraphDefEqual(const GraphDef& actual, const GraphDef& expected) { EXPECT_EQ(actual.ShortDebugString(), expected.ShortDebugString()); } SignatureDef BuildSignatureDef(const std::unordered_set<string>& inputs, const std::unordered_set<string>& outputs) { SignatureDef signature_def; for (const string& input : inputs) { (*signature_def.mutable_inputs())[input].set_name(input); } for (const string& output : outputs) { (*signature_def.mutable_outputs())[output].set_name(output); } return signature_def; } void AddSignatureDefToSavedModelBundle(const SignatureDef& signature_def, const string& key, SavedModelBundle* saved_model_bundle) { MetaGraphDef* meta_graph_def = &saved_model_bundle->meta_graph_def; (*meta_graph_def->mutable_signature_def())[key] = signature_def; } Status InitializeSavedModelBundleSession( const GraphDef& graph_def, const string& init_node, SavedModelBundle* saved_model_bundle) { SessionOptions session_options; saved_model_bundle->session.reset(NewSession(session_options)); TF_RETURN_IF_ERROR(saved_model_bundle->session->Create(graph_def)); if (!init_node.empty()) { std::vector<Tensor> outputs; return saved_model_bundle->session->Run( {}, {}, {init_node}, &outputs); } return OkStatus(); } Status AddGraphDefToSavedModelBundle(const GraphDef& graph_def, const string& init_node, SavedModelBundle* saved_model_bundle) { MetaGraphDef* meta_graph_def = &saved_model_bundle->meta_graph_def; *meta_graph_def->mutable_graph_def() = graph_def; return InitializeSavedModelBundleSession(graph_def, init_node, saved_model_bundle); } Status AddGraphDefWithOutputsToSavedModelBundle( const GraphDef& graph_def, const std::unordered_set<string>& outputs, const string& init_node, SavedModelBundle* saved_model_bundle) { SignatureDef signature_def = BuildSignatureDef(std::unordered_set<string>(), outputs); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", saved_model_bundle); return AddGraphDefToSavedModelBundle(graph_def, init_node, saved_model_bundle); } void RunAndCompareFrozenAndUnfrozenGraphs(Session* unfrozen_session, const GraphDef& frozen_graph_def, const string& tensor_name) { std::vector<Tensor> unfrozen_outputs; TF_ASSERT_OK(unfrozen_session->Run( {}, {tensor_name}, {}, &unfrozen_outputs)); SessionOptions session_options; std::unique_ptr<Session> frozen_session(NewSession(session_options)); TF_ASSERT_OK(frozen_session->Create(frozen_graph_def)); std::vector<Tensor> frozen_outputs; TF_ASSERT_OK(frozen_session->Run( {}, {tensor_name}, {}, &frozen_outputs)); test::ExpectTensorEqual<float>(unfrozen_outputs[0], frozen_outputs[0]); } void TestFreezeGraphWithoutDependentVariables(bool use_resource) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), a, b); if (use_resource) { Output var = ops::VarHandleOp(scope.WithOpName("var"), DataType::DT_FLOAT, {}); Output read_var = ops::ReadVariableOp( scope.WithOpName("var/Read/ReadVariableOp"), var, DataType::DT_FLOAT); auto assign = ops::AssignVariableOp(scope.WithOpName("assign"), var, a); } else { Output var = ops::Variable(scope.WithOpName("var"), {}, DataType::DT_FLOAT); Output assign = ops::Assign(scope.WithOpName("assign"), var, a); } TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle( graph_def, {"c:0"}, "assign", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDef expected_graph_def; Scope expected_scope = Scope::NewRootScope(); Output expected_a = ops::Const(expected_scope.WithOpName("a"), 10.0f, {}); Output expected_b = ops::Const(expected_scope.WithOpName("b"), 10.0f, {}); Output expected_c = ops::Mul(expected_scope.WithOpName("c"), expected_a, expected_b); TF_ASSERT_OK(expected_scope.ToGraphDef(&expected_graph_def)); GraphDefEqual(frozen_graph_def, expected_graph_def); RunAndCompareFrozenAndUnfrozenGraphs(saved_model_bundle.session.get(), frozen_graph_def, "c:0"); } void TestFreezeGraphWithDependentVariables(bool use_resource, bool use_identity = false) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output read_var; if (use_resource) { Output var = ops::VarHandleOp(scope.WithOpName("var"), DataType::DT_FLOAT, {}); if (use_identity) { Output identity = ops::Identity(scope.WithOpName("identity"), var); read_var = ops::ReadVariableOp(scope.WithOpName("var/Read/ReadVariableOp"), identity, DataType::DT_FLOAT); } else { read_var = ops::ReadVariableOp(scope.WithOpName("var/Read/ReadVariableOp"), var, DataType::DT_FLOAT); } auto assign = ops::AssignVariableOp(scope.WithOpName("assign"), var, a); } else { Output read_var = ops::Variable(scope.WithOpName("var"), {}, DataType::DT_FLOAT); Output assign = ops::Assign(scope.WithOpName("assign"), read_var, a); } Output c = ops::Mul(scope.WithOpName("c"), a, read_var); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle( graph_def, {"c:0"}, "assign", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); size_t expected_nodes = use_resource ? (use_identity ? 5 : 4) : 3; EXPECT_EQ(frozen_graph_def.node_size(), expected_nodes); for (const NodeDef& node : frozen_graph_def.node()) { EXPECT_NE(node.op(), "Variable") << node.name(); EXPECT_NE(node.op(), "VariableV2") << node.name(); EXPECT_NE(node.op(), "VarHandleOp") << node.name(); EXPECT_NE(node.op(), "ReadVariableOp") << node.name(); } RunAndCompareFrozenAndUnfrozenGraphs(saved_model_bundle.session.get(), frozen_graph_def, "c:0"); } void TestFreezeGraphWithAndWithoutDependentVariables(bool use_resource) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output read_var; if (use_resource) { Output var = ops::VarHandleOp(scope.WithOpName("var"), DataType::DT_FLOAT, {}); read_var = ops::ReadVariableOp( scope.WithOpName("var/Read/ReadVariableOp"), var, DataType::DT_FLOAT); auto assign = ops::AssignVariableOp(scope.WithOpName("assign"), var, a); Output var_1 = ops::VarHandleOp(scope.WithOpName("var_1"), DataType::DT_FLOAT, {}); Output read_var_1 = ops::ReadVariableOp(scope.WithOpName("var_1/Read/ReadVariableOp"), var, DataType::DT_FLOAT); auto assign_1 = ops::AssignVariableOp(scope.WithOpName("assign_1"), var_1, a); } else { read_var = ops::Variable(scope.WithOpName("var"), {}, DataType::DT_FLOAT); Output assign = ops::Assign(scope.WithOpName("assign"), read_var, a); Output var_1 = ops::Variable(scope.WithOpName("var_1"), {}, DataType::DT_FLOAT); Output assign_1 = ops::Assign(scope.WithOpName("assign_1"), var_1, a); } Output c = ops::Mul(scope.WithOpName("c"), a, read_var); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle( graph_def, {"c:0"}, "assign", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); size_t expected_nodes = use_resource ? 4 : 3; EXPECT_EQ(frozen_graph_def.node_size(), expected_nodes); for (const NodeDef& node : frozen_graph_def.node()) { EXPECT_NE(node.op(), "Variable") << node.name(); EXPECT_NE(node.op(), "VariableV2") << node.name(); EXPECT_NE(node.op(), "VarHandleOp") << node.name(); EXPECT_NE(node.op(), "ReadVariableOp") << node.name(); } RunAndCompareFrozenAndUnfrozenGraphs(saved_model_bundle.session.get(), frozen_graph_def, "c:0"); } }; TEST_F(FreezeTest, InputsAndOutputsSingleSignatureDef) { SavedModelBundle saved_model_bundle; std::unordered_set<string> expected_inputs = {"input0:0", "input1:0"}; std::unordered_set<string> expected_outputs = {"output0:0", "output1:0"}; SignatureDef signature_def = BuildSignatureDef(expected_inputs, expected_outputs); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } TEST_F(FreezeTest, InputsAndOutputsMultipleSignatureDefs) { SavedModelBundle saved_model_bundle; SignatureDef signature_def_0 = BuildSignatureDef({"input0:0"}, {"output0:0"}); SignatureDef signature_def_1 = BuildSignatureDef({"input1:0"}, {"output1:0"}); AddSignatureDefToSavedModelBundle(signature_def_0, "signature_def_0", &saved_model_bundle); AddSignatureDefToSavedModelBundle(signature_def_1, "signature_def_1", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); std::unordered_set<string> expected_inputs = {"input0:0", "input1:0"}; std::unordered_set<string> expected_outputs = {"output0:0", "output1:0"}; EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } TEST_F(FreezeTest, GraphDefVersionsAndLibrary) { SavedModelBundle saved_model_bundle; GraphDef graph_def; graph_def.mutable_versions()->set_producer(1234); graph_def.mutable_versions()->set_min_consumer(1234); *graph_def.mutable_library()->add_function() = test::function::NonZero(); TF_ASSERT_OK( AddGraphDefToSavedModelBundle(graph_def, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithNoVariables) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), a, b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle(graph_def, {"c:0"}, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithMultiOutputOperation) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), {10.0f, 10.0f}, {2}); Output axis = ops::Const(scope.WithOpName("axis"), 0, {}); OutputList split = ops::Split(scope.WithOpName("split"), axis, a, 2).output; Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), split[1], b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle(graph_def, {"c:0"}, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithControlDependency) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output source = ops::Const(scope.WithOpName("source"), 10.0f, {}); Output a = ops::Const(scope.WithOpName("a").WithControlDependencies(source), {10.0f, 10.0f}, {2}); Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), a, b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle(graph_def, {"c:0"}, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithoutDependentVariables) { TestFreezeGraphWithoutDependentVariables(false); } TEST_F(FreezeTest, GraphDefWithoutDependentResourceVariables) { TestFreezeGraphWithoutDependentVariables(true); } TEST_F(FreezeTest, GraphDefWithDependentVariables) { TestFreezeGraphWithDependentVariables(false); } TEST_F(FreezeTest, GraphDefWithDependentResourceVariables) { TestFreezeGraphWithDependentVariables(true); } TEST_F(FreezeTest, GraphDefWithDependentResourceVariablesAndIdentity) { TestFreezeGraphWithDependentVariables(true, true); } TEST_F(FreezeTest, GraphDefWithAndWithoutDependentVariables) { TestFreezeGraphWithAndWithoutDependentVariables(false); } TEST_F(FreezeTest, GraphDefWithAndWithoutDependentResourceVariables) { TestFreezeGraphWithAndWithoutDependentVariables(true); } TEST_F(FreezeTest, InputsAndOutputsCompositeTensorSignatureDef) { SavedModelBundle saved_model_bundle; SignatureDef signature_def; TensorInfo& in = (*signature_def.mutable_inputs())["input_arg"]; in.mutable_composite_tensor()->add_components()->set_name("input1:0"); in.mutable_composite_tensor()->add_components()->set_name("input2:0"); TensorInfo& out = (*signature_def.mutable_outputs())["output_arg"]; out.mutable_composite_tensor()->add_components()->set_name("output2:0"); out.mutable_composite_tensor()->add_components()->set_name("output1:0"); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); std::unordered_set<string> expected_inputs = {"input1:0", "input2:0"}; std::unordered_set<string> expected_outputs = {"output1:0", "output2:0"}; EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } TEST_F(FreezeTest, InputsAndOutputsSparseCooSignatureDef) { SavedModelBundle saved_model_bundle; SignatureDef signature_def; TensorInfo& in = (*signature_def.mutable_inputs())["input_arg"]; in.mutable_coo_sparse()->set_values_tensor_name("input1:0"); in.mutable_coo_sparse()->set_indices_tensor_name("input2:0"); in.mutable_coo_sparse()->set_dense_shape_tensor_name("input3:0"); TensorInfo& out = (*signature_def.mutable_outputs())["output_arg"]; out.mutable_coo_sparse()->set_values_tensor_name("output1:0"); out.mutable_coo_sparse()->set_indices_tensor_name("output2:0"); out.mutable_coo_sparse()->set_dense_shape_tensor_name("output3:0"); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); std::unordered_set<string> expected_inputs = {"input1:0", "input2:0", "input3:0"}; std::unordered_set<string> expected_outputs = {"output1:0", "output2:0", "output3:0"}; EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } } }
1,767
cpp
tensorflow/tensorflow
fingerprinting_utils
tensorflow/cc/saved_model/fingerprinting_utils.cc
tensorflow/cc/saved_model/fingerprinting_utils_test.cc
#ifndef TENSORFLOW_CC_SAVED_MODEL_FINGERPRINTING_UTILS_H_ #define TENSORFLOW_CC_SAVED_MODEL_FINGERPRINTING_UTILS_H_ #include <cstdint> #include <string> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/records/record_reader.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/protobuf/fingerprint.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saved_model.pb.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" #include "tensorflow/tools/proto_splitter/chunk.pb.h" namespace tensorflow::saved_model::fingerprinting { namespace fingerprinting_utils_internal { using ::tensorflow::protobuf::Map; using ::tensorflow::protobuf::Message; using ::tensorflow::protobuf::RepeatedPtrField; absl::StatusOr<int> fieldTagMatches( const RepeatedPtrField<::tensorflow::proto_splitter::FieldIndex>& a, const RepeatedPtrField<::tensorflow::proto_splitter::FieldIndex>& b); absl::StatusOr<::tensorflow::proto_splitter::ChunkedMessage> PruneChunkedMessage( const ::tensorflow::proto_splitter::ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, std::vector<::tensorflow::proto_splitter::ChunkInfo> chunks_info, std::vector<RepeatedPtrField<::tensorflow::proto_splitter::FieldIndex>> target_fields_list); std::string SerializeProto(const Message& message); absl::StatusOr<uint64_t> HashFields( const ::tensorflow::proto_splitter::ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<::tensorflow::proto_splitter::ChunkInfo>& chunks_info, const RepeatedPtrField<::tensorflow::proto_splitter::FieldIndex>& field_tags, Message* merged_message); inline RepeatedPtrField<::tensorflow::proto_splitter::FieldIndex> GraphDefFieldTags(); inline RepeatedPtrField<::tensorflow::proto_splitter::FieldIndex> SignatureDefFieldTags(); inline RepeatedPtrField<::tensorflow::proto_splitter::FieldIndex> SavedObjectGraphFieldTags(); absl::StatusOr<tensorflow::SavedModel> PrunedSavedModel( absl::string_view export_dir, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<::tensorflow::proto_splitter::ChunkInfo>& chunks_info, ::tensorflow::proto_splitter::ChunkMetadata& chunk_metadata); absl::StatusOr<uint64_t> HashMessage( Message* message, const ::tensorflow::proto_splitter::ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<::tensorflow::proto_splitter::ChunkInfo>& chunks_info, const RepeatedPtrField<::tensorflow::proto_splitter::FieldIndex>& field_tags); absl::StatusOr<uint64_t> HashGraphDef( tensorflow::GraphDef* graph_def, const ::tensorflow::proto_splitter::ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<::tensorflow::proto_splitter::ChunkInfo>& chunks_info); absl::StatusOr<uint64_t> HashSignatureDef( const Map<std::string, ::tensorflow::SignatureDef>& signature_def_map, const ::tensorflow::proto_splitter::ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<::tensorflow::proto_splitter::ChunkInfo>& chunks_info); absl::StatusOr<uint64_t> HashSavedObjectGraph( tensorflow::SavedObjectGraph* saved_object_graph, const ::tensorflow::proto_splitter::ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<::tensorflow::proto_splitter::ChunkInfo>& chunks_info); } uint64_t HashCheckpointIndexFile(absl::string_view model_dir); absl::StatusOr<FingerprintDef> CreateFingerprintDefCpb( absl::string_view export_dir, std::string cpb_file); } #endif #include "tensorflow/cc/saved_model/fingerprinting_utils.h" #include <algorithm> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/records/record_reader.h" #include "tensorflow/cc/saved_model/constants.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/file_system_helper.h" #include "tensorflow/core/platform/fingerprint.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/protobuf/fingerprint.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saved_model.pb.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" #include "tensorflow/core/util/tensor_bundle/naming.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #include "tensorflow/tools/proto_splitter/chunk.pb.h" #include "tensorflow/tools/proto_splitter/merge.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow::saved_model::fingerprinting { using ::tensorflow::proto_splitter::ChunkedField; using ::tensorflow::proto_splitter::ChunkedMessage; using ::tensorflow::proto_splitter::ChunkInfo; using ::tensorflow::proto_splitter::ChunkMetadata; using ::tensorflow::proto_splitter::FieldIndex; using tools::proto_splitter::Field; using tools::proto_splitter::FieldType; using tools::proto_splitter::GetChunkMetadata; using tools::proto_splitter::GetFieldTypes; using tools::proto_splitter::GetMutableField; using tools::proto_splitter::GetRiegeliReader; using tools::proto_splitter::Merger; using tools::proto_splitter::MutableFieldResult; using tools::proto_splitter::ReadChunk; namespace fingerprinting_utils_internal { using ::tensorflow::protobuf::Map; using ::tensorflow::protobuf::Message; using ::tensorflow::protobuf::RepeatedPtrField; using ::tensorflow::protobuf::io::CodedOutputStream; using ::tensorflow::protobuf::io::StringOutputStream; absl::StatusOr<int> fieldTagMatches(const RepeatedPtrField<FieldIndex>& a, const RepeatedPtrField<FieldIndex>& b) { int matches = 0; for (int i = 0; i == matches && i < a.size() && i < b.size(); i++) { switch (b[i].kind_case()) { case ::tensorflow::proto_splitter::FieldIndex::KindCase::kField: if (a.at(i).has_field() && a.at(i).field() == b.at(i).field()) { matches += 1; } break; case ::tensorflow::proto_splitter::FieldIndex::KindCase::kIndex: if (a.at(i).has_index() && a.at(i).index() == b.at(i).index()) { matches += 1; } break; case ::tensorflow::proto_splitter::FieldIndex::KindCase::kMapKey: if (a.at(i).has_map_key()) { const ::tensorflow::proto_splitter::FieldIndex_MapKey& key = b.at(i).map_key(); const ::tensorflow::proto_splitter::FieldIndex_MapKey& chunked_key = a.at(i).map_key(); switch (key.type_case()) { case ::tensorflow::proto_splitter::FieldIndex::MapKey::TypeCase::kS: if (chunked_key.has_s() && chunked_key.s() == key.s()) { matches += 1; } break; case ::tensorflow::proto_splitter::FieldIndex::MapKey::TypeCase:: kBoolean: if (chunked_key.has_boolean() && chunked_key.boolean() == key.boolean()) { matches += 1; } break; case ::tensorflow::proto_splitter::FieldIndex::MapKey::TypeCase:: kUi32: if (chunked_key.has_ui32() && chunked_key.ui32() == key.ui32()) { matches += 1; } break; case ::tensorflow::proto_splitter::FieldIndex::MapKey::TypeCase:: kUi64: if (chunked_key.has_ui64() && chunked_key.ui64() == key.ui64()) { matches += 1; } break; case ::tensorflow::proto_splitter::FieldIndex::MapKey::TypeCase:: kI32: if (chunked_key.has_i32() && chunked_key.i32() == key.i32()) { matches += 1; } break; case ::tensorflow::proto_splitter::FieldIndex::MapKey::TypeCase:: kI64: if (chunked_key.has_i64() && chunked_key.i64() == key.i64()) { matches += 1; } break; case ::tensorflow::proto_splitter::FieldIndex::MapKey::TypeCase:: TYPE_NOT_SET: default: return absl::FailedPreconditionError( "Encountered unknown field_tag.map_key type."); } } break; case FieldIndex::KindCase::KIND_NOT_SET: default: return absl::FailedPreconditionError( "Encountered unknown field_tag kind."); } } return matches; } absl::StatusOr<::tensorflow::proto_splitter::ChunkedMessage> PruneChunkedMessage( const ::tensorflow::proto_splitter::ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, std::vector<ChunkInfo> chunks_info, std::vector<RepeatedPtrField<FieldIndex>> target_fields_list) { ::tensorflow::proto_splitter::ChunkedMessage pruned_chunked_message; if (chunked_message.has_chunk_index()) { pruned_chunked_message.set_chunk_index(chunked_message.chunk_index()); } for (const ChunkedField& chunked_field : chunked_message.chunked_fields()) { for (const auto& target_fields : target_fields_list) { TF_ASSIGN_OR_RETURN( int matches, fieldTagMatches(chunked_field.field_tag(), target_fields)); if (matches == chunked_field.field_tag_size()) { auto cf = std::make_unique<proto_splitter::ChunkedField>(); cf->mutable_field_tag()->CopyFrom(chunked_field.field_tag()); TF_ASSIGN_OR_RETURN( *cf->mutable_message(), PruneChunkedMessage(chunked_field.message(), reader, chunks_info, target_fields_list)); pruned_chunked_message.mutable_chunked_fields()->AddAllocated( cf.release()); } } } return pruned_chunked_message; } std::string SerializeProto(const Message& message) { std::string serialized_message; { StringOutputStream stream(&serialized_message); CodedOutputStream output(&stream); output.SetSerializationDeterministic(true); message.SerializeToCodedStream(&output); } return serialized_message; } absl::StatusOr<uint64_t> HashFields( const ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<ChunkInfo>& chunks_info, const RepeatedPtrField<FieldIndex>& field_tags, Message* merged_message) { uint64_t field_checksum = 0; for (const ChunkedField& chunked_field : chunked_message.chunked_fields()) { const RepeatedPtrField<FieldIndex> chunked_field_tags = chunked_field.field_tag(); const ChunkedMessage& chunked_message = chunked_field.message(); TF_ASSIGN_OR_RETURN(int matches, fieldTagMatches(chunked_field_tags, field_tags)); if (chunked_message.has_chunk_index() && matches == field_tags.size()) { TF_ASSIGN_OR_RETURN( std::string chunk, ReadChunk(reader, chunks_info[chunked_message.chunk_index()])); field_checksum = FingerprintCat64(field_checksum, Fingerprint64(chunk)); } else if (matches == field_tags.size()) { TF_ASSIGN_OR_RETURN(uint64_t hash, HashFields(chunked_message, reader, chunks_info, field_tags, merged_message)); field_checksum = FingerprintCat64(field_checksum, hash); } else if (chunked_message.has_chunk_index() && matches == chunked_field_tags.size()) { TF_ASSIGN_OR_RETURN(std::vector<Field> fields, GetFieldTypes(chunked_field_tags)); for (const auto& field : fields) { TF_ASSIGN_OR_RETURN(MutableFieldResult mfr, GetMutableField(merged_message, field)); merged_message = mfr.parent->GetReflection()->MutableMessage(mfr.parent, mfr.field); } TF_ASSIGN_OR_RETURN( std::string chunk, ReadChunk(reader, chunks_info[chunked_message.chunk_index()])); merged_message->ParseFromString(chunk); TF_ASSIGN_OR_RETURN(uint64_t hash, HashFields(chunked_message, reader, chunks_info, field_tags, merged_message)); field_checksum = FingerprintCat64(field_checksum, hash); } else if (matches == chunked_field_tags.size()) { for (const ChunkedField& cf : chunked_message.chunked_fields()) { TF_ASSIGN_OR_RETURN(uint64_t hash, HashFields(cf.message(), reader, chunks_info, field_tags, merged_message)); field_checksum = FingerprintCat64(field_checksum, hash); } } } return field_checksum; } inline RepeatedPtrField<FieldIndex> GraphDefFieldTags() { FieldIndex meta_graph_field_tag; meta_graph_field_tag.set_field(2); FieldIndex meta_graph_index_field_tag; meta_graph_index_field_tag.set_index(0); FieldIndex graph_def_field_tag; graph_def_field_tag.set_field(2); RepeatedPtrField<FieldIndex> graph_def_field_tags; graph_def_field_tags.Add(FieldIndex(meta_graph_field_tag)); graph_def_field_tags.Add(FieldIndex(meta_graph_index_field_tag)); graph_def_field_tags.Add(FieldIndex(graph_def_field_tag)); return graph_def_field_tags; } inline RepeatedPtrField<FieldIndex> SignatureDefFieldTags() { FieldIndex meta_graph_field_tag; meta_graph_field_tag.set_field(2); FieldIndex meta_graph_index_field_tag; meta_graph_index_field_tag.set_index(0); FieldIndex signature_def_field_tag; signature_def_field_tag.set_field(5); RepeatedPtrField<FieldIndex> signature_def_field_tags; signature_def_field_tags.Add(FieldIndex(meta_graph_field_tag)); signature_def_field_tags.Add(FieldIndex(meta_graph_index_field_tag)); signature_def_field_tags.Add(FieldIndex(signature_def_field_tag)); return signature_def_field_tags; } inline RepeatedPtrField<FieldIndex> SavedObjectGraphFieldTags() { FieldIndex meta_graph_field_tag; meta_graph_field_tag.set_field(2); FieldIndex meta_graph_index_field_tag; meta_graph_index_field_tag.set_index(0); FieldIndex saved_object_graph_field_tag; saved_object_graph_field_tag.set_field(7); RepeatedPtrField<FieldIndex> saved_object_graph_field_tags; saved_object_graph_field_tags.Add(FieldIndex(meta_graph_field_tag)); saved_object_graph_field_tags.Add(FieldIndex(meta_graph_index_field_tag)); saved_object_graph_field_tags.Add(FieldIndex(saved_object_graph_field_tag)); return saved_object_graph_field_tags; } absl::StatusOr<SavedModel> PrunedSavedModel( absl::string_view export_dir, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<ChunkInfo>& chunks_info, ChunkMetadata& chunk_metadata) { SavedModel saved_model; ChunkMetadata pruned_chunk_metadata; pruned_chunk_metadata.mutable_chunks()->CopyFrom(chunk_metadata.chunks()); TF_ASSIGN_OR_RETURN( *pruned_chunk_metadata.mutable_message(), PruneChunkedMessage(chunk_metadata.message(), reader, chunks_info, {GraphDefFieldTags(), SignatureDefFieldTags(), SavedObjectGraphFieldTags()})); TF_RETURN_IF_ERROR( Merger::ReadPartial(io::JoinPath(export_dir, kSavedModelFilenamePrefix), pruned_chunk_metadata, &saved_model)); return saved_model; } absl::StatusOr<uint64_t> HashMessage( Message* message, const ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<ChunkInfo>& chunks_info, const RepeatedPtrField<FieldIndex>& field_tags) { uint64_t total_message_hash = Fingerprint64(SerializeProto(*message)); TF_ASSIGN_OR_RETURN( uint64_t message_hash, HashFields(chunked_message, reader, chunks_info, field_tags, message)); return FingerprintCat64(total_message_hash, message_hash); } absl::StatusOr<uint64_t> HashGraphDef( ::tensorflow::GraphDef* graph_def, const ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<ChunkInfo>& chunks_info) { return HashMessage(graph_def, chunked_message, reader, chunks_info, GraphDefFieldTags()); } absl::StatusOr<uint64_t> HashSignatureDef( const Map<std::string, ::tensorflow::SignatureDef>& signature_def_map, const ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<ChunkInfo>& chunks_info) { uint64_t signature_def_hash = 0; std::vector<std::pair<std::string, ::tensorflow::SignatureDef>> signature_def_sorted(signature_def_map.begin(), signature_def_map.end()); std::sort(signature_def_sorted.begin(), signature_def_sorted.end(), [](const std::pair<std::string, ::tensorflow::SignatureDef>& a, const std::pair<std::string, ::tensorflow::SignatureDef>& b) { return a.first < b.first; }); for (const auto& signature_def : signature_def_sorted) { uint64_t signature_def_pair_hash = FingerprintCat64(Fingerprint64(signature_def.first), Fingerprint64(SerializeProto(signature_def.second))); signature_def_hash = FingerprintCat64(signature_def_hash, signature_def_pair_hash); SignatureDef signature_def_val = signature_def.second; TF_ASSIGN_OR_RETURN( uint64_t signature_def_entry_hash, HashFields(chunked_message, reader, chunks_info, SignatureDefFieldTags(), &signature_def_val)); signature_def_hash = FingerprintCat64(signature_def_hash, signature_def_entry_hash); } return signature_def_hash; } absl::StatusOr<uint64_t> HashSavedObjectGraph( ::tensorflow::SavedObjectGraph* saved_object_graph, const ChunkedMessage& chunked_message, riegeli::RecordReader<riegeli::FdReader<>>& reader, const std::vector<ChunkInfo>& chunks_info) { return HashMessage(saved_object_graph, chunked_message, reader, chunks_info, SavedObjectGraphFieldTags()); } } using fingerprinting_utils_internal::HashFields; using fingerprinting_utils_internal::HashGraphDef; using fingerprinting_utils_internal::HashSavedObjectGraph; using fingerprinting_utils_internal::HashSignatureDef; using fingerprinting_utils_internal::PrunedSavedModel; using fingerprinting_utils_internal::SerializeProto; uint64_t HashCheckpointIndexFile(absl::string_view model_dir) { std::string meta_filename = MetaFilename(io::JoinPath( model_dir, kSavedModelVariablesDirectory, kSavedModelVariablesFilename)); std::string data; absl::Status read_status = ReadFileToString(Env::Default(), meta_filename, &data); if (read_status.ok()) { return tensorflow::Fingerprint64(data); } else { return 0; } } absl::StatusOr<FingerprintDef> CreateFingerprintDefCpb( absl::string_view export_dir, std::string cpb_file) { const int kFingerprintProducer = 2; TF_ASSIGN_OR_RETURN(auto reader, GetRiegeliReader(cpb_file)); auto read_metadata = GetChunkMetadata(reader); if (!read_metadata.ok()) { reader.Close(); return absl::FailedPreconditionError( absl::StrCat("Couldn't read ChunkMetadata from chunked proto.\n", read_metadata.status().ToString())); } ChunkMetadata chunk_metadata = read_metadata.value(); std::vector<ChunkInfo> chunks_info = std::vector<ChunkInfo>( chunk_metadata.chunks().begin(), chunk_metadata.chunks().end()); FingerprintDef fingerprint_def; SavedModel saved_model; TF_ASSIGN_OR_RETURN(uint64_t saved_model_hash, HashFields(chunk_metadata.message(), reader, chunks_info, {}, &saved_model)); saved_model_hash = FingerprintCat64( saved_model_hash, Fingerprint64(SerializeProto(saved_model))); fingerprint_def.set_saved_model_checksum(saved_model_hash); TF_ASSIGN_OR_RETURN( saved_model, PrunedSavedModel(export_dir, reader, chunks_info, chunk_metadata)); TF_ASSIGN_OR_RETURN( uint64_t graph_def_program_hash, HashGraphDef(saved_model.mutable_meta_graphs(0)->mutable_graph_def(), chunk_metadata.message(), reader, chunks_info)); fingerprint_def.set_graph_def_program_hash(graph_def_program_hash); TF_ASSIGN_OR_RETURN( uint64_t signature_def_hash, HashSignatureDef(saved_model.meta_graphs(0).signature_def(), chunk_metadata.message(), reader, chunks_info)); fingerprint_def.set_signature_def_hash(signature_def_hash); TF_ASSIGN_OR_RETURN( uint64_t saved_object_graph_hash, HashSavedObjectGraph( saved_model.mutable_meta_graphs(0)->mutable_object_graph_def(), chunk_metadata.message(), reader, chunks_info)); fingerprint_def.set_saved_object_graph_hash(saved_object_graph_hash); fingerprint_def.set_checkpoint_hash(HashCheckpointIndexFile(export_dir)); reader.Close(); VersionDef* version = fingerprint_def.mutable_version(); version->set_producer(kFingerprintProducer); return fingerprint_def; } }
#include "tensorflow/cc/saved_model/fingerprinting_utils.h" #include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #include "tensorflow/tools/proto_splitter/chunk.pb.h" #include "tensorflow/tools/proto_splitter/testdata/test_message.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace tensorflow::saved_model::fingerprinting { namespace { using fingerprinting_utils_internal::fieldTagMatches; using fingerprinting_utils_internal::HashFields; using fingerprinting_utils_internal::HashGraphDef; using fingerprinting_utils_internal::HashSavedObjectGraph; using fingerprinting_utils_internal::HashSignatureDef; using fingerprinting_utils_internal::PruneChunkedMessage; using fingerprinting_utils_internal::SerializeProto; using ::tensorflow::proto_splitter::ChunkedField; using ::tensorflow::proto_splitter::ChunkedMessage; using ::tensorflow::proto_splitter::ChunkInfo; using ::tensorflow::proto_splitter::ChunkMetadata; using ::tensorflow::proto_splitter::FieldIndex; using ::tensorflow::proto_splitter_testdata::ManyFields; using ::tensorflow::protobuf::Message; using ::tensorflow::protobuf::RepeatedPtrField; using ::tensorflow::protobuf::TextFormat; using ::tensorflow::protobuf::io::ArrayInputStream; using ::tensorflow::protobuf::util::MessageDifferencer; using tools::proto_splitter::GetChunkMetadata; using tools::proto_splitter::GetRiegeliReader; using tsl::testing::IsOkAndHolds; using tsl::testing::TensorFlowSrcRoot; absl::Status ParseTextProto(absl::string_view text_proto, Message* parsed_proto) { TextFormat::Parser parser; ArrayInputStream input_stream(text_proto.data(), text_proto.size()); if (parser.Parse(&input_stream, parsed_proto)) { return absl::OkStatus(); } parsed_proto->Clear(); return absl::InvalidArgumentError( absl::StrCat("Could not parse text proto: ", text_proto)); } absl::StatusOr<RepeatedPtrField<::tensorflow::proto_splitter::FieldIndex>> ExtractFieldTags(absl::string_view chunked_field_text_proto) { ChunkedField chunked_field; TF_RETURN_IF_ERROR(ParseTextProto(chunked_field_text_proto, &chunked_field)); return chunked_field.field_tag(); } TEST(FingerprintingTest, TestFieldTagMatchesInitialSubsequence) { TF_ASSERT_OK_AND_ASSIGN(RepeatedPtrField<FieldIndex> field_tags, ExtractFieldTags(R"pb( field_tag { field: 2 } field_tag { index: 1505 } field_tag { field: 5 } field_tag { map_key { ui32: 123 } } )pb")); RepeatedPtrField<FieldIndex> field_tags_sub; field_tags_sub.CopyFrom(field_tags); field_tags_sub.DeleteSubrange(2, 2); EXPECT_THAT(fieldTagMatches(field_tags_sub, field_tags), IsOkAndHolds(2)); } TEST(FingerprintingTest, TestFieldTagMatchesNoninitialSubsequence) { TF_ASSERT_OK_AND_ASSIGN(RepeatedPtrField<FieldIndex> field_tags, ExtractFieldTags(R"pb( field_tag { field: 2 } field_tag { index: 1505 } field_tag { field: 5 } field_tag { map_key { ui32: 123 } } )pb")); RepeatedPtrField<FieldIndex> field_tags_sub; field_tags_sub.CopyFrom(field_tags); field_tags_sub.DeleteSubrange(0, 2); EXPECT_THAT(fieldTagMatches(field_tags_sub, field_tags), IsOkAndHolds(0)); } TEST(FingerprintingTest, TestFieldTagMatchesIdenticalSubsequence) { TF_ASSERT_OK_AND_ASSIGN(RepeatedPtrField<FieldIndex> field_tags, ExtractFieldTags(R"pb( field_tag { field: 2 } field_tag { index: 1505 } field_tag { field: 5 } field_tag { map_key { ui32: 123 } } )pb")); RepeatedPtrField<FieldIndex> field_tags_sub; field_tags_sub.CopyFrom(field_tags); EXPECT_THAT(fieldTagMatches(field_tags_sub, field_tags), IsOkAndHolds(4)); } TEST(FingerprintingTest, TestFieldTagMatchesSuperSubsequence) { TF_ASSERT_OK_AND_ASSIGN(RepeatedPtrField<FieldIndex> field_tags, ExtractFieldTags(R"pb( field_tag { field: 2 } field_tag { index: 1505 } field_tag { field: 5 } field_tag { map_key { ui32: 123 } } )pb")); RepeatedPtrField<FieldIndex> field_tags_sub; field_tags_sub.CopyFrom(field_tags); field_tags_sub.Add()->set_field(6); EXPECT_THAT(fieldTagMatches(field_tags_sub, field_tags), IsOkAndHolds(4)); } TEST(FingerprintingTest, TestPruneChunkedMessageSingleTarget) { std::string cpb_file = io::JoinPath( TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "many-field.cpb"); TF_ASSERT_OK_AND_ASSIGN(auto reader, GetRiegeliReader(cpb_file)); auto read_metadata = GetChunkMetadata(reader); if (!read_metadata.ok()) { reader.Close(); TF_ASSERT_OK(read_metadata.status()); } ChunkMetadata chunk_metadata = read_metadata.value(); std::vector<ChunkInfo> chunks_info = std::vector<ChunkInfo>( chunk_metadata.chunks().begin(), chunk_metadata.chunks().end()); FieldIndex field_one_field_tag; field_one_field_tag.set_field(1); FieldIndex repeated_field_field_tag; repeated_field_field_tag.set_field(2); FieldIndex repeated_field_index_field_tag; repeated_field_index_field_tag.set_index(1); RepeatedPtrField<FieldIndex> target_field_tags; target_field_tags.Add(FieldIndex(field_one_field_tag)); target_field_tags.Add(FieldIndex(repeated_field_field_tag)); target_field_tags.Add(FieldIndex(repeated_field_index_field_tag)); ChunkedMessage pruned_chunked_message; TF_ASSERT_OK_AND_ASSIGN( pruned_chunked_message, PruneChunkedMessage(chunk_metadata.message(), reader, chunks_info, {target_field_tags})); std::string expected_pruned_chunked_message_text_proto = R"pb( chunk_index: 0 chunked_fields { field_tag { field: 1 } message { chunk_index: 1 } } )pb"; ChunkedMessage expected_pruned_chunked_message; TF_ASSERT_OK(ParseTextProto(expected_pruned_chunked_message_text_proto, &expected_pruned_chunked_message)); ASSERT_TRUE(MessageDifferencer::Equals(pruned_chunked_message, expected_pruned_chunked_message)); } TEST(FingerprintingTest, TestPruneChunkedMessageMultiTarget) { std::string cpb_file = io::JoinPath( TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "many-field.cpb"); TF_ASSERT_OK_AND_ASSIGN(auto reader, GetRiegeliReader(cpb_file)); auto read_metadata = GetChunkMetadata(reader); if (!read_metadata.ok()) { reader.Close(); TF_ASSERT_OK(read_metadata.status()); } ChunkMetadata chunk_metadata = read_metadata.value(); std::vector<ChunkInfo> chunks_info = std::vector<ChunkInfo>( chunk_metadata.chunks().begin(), chunk_metadata.chunks().end()); FieldIndex field_one_field_tag; field_one_field_tag.set_field(1); FieldIndex repeated_field_field_tag; repeated_field_field_tag.set_field(2); FieldIndex repeated_field_index_field_tag; repeated_field_index_field_tag.set_index(1); RepeatedPtrField<FieldIndex> target_one_field_tags; target_one_field_tags.Add(FieldIndex(field_one_field_tag)); target_one_field_tags.Add(FieldIndex(repeated_field_field_tag)); target_one_field_tags.Add(FieldIndex(repeated_field_index_field_tag)); FieldIndex nested_map_bool_field_tag; nested_map_bool_field_tag.set_field(7); FieldIndex nested_map_bool_mapkey_field_tag; nested_map_bool_mapkey_field_tag.mutable_map_key()->set_boolean(true); FieldIndex string_field_field_tag; string_field_field_tag.set_field(3); RepeatedPtrField<FieldIndex> target_two_field_tags; target_two_field_tags.Add(FieldIndex(nested_map_bool_field_tag)); target_two_field_tags.Add(FieldIndex(nested_map_bool_mapkey_field_tag)); target_two_field_tags.Add(FieldIndex(string_field_field_tag)); ChunkedMessage pruned_chunked_message; TF_ASSERT_OK_AND_ASSIGN( pruned_chunked_message, PruneChunkedMessage(chunk_metadata.message(), reader, chunks_info, {target_one_field_tags, target_two_field_tags})); std::string expected_pruned_chunked_message_text_proto = R"pb( chunk_index: 0 chunked_fields { field_tag { field: 1 } message { chunk_index: 1 } } chunked_fields { field_tag { field: 7 } field_tag { map_key { boolean: true } } message { chunk_index: 2 } } )pb"; ChunkedMessage expected_pruned_chunked_message; TF_ASSERT_OK(ParseTextProto(expected_pruned_chunked_message_text_proto, &expected_pruned_chunked_message)); ASSERT_TRUE(MessageDifferencer::Equals(pruned_chunked_message, expected_pruned_chunked_message)); } TEST(FingerprintingTest, TestPruneChunkedMessageNoTarget) { std::string cpb_file = io::JoinPath( TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "many-field.cpb"); TF_ASSERT_OK_AND_ASSIGN(auto reader, GetRiegeliReader(cpb_file)); auto read_metadata = GetChunkMetadata(reader); if (!read_metadata.ok()) { reader.Close(); TF_ASSERT_OK(read_metadata.status()); } ChunkMetadata chunk_metadata = read_metadata.value(); std::vector<ChunkInfo> chunks_info = std::vector<ChunkInfo>( chunk_metadata.chunks().begin(), chunk_metadata.chunks().end()); ChunkedMessage pruned_chunked_message; TF_ASSERT_OK_AND_ASSIGN( pruned_chunked_message, PruneChunkedMessage(chunk_metadata.message(), reader, chunks_info, {})); std::string expected_pruned_chunked_message_text_proto = R"pb( chunk_index: 0 )pb"; ChunkedMessage expected_pruned_chunked_message; TF_ASSERT_OK(ParseTextProto(expected_pruned_chunked_message_text_proto, &expected_pruned_chunked_message)); ASSERT_TRUE(MessageDifferencer::Equals(pruned_chunked_message, expected_pruned_chunked_message)); } TEST(FingerprintingTest, TestSerializeProto) { std::string many_fields_text_proto = R"pb( string_field: "abc123" )pb"; ManyFields many_fields; TF_ASSERT_OK(ParseTextProto(many_fields_text_proto, &many_fields)); ASSERT_EQ(SerializeProto(many_fields), many_fields.SerializeAsString()); } TEST(FingerprintingTest, TestHashFieldsV2) { std::string cpb_file = io::JoinPath( TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "many-field.cpb"); TF_ASSERT_OK_AND_ASSIGN(auto reader, GetRiegeliReader(cpb_file)); auto read_metadata = GetChunkMetadata(reader); if (!read_metadata.ok()) { reader.Close(); TF_ASSERT_OK(read_metadata.status()); } ChunkMetadata chunk_metadata = read_metadata.value(); std::vector<ChunkInfo> chunks_info = std::vector<ChunkInfo>( chunk_metadata.chunks().begin(), chunk_metadata.chunks().end()); ManyFields many_fields; TF_ASSERT_OK_AND_ASSIGN(uint64_t many_fields_hash, HashFields(chunk_metadata.message(), reader, chunks_info, {}, &many_fields)); ASSERT_EQ(many_fields_hash, 14850154939410192811U); } TEST(FingerprintingTest, TestHashGraphDef) { std::string cpb_file = io::JoinPath(TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-standard.cpb"); TF_ASSERT_OK_AND_ASSIGN(auto reader, GetRiegeliReader(cpb_file)); auto read_metadata = GetChunkMetadata(reader); if (!read_metadata.ok()) { reader.Close(); TF_ASSERT_OK(read_metadata.status()); } ChunkMetadata chunk_metadata = read_metadata.value(); std::vector<ChunkInfo> chunks_info = std::vector<ChunkInfo>( chunk_metadata.chunks().begin(), chunk_metadata.chunks().end()); GraphDef graph_def; EXPECT_THAT( HashGraphDef(&graph_def, chunk_metadata.message(), reader, chunks_info), IsOkAndHolds(16782272393894422524U)); } TEST(FingerprintingTest, TestHashSignatureDef) { std::string cpb_file = io::JoinPath(TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-standard.cpb"); TF_ASSERT_OK_AND_ASSIGN(auto reader, GetRiegeliReader(cpb_file)); auto read_metadata = GetChunkMetadata(reader); if (!read_metadata.ok()) { reader.Close(); TF_ASSERT_OK(read_metadata.status()); } ChunkMetadata chunk_metadata = read_metadata.value(); std::vector<ChunkInfo> chunks_info = std::vector<ChunkInfo>( chunk_metadata.chunks().begin(), chunk_metadata.chunks().end()); ::tensorflow::protobuf::Map<std::string, SignatureDef> signature_def_map; SignatureDef signature_def; EXPECT_THAT(HashSignatureDef(signature_def_map, chunk_metadata.message(), reader, chunks_info), IsOkAndHolds(0)); } TEST(FingerprintingTest, TestHashSavedObjectGraph) { std::string cpb_file = io::JoinPath(TensorFlowSrcRoot(), "tools/proto_splitter/testdata", "split-standard.cpb"); TF_ASSERT_OK_AND_ASSIGN(auto reader, GetRiegeliReader(cpb_file)); auto read_metadata = GetChunkMetadata(reader); if (!read_metadata.ok()) { reader.Close(); TF_ASSERT_OK(read_metadata.status()); } ChunkMetadata chunk_metadata = read_metadata.value(); std::vector<ChunkInfo> chunks_info = std::vector<ChunkInfo>( chunk_metadata.chunks().begin(), chunk_metadata.chunks().end()); SavedObjectGraph saved_object_graph; EXPECT_THAT( HashSavedObjectGraph(&saved_object_graph, chunk_metadata.message(), reader, chunks_info), IsOkAndHolds(17454850744699451884U)); } } }
1,768
cpp
tensorflow/tensorflow
bundle_v2
tensorflow/cc/saved_model/bundle_v2.cc
tensorflow/cc/saved_model/bundle_v2_test.cc
#ifndef TENSORFLOW_CC_SAVED_MODEL_BUNDLE_V2_H_ #define TENSORFLOW_CC_SAVED_MODEL_BUNDLE_V2_H_ #include <functional> #include <memory> #include <string> #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" #include "tensorflow/core/protobuf/trackable_object_graph.pb.h" #include "tensorflow/core/util/tensor_bundle/tensor_bundle.h" namespace tensorflow { class SavedModelV2Bundle { public: using RestoreObjectsCallback = std::function<Status(int, const TrackableObjectGraph::TrackableObject&)>; static Status Load(const std::string& export_dir, SavedModelV2Bundle* bundle); MetaGraphDef& meta_graph_def() { return meta_graph_def_; } const SavedObjectGraph& saved_object_graph() { return meta_graph_def().object_graph_def(); } TrackableObjectGraph& trackable_object_graph() { return trackable_object_graph_; } BundleReader* variable_reader() { return variable_reader_.get(); } GraphDebugInfo* debug_info() { return debug_info_.get(); } Status VisitObjectsToRestore(RestoreObjectsCallback callback); private: Status RecurseObjectsToRestore( const SavedObject* saved_object, int saved_object_node_id, const TrackableObjectGraph::TrackableObject* trackable_object, std::string object_name, absl::flat_hash_set<int>* seen_trackable_node_ids, RestoreObjectsCallback callback); MetaGraphDef meta_graph_def_; TrackableObjectGraph trackable_object_graph_; std::unique_ptr<BundleReader> variable_reader_; std::unique_ptr<GraphDebugInfo> debug_info_; }; } #endif #include "tensorflow/cc/saved_model/bundle_v2.h" #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "tensorflow/cc/saved_model/constants.h" #include "tensorflow/cc/saved_model/fingerprinting.h" #include "tensorflow/cc/saved_model/metrics.h" #include "tensorflow/cc/saved_model/reader.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/byte_order.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/protobuf/saved_model.pb.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" #include "tensorflow/core/protobuf/trackable_object_graph.pb.h" #include "tensorflow/core/util/tensor_bundle/byte_swap_tensor.h" #include "tensorflow/core/util/tensor_bundle/tensor_bundle.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/strcat.h" namespace tensorflow { namespace { using strings::StrCat; constexpr char kCCLoadBundleV2Label[] = "cc_load_bundle_v2"; absl::Status ReadCheckpointObjectGraph(BundleReader* bundle_reader, TrackableObjectGraph* object_graph) { Tensor object_graph_tensor; TF_RETURN_WITH_CONTEXT_IF_ERROR( bundle_reader->Lookup(kObjectGraphProtoKey, &object_graph_tensor), "SavedModel checkpoint does not contain object graph."); if (object_graph_tensor.dtype() != DT_STRING || object_graph_tensor.dims() != 0 || object_graph_tensor.NumElements() != 1) { return absl::Status( absl::StatusCode::kFailedPrecondition, "SavedModel checkpoint object graph was not the correct type."); } const tstring* object_graph_string = reinterpret_cast<const tstring*>( object_graph_tensor.tensor_data().data()); if (!object_graph->ParseFromString(*object_graph_string)) { return absl::Status( absl::StatusCode::kFailedPrecondition, "SavedModel checkpoint object graph could not be deserialized."); } return absl::OkStatus(); } } absl::Status SavedModelV2Bundle::Load(const std::string& export_dir, SavedModelV2Bundle* const bundle) { metrics::SavedModelReadApi(kCCLoadBundleV2Label).IncrementBy(1); SavedModel saved_model_proto; TF_RETURN_IF_ERROR(ReadSavedModel(export_dir, &saved_model_proto)); metrics::SavedModelReadPath().Set(export_dir); if (saved_model_proto.meta_graphs_size() != 1) { return absl::Status( absl::StatusCode::kInvalidArgument, strings::StrCat( "SavedModelV2 should have exactly one MetaGraphDef but actually ", "contains ", saved_model_proto.meta_graphs_size())); } bundle->meta_graph_def_ = std::move(*saved_model_proto.mutable_meta_graphs(0)); if (!port::kLittleEndian) { TF_RETURN_IF_ERROR( ByteSwapTensorContentInMetaGraphDef(&(bundle->meta_graph_def_))); } TF_RETURN_IF_ERROR( ReadSavedModelDebugInfoIfPresent(export_dir, &bundle->debug_info_)); const std::string variables_dir = io::JoinPath(export_dir, kSavedModelVariablesDirectory); if (!Env::Default()->FileExists(variables_dir).ok()) { LOG(INFO) << "No checkpoint found, assuming this is a program-only SavedModel"; } else { const std::string variables_prefix = io::JoinPath(variables_dir, kSavedModelVariablesFilename); bundle->variable_reader_ = std::make_unique<BundleReader>(Env::Default(), variables_prefix); TF_RETURN_WITH_CONTEXT_IF_ERROR( bundle->variable_reader_->status(), "Unable to load SavedModel variables checkpoint from ", variables_prefix); TF_RETURN_IF_ERROR(ReadCheckpointObjectGraph( bundle->variable_reader_.get(), &bundle->trackable_object_graph_)); } auto fingerprint_proto = saved_model::fingerprinting::ReadSavedModelFingerprint(export_dir); if (fingerprint_proto.ok()) { metrics::SavedModelReadFingerprint().Set( metrics::MakeFingerprintJson(fingerprint_proto.value())); TF_ASSIGN_OR_RETURN( std::string path_and_singleprint, metrics::MakeSavedModelPathAndSingleprint( export_dir, saved_model::fingerprinting::Singleprint( fingerprint_proto.value()))); metrics::SavedModelReadPathAndSingleprint().Set(path_and_singleprint); } return absl::OkStatus(); } absl::Status SavedModelV2Bundle::VisitObjectsToRestore( RestoreObjectsCallback callback) { if (saved_object_graph().nodes_size() == 0 || trackable_object_graph().nodes_size() == 0) { return absl::OkStatus(); } const SavedObject* root_saved_object = &saved_object_graph().nodes(0); const TrackableObjectGraph::TrackableObject* root_trackable_object = &trackable_object_graph().nodes(0); absl::flat_hash_set<int> trackable_node_ids; return RecurseObjectsToRestore(root_saved_object, 0, root_trackable_object, std::string(), &trackable_node_ids, std::move(callback)); } absl::Status SavedModelV2Bundle::RecurseObjectsToRestore( const SavedObject* saved_object, int saved_object_node_id, const TrackableObjectGraph::TrackableObject* trackable_object, std::string object_name, absl::flat_hash_set<int>* seen_trackable_node_ids, RestoreObjectsCallback callback) { if (saved_object_node_id != 0 && (trackable_object->attributes_size() > 0 || trackable_object->slot_variables_size() > 0)) { TF_RETURN_WITH_CONTEXT_IF_ERROR( callback(saved_object_node_id, *trackable_object), "Unable to restore ", object_name); } for (const auto& trackable_child_ref : trackable_object->children()) { const auto& local_name = trackable_child_ref.local_name(); std::string child_name; if (object_name.empty()) { child_name = local_name; } else { child_name = strings::StrCat(object_name, ".", local_name); } int trackable_child_node_id = trackable_child_ref.node_id(); if (!seen_trackable_node_ids->insert(trackable_child_node_id).second) { continue; } if (trackable_child_node_id < 0 || trackable_child_node_id >= trackable_object_graph().nodes_size()) { return errors::FailedPrecondition( strings::StrCat("Illegal trackable child node id for ", child_name)); } const auto* trackable_child = &trackable_object_graph().nodes(trackable_child_node_id); int saved_child_node_id = -1; const SavedObject* saved_child = nullptr; for (const auto& saved_child_ref : saved_object->children()) { if (saved_child_ref.local_name() == local_name) { saved_child_node_id = saved_child_ref.node_id(); if (saved_child_node_id >= 0 && saved_child_node_id < saved_object_graph().nodes_size()) { saved_child = &saved_object_graph().nodes(saved_child_node_id); } break; } } if (!saved_child) { return absl::Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("Could not find saved object to restore for ", child_name)); } TF_RETURN_IF_ERROR(RecurseObjectsToRestore( saved_child, saved_child_node_id, trackable_child, child_name, seen_trackable_node_ids, callback)); } return absl::OkStatus(); } }
#include "tensorflow/cc/saved_model/bundle_v2.h" #include <algorithm> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "json/json.h" #include "json/reader.h" #include "json/value.h" #include "tensorflow/cc/saved_model/metrics.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/trackable_object_graph.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { constexpr char kTestData[] = "cc/saved_model/testdata"; class BundleV2Test : public ::testing::Test { protected: BundleV2Test() {} void RestoreVarsAndVerify(SavedModelV2Bundle* bundle, std::vector<std::string> expected_names) { using RestoredVarType = std::tuple<int, std::string, std::string>; std::vector<RestoredVarType> restored_vars; TF_ASSERT_OK(bundle->VisitObjectsToRestore( [&](int saved_node_id, const TrackableObjectGraph::TrackableObject& trackable_object) -> absl::Status { for (const auto& attr : trackable_object.attributes()) { if (attr.name() == "VARIABLE_VALUE") { restored_vars.emplace_back(saved_node_id, attr.full_name(), attr.checkpoint_key()); } } return absl::OkStatus(); })); for (const auto& expected_name : expected_names) { EXPECT_EQ(1, std::count_if(restored_vars.begin(), restored_vars.end(), [&](RestoredVarType t) { return std::get<1>(t) == expected_name; })); } for (const auto& restored_var : restored_vars) { const auto& saved_node = bundle->saved_object_graph().nodes(std::get<0>(restored_var)); EXPECT_EQ(std::get<1>(restored_var), saved_node.variable().name()); Tensor value; TF_ASSERT_OK( bundle->variable_reader()->Lookup(std::get<2>(restored_var), &value)); } } }; TEST_F(BundleV2Test, LoadsVarsAndArithmeticObjectGraph) { const std::string export_dir = io::JoinPath( testing::TensorFlowSrcRoot(), kTestData, "VarsAndArithmeticObjectGraph"); SavedModelV2Bundle bundle; TF_ASSERT_OK(SavedModelV2Bundle::Load(export_dir, &bundle)); EXPECT_GT(bundle.trackable_object_graph().nodes_size(), 0); RestoreVarsAndVerify(&bundle, {"variable_x", "variable_y", "child_variable"}); } TEST_F(BundleV2Test, LoadsCyclicModule) { const std::string export_dir = io::JoinPath(testing::TensorFlowSrcRoot(), kTestData, "CyclicModule"); SavedModelV2Bundle bundle; TF_ASSERT_OK(SavedModelV2Bundle::Load(export_dir, &bundle)); EXPECT_GT(bundle.trackable_object_graph().nodes_size(), 0); RestoreVarsAndVerify(&bundle, {"MyVariable"}); } TEST_F(BundleV2Test, UpdatesMetrics) { const std::string kCCLoadBundleV2Label = "cc_load_bundle_v2"; const int read_count = metrics::SavedModelReadCount("2").value(); const int api_count = metrics::SavedModelReadApi(kCCLoadBundleV2Label).value(); const std::string export_dir = io::JoinPath( testing::TensorFlowSrcRoot(), kTestData, "VarsAndArithmeticObjectGraph"); SavedModelV2Bundle bundle; TF_ASSERT_OK(SavedModelV2Bundle::Load(export_dir, &bundle)); EXPECT_EQ(metrics::SavedModelReadCount("2").value(), read_count + 1); EXPECT_EQ(metrics::SavedModelReadApi(kCCLoadBundleV2Label).value(), api_count + 1); EXPECT_EQ(metrics::SavedModelReadPath().value(), export_dir); Json::Value fingerprint = Json::objectValue; Json::Reader reader = Json::Reader(); reader.parse(metrics::SavedModelReadFingerprint().value(), fingerprint); EXPECT_EQ(fingerprint["saved_model_checksum"].asUInt64(), 15788619162413586750ULL); EXPECT_EQ(fingerprint["graph_def_program_hash"].asUInt64(), 706963557435316516ULL); EXPECT_EQ(fingerprint["signature_def_hash"].asUInt64(), 5693392539583495303ULL); EXPECT_EQ(fingerprint["saved_object_graph_hash"].asUInt64(), 12074714563970609759ULL); EXPECT_EQ(fingerprint["checkpoint_hash"].asUInt64(), 10788359570789890102ULL); TF_ASSERT_OK_AND_ASSIGN( auto path_and_singleprint, metrics::ParseSavedModelPathAndSingleprint( metrics::SavedModelReadPathAndSingleprint().value())); auto [path, singleprint] = path_and_singleprint; EXPECT_TRUE(absl::StrContains( path, absl::StrCat(kTestData, "/VarsAndArithmeticObjectGraph"))); EXPECT_EQ(singleprint, "706963557435316516/" "5693392539583495303/" "12074714563970609759/" "10788359570789890102"); } } }
1,769
cpp
tensorflow/tensorflow
fingerprinting
tensorflow/cc/saved_model/fingerprinting.cc
tensorflow/cc/saved_model/fingerprinting_test.cc
#ifndef TENSORFLOW_CC_SAVED_MODEL_FINGERPRINTING_H_ #define TENSORFLOW_CC_SAVED_MODEL_FINGERPRINTING_H_ #include <string> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "tensorflow/core/protobuf/fingerprint.pb.h" namespace tensorflow::saved_model::fingerprinting { absl::StatusOr<FingerprintDef> CreateFingerprintDef( absl::string_view export_dir); absl::StatusOr<FingerprintDef> ReadSavedModelFingerprint( absl::string_view export_dir); std::string Singleprint(uint64_t graph_def_program_hash, uint64_t signature_def_hash, uint64_t saved_object_graph_hash, uint64_t checkpoint_hash); std::string Singleprint(const FingerprintDef& fingerprint); absl::StatusOr<std::string> Singleprint(absl::string_view export_dir); } #endif #include "tensorflow/cc/saved_model/fingerprinting.h" #include <cstdint> #include <string> #include "absl/container/btree_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "tensorflow/cc/saved_model/constants.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/regularization/simple_delete.h" #include "tensorflow/core/graph/regularization/util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/file_system_helper.h" #include "tensorflow/core/platform/fingerprint.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/protobuf/fingerprint.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saved_model.pb.h" #include "tensorflow/core/protobuf/saved_object_graph.pb.h" #include "tensorflow/core/util/tensor_bundle/naming.h" #if !defined(PLATFORM_WINDOWS) && !defined(__APPLE__) #include "tensorflow/cc/saved_model/fingerprinting_utils.h" #include "tensorflow/tools/proto_splitter/cc/util.h" #endif #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow::saved_model::fingerprinting { namespace { using ::tensorflow::protobuf::Map; using ::tensorflow::protobuf::io::CodedOutputStream; using ::tensorflow::protobuf::io::StringOutputStream; uint64_t HashCheckpointIndexFile(absl::string_view model_dir) { std::string meta_filename = MetaFilename(io::JoinPath( model_dir, kSavedModelVariablesDirectory, kSavedModelVariablesFilename)); std::string data; absl::Status read_status = ReadFileToString(Env::Default(), meta_filename, &data); if (read_status.ok()) { return tensorflow::Fingerprint64(data); } else { LOG(WARNING) << "Failed to read checkpoint file: " << read_status; return 0; } } uint64_t HashSavedModel(const SavedModel& saved_model) { std::string saved_model_serialized; { StringOutputStream stream(&saved_model_serialized); CodedOutputStream output(&stream); output.SetSerializationDeterministic(true); saved_model.SerializeToCodedStream(&output); } return tensorflow::Fingerprint64(saved_model_serialized); } uint64_t RegularizeAndHashSignatureDefs( const Map<std::string, SignatureDef>& signature_def_map) { absl::btree_map<std::string, SignatureDef> sorted_signature_defs; sorted_signature_defs.insert(signature_def_map.begin(), signature_def_map.end()); uint64_t result_hash = 0; for (const auto& item : sorted_signature_defs) { result_hash = FingerprintCat64(result_hash, tensorflow::Fingerprint64(item.first)); std::string signature_def_serialized; { StringOutputStream stream(&signature_def_serialized); CodedOutputStream output(&stream); output.SetSerializationDeterministic(true); item.second.SerializeToCodedStream(&output); } result_hash = FingerprintCat64( result_hash, tensorflow::Fingerprint64(signature_def_serialized)); } return result_hash; } absl::StatusOr<uint64_t> RegularizeAndHashSavedObjectGraph( const SavedObjectGraph& object_graph_def) { absl::btree_map<int64_t, std::string> uid_to_function_names; for (const auto& [name, concrete_function] : object_graph_def.concrete_functions()) { TF_ASSIGN_OR_RETURN(int64_t uid, graph_regularization::GetSuffixUID(name)); uid_to_function_names.insert({uid, name}); } uint64_t result_hash = 0; for (const auto& [uid, function_name] : uid_to_function_names) { result_hash = FingerprintCat64(result_hash, tensorflow::Fingerprint64(absl::StripSuffix( function_name, std::to_string(uid)))); std::string concrete_function_serialized; { StringOutputStream stream(&concrete_function_serialized); CodedOutputStream output(&stream); output.SetSerializationDeterministic(true); object_graph_def.concrete_functions() .at(function_name) .SerializeToCodedStream(&output); } result_hash = FingerprintCat64( result_hash, tensorflow::Fingerprint64(concrete_function_serialized)); } return result_hash; } absl::StatusOr<FingerprintDef> CreateFingerprintDefPb( absl::string_view export_dir, std::string pb_file) { const int kFingerprintProducer = 1; SavedModel saved_model; TF_RETURN_IF_ERROR(ReadBinaryProto(Env::Default(), pb_file, &saved_model)); FingerprintDef fingerprint_def; MetaGraphDef* metagraph = saved_model.mutable_meta_graphs(0); fingerprint_def.set_saved_model_checksum(HashSavedModel(saved_model)); graph_regularization::SimpleDelete(*metagraph->mutable_graph_def()); fingerprint_def.set_graph_def_program_hash( graph_regularization::ComputeHash(metagraph->graph_def())); fingerprint_def.set_signature_def_hash( RegularizeAndHashSignatureDefs(metagraph->signature_def())); TF_ASSIGN_OR_RETURN( uint64_t object_graph_hash, RegularizeAndHashSavedObjectGraph(metagraph->object_graph_def())); fingerprint_def.set_saved_object_graph_hash(object_graph_hash); fingerprint_def.set_checkpoint_hash(HashCheckpointIndexFile(export_dir)); VersionDef* version = fingerprint_def.mutable_version(); version->set_producer(kFingerprintProducer); return fingerprint_def; } } absl::StatusOr<FingerprintDef> CreateFingerprintDef( absl::string_view export_dir) { std::string prefix = io::JoinPath(export_dir, kSavedModelFilenamePrefix); #if !defined(PLATFORM_WINDOWS) && !defined(__APPLE__) TF_ASSIGN_OR_RETURN(bool only_contains_pb, tools::proto_splitter::OnlyContainsPb(prefix)); if (only_contains_pb) { return CreateFingerprintDefPb(export_dir, absl::StrCat(prefix, ".pb")); } return CreateFingerprintDefCpb(export_dir, absl::StrCat(prefix, ".cpb")); #else return CreateFingerprintDefPb(export_dir, absl::StrCat(prefix, ".pb")); #endif } absl::StatusOr<FingerprintDef> ReadSavedModelFingerprint( absl::string_view export_dir) { const std::string fingerprint_pb_path = io::JoinPath(export_dir, kFingerprintFilenamePb); TF_RETURN_IF_ERROR(Env::Default()->FileExists(fingerprint_pb_path)); FingerprintDef fingerprint_proto; absl::Status result = ReadBinaryProto(Env::Default(), fingerprint_pb_path, &fingerprint_proto); if (!result.ok()) return result; return fingerprint_proto; } std::string Singleprint(uint64_t graph_def_program_hash, uint64_t signature_def_hash, uint64_t saved_object_graph_hash, uint64_t checkpoint_hash) { return std::to_string(graph_def_program_hash) + "/" + std::to_string(signature_def_hash) + "/" + std::to_string(saved_object_graph_hash) + "/" + std::to_string(checkpoint_hash); } std::string Singleprint(const FingerprintDef& fingerprint) { return Singleprint( fingerprint.graph_def_program_hash(), fingerprint.signature_def_hash(), fingerprint.saved_object_graph_hash(), fingerprint.checkpoint_hash()); } absl::StatusOr<std::string> Singleprint(absl::string_view export_dir) { TF_ASSIGN_OR_RETURN(const FingerprintDef fingerprint_def, ReadSavedModelFingerprint(export_dir)); return Singleprint(fingerprint_def); } }
#include "tensorflow/cc/saved_model/fingerprinting.h" #include <string> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/fingerprint.pb.h" #include "tensorflow/core/protobuf/saved_model.pb.h" #include "tsl/platform/statusor.h" namespace tensorflow::saved_model::fingerprinting { namespace { absl::StatusOr<SavedModel> ReadSavedModel(absl::string_view file_dir) { std::string file_path = io::JoinPath(file_dir, "saved_model.pb"); std::string serialized_saved_model; auto status = ReadFileToString(Env::Default(), file_path, &serialized_saved_model); if (!status.ok()) { return status; } SavedModel saved_model_pb; saved_model_pb.ParseFromString(serialized_saved_model); return saved_model_pb; } TEST(FingerprintingTest, TestCreateFingerprint) { const std::string export_dir = io::JoinPath(testing::TensorFlowSrcRoot(), "cc/saved_model/testdata", "VarsAndArithmeticObjectGraph"); TF_ASSERT_OK_AND_ASSIGN(SavedModel saved_model_pb, ReadSavedModel(export_dir)); TF_ASSERT_OK_AND_ASSIGN(FingerprintDef fingerprint_def, CreateFingerprintDef(export_dir)); EXPECT_GT(fingerprint_def.saved_model_checksum(), 0); EXPECT_EQ(fingerprint_def.graph_def_program_hash(), 10127142238652115842U); EXPECT_EQ(fingerprint_def.signature_def_hash(), 15570736222402453744U); EXPECT_EQ(fingerprint_def.saved_object_graph_hash(), 3678101440349108924U); EXPECT_GT(fingerprint_def.checkpoint_hash(), 0); } TEST(FingerprintingTest, TestCompareFingerprintForTwoModelSavedTwice) { const std::string export_dir = io::JoinPath( testing::TensorFlowSrcRoot(), "cc/saved_model/testdata", "bert1"); TF_ASSERT_OK_AND_ASSIGN(SavedModel saved_model_pb, ReadSavedModel(export_dir)); TF_ASSERT_OK_AND_ASSIGN(FingerprintDef fingerprint_def, CreateFingerprintDef(export_dir)); const std::string export_dir2 = io::JoinPath( testing::TensorFlowSrcRoot(), "cc/saved_model/testdata", "bert2"); TF_ASSERT_OK_AND_ASSIGN(SavedModel saved_model_pb2, ReadSavedModel(export_dir2)); TF_ASSERT_OK_AND_ASSIGN(FingerprintDef fingerprint_def2, CreateFingerprintDef(export_dir2)); EXPECT_GT(fingerprint_def.saved_model_checksum(), 0); EXPECT_GT(fingerprint_def2.saved_model_checksum(), 0); EXPECT_EQ(fingerprint_def.graph_def_program_hash(), fingerprint_def2.graph_def_program_hash()); EXPECT_EQ(fingerprint_def.signature_def_hash(), fingerprint_def2.signature_def_hash()); EXPECT_EQ(fingerprint_def.saved_object_graph_hash(), fingerprint_def2.saved_object_graph_hash()); } TEST(FingerprintingTest, TestFingerprintComputationDoesNotMutateModel) { const std::string export_dir = io::JoinPath( testing::TensorFlowSrcRoot(), "cc/saved_model/testdata", "bert1"); TF_ASSERT_OK_AND_ASSIGN(SavedModel saved_model_pb, ReadSavedModel(export_dir)); TF_ASSERT_OK_AND_ASSIGN(FingerprintDef fingerprint_def, CreateFingerprintDef(export_dir)); TF_ASSERT_OK_AND_ASSIGN(FingerprintDef fingerprint_def2, CreateFingerprintDef(export_dir)); EXPECT_EQ(fingerprint_def.saved_model_checksum(), fingerprint_def2.saved_model_checksum()); } TEST(FingerprintingTest, TestFingerprintHasVersion) { const std::string export_dir = io::JoinPath( testing::TensorFlowSrcRoot(), "cc/saved_model/testdata", "bert1"); TF_ASSERT_OK_AND_ASSIGN(SavedModel saved_model_pb, ReadSavedModel(export_dir)); TF_ASSERT_OK_AND_ASSIGN(FingerprintDef fingerprint_def, CreateFingerprintDef(export_dir)); EXPECT_EQ(fingerprint_def.version().producer(), 1); } TEST(FingerprintingTest, TestHashCheckpointForModelWithNoVariables) { const std::string export_dir = io::JoinPath( testing::TensorFlowSrcRoot(), "cc/saved_model/testdata", "bert1"); TF_ASSERT_OK_AND_ASSIGN(SavedModel saved_model_pb, ReadSavedModel(export_dir)); TF_ASSERT_OK_AND_ASSIGN(FingerprintDef fingerprint_def, CreateFingerprintDef(export_dir)); EXPECT_EQ(fingerprint_def.checkpoint_hash(), 0); } TEST(FingerprintingTest, TestReadValidFingerprint) { const std::string export_dir = io::JoinPath(testing::TensorFlowSrcRoot(), "cc/saved_model/testdata", "VarsAndArithmeticObjectGraph"); TF_ASSERT_OK_AND_ASSIGN(FingerprintDef fingerprint_pb, ReadSavedModelFingerprint(export_dir)); EXPECT_EQ(fingerprint_pb.saved_model_checksum(), 15788619162413586750u); } TEST(FingerprintingTest, TestReadNonexistentFingerprint) { const std::string export_dir = io::JoinPath( testing::TensorFlowSrcRoot(), "cc/saved_model/testdata", "AssetModule"); EXPECT_EQ(ReadSavedModelFingerprint(export_dir).status().code(), absl::StatusCode::kNotFound); } TEST(FingerprintingTest, TestSingleprint) { const std::string export_dir = io::JoinPath(testing::TensorFlowSrcRoot(), "cc/saved_model/testdata", "VarsAndArithmeticObjectGraph"); const std::string const_singleprint = "706963557435316516/5693392539583495303/12074714563970609759/" "10788359570789890102"; TF_ASSERT_OK_AND_ASSIGN(std::string singleprint, Singleprint(export_dir)); EXPECT_EQ(singleprint, const_singleprint); TF_ASSERT_OK_AND_ASSIGN(FingerprintDef fingerprint_pb, ReadSavedModelFingerprint(export_dir)); EXPECT_EQ(Singleprint(fingerprint_pb), const_singleprint); EXPECT_EQ(Singleprint(fingerprint_pb.graph_def_program_hash(), fingerprint_pb.signature_def_hash(), fingerprint_pb.saved_object_graph_hash(), fingerprint_pb.checkpoint_hash()), const_singleprint); } } }
1,770
cpp
tensorflow/tensorflow
reader
tensorflow/cc/saved_model/reader.cc
tensorflow/cc/saved_model/reader_test.cc
#ifndef TENSORFLOW_CC_SAVED_MODEL_READER_H_ #define TENSORFLOW_CC_SAVED_MODEL_READER_H_ #include <memory> #include <unordered_set> #include "absl/status/statusor.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saved_model.pb.h" namespace tensorflow { Status ReadSavedModel(absl::string_view export_dir, SavedModel* saved_model_proto); absl::StatusOr<MetaGraphDef*> FindMetaGraphDef( const std::unordered_set<string>& tags, SavedModel* saved_model_proto); Status ReadMetaGraphDefFromSavedModel(absl::string_view export_dir, const std::unordered_set<string>& tags, MetaGraphDef* meta_graph_def); Status ReadSavedModelDebugInfoIfPresent( absl::string_view export_dir, std::unique_ptr<GraphDebugInfo>* debug_info_proto); } #endif #include "tensorflow/cc/saved_model/reader.h" #include <memory> #include <string> #include <unordered_set> #include <utility> #include "absl/memory/memory.h" #include "absl/status/statusor.h" #include "tensorflow/cc/saved_model/constants.h" #include "tensorflow/cc/saved_model/metrics.h" #include "tensorflow/cc/saved_model/util.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/file_system_helper.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saved_model.pb.h" #include "tensorflow/core/util/tensor_bundle/byte_swap_tensor.h" #define IS_OSS true namespace tensorflow { absl::StatusOr<MetaGraphDef*> FindMetaGraphDef( const std::unordered_set<string>& tags, SavedModel* saved_model_proto) { LOG(INFO) << "Reading meta graph with tags { " << absl::StrJoin(tags, " ") << " }"; for (MetaGraphDef& graph_def : *saved_model_proto->mutable_meta_graphs()) { std::unordered_set<string> graph_tags; for (const string& tag : graph_def.meta_info_def().tags()) { graph_tags.insert(tag); } if (graph_tags == tags) { MetaGraphDef* meta_graph_def = &graph_def; if (!port::kLittleEndian) { TF_RETURN_IF_ERROR(ByteSwapTensorContentInMetaGraphDef(meta_graph_def)); } return meta_graph_def; } } return Status( absl::StatusCode::kNotFound, strings::StrCat( "Could not find meta graph def matching supplied tags: { ", absl::StrJoin(tags, " "), " }. To inspect available tag-sets in the SavedModel, please " "use the SavedModel CLI: `saved_model_cli`")); } Status ReadSavedModel(absl::string_view export_dir, SavedModel* saved_model_proto) { LOG(INFO) << "Reading SavedModel from: " << export_dir; if (IS_OSS) { const std::string saved_model_pb_path = io::JoinPath(export_dir, kSavedModelFilenamePb); TF_ASSIGN_OR_RETURN( bool saved_model_pb_exists, internal::FileExists(Env::Default(), saved_model_pb_path)); if (saved_model_pb_exists) { Status result = ReadBinaryProto(Env::Default(), saved_model_pb_path, saved_model_proto); if (result.ok()) { metrics::SavedModelReadCount( saved_model::GetWriteVersion(*saved_model_proto)) .IncrementBy(1); } return result; } } const std::string saved_model_pbtxt_path = io::JoinPath(export_dir, kSavedModelFilenamePbTxt); auto saved_model_pbtxt_exists = internal::FileExists(Env::Default(), saved_model_pbtxt_path); if (saved_model_pbtxt_exists.value_or(false)) { Status result = ReadTextProto(Env::Default(), saved_model_pbtxt_path, saved_model_proto); if (result.ok()) { metrics::SavedModelReadCount( saved_model::GetWriteVersion(*saved_model_proto)) .IncrementBy(1); } return result; } if (!IS_OSS) { } return Status( absl::StatusCode::kNotFound, strings::StrCat("Could not find SavedModel .pb or .pbtxt at supplied " "export directory path: ", export_dir, ". Check that " "the directory exists and that you have the right " "permissions for accessing it.")); } Status ReadMetaGraphDefFromSavedModel(absl::string_view export_dir, const std::unordered_set<string>& tags, MetaGraphDef* const meta_graph_def) { SavedModel saved_model_proto; TF_RETURN_IF_ERROR(ReadSavedModel(export_dir, &saved_model_proto)); TF_ASSIGN_OR_RETURN(MetaGraphDef * m, FindMetaGraphDef(tags, &saved_model_proto)); *meta_graph_def = std::move(*m); return absl::OkStatus(); } Status ReadSavedModelDebugInfoIfPresent( absl::string_view export_dir, std::unique_ptr<GraphDebugInfo>* debug_info_proto) { LOG(INFO) << "Reading SavedModel debug info (if present) from: " << export_dir; const string debug_info_pb_path = io::JoinPath(export_dir, "debug", "saved_model_debug_info.pb"); TF_ASSIGN_OR_RETURN(bool debug_info_pb_exists, internal::FileExists(Env::Default(), debug_info_pb_path)); if (debug_info_pb_exists) { GraphDebugInfo debug_info; TF_RETURN_IF_ERROR( ReadBinaryProto(Env::Default(), debug_info_pb_path, &debug_info)); *debug_info_proto = std::make_unique<GraphDebugInfo>(std::move(debug_info)); } return absl::OkStatus(); } }
#include "tensorflow/cc/saved_model/reader.h" #include <gmock/gmock.h> #include "tensorflow/cc/saved_model/constants.h" #include "tensorflow/cc/saved_model/metrics.h" #include "tensorflow/cc/saved_model/tag_constants.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/resource_loader.h" namespace tensorflow { namespace { string TestDataPbTxt() { return io::JoinPath("tensorflow", "cc", "saved_model", "testdata", "half_plus_two_pbtxt", "00000123"); } string TestDataSharded() { return io::JoinPath("tensorflow", "cc", "saved_model", "testdata", "half_plus_two", "00000123"); } string ChunkedSavedModel() { return io::JoinPath("tensorflow", "cc", "saved_model", "testdata", "chunked_saved_model", "chunked_model"); } string NonChunkedSavedModel() { return io::JoinPath("tensorflow", "cc", "saved_model", "testdata", "chunked_saved_model", "non_chunked_model"); } class ReaderTest : public ::testing::Test { protected: ReaderTest() {} void CheckMetaGraphDef(const MetaGraphDef& meta_graph_def) { const auto& tags = meta_graph_def.meta_info_def().tags(); EXPECT_TRUE(std::find(tags.begin(), tags.end(), kSavedModelTagServe) != tags.end()); EXPECT_NE(meta_graph_def.meta_info_def().tensorflow_version(), ""); EXPECT_EQ( meta_graph_def.signature_def().at("serving_default").method_name(), "tensorflow/serving/predict"); } }; TEST_F(ReaderTest, TagMatch) { MetaGraphDef meta_graph_def; const string export_dir = GetDataDependencyFilepath(TestDataSharded()); TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(export_dir, {kSavedModelTagServe}, &meta_graph_def)); CheckMetaGraphDef(meta_graph_def); } TEST_F(ReaderTest, NoTagMatch) { MetaGraphDef meta_graph_def; const string export_dir = GetDataDependencyFilepath(TestDataSharded()); Status st = ReadMetaGraphDefFromSavedModel(export_dir, {"missing-tag"}, &meta_graph_def); EXPECT_FALSE(st.ok()); EXPECT_TRUE(absl::StrContains( st.message(), "Could not find meta graph def matching supplied tags: { missing-tag }")) << st.message(); } TEST_F(ReaderTest, NoTagMatchMultiple) { MetaGraphDef meta_graph_def; const string export_dir = GetDataDependencyFilepath(TestDataSharded()); Status st = ReadMetaGraphDefFromSavedModel( export_dir, {kSavedModelTagServe, "missing-tag"}, &meta_graph_def); EXPECT_FALSE(st.ok()); EXPECT_TRUE(absl::StrContains( st.message(), "Could not find meta graph def matching supplied tags: ")) << st.message(); } TEST_F(ReaderTest, InvalidExportPath) { MetaGraphDef meta_graph_def; const string export_dir = GetDataDependencyFilepath("missing-path"); Status st = ReadMetaGraphDefFromSavedModel(export_dir, {kSavedModelTagServe}, &meta_graph_def); EXPECT_FALSE(st.ok()); } TEST_F(ReaderTest, ReadSavedModelDebugInfoIfPresent) { const string export_dir = GetDataDependencyFilepath(TestDataSharded()); std::unique_ptr<GraphDebugInfo> debug_info_proto; TF_ASSERT_OK(ReadSavedModelDebugInfoIfPresent(export_dir, &debug_info_proto)); } TEST_F(ReaderTest, MetricsNotUpdatedFailedRead) { MetaGraphDef meta_graph_def; const int read_count_v1 = metrics::SavedModelReadCount("1").value(); const int read_count_v2 = metrics::SavedModelReadCount("2").value(); const string export_dir = GetDataDependencyFilepath("missing-path"); Status st = ReadMetaGraphDefFromSavedModel(export_dir, {"serve"}, &meta_graph_def); EXPECT_FALSE(st.ok()); EXPECT_EQ(metrics::SavedModelReadCount("1").value(), read_count_v1); EXPECT_EQ(metrics::SavedModelReadCount("2").value(), read_count_v2); } TEST_F(ReaderTest, MetricsUpdatedSuccessfulRead) { MetaGraphDef meta_graph_def; const int read_count_v1 = metrics::SavedModelReadCount("1").value(); const string export_dir = GetDataDependencyFilepath(TestDataSharded()); Status st = ReadMetaGraphDefFromSavedModel(export_dir, {"serve"}, &meta_graph_def); EXPECT_EQ(metrics::SavedModelReadCount("1").value(), read_count_v1 + 1); } } }
1,771
cpp
tensorflow/tensorflow
client_session
tensorflow/cc/client/client_session.cc
tensorflow/cc/client/client_session_test.cc
#ifndef XLA_PYTHON_IFRT_PROXY_CLIENT_CLIENT_SESSION_H_ #define XLA_PYTHON_IFRT_PROXY_CLIENT_CLIENT_SESSION_H_ #include <memory> #include "absl/status/status.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" namespace xla { namespace ifrt { namespace proxy { class ClientSession { public: using Response = std::shared_ptr<IfrtResponse>; virtual ~ClientSession() = default; virtual Future<Response> Enqueue(std::unique_ptr<IfrtRequest> request) = 0; virtual void Finish(const absl::Status& s) {} }; } } } #endif #include "tensorflow/cc/client/client_session.h" #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { class ClientSession::Impl { private: friend class ClientSession; Impl(Session* session, std::shared_ptr<Graph> graph) : session_(session), graph_(std::move(graph)) {} static SessionOptions MakeDefaultSessionOptions(const string& target); Status MaybeExtendGraph() const; std::unique_ptr<Session> session_; std::shared_ptr<Graph> graph_; mutable mutex mu_; mutable int last_num_graph_nodes_ TF_GUARDED_BY(mu_) = 0; }; ClientSession::ClientSession(const Scope& scope, const string& target) : ClientSession(scope, Impl::MakeDefaultSessionOptions(target)) {} ClientSession::ClientSession(const Scope& scope) : ClientSession(scope, "") {} ClientSession::ClientSession(const Scope& scope, const SessionOptions& session_options) { Session* new_session; Status status = NewSession(session_options, &new_session); TF_CHECK_OK(status) << status; impl_.reset(new Impl(new_session, scope.graph_as_shared_ptr())); CHECK_NOTNULL(impl()->session_.get()); } ClientSession::~ClientSession() {} SessionOptions ClientSession::Impl::MakeDefaultSessionOptions( const string& target) { SessionOptions options; options.env = Env::Default(); options.target = target; return options; } Status ClientSession::Run(const std::vector<Output>& fetch_outputs, std::vector<Tensor>* outputs) const { return Run(FeedType{}, fetch_outputs, {}, outputs); } Status ClientSession::Run(const FeedType& inputs, const std::vector<Output>& fetch_outputs, std::vector<Tensor>* outputs) const { return Run(inputs, fetch_outputs, {}, outputs); } Status ClientSession::Run(const FeedType& inputs, const std::vector<Output>& fetch_outputs, const std::vector<Operation>& run_outputs, std::vector<Tensor>* outputs) const { return Run(RunOptions(), inputs, fetch_outputs, run_outputs, outputs, nullptr); } Status ClientSession::Impl::MaybeExtendGraph() const { mutex_lock l(mu_); int num_nodes = graph_->num_node_ids(); if (num_nodes > last_num_graph_nodes_) { GraphDef graph_def; graph_->ToGraphDefSubRange(&graph_def, last_num_graph_nodes_); last_num_graph_nodes_ = num_nodes; return session_->Extend(graph_def); } return absl::OkStatus(); } Status ClientSession::Run(const RunOptions& run_options, const FeedType& inputs, const std::vector<Output>& fetch_outputs, const std::vector<Operation>& run_outputs, std::vector<Tensor>* outputs, RunMetadata* run_metadata) const { std::vector<std::pair<string, Tensor>> feeds; feeds.reserve(inputs.size()); for (auto const& feed : inputs) { TF_RETURN_IF_ERROR(feed.second.status); feeds.emplace_back(std::piecewise_construct, std::forward_as_tuple(feed.first.name()), std::forward_as_tuple(feed.second.tensor)); } std::vector<string> output_tensor_names; output_tensor_names.reserve(fetch_outputs.size()); for (auto const& output : fetch_outputs) { output_tensor_names.push_back(output.name()); } std::vector<string> target_node_names; target_node_names.reserve(run_outputs.size()); for (auto const& output : run_outputs) { target_node_names.push_back(output.node()->name()); } TF_RETURN_IF_ERROR(impl()->MaybeExtendGraph()); return impl()->session_->Run(run_options, feeds, output_tensor_names, target_node_names, outputs, run_metadata); } Status ClientSession::Run( const RunOptions& run_options, const FeedType& inputs, const std::vector<Output>& fetch_outputs, const std::vector<Operation>& run_outputs, std::vector<Tensor>* outputs, RunMetadata* run_metadata, const thread::ThreadPoolOptions& threadpool_options) const { std::vector<std::pair<string, Tensor>> feeds; for (auto const& feed : inputs) { TF_RETURN_IF_ERROR(feed.second.status); feeds.emplace_back(feed.first.name(), feed.second.tensor); } std::vector<string> output_tensor_names; output_tensor_names.reserve(fetch_outputs.size()); for (auto const& output : fetch_outputs) { output_tensor_names.push_back(output.name()); } std::vector<string> target_node_names; target_node_names.reserve(run_outputs.size()); for (auto const& output : run_outputs) { target_node_names.push_back(output.node()->name()); } TF_RETURN_IF_ERROR(impl()->MaybeExtendGraph()); return impl()->session_->Run(run_options, feeds, output_tensor_names, target_node_names, outputs, run_metadata, threadpool_options); } Status ClientSession::MakeCallable(const CallableOptions& callable_options, CallableHandle* out_handle) { TF_RETURN_IF_ERROR(impl()->MaybeExtendGraph()); return impl()->session_->MakeCallable(callable_options, out_handle); } Status ClientSession::RunCallable(CallableHandle handle, const std::vector<Tensor>& feed_tensors, std::vector<Tensor>* fetch_tensors, RunMetadata* run_metadata) { return impl()->session_->RunCallable(handle, feed_tensors, fetch_tensors, run_metadata); } Status ClientSession::RunCallable(CallableHandle handle, const std::vector<Tensor>& feed_tensors, std::vector<Tensor>* fetch_tensors, RunMetadata* run_metadata, const thread::ThreadPoolOptions& options) { return impl()->session_->RunCallable(handle, feed_tensors, fetch_tensors, run_metadata, options); } Status ClientSession::ReleaseCallable(CallableHandle handle) { return impl()->session_->ReleaseCallable(handle); } }
#define EIGEN_USE_THREADS #include "tensorflow/cc/client/client_session.h" #include <utility> #include <vector> #include "absl/synchronization/barrier.h" #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/core/threadpool_options.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { namespace { using ops::Add; using ops::BatchMatMul; using ops::Const; using ops::Mul; using ops::Placeholder; using ops::Sub; tensorflow::SessionOptions GetSessionOptions() { tensorflow::SessionOptions options; options.config.mutable_experimental()->set_disable_optimize_for_static_graph( true); return options; } class CustomThreadPoolImpl : public thread::ThreadPoolInterface { public: explicit CustomThreadPoolImpl(int numThreads) { underlying_threadpool_.reset(new thread::ThreadPool( tensorflow::Env::Default(), "custom_threadpool", numThreads)); num_schedule_called_ = 0; } void Schedule(std::function<void()> fn) override { num_schedule_called_ += 1; underlying_threadpool_->Schedule(std::move(fn)); } void ScheduleWithHint(std::function<void()> fn, int start, int end) override { num_schedule_called_ += 1; underlying_threadpool_->ScheduleWithHint(std::move(fn), start, end); } void Cancel() override {} int NumThreads() const override { return underlying_threadpool_->NumThreads(); } int CurrentThreadId() const override { return underlying_threadpool_->CurrentThreadId(); } int GetNumScheduleCalled() { return num_schedule_called_; } private: int num_schedule_called_; std::unique_ptr<tensorflow::thread::ThreadPool> underlying_threadpool_; }; TEST(ClientSessionTest, Basic) { Scope root = Scope::NewRootScope(); auto c = Const(root, {{1, 1}}); ClientSession session(root); std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run({c}, &outputs)); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({1, 1}, {1, 2})); } TEST(ClientSessionTest, Feed) { Scope root = Scope::NewRootScope(); auto a = Placeholder(root, DT_INT32); auto b = Placeholder(root, DT_INT32); auto c = Add(root, a, b); ClientSession session(root); std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run({{a, 1}, {b, 41}}, {c}, &outputs)); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({42}, {})); } TEST(ClientSessionTest, Extend) { Scope root = Scope::NewRootScope(); auto a = Placeholder(root, DT_INT32, Placeholder::Shape({2})); auto c = Add(root, a, {2, 2}); ClientSession session(root, GetSessionOptions()); std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run({{a, {1, 1}}}, {c}, &outputs)); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({3, 3}, {2})); auto d = Add(root, c, {39, 39}); outputs.clear(); TF_EXPECT_OK(session.Run({{a, {-10, 1}}}, {d}, &outputs)); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({31, 42}, {2})); } TEST(ClientSessionTest, MultiThreadedWithDefaultThreadpool) { Scope root = Scope::NewRootScope(); auto a = Add(root, {1, 2}, {3, 4}); auto b = Mul(root, {1, 2}, {3, 4}); ClientSession session(root, GetSessionOptions()); { thread::ThreadPool thread_pool(Env::Default(), "pool", 2); thread_pool.Schedule([&session, a]() { std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run({a}, &outputs)); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({4, 6}, {2})); }); thread_pool.Schedule([&session, b]() { std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run({b}, &outputs)); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({3, 8}, {2})); }); } auto c = Sub(root, b, a); std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run({c}, &outputs)); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({-1, 2}, {2})); } TEST(ClientSessionTest, MultiThreadedWithCustomThreadpool) { Scope root = Scope::NewRootScope(); int num_threads = 3; auto a = Add(root, {1, 2}, {3, 4}); auto b = Mul(root, {1, 2}, {3, 4}); ClientSession session(root, GetSessionOptions()); auto inter_op_threadpool = absl::make_unique<CustomThreadPoolImpl>(num_threads); ASSERT_EQ(inter_op_threadpool->GetNumScheduleCalled(), 0); auto intra_op_threadpool = absl::make_unique<CustomThreadPoolImpl>(num_threads); ASSERT_EQ(intra_op_threadpool->GetNumScheduleCalled(), 0); tensorflow::thread::ThreadPoolOptions threadPoolOptions; threadPoolOptions.inter_op_threadpool = inter_op_threadpool.get(); threadPoolOptions.intra_op_threadpool = intra_op_threadpool.get(); { thread::ThreadPool thread_pool(Env::Default(), "pool", 2); thread_pool.Schedule([&session, a]() { std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run(RunOptions(), ClientSession::FeedType{}, {a}, {}, &outputs, nullptr, thread::ThreadPoolOptions())); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({4, 6}, {2})); }); thread_pool.Schedule([&session, b]() { std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run(RunOptions(), ClientSession::FeedType{}, {b}, {}, &outputs, nullptr, thread::ThreadPoolOptions())); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({3, 8}, {2})); }); } auto c = Sub(root, b, a); std::vector<Tensor> outputs; TF_EXPECT_OK(session.Run(RunOptions(), ClientSession::FeedType{}, {c}, {}, &outputs, nullptr, thread::ThreadPoolOptions())); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({-1, 2}, {2})); } TEST(ClientSessionTest, CallableWithDefaultThreadPool) { Scope root = Scope::NewRootScope(); auto a = Placeholder(root, DT_INT32); auto b = Placeholder(root, DT_INT32); auto c = Add(root, a, b); ClientSession session(root); std::vector<Tensor> outputs; CallableOptions options; options.add_feed(a.node()->name()); options.add_feed(b.node()->name()); options.add_fetch(c.node()->name()); ClientSession::CallableHandle callable; TF_CHECK_OK(session.MakeCallable(options, &callable)); TF_EXPECT_OK(session.RunCallable( callable, {test::AsTensor<int>({1}, {}), test::AsTensor<int>({41}, {})}, &outputs, nullptr)); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({42}, {})); TF_EXPECT_OK(session.ReleaseCallable(callable)); } TEST(ClientSessionTest, CallableWithCustomThreadPool) { Scope root = Scope::NewRootScope(); int num_threads = 3; TensorShape data_shape({1, 1}); auto a = Placeholder(root, DT_INT32, Placeholder::Shape(data_shape)); auto b = Placeholder(root, DT_INT32, Placeholder::Shape(data_shape)); auto c = BatchMatMul(root, a, b); ClientSession session(root); std::vector<Tensor> outputs; auto inter_op_threadpool = absl::make_unique<CustomThreadPoolImpl>(num_threads); ASSERT_EQ(inter_op_threadpool->GetNumScheduleCalled(), 0); auto intra_op_threadpool = absl::make_unique<CustomThreadPoolImpl>(num_threads); ASSERT_EQ(intra_op_threadpool->GetNumScheduleCalled(), 0); tensorflow::thread::ThreadPoolOptions threadPoolOptions; threadPoolOptions.inter_op_threadpool = inter_op_threadpool.get(); threadPoolOptions.intra_op_threadpool = intra_op_threadpool.get(); CallableOptions options; options.add_feed(a.node()->name()); options.add_feed(b.node()->name()); options.add_fetch(c.node()->name()); ClientSession::CallableHandle callable; TF_CHECK_OK(session.MakeCallable(options, &callable)); absl::Barrier barrier(num_threads + 1); for (int i = 0; i < num_threads; i++) { intra_op_threadpool->Schedule([&barrier, num_threads]() { tensorflow::SetPerThreadMaxParallelism(num_threads - 1); barrier.Block(); }); } barrier.Block(); TF_EXPECT_OK(session.RunCallable( callable, {test::AsTensor<int>({2}, {1, 1}), test::AsTensor<int>({10}, {1, 1})}, &outputs, nullptr, threadPoolOptions)); test::ExpectTensorEqual<int>(outputs[0], test::AsTensor<int>({20}, {1, 1})); TF_EXPECT_OK(session.ReleaseCallable(callable)); ASSERT_GT(inter_op_threadpool->GetNumScheduleCalled(), 0); ASSERT_GT(intra_op_threadpool->GetNumScheduleCalled(), 0); intra_op_threadpool.reset(); } } }
1,772
cpp
tensorflow/tensorflow
while_loop
tensorflow/cc/ops/while_loop.cc
tensorflow/cc/ops/while_loop_test.cc
#ifndef TENSORFLOW_CC_OPS_WHILE_LOOP_H_ #define TENSORFLOW_CC_OPS_WHILE_LOOP_H_ #include <string> #include <vector> #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" namespace tensorflow { namespace ops { typedef std::function<Status(const Scope&, const std::vector<Output>& inputs, Output* output)> CondGraphBuilderFn; typedef std::function<Status(const Scope&, const std::vector<Output>& inputs, std::vector<Output>* outputs)> BodyGraphBuilderFn; Status BuildWhileLoop(const Scope& scope, const std::vector<Output>& inputs, const CondGraphBuilderFn& cond, const BodyGraphBuilderFn& body, const string& frame_name, OutputList* outputs, bool create_while_ctx = true, Output* cond_output = nullptr); } } #endif #include "tensorflow/cc/ops/while_loop.h" #include "tensorflow/cc/framework/scope_internal.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/shape_refiner.h" #include "tensorflow/core/graph/node_builder.h" namespace tensorflow { namespace ops { namespace { OutputTensor ToOutputTensor(const Output& output) { return OutputTensor(output.node(), output.index()); } std::vector<OutputTensor> ToOutputTensors(const std::vector<Output>& outputs) { std::vector<OutputTensor> result(outputs.size()); for (int i = 0; i < outputs.size(); ++i) { result[i] = ToOutputTensor(outputs[i]); } return result; } std::vector<Node*> ToNodes(const std::vector<Output>& outputs) { std::vector<Node*> result(outputs.size()); for (int i = 0; i < outputs.size(); ++i) { result[i] = outputs[i].node(); } return result; } string NextIterationName(const Scope& scope, int loop_var_idx) { string result; const string& prefix = scope.impl()->name(); if (!prefix.empty()) strings::StrAppend(&result, prefix, "/"); strings::StrAppend(&result, "NextIteration"); if (loop_var_idx > 0) strings::StrAppend(&result, "_", loop_var_idx); return result; } Status CreateMerge(const Scope& scope, int loop_var_idx, const Output& enter_output, Output* merge_output) { NodeBuilder::NodeOut enter_input(enter_output.node(), enter_output.index()); const int next_output_index = 0; DataType dtype = enter_output.node()->output_type(0); NodeBuilder::NodeOut next_input(NextIterationName(scope, loop_var_idx), next_output_index, dtype); std::vector<NodeBuilder::NodeOut> input_list({enter_input, next_input}); const string unique_name = scope.GetUniqueNameForOp("Merge"); NodeBuilder builder = NodeBuilder(unique_name, "Merge").Input(input_list); scope.UpdateBuilder(&builder); Node* merge_node; TF_RETURN_IF_ERROR(builder.Finalize(scope.graph(), &merge_node)); TF_RETURN_IF_ERROR(scope.DoShapeInference(merge_node)); *merge_output = Output(merge_node, 0); return absl::OkStatus(); } Status CreateCond(const Scope& scope, const CondGraphBuilderFn& cond, const std::vector<Output>& inputs, Output* output) { Scope cond_scope = scope.NewSubScope("cond").WithControlDependencies(inputs[0]); Output raw_cond_out; TF_RETURN_IF_ERROR(cond(cond_scope, inputs, &raw_cond_out)); TF_RETURN_IF_ERROR(scope.graph()->IsValidOutputTensor(raw_cond_out.node(), raw_cond_out.index())); if (raw_cond_out.type() != DT_BOOL) { return errors::InvalidArgument( "BuildWhileLoop: 'cond' argument must return a boolean output, got ", DataTypeString(raw_cond_out.type())); } *output = LoopCond(scope, raw_cond_out).output; return absl::OkStatus(); } Status CreateBody(const Scope& scope, const BodyGraphBuilderFn& body, const std::vector<Output>& inputs, std::vector<Output>* outputs) { DCHECK(outputs != nullptr); DCHECK(outputs->empty()); Scope body_scope = scope.NewSubScope("body").WithControlDependencies(inputs[0]); TF_RETURN_IF_ERROR(body(body_scope, inputs, outputs)); const size_t num_loop_vars = inputs.size(); if (outputs->size() != num_loop_vars) { return errors::InvalidArgument( "BuildWhileLoop: 'body' argument expected to return ", num_loop_vars, " output(s), got ", outputs->size()); } for (const Output& output : *outputs) { TF_RETURN_IF_ERROR( scope.graph()->IsValidOutputTensor(output.node(), output.index())); } return absl::OkStatus(); } } Status BuildWhileLoop(const Scope& scope, const std::vector<Output>& inputs, const CondGraphBuilderFn& cond, const BodyGraphBuilderFn& body, const string& frame_name, OutputList* outputs, bool create_while_ctx, Output* cond_output) { DCHECK(!inputs.empty()); DCHECK(outputs != nullptr); DCHECK(outputs->empty()); TF_RETURN_IF_ERROR(scope.status()); const size_t num_loop_vars = inputs.size(); std::vector<Output> enter_outputs(num_loop_vars); for (size_t i = 0; i < num_loop_vars; ++i) { enter_outputs[i] = internal::Enter(scope, inputs[i], frame_name); } TF_RETURN_IF_ERROR(scope.status()); std::vector<Output> merge_outputs(num_loop_vars); for (size_t i = 0; i < num_loop_vars; ++i) { TF_RETURN_IF_ERROR( CreateMerge(scope, i, enter_outputs[i], &merge_outputs[i])); } Output cond_out; TF_RETURN_IF_ERROR(CreateCond(scope, cond, merge_outputs, &cond_out)); if (cond_output != nullptr) *cond_output = cond_out; std::vector<Output> switch_trues(num_loop_vars); std::vector<Output> switch_falses(num_loop_vars); for (size_t i = 0; i < num_loop_vars; ++i) { auto switch_i = Switch(scope, merge_outputs[i], cond_out); switch_trues[i] = switch_i.output_true; switch_falses[i] = switch_i.output_false; } TF_RETURN_IF_ERROR(scope.status()); std::vector<Output> body_outputs; TF_RETURN_IF_ERROR(CreateBody(scope, body, switch_trues, &body_outputs)); std::vector<Output> next_outputs(num_loop_vars); for (size_t i = 0; i < num_loop_vars; ++i) { next_outputs[i] = NextIteration(scope, body_outputs[i]); DCHECK_EQ(next_outputs[i].node()->name(), NextIterationName(scope, i)); } TF_RETURN_IF_ERROR(scope.status()); for (size_t i = 0; i < num_loop_vars; ++i) { const int merge_backedge_output_index = 1; scope.graph()->AddEdge(next_outputs[i].node(), next_outputs[i].index(), merge_outputs[i].node(), merge_backedge_output_index); } outputs->resize(num_loop_vars); for (size_t i = 0; i < num_loop_vars; ++i) { (*outputs)[i] = internal::Exit(scope, switch_falses[i]); } TF_RETURN_IF_ERROR(scope.status()); if (create_while_ctx) { WhileContext* while_ctx; TF_RETURN_IF_ERROR(scope.graph()->AddWhileContext( frame_name, ToNodes(enter_outputs), ToNodes(*outputs), ToOutputTensor(cond_out), ToOutputTensors(switch_trues), ToOutputTensors(body_outputs), &while_ctx)); for (size_t i = 0; i < num_loop_vars; ++i) { (*outputs)[i].node()->set_while_ctx(while_ctx); } } return absl::OkStatus(); } } }
#include "tensorflow/cc/ops/while_loop.h" #include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/graph/while_context.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class WhileLoopTest : public ::testing::Test { protected: WhileLoopTest() : scope_(Scope::NewRootScope()) {} void Init(int num_inputs, DataType dtype = DT_INT32) { for (int i = 0; i < num_inputs; ++i) { inputs_.push_back(ops::Placeholder(scope_, dtype)); } } void CreateLoop(const ops::CondGraphBuilderFn& cond, const ops::BodyGraphBuilderFn& body, error::Code error_code = error::OK, const string& error_msg = "") { Status s = ops::BuildWhileLoop(scope_, inputs_, cond, body, kFrameName, &outputs_); EXPECT_EQ(s.code(), error_code); EXPECT_EQ(s.message(), error_msg); } template <typename T> void Run(const std::vector<Input::Initializer>& input_values, const std::vector<T>& expected_output_values) { ClientSession session(scope_); DCHECK_EQ(input_values.size(), inputs_.size()); ClientSession::FeedType feeds; for (int i = 0; i < inputs_.size(); ++i) { feeds.emplace(inputs_[i], input_values[i]); } std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(feeds, outputs_, &out_tensors)); ASSERT_EQ(out_tensors.size(), outputs_.size()); DCHECK_EQ(expected_output_values.size(), out_tensors.size()); for (int i = 0; i < out_tensors.size(); ++i) { test::ExpectTensorEqual<T>( out_tensors[i], test::AsTensor<T>({expected_output_values[i]}, {})); } } Scope scope_; std::vector<Output> inputs_; std::vector<Output> outputs_; static const char* const kFrameName; }; const char* const WhileLoopTest::kFrameName = "test_loop"; Status LessThanTenCond(const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = ops::Less(s, inputs[0], 10); return s.status(); } Status AddOneBody(const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { outputs->push_back(ops::Add(s, inputs[0], 1)); return s.status(); } TEST_F(WhileLoopTest, Basic) { Init(1); CreateLoop(LessThanTenCond, AddOneBody); WhileContext* while_ctx; for (int i = 0; i < outputs_.size(); ++i) { Node* node = outputs_[i].node(); ASSERT_TRUE(node->IsExit()) << "Output node " << i << ":\n" << node->DebugString(); ASSERT_TRUE(node->while_ctx() != nullptr) << i; if (i == 0) { while_ctx = node->while_ctx(); EXPECT_EQ(while_ctx->frame_name(), kFrameName); } else { EXPECT_EQ(node->while_ctx(), while_ctx) << i; } } Run<int>({1}, {10}); Run<int>({11}, {11}); } TEST_F(WhileLoopTest, WrongCondOutputType) { Init(1); CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = ops::Placeholder(s, DT_FLOAT); return s.status(); }, AddOneBody, error::INVALID_ARGUMENT, "BuildWhileLoop: 'cond' argument must return a boolean output, got " "float"); } TEST_F(WhileLoopTest, NullCondOutputNode) { Init(1); CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = {nullptr, 0}; return s.status(); }, AddOneBody, error::INVALID_ARGUMENT, "Node is null"); } TEST_F(WhileLoopTest, InvalidCondOutputIndex) { Init(1); CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { auto less = ops::Less(s, inputs[0], 10); *output = {less.node(), 100}; return s.status(); }, AddOneBody, error::OUT_OF_RANGE, "Node 'cond/Less' (type: 'Less', num of outputs: 1) does not have output " "100"); } TEST_F(WhileLoopTest, UnsetCondOutput) { Init(1); CreateLoop([](const Scope& s, const std::vector<Output>& inputs, Output* output) { return s.status(); }, AddOneBody, error::INVALID_ARGUMENT, "Node is null"); } TEST_F(WhileLoopTest, NullBodyOutputNode) { Init(1); CreateLoop(LessThanTenCond, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { outputs->push_back({nullptr, 0}); return s.status(); }, error::INVALID_ARGUMENT, "Node is null"); } TEST_F(WhileLoopTest, InvalidBodyOutputIndex) { Init(1); CreateLoop(LessThanTenCond, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { auto add = ops::Add(s, inputs[0], 1); outputs->emplace_back(add.node(), 100); return s.status(); }, error::OUT_OF_RANGE, "Node 'body/Add' (type: 'Add', num of outputs: 1) does not have " "output 100"); } TEST_F(WhileLoopTest, UnsetBodyOutputs) { Init(1); CreateLoop( LessThanTenCond, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { return s.status(); }, error::INVALID_ARGUMENT, "BuildWhileLoop: 'body' argument expected to return 1 output(s), got 0"); } } }
1,773
cpp
tensorflow/tensorflow
while_gradients
tensorflow/cc/framework/while_gradients.cc
tensorflow/cc/framework/while_gradients_test.cc
#ifndef TENSORFLOW_CC_FRAMEWORK_WHILE_GRADIENTS_H_ #define TENSORFLOW_CC_FRAMEWORK_WHILE_GRADIENTS_H_ #include <vector> #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/core/graph/while_context.h" namespace tensorflow { Status AddWhileLoopGradient(WhileContext* while_ctx, const Scope& scope, const std::vector<Output>& grad_inputs, std::vector<Output>* grad_outputs); } #endif #include "tensorflow/cc/framework/while_gradients.h" #include <string> #include "tensorflow/cc/framework/gradients.h" #include "tensorflow/cc/framework/scope_internal.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/cc/ops/while_loop.h" namespace tensorflow { namespace { using ops::BodyGraphBuilderFn; using ops::BuildWhileLoop; using ops::CondGraphBuilderFn; Output ToOutput(OutputTensor output_tensor) { return Output(const_cast<Node*>(output_tensor.node), output_tensor.index); } std::vector<Output> ToOutputVector( const std::vector<OutputTensor>& output_tensors) { const int n = output_tensors.size(); std::vector<Output> result; result.reserve(n); for (int i = 0; i < n; ++i) result.push_back(ToOutput(output_tensors[i])); return result; } string BackPropFrameName(const string& forward_frame_name) { return strings::StrCat(forward_frame_name, "_backprop"); } Status AddForwardLoopCounter(WhileContext* while_ctx, const Scope& scope, Output* count) { Output zero = ops::Const(scope, 0, {}); CondGraphBuilderFn cond_fn = [while_ctx](const Scope& scope, const std::vector<Output>& inputs, Output* output) { *output = ToOutput(while_ctx->cond_output()); return absl::OkStatus(); }; BodyGraphBuilderFn body_fn = [](const Scope& scope, const std::vector<Output>& inputs, std::vector<Output>* outputs) { DCHECK_EQ(inputs.size(), 1); outputs->emplace_back(ops::Add(scope, inputs[0], 1)); return scope.status(); }; std::vector<Output> outputs; TF_RETURN_IF_ERROR(BuildWhileLoop(scope, {zero}, cond_fn, body_fn, while_ctx->frame_name(), &outputs, false)); *count = outputs[0]; return absl::OkStatus(); } Status AddBackPropLoopCounter(WhileContext* while_ctx, const Output& loop_count, const Scope& scope, Output* backprop_execution_pred) { CondGraphBuilderFn cond_fn = [](const Scope& scope, const std::vector<Output>& inputs, Output* output) { DCHECK_EQ(inputs.size(), 1); *output = ops::Greater(scope, inputs[0], 0); return scope.status(); }; BodyGraphBuilderFn body_fn = [](const Scope& scope, const std::vector<Output>& inputs, std::vector<Output>* outputs) { DCHECK_EQ(inputs.size(), 1); outputs->emplace_back(ops::Subtract(scope, inputs[0], 1)); return scope.status(); }; string frame_name = BackPropFrameName(while_ctx->frame_name()); std::vector<Output> outputs; TF_RETURN_IF_ERROR(BuildWhileLoop( scope, {loop_count}, cond_fn, body_fn, frame_name, &outputs, false, backprop_execution_pred)); return absl::OkStatus(); } Status AddWhileGradientLoop(WhileContext* while_ctx, const std::vector<Output>& grad_inputs, const Output& backprop_execution_pred, const Scope& parent_scope, std::vector<Output>* grad_outputs) { DCHECK_EQ(grad_inputs.size(), while_ctx->body_outputs().size()); DCHECK_EQ(while_ctx->body_inputs().size(), while_ctx->body_outputs().size()); Scope scope = parent_scope.NewSubScope("while"); CondGraphBuilderFn cond_fn = [backprop_execution_pred]( const Scope& scope, const std::vector<Output>& inputs, Output* output) { *output = backprop_execution_pred; return absl::OkStatus(); }; BodyGraphBuilderFn body_fn = [while_ctx](const Scope& scope, const std::vector<Output>& inputs, std::vector<Output>* outputs) { std::vector<Output> body_outputs = ToOutputVector(while_ctx->body_outputs()); std::vector<Output> body_inputs = ToOutputVector(while_ctx->body_inputs()); return AddSymbolicGradients(scope, body_outputs, body_inputs, inputs, outputs); }; string frame_name = BackPropFrameName(while_ctx->frame_name()); TF_RETURN_IF_ERROR(BuildWhileLoop(scope, grad_inputs, cond_fn, body_fn, frame_name, grad_outputs, false)); return absl::OkStatus(); } } Status AddWhileLoopGradient(WhileContext* while_ctx, const Scope& scope, const std::vector<Output>& grad_inputs, std::vector<Output>* grad_outputs) { Output forward_loop_count; TF_RETURN_IF_ERROR(AddForwardLoopCounter( while_ctx, scope.NewSubScope("ForwardLoopCounter"), &forward_loop_count)); Output backprop_counter_cond; TF_RETURN_IF_ERROR(AddBackPropLoopCounter( while_ctx, forward_loop_count, scope.NewSubScope("BackPropLoopCounter"), &backprop_counter_cond)); return AddWhileGradientLoop(while_ctx, grad_inputs, backprop_counter_cond, scope, grad_outputs); } }
#include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/gradients.h" #include "tensorflow/cc/framework/testutil.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/cc/ops/while_loop.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class WhileGradientsTest : public ::testing::Test { protected: WhileGradientsTest() : scope_(Scope::NewRootScope()) {} void Init(int num_inputs, DataType dtype = DT_INT32) { for (int i = 0; i < num_inputs; ++i) { inputs_.push_back(ops::Placeholder(scope_, dtype)); } } void CreateLoop(const ops::CondGraphBuilderFn& cond, const ops::BodyGraphBuilderFn& body, const std::vector<Output>* inputs = nullptr) { if (inputs == nullptr) inputs = &inputs_; TF_ASSERT_OK(ops::BuildWhileLoop(scope_, *inputs, cond, body, "test_loop", &outputs_)); } void CreateBackprop() { TF_ASSERT_OK( AddSymbolicGradients(scope_, outputs_, inputs_, &grad_outputs_)); ASSERT_EQ(grad_outputs_.size(), inputs_.size()); } template <typename T> void Run(const std::vector<Input::Initializer>& input_values, const std::vector<T>& expected_grad_values) { Run<T>(ClientSession(scope_), input_values, expected_grad_values); } template <typename T> void Run(const ClientSession& session, const std::vector<Input::Initializer>& input_values, const std::vector<T>& expected_grad_values, const RunOptions& run_options = RunOptions(), RunMetadata* run_metadata = nullptr) { DCHECK_EQ(input_values.size(), inputs_.size()); ClientSession::FeedType feeds; for (int i = 0; i < inputs_.size(); ++i) { feeds.emplace(inputs_[i], input_values[i]); } std::vector<Operation> run_outputs; std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(run_options, feeds, grad_outputs_, run_outputs, &out_tensors, run_metadata)); ASSERT_EQ(out_tensors.size(), grad_outputs_.size()); DCHECK_EQ(expected_grad_values.size(), out_tensors.size()); for (int i = 0; i < out_tensors.size(); ++i) { test::ExpectTensorEqual<T>( out_tensors[i], test::AsTensor<T>({expected_grad_values[i]}, {})); } } Scope scope_; std::vector<Output> inputs_; std::vector<Output> outputs_; std::vector<Output> grad_outputs_; }; TEST_F(WhileGradientsTest, Basic) { Init(1); CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = ops::Less(s, inputs[0], 10); return s.status(); }, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { outputs->push_back(ops::AddN(s, {inputs[0], 1})); return s.status(); }); CreateBackprop(); Run<int>({1}, {1}); Run<int>({11}, {1}); } TEST_F(WhileGradientsTest, MultipleLoopVars) { Init(3); CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = ops::Less(s, inputs[0], 10); return s.status(); }, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { outputs->push_back(ops::AddN(s, {inputs[0], inputs[1]})); outputs->push_back(ops::AddN(s, {inputs[1], 1})); outputs->push_back(inputs[2]); return s.status(); }); CreateBackprop(); Run<int>({0, 1, 2}, {1, 5, 1}); Run<int>({1, 1, 0}, {1, 5, 1}); Run<int>({0, 0, 0}, {1, 6, 1}); } TEST_F(WhileGradientsTest, Chaining) { Init(2, DT_DOUBLE); std::vector<Output> loop_inputs = {ops::Multiply(scope_, inputs_[0], 2.0), ops::Multiply(scope_, inputs_[1], 2.0)}; CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = ops::LogicalAnd(s, ops::Greater(s, inputs[0], 0.0), ops::Greater(s, inputs[1], 0.0)); return s.status(); }, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { outputs->push_back(ops::AddN(s, {inputs[0], -1.0})); outputs->push_back(inputs[1]); return s.status(); }, &loop_inputs); outputs_[0] = ops::Neg(scope_, outputs_[0]); CreateBackprop(); Run<double>({1.0, 1.0}, {-2.0, 2.0}); Run<double>({0.0, 0.0}, {-2.0, 2.0}); } TEST_F(WhileGradientsTest, MultipleDevices) { scope_ = scope_.WithDevice("/cpu:0"); Init(2); CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = ops::Less(s, inputs[0], 10); return s.status(); }, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { Scope cpu1_scope = s.WithDevice("/cpu:1"); outputs->push_back(ops::AddN(cpu1_scope, {inputs[0], inputs[1]})); outputs->push_back(inputs[1]); return cpu1_scope.status(); }); Scope cpu1_scope = scope_.WithDevice("/cpu:1"); TF_ASSERT_OK( AddSymbolicGradients(cpu1_scope, outputs_, inputs_, &grad_outputs_)); ASSERT_EQ(grad_outputs_.size(), inputs_.size()); SessionOptions session_options; (*session_options.config.mutable_device_count())["CPU"] = 2; RunOptions run_options; run_options.set_output_partition_graphs(true); RunMetadata run_metadata; Run<int>(ClientSession(scope_, session_options), {0, 1}, {1, 11}, run_options, &run_metadata); ASSERT_EQ(run_metadata.partition_graphs().size(), 2); for (const GraphDef& partition_graph : run_metadata.partition_graphs()) { EXPECT_GE(partition_graph.node().size(), 1); } } } }
1,774
cpp
tensorflow/tensorflow
cc_op_gen
tensorflow/cc/framework/cc_op_gen.cc
tensorflow/cc/framework/cc_op_gen_test.cc
#ifndef TENSORFLOW_CC_FRAMEWORK_CC_OP_GEN_H_ #define TENSORFLOW_CC_FRAMEWORK_CC_OP_GEN_H_ #include <string> #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace cc_op { void WriteCCOps(const OpList& ops, const ApiDefMap& api_def_map, const string& dot_h_fname, const string& dot_cc_fname); } } #endif #include "tensorflow/cc/framework/cc_op_gen.h" #include <memory> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/strings/escaping.h" #include "tensorflow/cc/framework/cc_op_gen_util.h" #include "tensorflow/core/framework/api_def.pb.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace cc_op { namespace { const int kRightMargin = 79; string GetConstructorDecl(const OpInfo& op_info, StringPiece op_name_prefix, bool include_attr) { const string prefix = strings::StrCat(op_name_prefix, op_info.op_name, "("); string c_decl; for (int i = 0; i < op_info.arg_types.size(); ++i) { if (i > 0) strings::StrAppend(&c_decl, ", "); strings::StrAppend(&c_decl, op_info.arg_types[i], " ", op_info.arg_names[i]); } if (include_attr && op_info.has_optional_attrs) { strings::StrAppend(&c_decl, ", const ", op_info.op_name, "::Attrs& attrs"); } strings::StrAppend(&c_decl, ")"); return WordWrap(prefix, c_decl, kRightMargin); } void WriteClassDecl(const OpInfo& op_info, WritableFile* h) { string class_decl = op_info.comment; strings::StrAppend(&class_decl, "class ", op_info.op_name, " {\n"); strings::StrAppend(&class_decl, " public:\n"); if (op_info.has_optional_attrs) { strings::StrAppend(&class_decl, op_info.GetOpAttrStruct()); } strings::StrAppend(&class_decl, " ", GetConstructorDecl(op_info, "", false), ";\n"); if (op_info.has_optional_attrs) { strings::StrAppend(&class_decl, " ", GetConstructorDecl(op_info, "", true), ";\n"); } if (op_info.output_types.empty()) { strings::StrAppend(&class_decl, " operator ::tensorflow::Operation() const { " "return operation; }\n"); } else if (op_info.output_types.size() == 1) { if (op_info.is_list_output[0]) { strings::StrAppend(&class_decl, " ::tensorflow::Output operator[](size_t index) " "const { return ", op_info.output_names[0], "[index]; }\n\n"); } else { strings::StrAppend(&class_decl, " operator ::tensorflow::Output() const { return ", op_info.output_names[0], "; }\n"); strings::StrAppend(&class_decl, " operator ::tensorflow::Input() const { return ", op_info.output_names[0], "; }\n"); strings::StrAppend(&class_decl, " ::tensorflow::Node* node() const { return ", op_info.output_names[0], ".node(); }\n"); } } if (op_info.has_optional_attrs) { strings::StrAppend(&class_decl, "\n"); for (int i = 0; i < op_info.graph_op_def.attr_size(); ++i) { const auto& attr(op_info.graph_op_def.attr(i)); const auto& api_def_attr(op_info.api_def.attr(i)); if ((op_info.inferred_input_attrs.find(attr.name()) != op_info.inferred_input_attrs.end()) || !api_def_attr.has_default_value()) { continue; } const auto entry = AttrTypeName(attr.type()); const auto attr_type_name = entry.first; const bool use_const = entry.second; const string camel_case_name = ToCamelCase(api_def_attr.rename_to()); const string suffix = (camel_case_name == op_info.op_name || camel_case_name == "Attrs") ? "_" : ""; const string attr_func_def = strings::StrCat( camel_case_name, suffix, "(", use_const ? "const " : "", attr_type_name, use_const ? "&" : ""); strings::StrAppend(&class_decl, " static Attrs ", attr_func_def, " x) {\n"); strings::StrAppend(&class_decl, " return Attrs().", camel_case_name, suffix, "(x);\n"); strings::StrAppend(&class_decl, " }\n"); } } strings::StrAppend(&class_decl, "\n Operation operation;\n"); for (int i = 0; i < op_info.output_types.size(); ++i) { strings::StrAppend(&class_decl, " ", op_info.output_types[i], " ", op_info.output_names[i], ";\n"); } strings::StrAppend(&class_decl, "};\n"); if (!op_info.aliases.empty()) { for (const auto& alias : op_info.aliases) { strings::StrAppend(&class_decl, "typedef ", op_info.op_name, " ", alias, ";\n"); } } strings::StrAppend(&class_decl, "\n"); TF_CHECK_OK(h->Append(class_decl)); } void GetOutput(const OpInfo& op_info, string* out) { const string scope_str = op_info.arg_names[0]; string return_on_error = strings::StrCat("if (!", scope_str, ".ok()) return;"); strings::StrAppend(out, " this->operation = Operation(ret);\n"); if (op_info.graph_op_def.output_arg_size() == 0) { strings::StrAppend(out, " return;\n"); return; } if (op_info.graph_op_def.output_arg_size() == 1) { if (op_info.is_list_output[0]) { strings::StrAppend(out, " for (int32 i = 0; i < ret->num_outputs(); ++i)\n"); strings::StrAppend(out, " this->", op_info.output_names[0], ".push_back(Output(ret, i));\n"); } else { strings::StrAppend(out, " this->", op_info.output_names[0], " = Output(ret, 0);\n"); } return; } strings::StrAppend(out, " ::tensorflow::NameRangeMap _outputs_range;\n"); strings::StrAppend(out, " ::tensorflow::Status _status_ = " "::tensorflow::NameRangesForNode(*ret, ret->op_def(), " "nullptr, &_outputs_range);\n"); strings::StrAppend(out, " if (!_status_.ok()) {\n", " ", scope_str, ".UpdateStatus(_status_);\n", " return;\n"); strings::StrAppend(out, " }\n\n"); for (int i = 0; i < op_info.graph_op_def.output_arg_size(); ++i) { const string arg_range = strings::StrCat( "_outputs_range[\"", op_info.graph_op_def.output_arg(i).name(), "\"]"); if (op_info.is_list_output[i]) { strings::StrAppend(out, " for (int32 i = ", arg_range, ".first; i < ", arg_range, ".second; ++i)\n"); strings::StrAppend(out, " this->", op_info.output_names[i], ".push_back(Output(ret, i));\n"); } else { strings::StrAppend(out, " this->", op_info.output_names[i], " = Output(ret, ", arg_range, ".first);\n"); } } } string GetConstructorBody(const OpInfo& op_info) { const string scope_str = op_info.arg_names[0]; string body; string return_on_error = strings::StrCat("if (!", scope_str, ".ok()) return;"); strings::StrAppend(&body, " ", return_on_error, "\n"); for (int i = 0; i < op_info.graph_op_def.input_arg_size(); ++i) { const auto& arg(op_info.graph_op_def.input_arg(i)); const auto& api_def_arg(op_info.api_def.in_arg(i)); strings::StrAppend( &body, " auto _", api_def_arg.rename_to(), " = ::tensorflow::ops::", ArgIsList(arg) ? "AsNodeOutList" : "AsNodeOut", "(", scope_str, ", ", AvoidCPPKeywords(api_def_arg.rename_to()), ");\n"); strings::StrAppend(&body, " ", return_on_error, "\n"); } strings::StrAppend(&body, " ::tensorflow::Node* ret;\n"); strings::StrAppend(&body, " const auto unique_name = ", scope_str, ".GetUniqueNameForOp(\"", op_info.op_name, "\");\n"); strings::StrAppend( &body, " auto builder = ::tensorflow::NodeBuilder(unique_name, \"", op_info.graph_op_def.name(), "\")\n"); const string spaces = " "; for (int i = 0; i < op_info.api_def.in_arg_size(); ++i) { const auto& arg(op_info.api_def.in_arg(i)); strings::StrAppend(&body, spaces, ".Input(_", arg.rename_to(), ")\n"); } for (int i = 0; i < op_info.api_def.attr_size(); ++i) { const auto& graph_attr(op_info.graph_op_def.attr(i)); const auto& api_def_attr(op_info.api_def.attr(i)); if (op_info.inferred_input_attrs.find(api_def_attr.name()) != op_info.inferred_input_attrs.end()) { continue; } const string attr_name = api_def_attr.has_default_value() ? strings::StrCat("attrs.", api_def_attr.rename_to(), "_") : AvoidCPPKeywords(api_def_attr.rename_to()); strings::StrAppend(&body, spaces, ".Attr(\"", graph_attr.name(), "\", ", attr_name, ")\n"); } strings::StrAppend(&body, " ;\n"); strings::StrAppend(&body, " ", scope_str, ".UpdateBuilder(&builder);\n"); strings::StrAppend(&body, " ", scope_str, ".UpdateStatus(builder.Finalize(", scope_str, ".graph(), &ret));\n"); strings::StrAppend(&body, " ", return_on_error, "\n"); strings::StrAppend(&body, " ", scope_str, ".UpdateStatus(", scope_str, ".DoShapeInference(ret));\n"); GetOutput(op_info, &body); return body; } void WriteClassDef(const OpInfo& op_info, WritableFile* cc) { string class_def; strings::StrAppend( &class_def, GetConstructorDecl(op_info, strings::StrCat(op_info.op_name, "::"), true), " {\n"); strings::StrAppend(&class_def, GetConstructorBody(op_info)); strings::StrAppend(&class_def, "}\n\n"); if (op_info.has_optional_attrs) { strings::StrAppend( &class_def, GetConstructorDecl(op_info, strings::StrCat(op_info.op_name, "::"), false)); strings::StrAppend(&class_def, "\n : ", op_info.op_name, "("); int i = 0; for (; i < op_info.arg_names.size(); ++i) { if (i > 0) strings::StrAppend(&class_def, ", "); strings::StrAppend(&class_def, op_info.arg_names[i]); } if (i > 0) strings::StrAppend(&class_def, ", "); strings::StrAppend(&class_def, op_info.op_name, "::Attrs()"); strings::StrAppend(&class_def, ") {}\n\n"); } TF_CHECK_OK(cc->Append(class_def)); } void WriteCCOp(const OpDef& graph_op_def, const ApiDef& api_def, const std::vector<string>& aliases, WritableFile* h, WritableFile* cc) { OpInfo op_info(graph_op_def, api_def, aliases); WriteClassDecl(op_info, h); WriteClassDef(op_info, cc); } void StartFiles(bool internal, const string& dot_h_fname, WritableFile* h, WritableFile* cc, string* op_header_guard) { const string header = R"header( #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/gtl/array_slice.h" )header"; const string namespace_begin = internal ? R"namespace( namespace tensorflow { namespace ops { namespace internal { )namespace" : R"namespace( namespace tensorflow { namespace ops { )namespace"; const string op_header = GetPath(dot_h_fname); *op_header_guard = ToGuard(op_header); const string cc_header = strings::StrCat( R"include( #include "tensorflow/cc/ops/const_op.h" )include", "#include \"", op_header, "\"\n", namespace_begin); const string filename = GetFilename(dot_h_fname); const string doxygen = strings::StrCat(" ToTitle(filename), "\n", " TF_CHECK_OK(h->Append( strings::StrCat(" "#ifndef ", *op_header_guard, "\n" "#define ", *op_header_guard, "\n\n"))); TF_CHECK_OK(h->Append(header)); TF_CHECK_OK(h->Append(namespace_begin)); TF_CHECK_OK(h->Append(doxygen)); TF_CHECK_OK(cc->Append(cc_header)); } void FinishFiles(bool internal, WritableFile* h, WritableFile* cc, const string& op_header_guard) { const string footer = internal ? R"footer(} } } )footer" : R"footer( } } )footer"; TF_CHECK_OK(h->Append(footer)); TF_CHECK_OK( h->Append(strings::StrCat("\n#endif ", " TF_CHECK_OK(cc->Append(footer)); TF_CHECK_OK(cc->Close()); TF_CHECK_OK(h->Close()); } string MakeInternal(const string& fname) { auto dot_pos = fname.rfind('.'); if (dot_pos == string::npos) { return strings::StrCat(fname, "_internal"); } else { return strings::StrCat(fname.substr(0, dot_pos), "_internal", fname.substr(dot_pos)); } } } void WriteCCOps(const OpList& ops, const ApiDefMap& api_def_map, const string& dot_h_fname, const string& dot_cc_fname) { Env* env = Env::Default(); std::unique_ptr<WritableFile> h = nullptr; std::unique_ptr<WritableFile> cc = nullptr; TF_CHECK_OK(env->NewWritableFile(dot_h_fname, &h)); TF_CHECK_OK(env->NewWritableFile(dot_cc_fname, &cc)); string op_header_guard; StartFiles(false, dot_h_fname, h.get(), cc.get(), &op_header_guard); std::unique_ptr<WritableFile> internal_h = nullptr; std::unique_ptr<WritableFile> internal_cc = nullptr; const string internal_dot_h_fname = MakeInternal(dot_h_fname); TF_CHECK_OK(env->NewWritableFile(internal_dot_h_fname, &internal_h)); TF_CHECK_OK(env->NewWritableFile(MakeInternal(dot_cc_fname), &internal_cc)); string internal_op_header_guard; StartFiles(true , internal_dot_h_fname, internal_h.get(), internal_cc.get(), &internal_op_header_guard); for (const auto& graph_op_def : ops.op()) { if (graph_op_def.has_deprecation() && graph_op_def.deprecation().version() <= TF_GRAPH_DEF_VERSION) { continue; } if (graph_op_def.name() == "Const") continue; const auto* api_def = api_def_map.GetApiDef(graph_op_def.name()); std::vector<string> aliases; if (api_def->visibility() == ApiDef::SKIP) continue; for (int endpoint_i = 1; endpoint_i < api_def->endpoint_size(); ++endpoint_i) { aliases.push_back(api_def->endpoint(endpoint_i).name()); } if (api_def->visibility() == ApiDef::HIDDEN) { WriteCCOp(graph_op_def, *api_def, aliases, internal_h.get(), internal_cc.get()); continue; } WriteCCOp(graph_op_def, *api_def, aliases, h.get(), cc.get()); } FinishFiles(false, h.get(), cc.get(), op_header_guard); FinishFiles(true , internal_h.get(), internal_cc.get(), internal_op_header_guard); } } }
#include "tensorflow/cc/framework/cc_op_gen.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { constexpr char kBaseOpDef[] = R"( op { name: "Foo" input_arg { name: "images" description: "Images to process." } input_arg { name: "dim" description: "Description for dim." type: DT_FLOAT } output_arg { name: "output" description: "Description for output." type: DT_FLOAT } attr { name: "T" type: "type" description: "Type for images" allowed_values { list { type: DT_UINT8 type: DT_INT8 } } default_value { i: 1 } } summary: "Summary for op Foo." description: "Description for op Foo." } )"; void ExpectHasSubstr(StringPiece s, StringPiece expected) { EXPECT_TRUE(absl::StrContains(s, expected)) << "'" << s << "' does not contain '" << expected << "'"; } void ExpectDoesNotHaveSubstr(StringPiece s, StringPiece expected) { EXPECT_FALSE(absl::StrContains(s, expected)) << "'" << s << "' contains '" << expected << "'"; } void ExpectSubstrOrder(const string& s, const string& before, const string& after) { int before_pos = s.find(before); int after_pos = s.find(after); ASSERT_NE(std::string::npos, before_pos); ASSERT_NE(std::string::npos, after_pos); EXPECT_LT(before_pos, after_pos) << before << " is not before " << after << " in " << s; } void GenerateCcOpFiles(Env* env, const OpList& ops, const ApiDefMap& api_def_map, string* h_file_text, string* internal_h_file_text) { const string& tmpdir = testing::TmpDir(); const auto h_file_path = io::JoinPath(tmpdir, "test.h"); const auto cc_file_path = io::JoinPath(tmpdir, "test.cc"); const auto internal_h_file_path = io::JoinPath(tmpdir, "test_internal.h"); const auto internal_cc_file_path = io::JoinPath(tmpdir, "test_internal.cc"); cc_op::WriteCCOps(ops, api_def_map, h_file_path, cc_file_path); TF_ASSERT_OK(ReadFileToString(env, h_file_path, h_file_text)); TF_ASSERT_OK( ReadFileToString(env, internal_h_file_path, internal_h_file_text)); } TEST(CcOpGenTest, TestVisibilityChangedToHidden) { const string api_def = R"( op { graph_op_name: "Foo" visibility: HIDDEN } )"; Env* env = Env::Default(); OpList op_defs; protobuf::TextFormat::ParseFromString(kBaseOpDef, &op_defs); ApiDefMap api_def_map(op_defs); string h_file_text, internal_h_file_text; GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(h_file_text, "class Foo"); ExpectDoesNotHaveSubstr(internal_h_file_text, "class Foo"); TF_ASSERT_OK(api_def_map.LoadApiDef(api_def)); GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(internal_h_file_text, "class Foo"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo"); } TEST(CcOpGenTest, TestArgNameChanges) { const string api_def = R"( op { graph_op_name: "Foo" arg_order: "dim" arg_order: "images" } )"; Env* env = Env::Default(); OpList op_defs; protobuf::TextFormat::ParseFromString(kBaseOpDef, &op_defs); ApiDefMap api_def_map(op_defs); string cc_file_text, h_file_text; string internal_cc_file_text, internal_h_file_text; GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectSubstrOrder(h_file_text, "Input images", "Input dim"); TF_ASSERT_OK(api_def_map.LoadApiDef(api_def)); GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectSubstrOrder(h_file_text, "Input dim", "Input images"); } TEST(CcOpGenTest, TestEndpoints) { const string api_def = R"( op { graph_op_name: "Foo" endpoint { name: "Foo1" } endpoint { name: "Foo2" } } )"; Env* env = Env::Default(); OpList op_defs; protobuf::TextFormat::ParseFromString(kBaseOpDef, &op_defs); ApiDefMap api_def_map(op_defs); string cc_file_text, h_file_text; string internal_cc_file_text, internal_h_file_text; GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(h_file_text, "class Foo {"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo1"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo2"); TF_ASSERT_OK(api_def_map.LoadApiDef(api_def)); GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(h_file_text, "class Foo1"); ExpectHasSubstr(h_file_text, "typedef Foo1 Foo2"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo {"); } } }
1,775
cpp
tensorflow/tensorflow
scope
tensorflow/cc/framework/scope.cc
tensorflow/cc/framework/scope_test.cc
#ifndef TENSORFLOW_CC_FRAMEWORK_SCOPE_H_ #define TENSORFLOW_CC_FRAMEWORK_SCOPE_H_ #include <memory> #include <string> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/strings/str_cat.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/gtl/array_slice.h" namespace tensorflow { class Graph; class GraphDef; class NodeBuilder; struct CompositeOpScopes; class Scope { public: Scope(const Scope& other); ~Scope(); Scope& operator=(const Scope& other); static Scope NewRootScope(); Scope NewSubScope(const string& child_scope_name) const; template <typename... Ty> Scope WithOpName(Ty... fragments) const { return WithOpNameImpl(absl::StrCat(fragments...)); } Scope WithControlDependencies(absl::Span<const Operation> control_deps) const; Scope WithControlDependencies(const Output& control_dep) const; Scope WithNoControlDependencies() const; Scope WithDevice(const string& device) const; Scope WithAssignedDevice(const string& assigned_device) const; Scope WithXlaCluster(const string& xla_cluster) const; Scope ColocateWith(const Operation& op) const; Scope ColocateWith(const Output& out) const { return ColocateWith(out.op()); } Scope ClearColocation() const; Scope ExitOnError() const; Scope WithKernelLabel(const string& kernel_label) const; string GetUniqueNameForOp(const string& default_name) const; void UpdateStatus(const Status& s) const; void UpdateBuilder(NodeBuilder* builder) const; CompositeOpScopes GetCompositeOpScopes(const string& composite_op_name) const; bool ok() const; Graph* graph() const; std::shared_ptr<Graph> graph_as_shared_ptr() const; Status status() const; Status ToGraphDef(GraphDef* gdef, bool include_debug_info = false) const; Status ToGraph( Graph* g, GraphConstructorOptions opts = GraphConstructorOptions{}) const; Status DoShapeInference(Node* node) const; static Scope DisabledShapeInferenceScope(); const std::vector<Operation>& control_deps() const; class Impl; Impl* impl() { return impl_.get(); } const Impl* impl() const { return impl_.get(); } private: Scope WithOpNameImpl(const string& op_name) const; friend class InternalScope; std::unique_ptr<Impl> impl_; explicit Scope(Impl*); }; struct CompositeOpScopes { Scope child; Scope last; }; Status CreateOutputWithScope(string op_name, absl::Span<const ::tensorflow::Input> inputs, const Scope& scope, Output* output); } #endif #include <algorithm> #include <vector> #include "tensorflow/cc/framework/scope_internal.h" #include "tensorflow/core/common_runtime/shape_refiner.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { Scope::Scope(Impl* impl) : impl_(impl) {} Scope::Scope(const Scope& other) : impl_(new Impl(*other.impl())) {} Scope::~Scope() {} Scope& Scope::operator=(const Scope& other) { impl_.reset(new Impl(*other.impl_)); return *this; } namespace { const char kScopeSeparator[] = "/"; const char kSuffixSeparator[] = "_"; } Scope::Impl::Impl(Graph* graph, Status* status, NameMap* name_map, ShapeRefiner* refiner, bool disable_shape_inference) : graph_(graph), status_(status), name_map_(name_map), refiner_(refiner), scope_used_(nullptr), colocation_constraints_(), disable_shape_inference_(disable_shape_inference) {} Scope::Impl::Impl(const std::shared_ptr<Graph>& graph, const std::shared_ptr<Status>& status, const std::shared_ptr<NameMap>& name_map, const std::shared_ptr<ShapeRefiner>& refiner) : graph_(graph), status_(status), name_map_(name_map), refiner_(refiner), scope_used_(nullptr), colocation_constraints_(), disable_shape_inference_(refiner_ == nullptr) {} Scope Scope::NewRootScope() { Graph* graph = new Graph(OpRegistry::Global()); ShapeRefiner* refiner = new ShapeRefiner(graph->versions(), graph->op_registry()); return Scope(new Impl(graph, new Status, new Impl::NameMap, refiner, false)); } Scope Scope::DisabledShapeInferenceScope() { Graph* graph = new Graph(OpRegistry::Global()); ShapeRefiner* refiner = new ShapeRefiner(graph->versions(), graph->op_registry()); return Scope(new Impl(graph, new Status, new Impl::NameMap, refiner, true)); } Scope::Impl::Impl(const Scope& other, Tags::ScopeName, const string& name, bool copy_names) : graph_(other.impl()->graph_), status_(other.impl()->status_), name_map_(copy_names ? other.impl()->name_map_ : std::shared_ptr<NameMap>(new NameMap)), refiner_(other.impl()->refiner_), scope_used_(nullptr), control_deps_(other.impl()->control_deps_), name_(name), op_name_(""), exit_on_error_(other.impl()->exit_on_error_), kernel_label_(other.impl()->kernel_label_), device_(other.impl()->device_), assigned_device_(other.impl()->assigned_device_), xla_cluster_(other.impl()->xla_cluster_), colocation_constraints_(other.impl()->colocation_constraints_), disable_shape_inference_(other.impl()->disable_shape_inference_) {} Scope::Impl::Impl(const Scope& other, Tags::OpName, const string& name, const string& op_name) : graph_(other.impl()->graph_), status_(other.impl()->status_), name_map_(other.impl()->name_map_), refiner_(other.impl()->refiner_), scope_used_(other.impl()->scope_used_), control_deps_(other.impl()->control_deps_), name_(name), op_name_(op_name), exit_on_error_(other.impl()->exit_on_error_), kernel_label_(other.impl()->kernel_label_), device_(other.impl()->device_), assigned_device_(other.impl()->assigned_device_), xla_cluster_(other.impl()->xla_cluster_), colocation_constraints_(other.impl()->colocation_constraints_), disable_shape_inference_(other.impl()->disable_shape_inference_) {} Scope::Impl::Impl(const Scope& other, Tags::ControlDeps, std::vector<Operation> control_deps, bool clear_control_deps) : graph_(other.impl()->graph_), status_(other.impl()->status_), name_map_(other.impl()->name_map_), refiner_(other.impl()->refiner_), scope_used_(other.impl()->scope_used_), control_deps_( clear_control_deps ? std::vector<Operation>() : (control_deps.insert(control_deps.begin(), other.impl()->control_deps_.begin(), other.impl()->control_deps_.end()), control_deps)), name_(other.impl()->name_), op_name_(other.impl()->op_name_), exit_on_error_(other.impl()->exit_on_error_), kernel_label_(other.impl()->kernel_label_), device_(other.impl()->device_), assigned_device_(other.impl()->assigned_device_), xla_cluster_(other.impl()->xla_cluster_), colocation_constraints_(other.impl()->colocation_constraints_), disable_shape_inference_(other.impl()->disable_shape_inference_) {} Scope::Impl::Impl(const Scope& other, Tags::Device, const string& device) : graph_(other.impl()->graph_), status_(other.impl()->status_), name_map_(other.impl()->name_map_), refiner_(other.impl()->refiner_), scope_used_(other.impl()->scope_used_), control_deps_(other.impl()->control_deps_), name_(other.impl()->name_), op_name_(other.impl()->op_name_), exit_on_error_(other.impl()->exit_on_error_), kernel_label_(other.impl()->kernel_label_), device_(device), assigned_device_(other.impl()->assigned_device_), xla_cluster_(other.impl()->xla_cluster_), colocation_constraints_(other.impl()->colocation_constraints_), disable_shape_inference_(other.impl()->disable_shape_inference_) {} Scope::Impl::Impl(const Scope& other, Tags::SingleUseScope, const string& op_name) : graph_(other.impl()->graph_), status_(other.impl()->status_), name_map_(other.impl()->name_map_), refiner_(other.impl()->refiner_), scope_used_(new bool(false)), control_deps_(other.impl()->control_deps_), name_(other.impl()->name_), op_name_(op_name), exit_on_error_(other.impl()->exit_on_error_), kernel_label_(other.impl()->kernel_label_), device_(other.impl()->device_), assigned_device_(other.impl()->assigned_device_), xla_cluster_(other.impl()->xla_cluster_), colocation_constraints_(other.impl()->colocation_constraints_), disable_shape_inference_(other.impl()->disable_shape_inference_) {} Scope::Impl::Impl(const Scope& other, Tags::ExitOnError) : graph_(other.impl()->graph_), status_(other.impl()->status_), name_map_(other.impl()->name_map_), refiner_(other.impl()->refiner_), scope_used_(other.impl()->scope_used_), control_deps_(other.impl()->control_deps_), name_(other.impl()->name_), op_name_(other.impl()->op_name_), exit_on_error_(true), kernel_label_(other.impl()->kernel_label_), device_(other.impl()->device_), assigned_device_(other.impl()->assigned_device_), xla_cluster_(other.impl()->xla_cluster_), colocation_constraints_(other.impl()->colocation_constraints_), disable_shape_inference_(other.impl()->disable_shape_inference_) {} Scope::Impl::Impl(const Scope& other, Tags::KernelLabel, const string& kernel_label) : graph_(other.impl()->graph_), status_(other.impl()->status_), name_map_(other.impl()->name_map_), refiner_(other.impl()->refiner_), scope_used_(other.impl()->scope_used_), control_deps_(other.impl()->control_deps_), name_(other.impl()->name_), op_name_(other.impl()->op_name_), exit_on_error_(other.impl()->exit_on_error_), kernel_label_(kernel_label), device_(other.impl()->device_), assigned_device_(other.impl()->assigned_device_), xla_cluster_(other.impl()->xla_cluster_), colocation_constraints_(other.impl()->colocation_constraints_), disable_shape_inference_(other.impl()->disable_shape_inference_) {} Scope::Impl::Impl(const Scope& other, Tags::Colocate, const Operation& colocate_with_op, bool clear_colocations) : graph_(other.impl()->graph_), status_(other.impl()->status_), name_map_(other.impl()->name_map_), refiner_(other.impl()->refiner_), scope_used_(other.impl()->scope_used_), control_deps_(other.impl()->control_deps_), name_(other.impl()->name_), op_name_(other.impl()->op_name_), exit_on_error_(other.impl()->exit_on_error_), kernel_label_(other.impl()->kernel_label_), device_(other.impl()->device_), assigned_device_(other.impl()->assigned_device_), xla_cluster_(other.impl()->xla_cluster_), colocation_constraints_( clear_colocations ? std::unordered_set<string>() : other.impl()->GetColocationConstraints(colocate_with_op)), disable_shape_inference_(other.impl()->disable_shape_inference_) {} Scope::Impl::Impl(const Scope& other, Tags::AssignedDevice, const string& assigned_device) : graph_(other.impl()->graph_), status_(other.impl()->status_), name_map_(other.impl()->name_map_), refiner_(other.impl()->refiner_), scope_used_(other.impl()->scope_used_), control_deps_(other.impl()->control_deps_), name_(other.impl()->name_), op_name_(other.impl()->op_name_), exit_on_error_(other.impl()->exit_on_error_), kernel_label_(other.impl()->kernel_label_), device_(other.impl()->device_), assigned_device_(assigned_device), xla_cluster_(other.impl()->xla_cluster_), colocation_constraints_(other.impl()->colocation_constraints_), disable_shape_inference_(other.impl()->disable_shape_inference_) {} Scope::Impl::Impl(const Scope& other, Tags::XlaCluster, const string& xla_cluster) : graph_(other.impl()->graph_), status_(other.impl()->status_), name_map_(other.impl()->name_map_), refiner_(other.impl()->refiner_), scope_used_(other.impl()->scope_used_), control_deps_(other.impl()->control_deps_), name_(other.impl()->name_), op_name_(other.impl()->op_name_), exit_on_error_(other.impl()->exit_on_error_), kernel_label_(other.impl()->kernel_label_), device_(other.impl()->device_), assigned_device_(other.impl()->assigned_device_), xla_cluster_(xla_cluster), colocation_constraints_(other.impl()->colocation_constraints_), disable_shape_inference_(other.impl()->disable_shape_inference_) {} std::unordered_set<string> Scope::Impl::GetColocationConstraints( const Operation& colocate_with_op) const { std::unordered_set<string> current_constraints(colocation_constraints_); const AttrSlice attrs = colocate_with_op.node()->attrs(); std::vector<string> node_constraints; if (TryGetNodeAttr(attrs, kColocationAttrName, &node_constraints)) { for (const string& entry : node_constraints) { StringPiece s(entry); if (absl::ConsumePrefix(&s, kColocationGroupPrefix)) { current_constraints.emplace(s); } } } else { current_constraints.insert(colocate_with_op.node()->name()); } return current_constraints; } bool Scope::ok() const { return impl()->status_->ok(); } Graph* Scope::graph() const { return impl()->graph_.get(); } std::shared_ptr<Graph> Scope::graph_as_shared_ptr() const { return impl()->graph_; } Status Scope::status() const { return *impl()->status_; } const std::vector<Operation>& Scope::control_deps() const { return impl()->control_deps_; } void Scope::UpdateStatus(const Status& s) const { impl()->status_->Update(s); if (impl()->exit_on_error_ && !ok()) { LOG(FATAL) << *impl()->status_; } } Status Scope::ToGraphDef(GraphDef* gdef, bool include_debug_info) const { if (!ok()) { return *impl()->status_; } graph()->ToGraphDef(gdef, true, include_debug_info); return absl::OkStatus(); } Status Scope::ToGraph(Graph* g, GraphConstructorOptions opts) const { if (ok()) { GraphDef graph_def; graph()->ToGraphDef(&graph_def); UpdateStatus(ConvertGraphDefToGraph(opts, std::move(graph_def), g)); } return *impl()->status_; } void Scope::UpdateBuilder(NodeBuilder* builder) const { std::vector<Node*> control_inputs; for (const auto& op : impl()->control_deps_) { control_inputs.push_back(op.node()); } builder->ControlInputs(control_inputs); if (!impl()->kernel_label_.empty()) { builder->Attr("_kernel", impl()->kernel_label_); } if (!impl()->colocation_constraints_.empty()) { std::vector<string> constraints(impl()->colocation_constraints_.begin(), impl()->colocation_constraints_.end()); std::sort(constraints.begin(), constraints.end()); std::transform(constraints.begin(), constraints.end(), constraints.begin(), [](const string& s) { return strings::StrCat(kColocationGroupPrefix, s); }); builder->Attr(kColocationAttrName, constraints); } if (!impl()->device_.empty()) { builder->Device(impl()->device_); } if (!impl()->assigned_device_.empty()) { builder->AssignedDevice(impl()->assigned_device_); } if (!impl()->xla_cluster_.empty()) { builder->XlaCluster(impl()->xla_cluster_); } } string Scope::Impl::GetUniqueName(const string& prefix, bool check_single_use) const { if (check_single_use && single_use_scope()) { if (*scope_used_) { *status_ = errors::AlreadyExists(prefix, " already exists in the current scope"); return ""; } *scope_used_ = true; return prefix; } auto entry = name_map_->find(prefix); if (entry == name_map_->end()) { name_map_->insert({prefix, 0}); return prefix; } string unique_name; do { unique_name = strings::StrCat(prefix, kSuffixSeparator, ++entry->second); } while (name_map_->find(unique_name) != name_map_->end()); name_map_->insert({unique_name, 0}); return unique_name; } string Scope::Impl::GetNameForOp(const string& default_name) const { const string unique_name = GetUniqueName(default_name, true ); const string sep = name_.empty() || unique_name.empty() ? "" : kScopeSeparator; return strings::StrCat(name_, sep, unique_name); } string Scope::GetUniqueNameForOp(const string& default_name) const { if (impl()->single_use_scope()) { if (impl()->op_name_.empty() || *impl()->scope_used_) { *impl()->status_ = errors::InvalidArgument("Cannot get a unique name in this scope"); return ""; } *impl()->scope_used_ = true; return impl()->op_name_; } return impl()->op_name_.empty() ? impl()->GetNameForOp(default_name) : impl()->GetNameForOp(impl()->op_name_); } Scope Scope::NewSubScope(const string& child_scope_name) const { if (child_scope_name.empty()) { return Scope(new Impl(*this, Impl::Tags::ScopeName(), impl()->name_, true )); } const string unique_name = impl()->GetUniqueName(child_scope_name, false ); const string sep = impl()->name_.empty() || unique_name.empty() ? "" : kScopeSeparator; return Scope(new Impl(*this, Impl::Tags::ScopeName(), strings::StrCat(impl()->name_, sep, unique_name), false )); } Scope Scope::WithOpNameImpl(const string& op_name) const { if (impl()->single_use_scope()) { UpdateStatus(errors::InvalidArgument("Cannot set op name ", op_name, " on this scope")); return *this; } return Scope(new Impl(*this, Impl::Tags::OpName(), impl()->name_, op_name)); } Scope Scope::WithControlDependencies( const absl::Span<const Operation> control_deps) const { return Scope( new Impl(*this, Impl::Tags::ControlDeps(), std::vector<Operation>(control_deps.begin(), control_deps.end()), false)); } Scope Scope::WithControlDependencies(const Output& control_dep) const { return Scope(new Impl(*this, Impl::Tags::ControlDeps(), std::vector<Operation>(1, control_dep.op()), false)); } Scope Scope::WithNoControlDependencies() const { return Scope(new Impl(*this, Impl::Tags::ControlDeps(), std::vector<Operation>(), true)); } Scope Scope::WithDevice(const string& device) const { return Scope(new Impl(*this, Impl::Tags::Device(), device)); } Scope Scope::WithAssignedDevice(const string& assigned_device) const { return Scope(new Impl(*this, Impl::Tags::AssignedDevice(), assigned_device)); } Scope Scope::WithXlaCluster(const string& xla_cluster) const { return Scope(new Impl(*this, Impl::Tags::XlaCluster(), xla_cluster)); } Scope Scope::ColocateWith(const Operation& op) const { return Scope(new Impl(*this, Impl::Tags::Colocate(), op, false)); } Scope Scope::ClearColocation() const { return Scope(new Impl(*this, Impl::Tags::Colocate(), Operation(), true)); } Scope Scope::ExitOnError() const { return Scope(new Impl(*this, Impl::Tags::ExitOnError())); } Scope Scope::WithKernelLabel(const string& kernel_label) const { return Scope(new Impl(*this, Impl::Tags::KernelLabel(), kernel_label)); } CompositeOpScopes Scope::GetCompositeOpScopes( const string& composite_op_name) const { if (impl()->op_name_.empty() && composite_op_name.empty()) { UpdateStatus(errors::InvalidArgument( "Cannot create composite op scopes with empty name")); return {*this, *this}; } if (!impl()->single_use_scope()) { Scope child = NewSubScope(impl()->op_name_.empty() ? composite_op_name : impl()->op_name_); const string child_op_sep = impl()->name_.empty() ? "" : kSuffixSeparator; const string child_name = strings::StrCat(impl()->name_, child_op_sep, child.impl()->name_); return {child, Scope(new Impl(child, Impl::Tags::SingleUseScope(), child_name))}; } else { return {Scope(new Impl(*this, Impl::Tags::ScopeName(), impl()->op_name_, true )), *this}; } } Status Scope::DoShapeInference(Node* node) const { if (impl_->disable_shape_inference_) return absl::OkStatus(); return impl_->refiner_->AddNode(node); } class InternalScope { public: static Scope NewScope(Graph* graph, Status* status, ShapeRefiner* refiner) { Scope::Impl::NameMap* name_map = new Scope::Impl::NameMap; for (const Node* node : graph->nodes()) { const string& name = node->name(); (*name_map)[name] = 0; size_t idx = -1; while ((idx = name.find(kScopeSeparator, idx + 1)) != string::npos) { (*name_map)[name.substr(0, idx)] = 0; } } return Scope(new Scope::Impl( std::shared_ptr<Graph>(graph, [](Graph*) {}), std::shared_ptr<Status>(status, [](Status*) {}), std::shared_ptr<Scope::Impl::NameMap>(name_map), std::shared_ptr<ShapeRefiner>(refiner, [](ShapeRefiner*) {}))); } }; Scope NewInternalScope(Graph* graph, Status* status, ShapeRefiner* refiner) { return InternalScope::NewScope(graph, status, refiner); } Status CreateOutputWithScope(string op_name, absl::Span<const ::tensorflow::Input> inputs, const Scope& scope, Output* output) { TF_RETURN_IF_ERROR(scope.status()); const auto unique_name = scope.GetUniqueNameForOp(op_name); auto builder = ::tensorflow::NodeBuilder(unique_name, op_name); for (const auto& input : inputs) { TF_RETURN_IF_ERROR(scope.status()); builder = builder.Input(input.node()); } ::tensorflow::Node* ret; scope.UpdateBuilder(&builder); TF_RETURN_IF_ERROR(scope.status()); scope.UpdateStatus(builder.Finalize(scope.graph(), &ret)); TF_RETURN_IF_ERROR(scope.status()); *output = Output(ret, 0); return absl::OkStatus(); } }
#include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(ScopeTest, BasicNames) { Scope root = Scope::NewRootScope(); EXPECT_EQ(root.GetUniqueNameForOp("add"), "add"); EXPECT_EQ(root.GetUniqueNameForOp("add"), "add_1"); EXPECT_EQ(root.GetUniqueNameForOp("add"), "add_2"); EXPECT_EQ(root.GetUniqueNameForOp("mul"), "mul"); } TEST(ScopeTest, OpAndScopeNameCollision) { Scope root = Scope::NewRootScope(); EXPECT_EQ(root.GetUniqueNameForOp("foo"), "foo"); EXPECT_EQ(root.GetUniqueNameForOp("foo"), "foo_1"); EXPECT_EQ(root.GetUniqueNameForOp("foo_1"), "foo_1_1"); EXPECT_EQ(root.GetUniqueNameForOp("foo_2"), "foo_2"); EXPECT_EQ(root.GetUniqueNameForOp("foo"), "foo_3"); EXPECT_EQ(root.GetUniqueNameForOp("foo_2"), "foo_2_1"); } TEST(ScopeTest, HierarchicalNames) { Scope root = Scope::NewRootScope(); Scope child = root.NewSubScope("child"); EXPECT_EQ(child.GetUniqueNameForOp("add"), "child/add"); EXPECT_EQ(child.GetUniqueNameForOp("add"), "child/add_1"); EXPECT_EQ(child.GetUniqueNameForOp("mul"), "child/mul"); Scope child_1 = root.NewSubScope("child"); EXPECT_EQ(child_1.GetUniqueNameForOp("add"), "child_1/add"); EXPECT_EQ(child_1.GetUniqueNameForOp("add"), "child_1/add_1"); EXPECT_EQ(child_1.GetUniqueNameForOp("mul"), "child_1/mul"); Scope c_c = root.NewSubScope("c").NewSubScope("c"); EXPECT_EQ(c_c.GetUniqueNameForOp("add"), "c/c/add"); Scope c_1 = root.NewSubScope("c"); Scope c_1_c = c_1.NewSubScope("c"); EXPECT_EQ(c_1_c.GetUniqueNameForOp("add"), "c_1/c/add"); Scope c_1_c_1 = c_1.NewSubScope("c"); EXPECT_EQ(c_1_c_1.GetUniqueNameForOp("add"), "c_1/c_1/add"); EXPECT_EQ(root.NewSubScope("").NewSubScope("").GetUniqueNameForOp("d"), "d"); EXPECT_EQ(root.NewSubScope("").GetUniqueNameForOp("d"), "d_1"); EXPECT_EQ(root.GetUniqueNameForOp("d"), "d_2"); } TEST(ScopeTest, ScopeAndOpNames) { Scope root = Scope::NewRootScope(); Scope child = root.NewSubScope("child"); EXPECT_EQ(child.GetUniqueNameForOp("add"), "child/add"); EXPECT_EQ(root.GetUniqueNameForOp("child"), "child_1"); EXPECT_EQ(root.NewSubScope("child").GetUniqueNameForOp("p"), "child_2/p"); } namespace { string LastOp(const Scope& scope) { return scope.GetUniqueNameForOp("Last"); } std::vector<string> AnotherCompositeOp(const Scope& scope) { auto cop_scopes = scope.GetCompositeOpScopes("another_cop"); const string c1 = cop_scopes.child.GetUniqueNameForOp("c1"); const string c2 = cop_scopes.child.GetUniqueNameForOp("mul"); return {c1, c2, LastOp(cop_scopes.last)}; } std::vector<string> LinearOp(const Scope& scope) { auto cop_scopes = scope.GetCompositeOpScopes("linear"); Scope linear = cop_scopes.child; const string mul_op_name = linear.GetUniqueNameForOp("mul"); const string bias_add_op_name = linear.GetUniqueNameForOp("bias_add"); auto cop_names = AnotherCompositeOp(cop_scopes.last); return {mul_op_name, bias_add_op_name, cop_names[0], cop_names[1], cop_names[2]}; } } TEST(ScopeTest, CompositeOp) { Scope root = Scope::NewRootScope(); const auto names1 = LinearOp(root); EXPECT_EQ(names1[0], "linear/mul"); EXPECT_EQ(names1[1], "linear/bias_add"); EXPECT_EQ(names1[2], "linear/c1"); EXPECT_EQ(names1[3], "linear/mul_1"); EXPECT_EQ(names1[4], "linear"); EXPECT_EQ(root.GetUniqueNameForOp("linear"), "linear_1"); const auto names2 = LinearOp(root); EXPECT_EQ(names2[0], "linear_2/mul"); EXPECT_EQ(names2[1], "linear_2/bias_add"); EXPECT_EQ(names2[2], "linear_2/c1"); EXPECT_EQ(names2[3], "linear_2/mul_1"); EXPECT_EQ(names2[4], "linear_2"); const auto names3 = LinearOp(root.WithOpName("c")); EXPECT_EQ(names3[0], "c/mul"); EXPECT_EQ(names3[1], "c/bias_add"); EXPECT_EQ(names3[2], "c/c1"); EXPECT_EQ(names3[3], "c/mul_1"); EXPECT_EQ(names3[4], "c"); } TEST(ScopeTest, SingleUseScope) { Scope root = Scope::NewRootScope(); auto cop_scopes = root.GetCompositeOpScopes("cop"); EXPECT_EQ(cop_scopes.last.GetUniqueNameForOp("foo"), "cop"); cop_scopes.last.GetUniqueNameForOp("foo"); EXPECT_FALSE(cop_scopes.last.ok()); } TEST(ScopeTest, ControlDeps) { Scope root = Scope::NewRootScope(); auto c1 = Operation(); auto c2 = Operation(); Scope c = root.WithControlDependencies({c1, c2}); EXPECT_EQ(c.control_deps().size(), 2); Scope c_c = c.WithControlDependencies({Operation()}); EXPECT_EQ(c_c.control_deps().size(), 3); } TEST(ScopeTest, CreateOutput) { Scope root = Scope::NewRootScope(); Output a = ops::Placeholder(root.WithOpName("a"), DT_FLOAT); Output add; ASSERT_TRUE( CreateOutputWithScope("Add", {a, a}, root.WithOpName("add"), &add).ok()); EXPECT_EQ(add.node()->name(), "add"); EXPECT_EQ(add.node()->type_string(), "Add"); } }
1,776
cpp
tensorflow/tensorflow
queue_runner
tensorflow/cc/training/queue_runner.cc
tensorflow/cc/training/queue_runner_test.cc
#ifndef TENSORFLOW_CC_TRAINING_QUEUE_RUNNER_H_ #define TENSORFLOW_CC_TRAINING_QUEUE_RUNNER_H_ #include <memory> #include <string> #include <unordered_set> #include <vector> #include "tensorflow/cc/training/coordinator.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/queue_runner.pb.h" #include "tensorflow/core/public/session.h" namespace tensorflow { class QueueRunner : public RunnerInterface { public: static Status New(const QueueRunnerDef& queue_runner_def, std::unique_ptr<QueueRunner>* result); static Status New(const QueueRunnerDef& queue_runner_def, Coordinator* coord, std::unique_ptr<QueueRunner>* result); void AddErrorCallback(const std::function<void(Status)>& cb); void ClearErrorCallbacks(); ~QueueRunner(); Status Start(Session* sess); Status StartAndCollectCostGraph(Session* sess, const RunOptions& run_options = RunOptions()); Status Start(Session* sess, int wait_for_ms); Status StartAndCollectCostGraph(Session* session, int wait_for_ms, const RunOptions& run_options = RunOptions()); void Stop(Session* sess); Status Join() final; Status GetStatus(); Status ExportCostGraph(CostGraphDef* cost_graph) const override; private: QueueRunner() : coord_(nullptr), stopped_(false), cg_mu_(nullptr) {} Status Init(const QueueRunnerDef& queue_runner_def); void Run(Session* sess, const string& enqueue_op); void UpdateStatus(const Status& status); bool IsQueueClosed(Status status) const { return queue_closed_exception_types_.count( static_cast<int>(status.code())) > 0; } bool IsRunning() const override { return !stopped_; } void SetRunArgumentsAndCostGraph(const RunOptions& run_options); Status RealRun(Session* sess, const string& op, bool update_costs); string queue_name_; std::vector<string> enqueue_op_names_; string close_op_name_; string cancel_op_name_; std::unordered_set<int> queue_closed_exception_types_; std::unique_ptr<thread::ThreadPool> thread_pool_; mutex mu_; int runs_ = 0; Status status_ TF_GUARDED_BY(mu_); Status enqueue_status_ TF_GUARDED_BY(mu_); std::unique_ptr<BlockingCounter> counter_; Coordinator* coord_; std::atomic<bool> stopped_; mutex cb_mu_; std::vector<std::function<void(Status)>> callbacks_; mutable std::unique_ptr<mutex> cg_mu_; std::unique_ptr<CostGraphDef> cost_graph_ TF_GUARDED_BY(cg_mu_); RunOptions run_options_; }; } #endif #include "tensorflow/cc/training/queue_runner.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/platform/env.h" namespace tensorflow { Status QueueRunner::New(const QueueRunnerDef& queue_runner_def, std::unique_ptr<QueueRunner>* result) { result->reset(new QueueRunner()); return (*result)->Init(queue_runner_def); } Status QueueRunner::New(const QueueRunnerDef& queue_runner_def, Coordinator* coord, std::unique_ptr<QueueRunner>* result) { result->reset(new QueueRunner()); (*result)->coord_ = coord; return (*result)->Init(queue_runner_def); } void QueueRunner::AddErrorCallback(const std::function<void(Status)>& cb) { mutex_lock l(cb_mu_); callbacks_.push_back(cb); } void QueueRunner::ClearErrorCallbacks() { mutex_lock l(cb_mu_); callbacks_.clear(); } Status QueueRunner::Init(const QueueRunnerDef& queue_runner_def) { queue_name_ = queue_runner_def.queue_name(); enqueue_op_names_.clear(); enqueue_op_names_.insert(enqueue_op_names_.end(), queue_runner_def.enqueue_op_name().begin(), queue_runner_def.enqueue_op_name().end()); size_t op_names_size = enqueue_op_names_.size(); if (op_names_size > kint32max) { return Status(absl::StatusCode::kInvalidArgument, "Enqueue ops to run cannot exceed kint32max"); } runs_ = static_cast<int>(op_names_size); if (runs_ == 0) { return Status(absl::StatusCode::kInvalidArgument, "Empty enqueue ops to run."); } close_op_name_ = queue_runner_def.close_op_name(); cancel_op_name_ = queue_runner_def.cancel_op_name(); if (queue_runner_def.queue_closed_exception_types_size() == 0) { queue_closed_exception_types_.insert(error::OUT_OF_RANGE); } else { for (const auto& code : queue_runner_def.queue_closed_exception_types()) { queue_closed_exception_types_.insert(static_cast<int>(code)); } } int nthreads = runs_; if (coord_) { nthreads++; } thread_pool_.reset(new thread::ThreadPool( Env::Default(), SanitizeThreadSuffix(queue_name_), nthreads)); return absl::OkStatus(); } QueueRunner::~QueueRunner() { Join().IgnoreError(); } Status QueueRunner::Start(Session* sess) { return Start(sess, 0); } Status QueueRunner::StartAndCollectCostGraph(Session* sess, const RunOptions& run_options) { SetRunArgumentsAndCostGraph(run_options); return Start(sess, 0); } Status QueueRunner::Start(Session* sess, int wait_for) { counter_.reset(new BlockingCounter(runs_)); for (const string& enqueue_op : enqueue_op_names_) { thread_pool_->Schedule( std::bind(&QueueRunner::Run, this, sess, enqueue_op)); } if (coord_) { thread_pool_->Schedule(std::bind(&QueueRunner::Stop, this, sess)); } if (wait_for > 0) { if (!counter_->WaitFor(std::chrono::milliseconds(wait_for))) { return Status(absl::StatusCode::kDeadlineExceeded, "Queues not fed before the timeout"); } mutex_lock l(mu_); if (!enqueue_status_.ok()) { return enqueue_status_; } else { return status_; } } return absl::OkStatus(); } Status QueueRunner::StartAndCollectCostGraph(Session* session, int wait_for_ms, const RunOptions& run_options) { SetRunArgumentsAndCostGraph(run_options); return Start(session, wait_for_ms); } void QueueRunner::Stop(Session* sess) { if (coord_ != nullptr) { coord_->WaitForStop(); } if (!cancel_op_name_.empty()) { UpdateStatus(RealRun(sess, cancel_op_name_, false)); } stopped_ = true; } Status QueueRunner::Join() { thread_pool_.reset(); mutex_lock l(mu_); return status_; } void QueueRunner::UpdateStatus(const Status& status) { { mutex_lock l(mu_); if (!status_.ok() || status.ok() || IsQueueClosed(status)) { return; } status_ = status; } if (coord_) { coord_->ReportStatus(status); } mutex_lock l(cb_mu_); for (auto& cb : callbacks_) { cb(status); } } void QueueRunner::Run(Session* sess, const string& enqueue_op) { bool first_iteration = true; Status status; while (status.ok()) { if (coord_ && coord_->ShouldStop()) { break; } status = RealRun(sess, enqueue_op, true); if (first_iteration) { if (!status.ok()) { mutex_lock l(mu_); enqueue_status_ = status; } counter_->DecrementCount(); first_iteration = false; } } bool last_run = false; { mutex_lock l(mu_); runs_--; last_run = (runs_ == 0); } if (IsQueueClosed(status) && (!coord_ || !coord_->ShouldStop())) { if (last_run && !close_op_name_.empty()) { UpdateStatus(RealRun(sess, close_op_name_, false)); } } else if (!status.ok()) { LOG(ERROR) << "Queue runner thread got a failure status: " << status.ToString(); UpdateStatus(status); if (coord_) { coord_->RequestStop().IgnoreError(); } } } Status QueueRunner::GetStatus() { mutex_lock l(mu_); return status_; } Status QueueRunner::ExportCostGraph(CostGraphDef* cost_graph) const { if (!cg_mu_) { return Status(absl::StatusCode::kFailedPrecondition, "This QueueRunner doesn't collect a cost graph."); } mutex_lock l(*cg_mu_); cost_graph->MergeFrom(*cost_graph_); return absl::OkStatus(); } void QueueRunner::SetRunArgumentsAndCostGraph(const RunOptions& run_options) { cg_mu_.reset(new mutex()); { mutex_lock l(*cg_mu_); cost_graph_.reset(new CostGraphDef()); } run_options_ = run_options; } Status QueueRunner::RealRun(Session* sess, const string& op, bool update_costs) { Status s; if (update_costs && cg_mu_) { RunMetadata metadata; s = sess->Run(run_options_, {}, {}, {op}, nullptr, &metadata); mutex_lock l(*cg_mu_); cost_graph_->Swap(metadata.mutable_cost_graph()); } else { s = sess->Run({}, {}, {op}, nullptr); } return s; } }
#include "tensorflow/cc/training/queue_runner.h" #include <string> #include <vector> #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/cc/training/coordinator.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/protobuf/queue_runner.pb.h" #include "tensorflow/core/public/session.h" namespace tensorflow { namespace { using error::Code; using ops::Assign; using ops::Const; using ops::CountUpTo; using ops::FIFOQueue; using ops::QueueClose; using ops::QueueDequeue; using ops::QueueEnqueue; using ops::RandomNormal; using ops::Square; using ops::Variable; constexpr char kAssignOpName[] = "assign"; constexpr char kCancelOp0[] = "cancel0"; constexpr char kCancelOp1[] = "cancel1"; constexpr char kCloseOp0[] = "close0"; constexpr char kCloseOp1[] = "close1"; constexpr char kCountUpToOpName[] = "count"; constexpr char kDequeueOp0[] = "dequeue0"; constexpr char kDequeueOp1[] = "dequeue1"; constexpr char kEnqueueOp0[] = "enqueue0"; constexpr char kEnqueueOp1[] = "enqueue1"; constexpr char kIllegalOpName1[] = "would fail"; constexpr char kIllegalOpName2[] = "fail again"; constexpr char kQueueName[] = "unit_test"; constexpr char kQueueName0[] = "q0"; constexpr char kQueueName1[] = "q1"; constexpr char kSquareOpName[] = "square"; constexpr char kVarOpName[] = "var"; GraphDef BuildSimpleGraph() { Scope root = Scope::NewRootScope(); auto init_value = Const(root, 0); auto var = Variable(root.WithOpName(kVarOpName), TensorShape({}), DataType::DT_INT32); auto assign = Assign(root.WithOpName(kAssignOpName), var, init_value); auto count = CountUpTo(root.WithOpName(kCountUpToOpName), var, 10); Square(root.WithOpName(kSquareOpName), var); GraphDef graph_def; TF_EXPECT_OK(root.ToGraphDef(&graph_def)); return graph_def; } QueueRunnerDef BuildQueueRunnerDef( const std::string& queue_name, const std::vector<std::string>& enqueue_ops, const std::string& close_op, const std::string& cancel_op, const std::vector<Code>& queue_closed_error_codes) { QueueRunnerDef queue_runner_def; *queue_runner_def.mutable_queue_name() = queue_name; for (const std::string& enqueue_op : enqueue_ops) { *queue_runner_def.mutable_enqueue_op_name()->Add() = enqueue_op; } *queue_runner_def.mutable_close_op_name() = close_op; *queue_runner_def.mutable_cancel_op_name() = cancel_op; for (const auto& error_code : queue_closed_error_codes) { *queue_runner_def.mutable_queue_closed_exception_types()->Add() = error_code; } return queue_runner_def; } std::unique_ptr<Session> BuildSessionAndInitVariable( const GraphDef& graph_def) { SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph_def)); TF_CHECK_OK(session->Run({}, {}, {kAssignOpName}, nullptr)); return session; } TEST(QueueRunnerTest, BasicTest) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName, {kCountUpToOpName}, kSquareOpName, "", {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_CHECK_OK(qr->Start(session.get())); TF_EXPECT_OK(qr->Join()); std::vector<Tensor> outputs; TF_EXPECT_OK(session->Run({}, {kSquareOpName}, {}, &outputs)); int square_value = *outputs[0].scalar<int>().data(); EXPECT_EQ(square_value, 100); } TEST(QueueRunnerTest, QueueClosedCode) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName, {kCountUpToOpName, kCountUpToOpName}, kSquareOpName, "", {Code::OUT_OF_RANGE, Code::CANCELLED}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_EXPECT_OK(qr->Start(session.get())); TF_EXPECT_OK(qr->Join()); std::vector<Tensor> outputs; TF_EXPECT_OK(session->Run({}, {kSquareOpName}, {}, &outputs)); int square_value = *outputs[0].scalar<int>().data(); EXPECT_EQ(square_value, 100); } TEST(QueueRunnerTest, QueueCloseFails) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef(kQueueName, {kCountUpToOpName}, kIllegalOpName1, "", {Code::OUT_OF_RANGE}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_EXPECT_OK(qr->Start(session.get())); auto status = qr->Join(); EXPECT_EQ(status.code(), Code::NOT_FOUND) << status; } TEST(QueueRunnerTest, CatchErrorInJoin) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName, {kIllegalOpName1, kIllegalOpName2}, kCountUpToOpName, "", {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_EXPECT_OK(qr->Start(session.get())); EXPECT_EQ(qr->Join().code(), Code::NOT_FOUND); } GraphDef BuildDoubleQueueGraph() { Scope root = Scope::NewRootScope(); auto q0 = FIFOQueue(root.WithOpName(kQueueName0), {DataType::DT_INT32}); auto ten = Const(root, 10); auto enqueue0 = QueueEnqueue(root.WithOpName(kEnqueueOp0), q0, {ten}); auto close0 = QueueClose(root.WithOpName(kCloseOp0), q0); auto cancel0 = QueueClose(root.WithOpName(kCancelOp0), q0, QueueClose::CancelPendingEnqueues(true)); auto q1 = FIFOQueue(root.WithOpName(kQueueName1), {DataType::DT_INT32}, FIFOQueue::Capacity(3)); auto dequeue0 = QueueDequeue(root.WithOpName(kDequeueOp0), q0, {DataType::DT_INT32}); auto enqueue1 = QueueEnqueue(root.WithOpName(kEnqueueOp1), q1, {dequeue0[0]}); auto dequeue1 = QueueDequeue(root.WithOpName(kDequeueOp1), q1, {DataType::DT_INT32}); auto close1 = QueueClose(root.WithOpName(kCloseOp1), q1); auto cancel1 = QueueClose(root.WithOpName(kCancelOp1), q1, QueueClose::CancelPendingEnqueues(true)); GraphDef graph_def; TF_EXPECT_OK(root.ToGraphDef(&graph_def)); return graph_def; } TEST(QueueRunnerTest, RealEnqueueDequeue) { auto graph_def = BuildDoubleQueueGraph(); SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph_def)); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef(kQueueName, {kEnqueueOp1}, kCloseOp1, "", {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_CHECK_OK(qr->Start(session.get())); TF_EXPECT_OK(session->Run({}, {}, {kEnqueueOp0}, nullptr)); TF_EXPECT_OK(session->Run({}, {}, {kEnqueueOp0}, nullptr)); TF_EXPECT_OK(session->Run({}, {}, {kCloseOp0}, nullptr)); TF_EXPECT_OK(qr->Join()); std::vector<Tensor> dq1; TF_EXPECT_OK(session->Run({}, {kDequeueOp1}, {}, &dq1)); EXPECT_EQ(*dq1[0].scalar<int>().data(), 10); std::vector<Tensor> dq2; TF_EXPECT_OK(session->Run({}, {kDequeueOp1}, {}, &dq2)); EXPECT_EQ(*dq2[0].scalar<int>().data(), 10); EXPECT_EQ(session->Run({}, {kDequeueOp1}, {}, nullptr).code(), Code::OUT_OF_RANGE); } void JoinThread(QueueRunner* queue_runner, bool* join_succeeded, Notification* join_done) { EXPECT_EQ(queue_runner->Join().code(), Code::CANCELLED); *join_succeeded = true; join_done->Notify(); } TEST(QueueRunnerTest, SessionCloseCancelPendingEnqueue) { auto graph_def = BuildDoubleQueueGraph(); SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph_def)); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName1, {kEnqueueOp1}, kCloseOp1, kCancelOp1, {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_CHECK_OK(qr->Start(session.get())); TF_EXPECT_OK(session->Run({}, {}, {kEnqueueOp0}, nullptr)); std::vector<Tensor> dq1; TF_EXPECT_OK(session->Run({}, {kDequeueOp1}, {}, &dq1)); EXPECT_EQ(*dq1[0].scalar<int>().data(), 10); bool join_succeeded = false; Notification join_done; Env::Default()->SchedClosure( std::bind(&JoinThread, qr.get(), &join_succeeded, &join_done)); Env::Default()->SleepForMicroseconds(10000000); EXPECT_EQ(join_succeeded, false); TF_EXPECT_OK(session->Close()); join_done.WaitForNotification(); EXPECT_EQ(join_succeeded, true); } TEST(QueueRunnerTest, EmptyEnqueueOps) { QueueRunnerDef queue_runner_def = BuildQueueRunnerDef(kQueueName, {}, kCountUpToOpName, "", {}); std::unique_ptr<QueueRunner> qr; EXPECT_EQ(QueueRunner::New(queue_runner_def, &qr).code(), Code::INVALID_ARGUMENT); } TEST(QueueRunnerTest, StartTimeout) { GraphDef graph_def = BuildDoubleQueueGraph(); SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph_def)); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName1, {kEnqueueOp1}, kCloseOp1, kCancelOp1, {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); EXPECT_EQ(qr->Start(session.get(), 1).code(), Code::DEADLINE_EXCEEDED); TF_EXPECT_OK(session->Close()); } TEST(QueueRunnerTest, TestCoordinatorStop) { auto graph_def = BuildDoubleQueueGraph(); SessionOptions options; std::unique_ptr<Session> session(NewSession(options)); TF_CHECK_OK(session->Create(graph_def)); QueueRunnerDef queue_runner0 = BuildQueueRunnerDef(kQueueName0, {kEnqueueOp0}, kCloseOp0, kCancelOp0, {Code::OUT_OF_RANGE, Code::CANCELLED}); QueueRunnerDef queue_runner1 = BuildQueueRunnerDef(kQueueName1, {kEnqueueOp1}, kCloseOp1, kCancelOp1, {Code::OUT_OF_RANGE, Code::CANCELLED}); Coordinator coord; std::unique_ptr<QueueRunner> qr0; TF_EXPECT_OK(QueueRunner::New(queue_runner0, &coord, &qr0)); TF_CHECK_OK(qr0->Start(session.get())); std::unique_ptr<QueueRunner> qr1; TF_EXPECT_OK(QueueRunner::New(queue_runner1, &coord, &qr1)); TF_CHECK_OK(qr1->Start(session.get())); TF_EXPECT_OK(coord.RegisterRunner(std::move(qr0))); TF_EXPECT_OK(coord.RegisterRunner(std::move(qr1))); std::vector<Tensor> dq; TF_EXPECT_OK(session->Run({}, {kDequeueOp1}, {}, &dq)); EXPECT_EQ(*dq[0].scalar<int>().data(), 10); TF_EXPECT_OK(coord.RequestStop()); TF_EXPECT_OK(coord.Join()); } TEST(QueueRunnerTest, CallbackCalledOnError) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName, {kIllegalOpName1, kIllegalOpName2}, kCountUpToOpName, "", {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); bool error_caught = false; qr->AddErrorCallback([&error_caught](const Status&) { error_caught = true; }); TF_EXPECT_OK(qr->Start(session.get())); EXPECT_FALSE(qr->Join().ok()); EXPECT_TRUE(error_caught); } TEST(QueueRunnerTest, RunMetaDataTest) { Scope root = Scope::NewRootScope(); auto q0 = FIFOQueue(root.WithOpName(kQueueName), {DataType::DT_FLOAT}); Output rnd = RandomNormal(root.WithOpName("rnd"), {1, 1}, DataType::DT_FLOAT); Output square = Square(root.WithOpName(kSquareOpName), rnd); auto enqueue0 = QueueEnqueue(root.WithOpName(kEnqueueOp0), q0, {square}); auto close0 = QueueClose(root.WithOpName(kCloseOp0), q0); auto cancel0 = QueueClose(root.WithOpName(kCancelOp0), q0, QueueClose::CancelPendingEnqueues(true)); auto dequeue0 = QueueDequeue(root.WithOpName(kDequeueOp0), q0, {DataType::DT_FLOAT}); GraphDef graph_def; TF_EXPECT_OK(root.ToGraphDef(&graph_def)); for (auto& node : *graph_def.mutable_node()) { node.set_device("/cpu:0"); } SessionOptions sess_options; sess_options.config.mutable_graph_options()->set_build_cost_model(1); std::unique_ptr<Session> session(NewSession(sess_options)); TF_CHECK_OK(session->Create(graph_def)); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef(kQueueName, {kEnqueueOp0}, kCloseOp0, kCancelOp0, {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); RunOptions run_options; TF_CHECK_OK(qr->StartAndCollectCostGraph(session.get(), run_options)); std::vector<Tensor> dq0; TF_EXPECT_OK(session->Run({}, {kDequeueOp0}, {}, &dq0)); TF_EXPECT_OK(session->Run({}, {kDequeueOp0}, {}, &dq0)); CostGraphDef cost_graph; TF_CHECK_OK(qr->ExportCostGraph(&cost_graph)); EXPECT_TRUE(cost_graph.node_size() > 0); qr->Stop(session.get()); } TEST(QueueRunnerTest, NoRunMetaDataTest) { GraphDef graph_def = BuildSimpleGraph(); auto session = BuildSessionAndInitVariable(graph_def); QueueRunnerDef queue_runner_def = BuildQueueRunnerDef( kQueueName, {kCountUpToOpName}, kSquareOpName, "", {}); std::unique_ptr<QueueRunner> qr; TF_EXPECT_OK(QueueRunner::New(queue_runner_def, &qr)); TF_CHECK_OK(qr->Start(session.get())); TF_EXPECT_OK(qr->Join()); CostGraphDef cost_graph; EXPECT_EQ(qr->ExportCostGraph(&cost_graph).code(), error::FAILED_PRECONDITION); } } }
1,777
cpp
tensorflow/tensorflow
coordinator
tensorflow/cc/training/coordinator.cc
tensorflow/cc/training/coordinator_test.cc
#ifndef TENSORFLOW_CC_TRAINING_COORDINATOR_H_ #define TENSORFLOW_CC_TRAINING_COORDINATOR_H_ #include <atomic> #include <memory> #include <unordered_set> #include <vector> #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { class RunnerInterface { public: virtual ~RunnerInterface() {} virtual Status Join() = 0; virtual Status ExportCostGraph(CostGraphDef* cost_graph) const { return Status(absl::StatusCode::kInvalidArgument, "No cost model to export."); } virtual bool IsRunning() const = 0; }; class Coordinator { public: Coordinator(); Coordinator(const std::vector<error::Code>& clean_stop_errors); ~Coordinator(); Status RegisterRunner(std::unique_ptr<RunnerInterface> runner); bool AllRunnersStopped(); Status RequestStop(); bool ShouldStop(); Status Join(); void ReportStatus(const Status& status); Status GetStatus(); void WaitForStop(); Status ExportCostGraph(CostGraphDef* cost_graph) const; private: std::unordered_set<int> clean_stop_errors_; condition_variable wait_for_stop_; mutex mu_; bool should_stop_ TF_GUARDED_BY(mu_); mutex status_lock_; Status status_ TF_GUARDED_BY(status_lock_); mutable mutex runners_lock_; std::vector<std::unique_ptr<RunnerInterface>> runners_ TF_GUARDED_BY(runners_lock_); Coordinator(const Coordinator&) = delete; void operator=(const Coordinator&) = delete; }; } #endif #include "tensorflow/cc/training/coordinator.h" namespace tensorflow { Coordinator::Coordinator() : Coordinator(std::vector<error::Code>()) {} Coordinator::Coordinator(const std::vector<error::Code>& clean_stop_errors) : should_stop_(false) { if (clean_stop_errors.empty()) { clean_stop_errors_.insert(error::OUT_OF_RANGE); } else { for (const auto& code : clean_stop_errors) { clean_stop_errors_.insert(static_cast<int>(code)); } } } Coordinator::~Coordinator() { RequestStop().IgnoreError(); Join().IgnoreError(); } Status Coordinator::RegisterRunner(std::unique_ptr<RunnerInterface> runner) { { mutex_lock l(mu_); if (should_stop_) { return Status(absl::StatusCode::kFailedPrecondition, "The coordinator has been stopped."); } } mutex_lock l(runners_lock_); runners_.push_back(std::move(runner)); return absl::OkStatus(); } bool Coordinator::AllRunnersStopped() { mutex_lock l(runners_lock_); for (const auto& runner : runners_) { if (runner->IsRunning()) { return false; } } return true; } Status Coordinator::RequestStop() { mutex_lock l(mu_); if (should_stop_) { return Status(absl::StatusCode::kFailedPrecondition, "The Coordinator is not running."); } should_stop_ = true; wait_for_stop_.notify_all(); return absl::OkStatus(); } bool Coordinator::ShouldStop() { mutex_lock l(mu_); return should_stop_; } Status Coordinator::Join() { { mutex_lock l(mu_); if (!should_stop_) { return Status(absl::StatusCode::kFailedPrecondition, "Joining coordinator without requesting to stop."); } } { mutex_lock l(runners_lock_); for (const auto& t : runners_) { ReportStatus(t->Join()); } runners_.clear(); } return GetStatus(); } void Coordinator::ReportStatus(const Status& status) { mutex_lock l(status_lock_); if (status.ok() || !status_.ok() || clean_stop_errors_.count(static_cast<int>(status.code())) > 0) { return; } status_ = status; } Status Coordinator::GetStatus() { mutex_lock l(status_lock_); return status_; } void Coordinator::WaitForStop() { mutex_lock l(mu_); while (!should_stop_) { wait_for_stop_.wait(l); } } Status Coordinator::ExportCostGraph(CostGraphDef* cost_graph) const { mutex_lock l(runners_lock_); for (auto& t : runners_) { Status s = t->ExportCostGraph(cost_graph); if (!s.ok()) { return s; } } return absl::OkStatus(); } }
#include "tensorflow/cc/training/coordinator.h" #include "tensorflow/cc/training/queue_runner.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/session.h" namespace tensorflow { namespace { using error::Code; void WaitForStopThread(Coordinator* coord, Notification* about_to_wait, Notification* done) { about_to_wait->Notify(); coord->WaitForStop(); done->Notify(); } TEST(CoordinatorTest, TestStopAndWaitOnStop) { Coordinator coord; EXPECT_EQ(coord.ShouldStop(), false); Notification about_to_wait; Notification done; Env::Default()->SchedClosure( std::bind(&WaitForStopThread, &coord, &about_to_wait, &done)); about_to_wait.WaitForNotification(); Env::Default()->SleepForMicroseconds(1000 * 1000); EXPECT_FALSE(done.HasBeenNotified()); TF_EXPECT_OK(coord.RequestStop()); done.WaitForNotification(); EXPECT_TRUE(coord.ShouldStop()); } class MockQueueRunner : public RunnerInterface { public: explicit MockQueueRunner(Coordinator* coord) { coord_ = coord; join_counter_ = nullptr; thread_pool_.reset(new thread::ThreadPool(Env::Default(), "test-pool", 10)); stopped_ = false; } MockQueueRunner(Coordinator* coord, int* join_counter) : MockQueueRunner(coord) { join_counter_ = join_counter; } void StartCounting(std::atomic<int>* counter, int until, Notification* start = nullptr) { thread_pool_->Schedule( std::bind(&MockQueueRunner::CountThread, this, counter, until, start)); } void StartSettingStatus(const Status& status, BlockingCounter* counter, Notification* start) { thread_pool_->Schedule(std::bind(&MockQueueRunner::SetStatusThread, this, status, counter, start)); } Status Join() override { if (join_counter_ != nullptr) { (*join_counter_)++; } thread_pool_.reset(); return status_; } Status GetStatus() { return status_; } void SetStatus(const Status& status) { status_ = status; } bool IsRunning() const override { return !stopped_; }; void Stop() { stopped_ = true; } private: void CountThread(std::atomic<int>* counter, int until, Notification* start) { if (start != nullptr) start->WaitForNotification(); while (!coord_->ShouldStop() && counter->load() < until) { (*counter)++; Env::Default()->SleepForMicroseconds(10 * 1000); } coord_->RequestStop().IgnoreError(); } void SetStatusThread(const Status& status, BlockingCounter* counter, Notification* start) { start->WaitForNotification(); SetStatus(status); counter->DecrementCount(); } std::unique_ptr<thread::ThreadPool> thread_pool_; Status status_; Coordinator* coord_; int* join_counter_; bool stopped_; }; TEST(CoordinatorTest, TestRealStop) { std::atomic<int> counter(0); Coordinator coord; std::unique_ptr<MockQueueRunner> qr1(new MockQueueRunner(&coord)); qr1->StartCounting(&counter, 100); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr1))); std::unique_ptr<MockQueueRunner> qr2(new MockQueueRunner(&coord)); qr2->StartCounting(&counter, 100); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr2))); while (counter.load() == 0) ; TF_EXPECT_OK(coord.RequestStop()); int temp_counter = counter.load(); Env::Default()->SleepForMicroseconds(1000 * 1000); EXPECT_EQ(temp_counter, counter.load()); TF_EXPECT_OK(coord.Join()); } TEST(CoordinatorTest, TestRequestStop) { Coordinator coord; std::atomic<int> counter(0); Notification start; std::unique_ptr<MockQueueRunner> qr; for (int i = 0; i < 10; i++) { qr.reset(new MockQueueRunner(&coord)); qr->StartCounting(&counter, 10, &start); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr))); } start.Notify(); coord.WaitForStop(); EXPECT_EQ(coord.ShouldStop(), true); EXPECT_EQ(counter.load(), 10); TF_EXPECT_OK(coord.Join()); } TEST(CoordinatorTest, TestJoin) { Coordinator coord; int join_counter = 0; std::unique_ptr<MockQueueRunner> qr1( new MockQueueRunner(&coord, &join_counter)); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr1))); std::unique_ptr<MockQueueRunner> qr2( new MockQueueRunner(&coord, &join_counter)); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr2))); TF_EXPECT_OK(coord.RequestStop()); TF_EXPECT_OK(coord.Join()); EXPECT_EQ(join_counter, 2); } TEST(CoordinatorTest, StatusReporting) { Coordinator coord({Code::CANCELLED, Code::OUT_OF_RANGE}); Notification start; BlockingCounter counter(3); std::unique_ptr<MockQueueRunner> qr1(new MockQueueRunner(&coord)); qr1->StartSettingStatus(Status(absl::StatusCode::kCancelled, ""), &counter, &start); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr1))); std::unique_ptr<MockQueueRunner> qr2(new MockQueueRunner(&coord)); qr2->StartSettingStatus(Status(absl::StatusCode::kInvalidArgument, ""), &counter, &start); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr2))); std::unique_ptr<MockQueueRunner> qr3(new MockQueueRunner(&coord)); qr3->StartSettingStatus(Status(absl::StatusCode::kOutOfRange, ""), &counter, &start); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr3))); start.Notify(); counter.Wait(); TF_EXPECT_OK(coord.RequestStop()); EXPECT_EQ(coord.Join().code(), absl::StatusCode::kInvalidArgument); } TEST(CoordinatorTest, JoinWithoutStop) { Coordinator coord; std::unique_ptr<MockQueueRunner> qr(new MockQueueRunner(&coord)); TF_ASSERT_OK(coord.RegisterRunner(std::move(qr))); EXPECT_EQ(coord.Join().code(), Code::FAILED_PRECONDITION); } TEST(CoordinatorTest, AllRunnersStopped) { Coordinator coord; MockQueueRunner* qr = new MockQueueRunner(&coord); TF_ASSERT_OK(coord.RegisterRunner(std::unique_ptr<RunnerInterface>(qr))); EXPECT_FALSE(coord.AllRunnersStopped()); qr->Stop(); EXPECT_TRUE(coord.AllRunnersStopped()); } } }
1,778
cpp
tensorflow/tensorflow
index_util
third_party/xla/xla/index_util.cc
third_party/xla/xla/index_util_test.cc
#ifndef XLA_INDEX_UTIL_H_ #define XLA_INDEX_UTIL_H_ #include <vector> #include "absl/types/span.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { class IndexUtil { public: static inline int64_t MultidimensionalIndexToLinearIndex( const Shape& shape, absl::Span<const int64_t> multi_index) { return MultidimensionalIndexToLinearIndex( shape, LayoutUtil::MinorToMajor(shape), multi_index); } static inline int64_t MultidimensionalIndexToLinearIndex( const Shape& shape, absl::Span<const int64_t> minor_to_major, absl::Span<const int64_t> multi_index) { for (size_t i = 0; i < multi_index.size(); ++i) { DCHECK_GE(multi_index[i], 0); DCHECK_LT(multi_index[i], shape.dimensions(i)) << "indexing beyond extent in dimension " << i << ":" << "\n\tindex: " << absl::StrJoin(multi_index, ",") << "\n\tshape: " << ShapeUtil::HumanString(shape); } if (minor_to_major.empty()) { return 0; } int64_t linear_index = multi_index[minor_to_major[0]]; int64_t scale = 1; for (int i = 1; i < minor_to_major.size(); ++i) { scale *= shape.dimensions(minor_to_major[i - 1]); linear_index += scale * multi_index[minor_to_major[i]]; } return linear_index; } static DimensionVector LinearIndexToMultidimensionalIndex( const Shape& shape, int64_t linear_index); static bool BumpIndices(const Shape& shape, absl::Span<int64_t> indices); static int64_t GetDimensionStride(const Shape& shape, int64_t dimension); static bool IndexInBounds(const Shape& shape, absl::Span<const int64_t> index); static int CompareIndices(absl::Span<const int64_t> lhs, absl::Span<const int64_t> rhs); private: IndexUtil(const IndexUtil&) = delete; IndexUtil& operator=(const IndexUtil&) = delete; }; } #endif #include "xla/index_util.h" #include <algorithm> #include <cstdint> #include <string> #include <vector> #include "absl/strings/str_join.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/logging.h" namespace xla { DimensionVector IndexUtil::LinearIndexToMultidimensionalIndex( const Shape& shape, int64_t linear_index) { DCHECK_GE(linear_index, 0); DCHECK_LT(linear_index, ShapeUtil::ElementsIn(shape)); DimensionVector multi_index(shape.dimensions_size()); int64_t divisor = 1; for (auto dimension : LayoutUtil::MinorToMajor(shape)) { multi_index[dimension] = (linear_index / divisor) % shape.dimensions(dimension); divisor *= shape.dimensions(dimension); } return multi_index; } bool IndexUtil::BumpIndices(const Shape& shape, absl::Span<int64_t> indices) { for (int64_t dimno = indices.size() - 1; dimno >= 0; --dimno) { int64_t limit = shape.dimensions(dimno); if (indices[dimno] + 1 < limit) { indices[dimno]++; std::fill(indices.begin() + dimno + 1, indices.end(), 0); return true; } } return false; } int64_t IndexUtil::GetDimensionStride(const Shape& shape, int64_t dimension) { int64_t stride = 1; for (auto dim : LayoutUtil::MinorToMajor(shape)) { if (dim == dimension) { break; } stride *= shape.dimensions()[dim]; } return stride; } bool IndexUtil::IndexInBounds(const Shape& shape, absl::Span<const int64_t> index) { int64_t rank = shape.rank(); const int64_t index_size = index.size(); if (rank != index_size) { return false; } for (int64_t d = 0; d < rank; ++d) { if (index[d] >= shape.dimensions(d)) { return false; } } return true; } int IndexUtil::CompareIndices(absl::Span<const int64_t> lhs, absl::Span<const int64_t> rhs) { int64_t rank = lhs.size(); const int64_t rhs_rank = rhs.size(); CHECK_EQ(rhs_rank, rank); for (int64_t dim = 0; dim < rank; ++dim) { if (lhs[dim] < rhs[dim]) { return -1; } else if (lhs[dim] > rhs[dim]) { return 1; } } return 0; } }
#include "xla/index_util.h" #include <initializer_list> #include <vector> #include "xla/shape_util.h" #include "xla/test.h" #include "xla/xla_data.pb.h" namespace xla { namespace { void SetMinorToMajorLayout(Shape* shape, std::vector<int64_t> dimensions) { shape->mutable_layout()->clear_minor_to_major(); for (auto dimension : dimensions) { shape->mutable_layout()->add_minor_to_major(dimension); } } TEST(IndexUtilTest, VectorIndexing) { Shape vector_shape = ShapeUtil::MakeShape(F32, {100}); EXPECT_EQ(42, IndexUtil::MultidimensionalIndexToLinearIndex(vector_shape, {42})); auto multi_index = IndexUtil::LinearIndexToMultidimensionalIndex(vector_shape, 42); EXPECT_EQ(1, multi_index.size()); EXPECT_EQ(42, multi_index[0]); } TEST(IndexUtilTest, MatrixIndexingRowMajor) { Shape matrix_shape_01 = ShapeUtil::MakeShape(F32, {10, 20}); SetMinorToMajorLayout(&matrix_shape_01, {0, 1}); EXPECT_EQ(0, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_01, {0, 0})); EXPECT_EQ(199, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_01, {9, 19})); EXPECT_EQ(53, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_01, {3, 5})); EXPECT_THAT( IndexUtil::LinearIndexToMultidimensionalIndex(matrix_shape_01, 53), testing::ElementsAre(3, 5)); } TEST(IndexUtilTest, MatrixIndexingColumnMajor) { Shape matrix_shape_10 = ShapeUtil::MakeShape(F32, {10, 20}); SetMinorToMajorLayout(&matrix_shape_10, {1, 0}); EXPECT_EQ(0, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_10, {0, 0})); EXPECT_EQ(199, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_10, {9, 19})); EXPECT_EQ(65, IndexUtil::MultidimensionalIndexToLinearIndex(matrix_shape_10, {3, 5})); EXPECT_THAT( IndexUtil::LinearIndexToMultidimensionalIndex(matrix_shape_10, 65), testing::ElementsAre(3, 5)); } TEST(IndexUtilTest, ThreeDArrayIndexing210) { Shape shape_210 = ShapeUtil::MakeShape(F32, {10, 20, 30}); SetMinorToMajorLayout(&shape_210, {2, 1, 0}); EXPECT_EQ(1957, IndexUtil::MultidimensionalIndexToLinearIndex(shape_210, {3, 5, 7})); EXPECT_EQ(5277, IndexUtil::MultidimensionalIndexToLinearIndex(shape_210, {8, 15, 27})); } TEST(IndexUtilTest, ThreeDArrayIndexing120) { Shape shape_120 = ShapeUtil::MakeShape(F32, {10, 20, 30}); SetMinorToMajorLayout(&shape_120, {1, 2, 0}); EXPECT_EQ(1945, IndexUtil::MultidimensionalIndexToLinearIndex(shape_120, {3, 5, 7})); EXPECT_EQ(5355, IndexUtil::MultidimensionalIndexToLinearIndex(shape_120, {8, 15, 27})); } TEST(IndexUtilTest, FourDArrayIndexing3210) { Shape shape_3210 = ShapeUtil::MakeShape(F32, {10, 20, 30, 40}); SetMinorToMajorLayout(&shape_3210, {3, 2, 1, 0}); EXPECT_EQ(78289, IndexUtil::MultidimensionalIndexToLinearIndex(shape_3210, {3, 5, 7, 9})); EXPECT_EQ(211113, IndexUtil::MultidimensionalIndexToLinearIndex( shape_3210, {8, 15, 27, 33})); } TEST(IndexUtilTest, LinearToMultiToLinear) { std::vector<int64_t> linear_indexes = {0, 1439999999, 1145567336, 43883404, 617295214, 1117613654}; std::vector<std::vector<int64_t>> minor_to_major_orders; minor_to_major_orders.push_back({6, 5, 4, 3, 2, 1, 0}); minor_to_major_orders.push_back({0, 1, 2, 3, 4, 5, 6}); minor_to_major_orders.push_back({4, 5, 1, 2, 6, 0, 3}); for (auto minor_to_major_order : minor_to_major_orders) { Shape shape = ShapeUtil::MakeShape(F32, {10, 20, 30, 40, 30, 20, 10}); SetMinorToMajorLayout(&shape, minor_to_major_order); for (auto linear_index : linear_indexes) { auto multi_index = IndexUtil::LinearIndexToMultidimensionalIndex(shape, linear_index); EXPECT_EQ(linear_index, IndexUtil::MultidimensionalIndexToLinearIndex( shape, multi_index)); } } } TEST(IndexUtilTest, BumpIndices2x2) { auto shape = ShapeUtil::MakeShape(S32, {2, 2}); std::vector<int64_t> indices = {0, 0}; EXPECT_TRUE(IndexUtil::BumpIndices(shape, absl::MakeSpan(indices))); EXPECT_THAT(indices, ::testing::ElementsAre(0, 1)); EXPECT_TRUE(IndexUtil::BumpIndices(shape, absl::MakeSpan(indices))); EXPECT_THAT(indices, ::testing::ElementsAre(1, 0)); EXPECT_TRUE(IndexUtil::BumpIndices(shape, absl::MakeSpan(indices))); EXPECT_THAT(indices, ::testing::ElementsAre(1, 1)); EXPECT_FALSE(IndexUtil::BumpIndices(shape, absl::MakeSpan(indices))); } } }
1,779
cpp
tensorflow/tensorflow
comparison_util
third_party/xla/xla/comparison_util.cc
third_party/xla/xla/comparison_util_test.cc
#ifndef XLA_COMPARISON_UTIL_H_ #define XLA_COMPARISON_UTIL_H_ #include <cstdint> #include <functional> #include <optional> #include <ostream> #include <string> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/primitive_util.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { class Comparison { public: enum class Order : uint8_t { kTotal, kPartial, }; friend absl::string_view ComparisonOrderToString(Comparison::Order order); template <typename Sink> friend void AbslStringify(Sink& sink, const Order& p) { absl::Format(&sink, "%s", ComparisonOrderToString(p)); } enum class Direction : uint8_t { kEq, kNe, kGe, kGt, kLe, kLt, }; enum class [[deprecated("Use PrimitiveType and Order")]] Type : uint8_t{ kFloat, kFloatTotalOrder, kSigned, kUnsigned, }; Comparison() = delete; explicit Comparison(Direction dir, PrimitiveType type); explicit Comparison(Direction dir, PrimitiveType type, Order order); [[deprecated( "Use Comparison(Comparison::Direction, " "PrimitiveType)")]] explicit Comparison(Direction dir, Type type); inline Direction GetDirection() const { return dir_; } inline PrimitiveType GetPrimitiveType() const { return primitive_type_; } inline Order GetOrder() const { return order_; } [[deprecated("Use GetPrimitiveType() and GetOrder()")]] inline Type GetType() const { return type_; } inline bool IsEq() const { return dir_ == Direction::kEq; } inline bool IsNe() const { return dir_ == Direction::kNe; } inline bool IsGe() const { return dir_ == Direction::kGe; } inline bool IsGt() const { return dir_ == Direction::kGt; } inline bool IsLt() const { return dir_ == Direction::kLt; } inline bool IsTotalOrder() const { return order_ == Order::kTotal; } inline bool IsPartialOrder() const { return order_ == Order::kPartial; } inline bool IsF32TotalOrder() const { return primitive_type_ == PrimitiveType::F32 && IsTotalOrder(); } inline bool IsBf16TotalOrder() const { return primitive_type_ == PrimitiveType::BF16 && IsTotalOrder(); } inline bool IsStandardF32() const { return primitive_type_ == PrimitiveType::F32 && IsPartialOrder(); } inline bool IsStandardBf16() const { return primitive_type_ == PrimitiveType::BF16 && IsPartialOrder(); } inline bool IsStandardS32() const { return primitive_type_ == PrimitiveType::S32 && IsTotalOrder(); } inline bool IsStandardU32() const { return primitive_type_ == PrimitiveType::U32 && IsTotalOrder(); } inline bool IsIntegralPrimitiveType() const { return primitive_util::IsIntegralType(primitive_type_); } inline bool IsFloatingPointPrimitiveType() const { return primitive_util::IsFloatingPointType(primitive_type_); } bool IsReflexive() const; bool IsAntireflexive() const; Comparison Converse() const; std::optional<Comparison> Inverse() const; std::string ToString(std::string prefix1 = ".", std::string prefix2 = ".", std::string prefix3 = ".") const; template <typename T> inline std::function<bool(T, T)> GetComparator() const { switch (GetDirection()) { case Direction::kEq: return std::equal_to<T>(); case Direction::kNe: return std::not_equal_to<T>(); case Direction::kGe: return std::greater_equal<T>(); case Direction::kGt: return std::greater<T>(); case Direction::kLe: return std::less_equal<T>(); case Direction::kLt: return std::less<T>(); } } template <typename T> inline bool Compare(const T a, const T b) const { DCHECK(primitive_util::IsCanonicalRepresentation<T>(primitive_type_)); if constexpr (is_specialized_floating_point_v<T>) { if (IsTotalOrder()) { using R = SignedIntegerTypeForSizeType<sizeof(T)>; return GetComparator<R>()(ToSignMagnitude(a), ToSignMagnitude(b)); } } return GetComparator<T>()(a, b); } [[deprecated("Use PrimitiveType and Order")]] static Comparison::Type DefaultComparisonType(PrimitiveType type); private: const Direction dir_; const PrimitiveType primitive_type_; const Order order_; [[deprecated]] const Type type_; }; using ComparisonDirection = Comparison::Direction; using ComparisonOrder = Comparison::Order; inline std::ostream& operator<<(std::ostream& os, const Comparison& cmp) { return os << cmp.ToString(); } std::string ComparisonDirectionToString(Comparison::Direction direction); std::string ComparisonTypeToString(Comparison::Type type); absl::string_view ComparisonPrimitiveTypeToString(PrimitiveType type); absl::StatusOr<Comparison::Direction> StringToComparisonDirection( absl::string_view direction); absl::StatusOr<Comparison::Type> StringToComparisonType( absl::string_view comparison); absl::StatusOr<Comparison::Order> StringToComparisonOrder( absl::string_view order); template <typename KeyFn> auto LessThanByKey(KeyFn&& key_fn) { return [=](const auto& a, const auto& b) { return key_fn(a) < key_fn(b); }; } inline bool operator==(const Comparison& a, const Comparison& b) { return a.GetDirection() == b.GetDirection() && a.GetPrimitiveType() == b.GetPrimitiveType() && a.GetOrder() == b.GetOrder(); } inline bool operator!=(const Comparison& a, const Comparison& b) { return !(a == b); } } #endif #include "xla/comparison_util.h" #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/primitive_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { namespace { bool IsValidComparison(xla::PrimitiveType type, Comparison::Order order) { if (primitive_util::IsFloatingPointType(type) || primitive_util::IsComplexType(type)) { return true; } if (primitive_util::IsIntegralType(type) || type == PRED) { return order == Comparison::Order::kTotal; } LOG(FATAL) << "Unsupported type: " << PrimitiveType_Name(type); } PrimitiveType DefaultPrimitiveType(Comparison::Type type) { switch (type) { case Comparison::Type::kFloat: case Comparison::Type::kFloatTotalOrder: return PrimitiveType::F32; case Comparison::Type::kSigned: return PrimitiveType::S32; case Comparison::Type::kUnsigned: return PrimitiveType::U32; } } Comparison::Order DefaultOrdering(Comparison::Type type) { switch (type) { case Comparison::Type::kFloat: return Comparison::Order::kPartial; case Comparison::Type::kFloatTotalOrder: case Comparison::Type::kSigned: case Comparison::Type::kUnsigned: return Comparison::Order::kTotal; } } Comparison::Order DefaultOrdering(PrimitiveType type) { if (primitive_util::IsFloatingPointType(type) || primitive_util::IsComplexType(type)) { return Comparison::Order::kPartial; } if (primitive_util::IsIntegralType(type) || type == PRED) { return Comparison::Order::kTotal; } LOG(FATAL) << "Unsupported type: " << PrimitiveType_Name(type); } Comparison::Direction Converse(Comparison::Direction direction) { switch (direction) { case Comparison::Direction::kEq: return Comparison::Direction::kEq; case Comparison::Direction::kNe: return Comparison::Direction::kNe; case Comparison::Direction::kGe: return Comparison::Direction::kLe; case Comparison::Direction::kGt: return Comparison::Direction::kLt; case Comparison::Direction::kLe: return Comparison::Direction::kGe; case Comparison::Direction::kLt: return Comparison::Direction::kGt; } } Comparison::Direction Inverse(Comparison::Direction direction) { switch (direction) { case Comparison::Direction::kEq: return Comparison::Direction::kNe; case Comparison::Direction::kNe: return Comparison::Direction::kEq; case Comparison::Direction::kGe: return Comparison::Direction::kLt; case Comparison::Direction::kGt: return Comparison::Direction::kLe; case Comparison::Direction::kLe: return Comparison::Direction::kGt; case Comparison::Direction::kLt: return Comparison::Direction::kGe; } } } std::string ComparisonDirectionToString(Comparison::Direction direction) { switch (direction) { case Comparison::Direction::kEq: return "EQ"; case Comparison::Direction::kNe: return "NE"; case Comparison::Direction::kGe: return "GE"; case Comparison::Direction::kGt: return "GT"; case Comparison::Direction::kLe: return "LE"; case Comparison::Direction::kLt: return "LT"; default: LOG(FATAL) << "Attempted to print uninitialized comparison direction"; } } std::string ComparisonTypeToString(Comparison::Type type) { switch (type) { case Comparison::Type::kFloat: return "FLOAT"; case Comparison::Type::kFloatTotalOrder: return "TOTALORDER"; case Comparison::Type::kSigned: return "SIGNED"; case Comparison::Type::kUnsigned: return "UNSIGNED"; } } absl::string_view ComparisonPrimitiveTypeToString(PrimitiveType type) { return PrimitiveType_Name(type); } absl::string_view ComparisonOrderToString(Comparison::Order order) { switch (order) { case Comparison::Order::kPartial: return "PARTIALORDER"; case Comparison::Order::kTotal: return "TOTALORDER"; } } absl::StatusOr<Comparison::Direction> StringToComparisonDirection( absl::string_view direction) { static auto* map = new absl::flat_hash_map<std::string, Comparison::Direction>({ {"EQ", Comparison::Direction::kEq}, {"NE", Comparison::Direction::kNe}, {"GE", Comparison::Direction::kGe}, {"GT", Comparison::Direction::kGt}, {"LE", Comparison::Direction::kLe}, {"LT", Comparison::Direction::kLt}, }); auto it = map->find(direction); if (it == map->end()) { return InvalidArgument("Unknown comparison direction: %s", direction); } return it->second; } absl::StatusOr<Comparison::Order> StringToComparisonOrder( absl::string_view order) { static auto* map = new absl::flat_hash_map<std::string, Comparison::Order>({ {"TOTALORDER", Comparison::Order::kTotal}, {"PARTIALORDER", Comparison::Order::kPartial}, }); auto it = map->find(order); if (it == map->end()) { return InvalidArgument("Unknown comparison type: %s", order); } return it->second; } absl::StatusOr<Comparison::Type> StringToComparisonType( absl::string_view comparison) { static auto* map = new absl::flat_hash_map<std::string, Comparison::Type>({ {"FLOAT", Comparison::Type::kFloat}, {"TOTALORDER", Comparison::Type::kFloatTotalOrder}, {"SIGNED", Comparison::Type::kSigned}, {"UNSIGNED", Comparison::Type::kUnsigned}, }); auto it = map->find(comparison); if (it == map->end()) { return InvalidArgument("Unknown comparison type: %s", comparison); } return it->second; } Comparison::Type Comparison::DefaultComparisonType(PrimitiveType type) { if (primitive_util::IsFloatingPointType(type) || primitive_util::IsComplexType(type)) { return Type::kFloat; } if (primitive_util::IsSignedIntegralType(type)) { return Type::kSigned; } if (primitive_util::IsUnsignedIntegralType(type) || type == PRED) { return Type::kUnsigned; } LOG(FATAL) << "Unexpected: " << PrimitiveType_Name(type); } Comparison::Comparison(Direction dir, PrimitiveType type, Order order) : dir_(dir), primitive_type_(type), order_(order), type_(DefaultComparisonType(type)) { CHECK(IsValidComparison(primitive_type_, order_)); } Comparison::Comparison(Direction dir, PrimitiveType type) : dir_(dir), primitive_type_(type), order_(DefaultOrdering(type)), type_(DefaultComparisonType(type)) { CHECK(IsValidComparison(primitive_type_, order_)); } Comparison::Comparison(Direction dir, Type type) : dir_(dir), primitive_type_(DefaultPrimitiveType(type)), order_(DefaultOrdering(type)), type_(type) { CHECK(IsValidComparison(primitive_type_, order_)); } Comparison Comparison::Converse() const { return Comparison(xla::Converse(dir_), primitive_type_, order_); } std::optional<Comparison> Comparison::Inverse() const { if (IsPartialOrder()) { return std::nullopt; } if (primitive_util::IsArrayType(primitive_type_)) { return Comparison(xla::Inverse(dir_), primitive_type_, order_); } return std::nullopt; } bool Comparison::IsReflexive() const { switch (dir_) { case Direction::kEq: case Direction::kGe: case Direction::kLe: return IsTotalOrder(); case Direction::kNe: case Direction::kGt: case Direction::kLt: return false; } } bool Comparison::IsAntireflexive() const { switch (dir_) { case Direction::kNe: return IsTotalOrder(); case Direction::kGt: case Direction::kLt: return true; case Direction::kEq: case Direction::kGe: case Direction::kLe: return false; } } std::string Comparison::ToString(std::string prefix1, std::string prefix2, std::string prefix3) const { return absl::StrCat(prefix1, ComparisonDirectionToString(dir_), prefix2, ComparisonPrimitiveTypeToString(primitive_type_), prefix3, ComparisonOrderToString(order_)); } }
#include "xla/comparison_util.h" #include <cstdint> #include <limits> #include "xla/test.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using ::testing::Eq; TEST(Comparison, FloatsDefaultToPartialOrder) { EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::BF16).GetOrder(), Comparison::Order::kPartial); EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::F32).GetOrder(), Comparison::Order::kPartial); EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::C64).GetOrder(), Comparison::Order::kPartial); } TEST(Comparison, IntegersDefaultToTotalOrder) { EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::S32).GetOrder(), Comparison::Order::kTotal); EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::U8).GetOrder(), Comparison::Order::kTotal); EXPECT_EQ( Comparison(Comparison::Direction::kGe, PrimitiveType::PRED).GetOrder(), Comparison::Order::kTotal); } TEST(Comparison, LegacyConstructorDefaultsToX32) { EXPECT_EQ(Comparison(Comparison::Direction::kGe, Comparison::Type::kFloat) .GetPrimitiveType(), xla::PrimitiveType::F32); EXPECT_EQ( Comparison(Comparison::Direction::kGe, Comparison::Type::kFloatTotalOrder) .GetPrimitiveType(), xla::PrimitiveType::F32); EXPECT_EQ(Comparison(Comparison::Direction::kGe, Comparison::Type::kSigned) .GetPrimitiveType(), xla::PrimitiveType::S32); EXPECT_EQ(Comparison(Comparison::Direction::kGe, Comparison::Type::kUnsigned) .GetPrimitiveType(), xla::PrimitiveType::U32); } TEST(Comparison, PartialOrderReflexivity) { EXPECT_FALSE( Comparison(Comparison::Direction::kEq, PrimitiveType::F32).IsReflexive()); EXPECT_FALSE( Comparison(Comparison::Direction::kLe, PrimitiveType::F32).IsReflexive()); EXPECT_FALSE( Comparison(Comparison::Direction::kLt, PrimitiveType::S32).IsReflexive()); } TEST(Comparison, TotalOrderReflexivity) { EXPECT_TRUE(Comparison(Comparison::Direction::kLe, PrimitiveType::BF16, Comparison::Order::kTotal) .IsReflexive()); EXPECT_TRUE(Comparison(Comparison::Direction::kGe, PrimitiveType::F32, Comparison::Order::kTotal) .IsReflexive()); EXPECT_TRUE( Comparison(Comparison::Direction::kEq, PrimitiveType::S32).IsReflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kNe, PrimitiveType::F32, Comparison::Order::kTotal) .IsReflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kLt, PrimitiveType::F64, Comparison::Order::kTotal) .IsReflexive()); } TEST(Comparison, PartialOrderAntiReflexivity) { EXPECT_TRUE(Comparison(Comparison::Direction::kGt, PrimitiveType::F32) .IsAntireflexive()); EXPECT_TRUE(Comparison(Comparison::Direction::kLt, PrimitiveType::F32, Comparison::Order::kTotal) .IsAntireflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kEq, PrimitiveType::F32, Comparison::Order::kTotal) .IsAntireflexive()); } TEST(Comparison, TotalOrderAntiReflexivity) { EXPECT_TRUE(Comparison(Comparison::Direction::kNe, PrimitiveType::BF16, Comparison::Order::kTotal) .IsAntireflexive()); EXPECT_TRUE(Comparison(Comparison::Direction::kNe, PrimitiveType::S32) .IsAntireflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kEq, PrimitiveType::F32, Comparison::Order::kTotal) .IsAntireflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kLe, PrimitiveType::F64, Comparison::Order::kTotal) .IsAntireflexive()); EXPECT_FALSE(Comparison(Comparison::Direction::kLe, PrimitiveType::S8) .IsAntireflexive()); } TEST(Comparison, Converse) { EXPECT_THAT( Comparison(Comparison::Direction::kLe, PrimitiveType::S8).Converse(), Eq(Comparison(Comparison::Direction::kGe, PrimitiveType::S8))); EXPECT_THAT( Comparison(Comparison::Direction::kEq, PrimitiveType::U16).Converse(), Eq(Comparison(Comparison::Direction::kEq, PrimitiveType::U16))); EXPECT_THAT( Comparison(Comparison::Direction::kGt, PrimitiveType::F32).Converse(), Eq(Comparison(Comparison::Direction::kLt, PrimitiveType::F32))); } TEST(Comparison, PartialOrderFloatsShouldNotHaveInverse) { EXPECT_FALSE(Comparison(Comparison::Direction::kGt, PrimitiveType::F32) .Inverse() .has_value()); } TEST(Comparison, Inverse) { EXPECT_THAT( *Comparison(Comparison::Direction::kLe, PrimitiveType::S64).Inverse(), Eq(Comparison(Comparison::Direction::kGt, PrimitiveType::S64))); EXPECT_THAT( *Comparison(Comparison::Direction::kEq, PrimitiveType::U16).Inverse(), Eq(Comparison(Comparison::Direction::kNe, PrimitiveType::U16))); EXPECT_THAT(*Comparison(Comparison::Direction::kGt, PrimitiveType::F32, Comparison::Order::kTotal) .Inverse(), Eq(Comparison(Comparison::Direction::kLe, PrimitiveType::F32, Comparison::Order::kTotal))); } TEST(Comparison, ToString) { EXPECT_EQ( Comparison(Comparison::Direction::kLt, PrimitiveType::F32).ToString(), ".LT.F32.PARTIALORDER"); EXPECT_EQ( Comparison(Comparison::Direction::kEq, PrimitiveType::S8).ToString(), ".EQ.S8.TOTALORDER"); EXPECT_EQ(Comparison(Comparison::Direction::kGe, PrimitiveType::C128) .ToString("_1_", "_2_", "_3_"), "_1_GE_2_C128_3_PARTIALORDER"); } TEST(Comparison, TotalOrderFloatComparison) { EXPECT_TRUE(Comparison(Comparison::Direction::kEq, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN())); EXPECT_TRUE(Comparison(Comparison::Direction::kLt, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(1.0f, 2.0f)); EXPECT_FALSE(Comparison(Comparison::Direction::kLt, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(std::numeric_limits<float>::infinity(), -std::numeric_limits<float>::infinity())); EXPECT_TRUE(Comparison(Comparison::Direction::kLt, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(-0.0f, +0.0f)); EXPECT_TRUE(Comparison(Comparison::Direction::kNe, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(+0.0f, -0.0f)); EXPECT_FALSE(Comparison(Comparison::Direction::kGt, PrimitiveType::F32, Comparison::Order::kTotal) .Compare<float>(-0.1f, 0.1f)); } TEST(Comparison, TotalOrderBfloat16Comparison) { EXPECT_TRUE(Comparison(Comparison::Direction::kEq, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>( std::numeric_limits<xla::bfloat16>::quiet_NaN(), std::numeric_limits<xla::bfloat16>::quiet_NaN())); EXPECT_TRUE( Comparison(Comparison::Direction::kLt, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>(xla::bfloat16(1.0f), xla::bfloat16(2.0f))); EXPECT_FALSE(Comparison(Comparison::Direction::kLt, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>( std::numeric_limits<xla::bfloat16>::infinity(), -std::numeric_limits<xla::bfloat16>::infinity())); EXPECT_TRUE( Comparison(Comparison::Direction::kLt, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>(xla::bfloat16(-0.0f), xla::bfloat16(+0.0f))); EXPECT_TRUE( Comparison(Comparison::Direction::kGt, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>(xla::bfloat16(+0.0f), xla::bfloat16(-0.0f))); EXPECT_FALSE( Comparison(Comparison::Direction::kGt, PrimitiveType::BF16, Comparison::Order::kTotal) .Compare<xla::bfloat16>(xla::bfloat16(-0.1f), xla::bfloat16(0.1f))); } TEST(Comparison, Compare) { EXPECT_TRUE(Comparison(Comparison::Direction::kLt, PrimitiveType::F32) .Compare<float>(1.0f, 2.0f)); EXPECT_TRUE( Comparison(Comparison::Direction::kGe, PrimitiveType::BF16) .Compare<xla::bfloat16>(xla::bfloat16(2.0f), xla::bfloat16(1.0f))); EXPECT_FALSE(Comparison(Comparison::Direction::kNe, PrimitiveType::S64) .Compare<int64_t>(1'000'000, 1'000'000)); EXPECT_TRUE(Comparison(Comparison::Direction::kEq, PrimitiveType::U8) .Compare<uint8_t>(63, 63)); } } }
1,780
cpp
tensorflow/tensorflow
ef57
third_party/xla/xla/ef57.cc
third_party/xla/xla/ef57_test.cc
#ifndef XLA_EF57_H_ #define XLA_EF57_H_ #include <cmath> #include <utility> #include "absl/types/span.h" namespace xla { inline std::pair<float, float> SplitF64ToF32(double x) { const float x_f32 = static_cast<float>(x); const bool result_is_finite = std::isfinite(x_f32); const float hi = x_f32; const float lo = static_cast<float>(x - static_cast<double>(hi)); return std::make_pair(hi, result_is_finite ? lo : 0.0f); } void ConvertF64ToEf57(absl::Span<const double> input, absl::Span<float> output); } #endif #include "xla/ef57.h" #include <limits> #include <tuple> #include "absl/types/span.h" #include "xla/compiler_macros.h" #include "tsl/platform/logging.h" #ifdef XLA_HAS_SSE2 #include <immintrin.h> #endif #if defined(XLA_HAS_ARM_NEON) && defined(XLA_HAS_ARM64) #include <arm_neon.h> #endif namespace xla { void ConvertF64ToEf57(absl::Span<const double> input, absl::Span<float> output) { DCHECK_EQ(input.size() * 2, output.size()); #ifdef __AVX__ constexpr int kDoublesPerAvxIteration = sizeof(__m256d) / sizeof(double); constexpr int kFloatsPerSseRegister = sizeof(__m128) / sizeof(float); while (input.size() >= kDoublesPerAvxIteration) { __m256d x = _mm256_loadu_pd(input.data()); __m128 x_hi_f32 = _mm256_cvtpd_ps(x); __m256d x_hi_f64 = _mm256_cvtps_pd(x_hi_f32); __m256d x_lo_f64 = _mm256_sub_pd(x, x_hi_f64); __m128 x_lo_f32 = _mm256_cvtpd_ps(x_lo_f64); const __m128 inf = _mm_set1_ps(std::numeric_limits<float>::infinity()); __m128 x_hi_exponent = _mm_and_ps(x_hi_f32, inf); __m128 x_is_finite = _mm_cmplt_ps(x_hi_exponent, inf); x_lo_f32 = _mm_and_ps(x_lo_f32, x_is_finite); _mm_storeu_ps(output.data(), _mm_unpacklo_ps(x_hi_f32, x_lo_f32)); output.remove_prefix(kFloatsPerSseRegister); _mm_storeu_ps(output.data(), _mm_unpackhi_ps(x_hi_f32, x_lo_f32)); output.remove_prefix(kFloatsPerSseRegister); input.remove_prefix(kDoublesPerAvxIteration); } #endif #ifdef XLA_HAS_SSE2 constexpr int kDoublesPerSseIteration = sizeof(__m128d) / sizeof(double); constexpr int kFloatsPerSseIteration = sizeof(__m128) / sizeof(float); while (input.size() >= kDoublesPerSseIteration) { __m128d x = _mm_loadu_pd(input.data()); __m128 x_hi_f32 = _mm_cvtpd_ps(x); __m128d x_hi_f64 = _mm_cvtps_pd(x_hi_f32); __m128d x_lo_f64 = _mm_sub_pd(x, x_hi_f64); __m128 x_lo_f32 = _mm_cvtpd_ps(x_lo_f64); const __m128 inf = _mm_set1_ps(std::numeric_limits<float>::infinity()); __m128 x_hi_exponent = _mm_and_ps(x_hi_f32, inf); __m128 x_is_finite = _mm_cmplt_ps(x_hi_exponent, inf); x_lo_f32 = _mm_and_ps(x_lo_f32, x_is_finite); __m128 to_store = _mm_unpacklo_ps(x_hi_f32, x_lo_f32); _mm_storeu_ps(output.data(), to_store); input.remove_prefix(kDoublesPerSseIteration); output.remove_prefix(kFloatsPerSseIteration); } #endif #if defined(XLA_HAS_ARM_NEON) && defined(XLA_HAS_ARM64) constexpr int kDoublesPerNeonIteration = sizeof(float64x2_t) / sizeof(double); constexpr int kFloatsPerNeonIteration = sizeof(float32x2x2_t) / sizeof(float); while (input.size() >= kDoublesPerNeonIteration) { float64x2_t x = vld1q_f64(input.data()); float32x2_t x_hi_f32 = vcvt_f32_f64(x); float64x2_t x_hi_f64 = vcvt_f64_f32(x_hi_f32); float64x2_t x_lo_f64 = vsubq_f64(x, x_hi_f64); float32x2_t x_lo_f32 = vcvt_f32_f64(x_lo_f64); uint32x2_t x_is_finite = vcalt_f32(x_hi_f32, vdup_n_f32(std::numeric_limits<float>::infinity())); x_lo_f32 = vreinterpret_f32_u32( vand_u32(vreinterpret_u32_f32(x_lo_f32), x_is_finite)); float32x2x2_t to_store; to_store.val[0] = x_hi_f32; to_store.val[1] = x_lo_f32; vst2_f32(output.data(), to_store); input.remove_prefix(kDoublesPerNeonIteration); output.remove_prefix(kFloatsPerNeonIteration); } #endif while (input.size() >= 1) { std::tie(output[0], output[1]) = SplitF64ToF32(input.front()); input.remove_prefix(1); output.remove_prefix(2); } } }
#include "xla/ef57.h" #include <cmath> #include <limits> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/log_streamer.h" #include "absl/random/random.h" #include "absl/types/span.h" #include "xla/test.h" namespace xla { namespace { TEST(Ef57Test, DoubleMax) { auto [high, low] = SplitF64ToF32(std::numeric_limits<double>::max()); EXPECT_EQ(high, std::numeric_limits<float>::infinity()); EXPECT_EQ(low, 0.0f); } TEST(Ef57Test, Overflow) { auto [high, low] = SplitF64ToF32(0x1.ffffffp+127); EXPECT_EQ(high, std::numeric_limits<float>::infinity()); EXPECT_EQ(low, 0.0f); } TEST(Ef57Test, CheckPrecision) { auto [high, low] = SplitF64ToF32(2.0 - 0x1p-52); EXPECT_EQ(high, 2.0f); EXPECT_EQ(low, -0x1p-52f); } TEST(Ef57Test, SimpleArray) { std::vector<double> inputs(127); absl::BitGen gen; for (double& input : inputs) { input = absl::Uniform<float>(gen, 0.0f, 1.0f); } std::vector<float> outputs(inputs.size() * 2); ConvertF64ToEf57(inputs, absl::MakeSpan(outputs)); for (int i = 0; i < inputs.size(); ++i) { EXPECT_EQ(outputs[i * 2], inputs[i]); EXPECT_EQ(outputs[i * 2 + 1], 0.0f); } } TEST(Ef57Test, RelativeSplit) { const float distance = std::scalbnf(1.0f, std::numeric_limits<float>::digits); std::vector<double> inputs(127); absl::BitGen gen; for (double& input : inputs) { input = absl::Uniform<double>(gen, 0.0, 1.0); } std::vector<float> outputs(inputs.size() * 2); ConvertF64ToEf57(inputs, absl::MakeSpan(outputs)); for (int i = 0; i < outputs.size(); i += 2) { auto most_significant = outputs[i]; auto least_significant = outputs[i + 1]; auto most_significant_mag = std::fabs(most_significant); auto least_significant_mag = std::fabs(least_significant); EXPECT_FALSE(std::isnan(most_significant_mag)); if (most_significant_mag == 0.0f) { EXPECT_EQ(least_significant_mag, 0.0f); } else { EXPECT_GT(most_significant_mag, least_significant_mag * distance); } } } } }
1,781
cpp
tensorflow/tensorflow
text_literal_writer
third_party/xla/xla/text_literal_writer.cc
third_party/xla/xla/text_literal_writer_test.cc
#ifndef XLA_TEXT_LITERAL_WRITER_H_ #define XLA_TEXT_LITERAL_WRITER_H_ #include "absl/strings/string_view.h" #include "xla/literal.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" namespace xla { class TextLiteralWriter { public: static absl::Status WriteToPath(const Literal& literal, absl::string_view path); private: TextLiteralWriter(const TextLiteralWriter&) = delete; TextLiteralWriter& operator=(const TextLiteralWriter&) = delete; }; } #endif #include "xla/text_literal_writer.h" #include <memory> #include <string> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "tsl/platform/env.h" namespace xla { absl::Status TextLiteralWriter::WriteToPath( const Literal& literal, absl::string_view path) { std::unique_ptr<tsl::WritableFile> f; auto s = tsl::Env::Default()->NewWritableFile(std::string(path), &f); if (!s.ok()) { return s; } s = f->Append(ShapeUtil::HumanString(literal.shape()) + "\n"); if (!s.ok()) { return s; } absl::Status status; tsl::WritableFile* f_ptr = f.get(); literal.EachCellAsString([f_ptr, &status](absl::Span<const int64_t> indices, const std::string& value) { if (!status.ok()) { return; } std::string coordinates = absl::StrCat("(", absl::StrJoin(indices, ", "), ")"); status = f_ptr->Append(absl::StrCat(coordinates, ": ", value, "\n")); }); auto ignored = f->Close(); return status; } }
#include "xla/text_literal_writer.h" #include <memory> #include <string> #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/types.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" namespace xla { namespace { TEST(TextLiteralWriterTest, WritesFloatLiteral) { auto literal = LiteralUtil::CreateR2<float>({ {3.14, 2.17}, {1.23, 4.56}, }); std::string path; ASSERT_TRUE(tsl::Env::Default()->LocalTempFilename(&path)); ASSERT_IS_OK(TextLiteralWriter::WriteToPath(literal, path)); std::string contents; TF_ASSERT_OK(tsl::ReadFileToString(tsl::Env::Default(), path, &contents)); const std::string expected = R"(f32[2,2] (0, 0): 3.14 (0, 1): 2.17 (1, 0): 1.23 (1, 1): 4.56 )"; EXPECT_EQ(expected, contents); } } }
1,782
cpp
tensorflow/tensorflow
permutation_util
third_party/xla/xla/permutation_util.cc
third_party/xla/xla/permutation_util_test.cc
#ifndef XLA_PERMUTATION_UTIL_H_ #define XLA_PERMUTATION_UTIL_H_ #include <vector> #include "absl/types/span.h" #include "xla/types.h" #include "tsl/platform/logging.h" namespace xla { bool IsPermutation(absl::Span<const int64_t> permutation); template <typename Container> std::vector<typename Container::value_type> Permute( const Container& input, absl::Span<const int64_t> permutation) { using T = typename Container::value_type; absl::Span<const T> data(input); CHECK_EQ(permutation.size(), data.size()); CHECK(IsPermutation(permutation)); std::vector<T> output(data.size()); for (size_t i = 0; i < permutation.size(); ++i) { output[i] = data[permutation[i]]; } return output; } template <typename Container> std::vector<typename Container::value_type> PermuteInverse( const Container& input, absl::Span<const int64_t> permutation) { using T = typename Container::value_type; absl::Span<const T> data(input); CHECK_EQ(permutation.size(), data.size()); CHECK(IsPermutation(permutation)); std::vector<T> output(data.size()); for (size_t i = 0; i < permutation.size(); ++i) { output[permutation[i]] = data[i]; } return output; } std::vector<int64_t> InversePermutation( absl::Span<const int64_t> input_permutation); std::vector<int64_t> ComposePermutations(absl::Span<const int64_t> p1, absl::Span<const int64_t> p2); bool IsIdentityPermutation(absl::Span<const int64_t> permutation); } #endif #include "xla/permutation_util.h" #include <vector> #include "absl/container/inlined_vector.h" namespace xla { bool IsPermutation(absl::Span<const int64_t> permutation) { absl::InlinedVector<bool, 8> seen(permutation.size(), false); for (int64_t p : permutation) { if (p < 0 || p >= permutation.size() || seen[p]) { return false; } seen[p] = true; } return true; } std::vector<int64_t> InversePermutation( absl::Span<const int64_t> input_permutation) { DCHECK(IsPermutation(input_permutation)); std::vector<int64_t> output_permutation(input_permutation.size(), -1); for (size_t i = 0; i < input_permutation.size(); ++i) { output_permutation[input_permutation[i]] = i; } return output_permutation; } std::vector<int64_t> ComposePermutations(absl::Span<const int64_t> p1, absl::Span<const int64_t> p2) { CHECK_EQ(p1.size(), p2.size()); std::vector<int64_t> output; output.reserve(p1.size()); for (size_t i = 0; i < p1.size(); ++i) { output.push_back(p1.at(p2.at(i))); } return output; } bool IsIdentityPermutation(absl::Span<const int64_t> permutation) { for (int64_t i = 0; i < permutation.size(); ++i) { if (permutation[i] != i) { return false; } } return true; } }
#include "xla/permutation_util.h" #include "xla/test.h" namespace xla { namespace { TEST(PermutationUtilTest, IsPermutation) { EXPECT_TRUE(IsPermutation({})); EXPECT_TRUE(IsPermutation({0})); EXPECT_FALSE(IsPermutation({-3})); EXPECT_TRUE(IsPermutation({0, 1})); EXPECT_FALSE(IsPermutation({1, 1})); EXPECT_TRUE(IsPermutation({1, 0})); EXPECT_TRUE(IsPermutation({3, 1, 0, 2})); EXPECT_FALSE(IsPermutation({3, 0, 2})); } } }
1,783
cpp
tensorflow/tensorflow
primitive_util
third_party/xla/xla/primitive_util.cc
third_party/xla/xla/primitive_util_test.cc
#ifndef XLA_PRIMITIVE_UTIL_H_ #define XLA_PRIMITIVE_UTIL_H_ #include <array> #include <cstddef> #include <cstdint> #include <limits> #include <string> #include <tuple> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/base/optimization.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/ml_dtypes.h" namespace xla { namespace primitive_util { int SignificandWidth(PrimitiveType type); int ExponentWidth(PrimitiveType type); int UnderflowExponent(PrimitiveType type); int OverflowExponent(PrimitiveType type); int ExponentBias(PrimitiveType type); bool HasInfinity(PrimitiveType type); bool HasNegativeZero(PrimitiveType type); template <typename NativeT> constexpr PrimitiveType NativeToPrimitiveType() { static_assert(!std::is_same<NativeT, NativeT>::value, "Cannot map native type to primitive type."); return PRIMITIVE_TYPE_INVALID; } template <> constexpr PrimitiveType NativeToPrimitiveType<bool>() { return PRED; } template <> constexpr PrimitiveType NativeToPrimitiveType<u2>() { return U2; } template <> constexpr PrimitiveType NativeToPrimitiveType<u4>() { return U4; } template <> constexpr PrimitiveType NativeToPrimitiveType<uint8_t>() { return U8; } template <> constexpr PrimitiveType NativeToPrimitiveType<uint16_t>() { return U16; } template <> constexpr PrimitiveType NativeToPrimitiveType<uint32_t>() { return U32; } template <> constexpr PrimitiveType NativeToPrimitiveType<uint64_t>() { return U64; } template <> constexpr PrimitiveType NativeToPrimitiveType<s2>() { return S2; } template <> constexpr PrimitiveType NativeToPrimitiveType<s4>() { return S4; } template <> constexpr PrimitiveType NativeToPrimitiveType<int8_t>() { return S8; } template <> constexpr PrimitiveType NativeToPrimitiveType<int16_t>() { return S16; } template <> constexpr PrimitiveType NativeToPrimitiveType<int32_t>() { return S32; } template <> constexpr PrimitiveType NativeToPrimitiveType<int64_t>() { return S64; } template <> constexpr PrimitiveType NativeToPrimitiveType<float>() { return F32; } template <> constexpr PrimitiveType NativeToPrimitiveType<double>() { return F64; } template <> constexpr PrimitiveType NativeToPrimitiveType<half>() { return F16; } template <> constexpr PrimitiveType NativeToPrimitiveType<bfloat16>() { return BF16; } template <> constexpr PrimitiveType NativeToPrimitiveType<tsl::float8_e5m2>() { return F8E5M2; } template <> constexpr PrimitiveType NativeToPrimitiveType<tsl::float8_e4m3fn>() { return F8E4M3FN; } template <> constexpr PrimitiveType NativeToPrimitiveType<tsl::float8_e4m3b11fnuz>() { return F8E4M3B11FNUZ; } template <> constexpr PrimitiveType NativeToPrimitiveType<tsl::float8_e5m2fnuz>() { return F8E5M2FNUZ; } template <> constexpr PrimitiveType NativeToPrimitiveType<tsl::float8_e4m3fnuz>() { return F8E4M3FNUZ; } template <> constexpr PrimitiveType NativeToPrimitiveType<complex64>() { return C64; } template <> constexpr PrimitiveType NativeToPrimitiveType<complex128>() { return C128; } template <PrimitiveType> struct PrimitiveTypeToNative; template <> struct PrimitiveTypeToNative<PRED> { using type = bool; }; template <> struct PrimitiveTypeToNative<U2> { using type = u2; }; template <> struct PrimitiveTypeToNative<U4> { using type = u4; }; template <> struct PrimitiveTypeToNative<U8> { using type = uint8_t; }; template <> struct PrimitiveTypeToNative<U16> { using type = uint16_t; }; template <> struct PrimitiveTypeToNative<U32> { using type = uint32_t; }; template <> struct PrimitiveTypeToNative<U64> { using type = uint64_t; }; template <> struct PrimitiveTypeToNative<S2> { using type = s2; }; template <> struct PrimitiveTypeToNative<S4> { using type = s4; }; template <> struct PrimitiveTypeToNative<S8> { using type = int8_t; }; template <> struct PrimitiveTypeToNative<S16> { using type = int16_t; }; template <> struct PrimitiveTypeToNative<S32> { using type = int32_t; }; template <> struct PrimitiveTypeToNative<S64> { using type = int64_t; }; template <> struct PrimitiveTypeToNative<F32> { using type = float; }; template <> struct PrimitiveTypeToNative<F64> { using type = double; }; template <> struct PrimitiveTypeToNative<F16> { using type = half; }; template <> struct PrimitiveTypeToNative<BF16> { using type = bfloat16; }; template <> struct PrimitiveTypeToNative<F8E5M2> { using type = tsl::float8_e5m2; }; template <> struct PrimitiveTypeToNative<F8E4M3FN> { using type = tsl::float8_e4m3fn; }; template <> struct PrimitiveTypeToNative<F8E4M3B11FNUZ> { using type = tsl::float8_e4m3b11fnuz; }; template <> struct PrimitiveTypeToNative<F8E5M2FNUZ> { using type = tsl::float8_e5m2fnuz; }; template <> struct PrimitiveTypeToNative<F8E4M3FNUZ> { using type = tsl::float8_e4m3fnuz; }; template <> struct PrimitiveTypeToNative<C64> { using type = complex64; }; template <> struct PrimitiveTypeToNative<C128> { using type = complex128; }; template <> struct PrimitiveTypeToNative<TOKEN> { using type = void; }; template <PrimitiveType kType> using NativeTypeOf = typename primitive_util::PrimitiveTypeToNative<kType>::type; template <PrimitiveType kPrimitiveType> using PrimitiveTypeConstant = std::integral_constant<PrimitiveType, kPrimitiveType>; inline constexpr bool IsArrayType(PrimitiveType primitive_type) { return primitive_type != TUPLE && primitive_type != OPAQUE_TYPE && primitive_type != TOKEN && primitive_type > PRIMITIVE_TYPE_INVALID && primitive_type < PrimitiveType_ARRAYSIZE; } constexpr bool IsF8Type(PrimitiveType type) { return type == F8E5M2 || type == F8E4M3FN || type == F8E4M3B11FNUZ || type == F8E5M2FNUZ || type == F8E4M3FNUZ; } constexpr bool IsFloatingPointType(PrimitiveType type) { return type == F16 || type == F32 || type == F64 || type == BF16 || IsF8Type(type); } constexpr bool IsComplexType(PrimitiveType type) { return type == C64 || type == C128; } constexpr bool IsSignedIntegralType(PrimitiveType type) { return type == S2 || type == S4 || type == S8 || type == S16 || type == S32 || type == S64; } constexpr bool IsUnsignedIntegralType(PrimitiveType type) { return type == U2 || type == U4 || type == U8 || type == U16 || type == U32 || type == U64; } constexpr bool IsIntegralType(PrimitiveType type) { return IsUnsignedIntegralType(type) || IsSignedIntegralType(type); } template <typename R, typename F> constexpr R IntegralTypeSwitch(F&& f, PrimitiveType type) { if (ABSL_PREDICT_TRUE(IsIntegralType(type))) { switch (type) { case S2: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::S2>()); case S4: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::S4>()); case S8: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::S8>()); case S16: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::S16>()); case S32: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::S32>()); case S64: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::S64>()); case U2: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::U2>()); case U4: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::U4>()); case U8: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::U8>()); case U16: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::U16>()); case U32: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::U32>()); case U64: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::U64>()); default: ABSL_UNREACHABLE(); } } LOG(FATAL) << "Not an integral data type " << type; } template <typename R, typename F> constexpr R FloatingPointTypeSwitch(F&& f, PrimitiveType type) { if (ABSL_PREDICT_TRUE(IsFloatingPointType(type))) { switch (type) { case F8E4M3FN: return std::forward<F>(f)( PrimitiveTypeConstant<PrimitiveType::F8E4M3FN>()); case F8E4M3B11FNUZ: return std::forward<F>(f)( PrimitiveTypeConstant<PrimitiveType::F8E4M3B11FNUZ>()); case F8E4M3FNUZ: return std::forward<F>(f)( PrimitiveTypeConstant<PrimitiveType::F8E4M3FNUZ>()); case F8E5M2: return std::forward<F>(f)( PrimitiveTypeConstant<PrimitiveType::F8E5M2>()); case F8E5M2FNUZ: return std::forward<F>(f)( PrimitiveTypeConstant<PrimitiveType::F8E5M2FNUZ>()); case F16: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::F16>()); case BF16: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::BF16>()); case F32: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::F32>()); case F64: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::F64>()); default: ABSL_UNREACHABLE(); } } LOG(FATAL) << "Not a floating point data type " << type; } template <typename R, typename F> constexpr R ComplexTypeSwitch(F&& f, PrimitiveType type) { if (ABSL_PREDICT_TRUE(IsComplexType(type))) { switch (type) { case C64: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::C64>()); case C128: return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::C128>()); default: ABSL_UNREACHABLE(); } } LOG(FATAL) << "Not a complex data type " << type; } template <typename R, typename F> constexpr R ArrayTypeSwitch(F&& f, PrimitiveType type) { if (ABSL_PREDICT_TRUE(IsArrayType(type))) { if (IsFloatingPointType(type)) { return FloatingPointTypeSwitch<R>(std::forward<F>(f), type); } if (IsIntegralType(type)) { return IntegralTypeSwitch<R>(std::forward<F>(f), type); } if (IsComplexType(type)) { return ComplexTypeSwitch<R>(std::forward<F>(f), type); } if (type == PRED) { return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::PRED>()); } } LOG(FATAL) << "Not an array data type " << type; } template <typename R, typename F> constexpr R PrimitiveTypeSwitch(F&& f, PrimitiveType type) { if (ABSL_PREDICT_TRUE(IsArrayType(type))) { return ArrayTypeSwitch<R>(std::forward<F>(f), type); } if (type == TUPLE) { return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::TUPLE>()); } if (type == TOKEN) { return std::forward<F>(f)(PrimitiveTypeConstant<PrimitiveType::TOKEN>()); } if (type == OPAQUE_TYPE) { return std::forward<F>(f)( PrimitiveTypeConstant<PrimitiveType::OPAQUE_TYPE>()); } LOG(FATAL) << "unhandled type " << type; } namespace internal { template <PrimitiveType primitive_type> inline constexpr int PrimitiveTypeBitWidth() { if constexpr (IsArrayType(primitive_type)) { using NativeT = primitive_util::NativeTypeOf<primitive_type>; if constexpr (IsIntegralType(primitive_type)) { static_assert(is_specialized_integral_v<NativeT>); static_assert(std::numeric_limits<NativeT>::is_signed == IsSignedIntegralType(primitive_type)); static_assert(std::numeric_limits<NativeT>::radix == 2); return std::numeric_limits<NativeT>::digits + (IsSignedIntegralType(primitive_type) ? 1 : 0); } if constexpr (primitive_type == PRED) { return std::numeric_limits<NativeT>::digits; } if constexpr (IsFloatingPointType(primitive_type)) { return sizeof(NativeT) * std::numeric_limits<uint8_t>::digits; } if constexpr (IsComplexType(primitive_type)) { static_assert(is_complex_v<NativeT>); return sizeof(NativeT) * std::numeric_limits<uint8_t>::digits; } } return 0; } template <int... Types> inline constexpr auto BitWidthArrayHelper( std::integer_sequence<int, Types...>) { return std::array{PrimitiveTypeBitWidth<PrimitiveType{Types}>()...}; } inline constexpr auto kBitWidths = BitWidthArrayHelper( std::make_integer_sequence<int, PrimitiveType_ARRAYSIZE>{}); template <int... Types> inline constexpr auto ByteWidthArrayHelper( std::integer_sequence<int, Types...>) { return std::array{ CeilOfRatio(PrimitiveTypeBitWidth<PrimitiveType{Types}>(), 8)...}; } inline constexpr auto kByteWidths = ByteWidthArrayHelper( std::make_integer_sequence<int, PrimitiveType_ARRAYSIZE>{}); template <const std::array<int, PrimitiveType_ARRAYSIZE>& kWidths> inline constexpr int WidthForType(PrimitiveType type) { if (ABSL_PREDICT_TRUE(IsArrayType(type))) { return kWidths[type]; } LOG(FATAL) << "Unhandled primitive type " << type; } } inline constexpr int BitWidth(PrimitiveType type) { return internal::WidthForType<internal::kBitWidths>(type); } inline constexpr int ByteWidth(PrimitiveType type) { return internal::WidthForType<internal::kByteWidths>(type); } constexpr PrimitiveType UnsignedIntegralTypeForBitWidth(int64_t src_bitwidth) { switch (src_bitwidth) { case 2: return xla::U2; case 4: return xla::U4; case 8: return xla::U8; case 16: return xla::U16; case 32: return xla::U32; case 64: return xla::U64; default: return xla::PRIMITIVE_TYPE_INVALID; } } PrimitiveType SignedIntegralTypeForBitWidth(int64_t src_bitwidth); constexpr PrimitiveType ComplexComponentType(PrimitiveType complex_type) { switch (complex_type) { case C64: return F32; case C128: return F64; default: LOG(FATAL) << "Primitive type is not complex: " << PrimitiveType_Name(complex_type); } } constexpr PrimitiveType ComplexType(PrimitiveType base_type) { if (base_type == F32) { return C64; } if (base_type == F64) { return C128; } return PRIMITIVE_TYPE_INVALID; } inline PrimitiveType HigherPrecisionType(PrimitiveType a, PrimitiveType b) { auto type_properties = [](PrimitiveType type) { auto component_type = IsComplexType(type) ? ComplexComponentType(type) : type; return std::make_tuple( IsComplexType(type), IsFloatingPointType(component_type) ? OverflowExponent(component_type) : -1, IsFloatingPointType(component_type) ? SignificandWidth(component_type) : -1, BitWidth(component_type), IsSignedIntegralType(component_type)); }; auto a_properties = type_properties(a); auto b_properties = type_properties(b); if (a_properties > b_properties) { return a; } if (b_properties > a_properties) { return b; } CHECK_EQ(a, b); return a; } inline bool CastPreservesValues(PrimitiveType from_type, PrimitiveType to_type) { if (from_type == to_type) { return true; } if (from_type == PRED) { return true; } if (to_type == PRED) { return false; } if (primitive_util::IsComplexType(to_type)) { auto from_component_type = primitive_util::IsComplexType(from_type) ? primitive_util::ComplexComponentType(from_type) : from_type; auto to_component_type = primitive_util::ComplexComponentType(to_type); return CastPreservesValues(from_component_type, to_component_type); } if (primitive_util::IsComplexType(from_type)) { return false; } if (primitive_util::IsFloatingPointType(from_type) && primitive_util::IsFloatingPointType(to_type)) { return (!primitive_util::HasInfinity(from_type) || primitive_util::HasInfinity(to_type)) && primitive_util::SignificandWidth(from_type) <= primitive_util::SignificandWidth(to_type) && primitive_util::ExponentWidth(from_type) <= primitive_util::ExponentWidth(to_type) && (primitive_util::UnderflowExponent(from_type) - primitive_util::SignificandWidth(from_type)) >= (primitive_util::UnderflowExponent(to_type) - primitive_util::SignificandWidth(to_type)) && primitive_util::OverflowExponent(from_type) <= primitive_util::OverflowExponent(to_type); } if (!primitive_util::IsIntegralType(from_type)) { return false; } const int from_bits = primitive_util::IsSignedIntegralType(from_type) ? primitive_util::BitWidth(from_type) - 1 : primitive_util::BitWidth(from_type); const int to_bits = primitive_util::IsSignedIntegralType(to_type) ? primitive_util::BitWidth(to_type) - 1 : primitive_util::BitWidth(to_type); if (primitive_util::IsFloatingPointType(to_type)) { return from_bits <= primitive_util::SignificandWidth(to_type) && primitive_util::BitWidth(from_type) - 1 < primitive_util::OverflowExponent(to_type); } if (primitive_util::IsSignedIntegralType(from_type) && primitive_util::IsUnsignedIntegralType(to_type)) { return false; } CHECK(primitive_util::IsIntegralType(to_type)); return from_bits <= to_bits; } const std::string& LowercasePrimitiveTypeName(PrimitiveType s); absl::StatusOr<PrimitiveType> StringToPrimitiveType(absl::string_view name); bool IsPrimitiveTypeName(absl::string_view name); template <typename T> bool IsCanonicalRepresentation(PrimitiveType type) { return PrimitiveTypeSwitch<bool>( [](auto primitive_type) -> bool { if constexpr (primitive_util::IsFloatingPointType(primitive_type) || primitive_util::IsComplexType(primitive_type)) { return NativeToPrimitiveType<T>() == primitive_type; } if constexpr (primitive_util::IsSignedIntegralType(primitive_type)) { return std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed && BitWidth(primitive_type) <= (std::numeric_limits<T>::digits + 1); } if constexpr (primitive_util::IsUnsignedIntegralType(primitive_type) || primitive_type == PRED) { return std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed && BitWidth(primitive_type) <= std::numeric_limits<T>::digits; } return false; }, type); } inline bool FitsInIntegralType(int64_t x, PrimitiveType ty) { return primitive_util::IntegralTypeSwitch<bool>( [&](auto primitive_type) -> bool { using NativeT = primitive_util::NativeTypeOf<primitive_type>; return std::numeric_limits<NativeT>::min() <= x && std::numeric_limits<NativeT>::max() >= x; }, ty); } constexpr bool IsSubByteNonPredType(PrimitiveType type) { return IsArrayType(type) && type != PRED && primitive_util::BitWidth(type) < 8; } inline void PackIntN(PrimitiveType input_type, absl::Span<const char> input, absl::Span<char> output) { xla::PackIntN(primitive_util::BitWidth(input_type), input, output); } inline void UnpackIntN(PrimitiveType input_type, absl::Span<const char> input, absl::Span<char> output) { xla::UnpackIntN(primitive_util::BitWidth(input_type), input, output); } } } #endif #include "xla/primitive_util.h" #include <cstdint> #include <limits> #include <string> #include "absl/base/optimization.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/ascii.h" #include "absl/strings/string_view.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { namespace primitive_util { int SignificandWidth(PrimitiveType type) { return FloatingPointTypeSwitch<int>( [&](auto constant_type) -> int { return std::numeric_limits<NativeTypeOf<constant_type>>::digits; }, type); } int ExponentWidth(PrimitiveType type) { int total_bit_width = BitWidth(type); int trailing_significand_field_width = SignificandWidth(type) - 1; int kSignBitWidth = 1; return total_bit_width - (trailing_significand_field_width + kSignBitWidth); } int UnderflowExponent(PrimitiveType type) { return FloatingPointTypeSwitch<int>( [&](auto constant_type) -> int { return std::numeric_limits<NativeTypeOf<constant_type>>::min_exponent; }, type); } int OverflowExponent(PrimitiveType type) { return FloatingPointTypeSwitch<int>( [&](auto constant_type) -> int { return std::numeric_limits<NativeTypeOf<constant_type>>::max_exponent; }, type); } int ExponentBias(PrimitiveType type) { return (1 - UnderflowExponent(type)) + 1; } bool HasInfinity(PrimitiveType type) { if (ABSL_PREDICT_TRUE(IsFloatingPointType(type))) { return FloatingPointTypeSwitch<bool>( [&](auto constant_type) -> bool { return std::numeric_limits<NativeTypeOf<constant_type>>::has_infinity; }, type); } return false; } bool HasNegativeZero(PrimitiveType type) { if (ABSL_PREDICT_TRUE(IsFloatingPointType(type))) { return FloatingPointTypeSwitch<bool>( [&](auto constant_type) -> bool { return has_negative_zero_v<NativeTypeOf<constant_type>>; }, type); } return false; } xla::PrimitiveType SignedIntegralTypeForBitWidth(int64_t src_bitwidth) { switch (src_bitwidth) { case 2: return xla::S2; case 4: return xla::S4; case 8: return xla::S8; case 16: return xla::S16; case 32: return xla::S32; case 64: return xla::S64; default: return xla::PRIMITIVE_TYPE_INVALID; } } class PrimitiveTypeNameGenerator { public: PrimitiveTypeNameGenerator() { for (int i = 0; i < PrimitiveType_ARRAYSIZE; i++) { if (i == static_cast<int>(OPAQUE_TYPE)) { lowercase_name_[i] = "opaque"; } else if (PrimitiveType_IsValid(i)) { lowercase_name_[i] = absl::AsciiStrToLower( PrimitiveType_Name(static_cast<PrimitiveType>(i))); } } } const std::string& LowercaseName(PrimitiveType t) { CHECK_LT(t, PrimitiveType_ARRAYSIZE); return lowercase_name_[static_cast<int>(t)]; } private: std::string lowercase_name_[PrimitiveType_ARRAYSIZE]; }; const std::string& LowercasePrimitiveTypeName(PrimitiveType s) { static auto* gen = new PrimitiveTypeNameGenerator(); return gen->LowercaseName(s); } namespace { const absl::flat_hash_map<std::string, PrimitiveType>& GetPrimitiveTypeStringMap() { static absl::flat_hash_map<std::string, PrimitiveType>* name_to_type = [] { static auto* map = new absl::flat_hash_map<std::string, PrimitiveType>; for (int i = 0; i < PrimitiveType_ARRAYSIZE; i++) { if (PrimitiveType_IsValid(i) && i != PRIMITIVE_TYPE_INVALID) { auto value = static_cast<PrimitiveType>(i); (*map)[LowercasePrimitiveTypeName(value)] = value; } } (*map)["opaque"] = OPAQUE_TYPE; return map; }(); return *name_to_type; } } absl::StatusOr<PrimitiveType> StringToPrimitiveType(absl::string_view name) { const auto& map = GetPrimitiveTypeStringMap(); auto found = map.find(name); if (found == map.end()) { return InvalidArgument("Invalid element type string: \"%s\".", name); } return found->second; } bool IsPrimitiveTypeName(absl::string_view name) { const auto& map = GetPrimitiveTypeStringMap(); auto found = map.find(name); return found != map.end(); } } }
#include "xla/primitive_util.h" #include <numeric> #include <string> #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { TEST(PrimitiveUtilTest, StringToPrimitiveType) { auto expect_ok_and_equal = [](const std::string& str, PrimitiveType expected) { TF_ASSERT_OK_AND_ASSIGN(PrimitiveType actual, primitive_util::StringToPrimitiveType(str)); EXPECT_EQ(expected, actual); }; expect_ok_and_equal("f32", F32); expect_ok_and_equal("tuple", TUPLE); expect_ok_and_equal("pred", PRED); expect_ok_and_equal("s32", S32); EXPECT_IS_NOT_OK(primitive_util::StringToPrimitiveType("F32").status()); EXPECT_IS_NOT_OK(primitive_util::StringToPrimitiveType("Pred").status()); EXPECT_IS_NOT_OK(primitive_util::StringToPrimitiveType("preD").status()); } TEST(PrimitiveUtilTest, FloatTypes) { EXPECT_EQ(primitive_util::SignificandWidth(F32), 24); EXPECT_EQ(primitive_util::SignificandWidth(BF16), 8); EXPECT_EQ(primitive_util::ExponentWidth(F32), 8); EXPECT_EQ(primitive_util::ExponentWidth(BF16), 8); EXPECT_EQ(primitive_util::UnderflowExponent(F32), -125); EXPECT_EQ(primitive_util::UnderflowExponent(BF16), -125); EXPECT_EQ(primitive_util::OverflowExponent(F32), 128); EXPECT_EQ(primitive_util::OverflowExponent(BF16), 128); } TEST(PrimitiveUtilTest, CastPreservesValues) { bool expecteds[PrimitiveType_ARRAYSIZE][PrimitiveType_ARRAYSIZE]; expecteds[PRED][PRED] = true; expecteds[PRED][S2] = true; expecteds[PRED][S4] = true; expecteds[PRED][S8] = true; expecteds[PRED][S16] = true; expecteds[PRED][S32] = true; expecteds[PRED][S64] = true; expecteds[PRED][U2] = true; expecteds[PRED][U4] = true; expecteds[PRED][U8] = true; expecteds[PRED][U16] = true; expecteds[PRED][U32] = true; expecteds[PRED][U64] = true; expecteds[PRED][F16] = true; expecteds[PRED][F32] = true; expecteds[PRED][F64] = true; expecteds[PRED][C64] = true; expecteds[PRED][BF16] = true; expecteds[PRED][C128] = true; expecteds[PRED][F8E5M2] = true; expecteds[PRED][F8E4M3FN] = true; expecteds[PRED][F8E4M3B11FNUZ] = true; expecteds[PRED][F8E5M2FNUZ] = true; expecteds[PRED][F8E4M3FNUZ] = true; expecteds[S2][PRED] = false; expecteds[S2][S2] = true; expecteds[S2][S4] = true; expecteds[S2][S8] = true; expecteds[S2][S16] = true; expecteds[S2][S32] = true; expecteds[S2][S64] = true; expecteds[S2][U2] = false; expecteds[S2][U4] = false; expecteds[S2][U8] = false; expecteds[S2][U16] = false; expecteds[S2][U32] = false; expecteds[S2][U64] = false; expecteds[S2][F16] = true; expecteds[S2][F32] = true; expecteds[S2][F64] = true; expecteds[S2][C64] = true; expecteds[S2][BF16] = true; expecteds[S2][C128] = true; expecteds[S2][F8E5M2] = true; expecteds[S2][F8E4M3FN] = true; expecteds[S2][F8E4M3B11FNUZ] = true; expecteds[S2][F8E5M2FNUZ] = true; expecteds[S2][F8E4M3FNUZ] = true; expecteds[S4][PRED] = false; expecteds[S4][S2] = false; expecteds[S4][S4] = true; expecteds[S4][S8] = true; expecteds[S4][S16] = true; expecteds[S4][S32] = true; expecteds[S4][S64] = true; expecteds[S4][U2] = false; expecteds[S4][U4] = false; expecteds[S4][U8] = false; expecteds[S4][U16] = false; expecteds[S4][U32] = false; expecteds[S4][U64] = false; expecteds[S4][F16] = true; expecteds[S4][F32] = true; expecteds[S4][F64] = true; expecteds[S4][C64] = true; expecteds[S4][BF16] = true; expecteds[S4][C128] = true; expecteds[S4][F8E5M2] = true; expecteds[S4][F8E4M3FN] = true; expecteds[S4][F8E4M3B11FNUZ] = true; expecteds[S4][F8E5M2FNUZ] = true; expecteds[S4][F8E4M3FNUZ] = true; expecteds[S8][PRED] = false; expecteds[S8][S2] = false; expecteds[S8][S4] = false; expecteds[S8][S8] = true; expecteds[S8][S16] = true; expecteds[S8][S32] = true; expecteds[S8][S64] = true; expecteds[S8][U2] = false; expecteds[S8][U4] = false; expecteds[S8][U8] = false; expecteds[S8][U16] = false; expecteds[S8][U32] = false; expecteds[S8][U64] = false; expecteds[S8][F16] = true; expecteds[S8][F32] = true; expecteds[S8][F64] = true; expecteds[S8][C64] = true; expecteds[S8][BF16] = true; expecteds[S8][C128] = true; expecteds[S8][F8E5M2] = false; expecteds[S8][F8E4M3FN] = false; expecteds[S8][F8E4M3B11FNUZ] = false; expecteds[S8][F8E5M2FNUZ] = false; expecteds[S8][F8E4M3FNUZ] = false; expecteds[S16][PRED] = false; expecteds[S16][S2] = false; expecteds[S16][S4] = false; expecteds[S16][S8] = false; expecteds[S16][S16] = true; expecteds[S16][S32] = true; expecteds[S16][S64] = true; expecteds[S16][U2] = false; expecteds[S16][U4] = false; expecteds[S16][U8] = false; expecteds[S16][U16] = false; expecteds[S16][U32] = false; expecteds[S16][U64] = false; expecteds[S16][F16] = false; expecteds[S16][F32] = true; expecteds[S16][F64] = true; expecteds[S16][C64] = true; expecteds[S16][BF16] = false; expecteds[S16][C128] = true; expecteds[S16][F8E5M2] = false; expecteds[S16][F8E4M3FN] = false; expecteds[S16][F8E4M3B11FNUZ] = false; expecteds[S16][F8E5M2FNUZ] = false; expecteds[S16][F8E4M3FNUZ] = false; expecteds[S32][PRED] = false; expecteds[S32][S2] = false; expecteds[S32][S4] = false; expecteds[S32][S8] = false; expecteds[S32][S16] = false; expecteds[S32][S32] = true; expecteds[S32][S64] = true; expecteds[S32][U2] = false; expecteds[S32][U4] = false; expecteds[S32][U8] = false; expecteds[S32][U16] = false; expecteds[S32][U32] = false; expecteds[S32][U64] = false; expecteds[S32][F16] = false; expecteds[S32][F32] = false; expecteds[S32][F64] = true; expecteds[S32][C64] = false; expecteds[S32][BF16] = false; expecteds[S32][C128] = true; expecteds[S32][F8E5M2] = false; expecteds[S32][F8E4M3FN] = false; expecteds[S32][F8E4M3B11FNUZ] = false; expecteds[S32][F8E5M2FNUZ] = false; expecteds[S32][F8E4M3FNUZ] = false; expecteds[S64][PRED] = false; expecteds[S64][S2] = false; expecteds[S64][S4] = false; expecteds[S64][S8] = false; expecteds[S64][S16] = false; expecteds[S64][S32] = false; expecteds[S64][S64] = true; expecteds[S64][U2] = false; expecteds[S64][U4] = false; expecteds[S64][U8] = false; expecteds[S64][U16] = false; expecteds[S64][U32] = false; expecteds[S64][U64] = false; expecteds[S64][F16] = false; expecteds[S64][F32] = false; expecteds[S64][F64] = false; expecteds[S64][C64] = false; expecteds[S64][BF16] = false; expecteds[S64][C128] = false; expecteds[S64][F8E5M2] = false; expecteds[S64][F8E4M3FN] = false; expecteds[S64][F8E4M3B11FNUZ] = false; expecteds[S64][F8E5M2FNUZ] = false; expecteds[S64][F8E4M3FNUZ] = false; expecteds[U2][PRED] = false; expecteds[U2][S2] = false; expecteds[U2][S4] = true; expecteds[U2][S8] = true; expecteds[U2][S16] = true; expecteds[U2][S32] = true; expecteds[U2][S64] = true; expecteds[U2][U2] = true; expecteds[U2][U4] = true; expecteds[U2][U8] = true; expecteds[U2][U16] = true; expecteds[U2][U32] = true; expecteds[U2][U64] = true; expecteds[U2][F16] = true; expecteds[U2][F32] = true; expecteds[U2][F64] = true; expecteds[U2][C64] = true; expecteds[U2][BF16] = true; expecteds[U2][C128] = true; expecteds[U2][BF16] = true; expecteds[U2][C128] = true; expecteds[U2][F8E5M2] = true; expecteds[U2][F8E4M3FN] = true; expecteds[U2][F8E4M3B11FNUZ] = true; expecteds[U2][F8E5M2FNUZ] = true; expecteds[U2][F8E4M3FNUZ] = true; expecteds[U4][PRED] = false; expecteds[U4][S2] = false; expecteds[U4][S4] = false; expecteds[U4][S8] = true; expecteds[U4][S16] = true; expecteds[U4][S32] = true; expecteds[U4][S64] = true; expecteds[U4][U2] = false; expecteds[U4][U4] = true; expecteds[U4][U8] = true; expecteds[U4][U16] = true; expecteds[U4][U32] = true; expecteds[U4][U64] = true; expecteds[U4][F16] = true; expecteds[U4][F32] = true; expecteds[U4][F64] = true; expecteds[U4][C64] = true; expecteds[U4][BF16] = true; expecteds[U4][C128] = true; expecteds[U4][BF16] = true; expecteds[U4][C128] = true; expecteds[U4][F8E5M2] = false; expecteds[U4][F8E4M3FN] = true; expecteds[U4][F8E4M3B11FNUZ] = true; expecteds[U4][F8E5M2FNUZ] = false; expecteds[U4][F8E4M3FNUZ] = true; expecteds[U8][PRED] = false; expecteds[U8][S2] = false; expecteds[U8][S4] = false; expecteds[U8][S8] = false; expecteds[U8][S16] = true; expecteds[U8][S32] = true; expecteds[U8][S64] = true; expecteds[U8][U2] = false; expecteds[U8][U4] = false; expecteds[U8][U8] = true; expecteds[U8][U16] = true; expecteds[U8][U32] = true; expecteds[U8][U64] = true; expecteds[U8][F16] = true; expecteds[U8][F32] = true; expecteds[U8][F64] = true; expecteds[U8][C64] = true; expecteds[U8][BF16] = true; expecteds[U8][C128] = true; expecteds[U8][BF16] = true; expecteds[U8][C128] = true; expecteds[U8][F8E5M2] = false; expecteds[U8][F8E4M3FN] = false; expecteds[U8][F8E4M3B11FNUZ] = false; expecteds[U8][F8E5M2FNUZ] = false; expecteds[U8][F8E4M3FNUZ] = false; expecteds[U16][PRED] = false; expecteds[U16][S2] = false; expecteds[U16][S4] = false; expecteds[U16][S8] = false; expecteds[U16][S16] = false; expecteds[U16][S32] = true; expecteds[U16][S64] = true; expecteds[U16][U2] = false; expecteds[U16][U4] = false; expecteds[U16][U8] = false; expecteds[U16][U16] = true; expecteds[U16][U32] = true; expecteds[U16][U64] = true; expecteds[U16][F16] = false; expecteds[U16][F32] = true; expecteds[U16][F64] = true; expecteds[U16][C64] = true; expecteds[U16][BF16] = false; expecteds[U16][C128] = true; expecteds[U16][F8E5M2] = false; expecteds[U16][F8E4M3FN] = false; expecteds[U16][F8E4M3B11FNUZ] = false; expecteds[U16][F8E5M2FNUZ] = false; expecteds[U16][F8E4M3FNUZ] = false; expecteds[U32][PRED] = false; expecteds[U32][S2] = false; expecteds[U32][S4] = false; expecteds[U32][S8] = false; expecteds[U32][S16] = false; expecteds[U32][S32] = false; expecteds[U32][S64] = true; expecteds[U32][U2] = false; expecteds[U32][U4] = false; expecteds[U32][U8] = false; expecteds[U32][U16] = false; expecteds[U32][U32] = true; expecteds[U32][U64] = true; expecteds[U32][F16] = false; expecteds[U32][F32] = false; expecteds[U32][F64] = true; expecteds[U32][C64] = false; expecteds[U32][BF16] = false; expecteds[U32][C128] = true; expecteds[U32][F8E5M2] = false; expecteds[U32][F8E4M3FN] = false; expecteds[U32][F8E4M3B11FNUZ] = false; expecteds[U32][F8E5M2FNUZ] = false; expecteds[U32][F8E4M3FNUZ] = false; expecteds[U64][PRED] = false; expecteds[U64][S2] = false; expecteds[U64][S4] = false; expecteds[U64][S8] = false; expecteds[U64][S16] = false; expecteds[U64][S32] = false; expecteds[U64][S64] = false; expecteds[U64][U2] = false; expecteds[U64][U4] = false; expecteds[U64][U8] = false; expecteds[U64][U16] = false; expecteds[U64][U32] = false; expecteds[U64][U64] = true; expecteds[U64][F16] = false; expecteds[U64][F32] = false; expecteds[U64][F64] = false; expecteds[U64][C64] = false; expecteds[U64][BF16] = false; expecteds[U64][C128] = false; expecteds[U64][F8E5M2] = false; expecteds[U64][F8E4M3FN] = false; expecteds[U64][F8E4M3B11FNUZ] = false; expecteds[U64][F8E5M2FNUZ] = false; expecteds[U64][F8E4M3FNUZ] = false; expecteds[F16][PRED] = false; expecteds[F16][S2] = false; expecteds[F16][S4] = false; expecteds[F16][S8] = false; expecteds[F16][S16] = false; expecteds[F16][S32] = false; expecteds[F16][S64] = false; expecteds[F16][U2] = false; expecteds[F16][U4] = false; expecteds[F16][U8] = false; expecteds[F16][U16] = false; expecteds[F16][U32] = false; expecteds[F16][U64] = false; expecteds[F16][F16] = true; expecteds[F16][F32] = true; expecteds[F16][F64] = true; expecteds[F16][C64] = true; expecteds[F16][BF16] = false; expecteds[F16][C128] = true; expecteds[F16][F8E5M2] = false; expecteds[F16][F8E4M3FN] = false; expecteds[F16][F8E4M3B11FNUZ] = false; expecteds[F16][F8E5M2FNUZ] = false; expecteds[F16][F8E4M3FNUZ] = false; expecteds[F32][PRED] = false; expecteds[F32][S2] = false; expecteds[F32][S4] = false; expecteds[F32][S8] = false; expecteds[F32][S16] = false; expecteds[F32][S32] = false; expecteds[F32][S64] = false; expecteds[F32][U2] = false; expecteds[F32][U4] = false; expecteds[F32][U8] = false; expecteds[F32][U16] = false; expecteds[F32][U32] = false; expecteds[F32][U64] = false; expecteds[F32][F16] = false; expecteds[F32][F32] = true; expecteds[F32][F64] = true; expecteds[F32][C64] = true; expecteds[F32][BF16] = false; expecteds[F32][C128] = true; expecteds[F32][F8E5M2] = false; expecteds[F32][F8E4M3FN] = false; expecteds[F32][F8E4M3B11FNUZ] = false; expecteds[F32][F8E5M2FNUZ] = false; expecteds[F32][F8E4M3FNUZ] = false; expecteds[F64][PRED] = false; expecteds[F64][S2] = false; expecteds[F64][S4] = false; expecteds[F64][S8] = false; expecteds[F64][S16] = false; expecteds[F64][S32] = false; expecteds[F64][S64] = false; expecteds[F64][U2] = false; expecteds[F64][U4] = false; expecteds[F64][U8] = false; expecteds[F64][U16] = false; expecteds[F64][U32] = false; expecteds[F64][U64] = false; expecteds[F64][F16] = false; expecteds[F64][F32] = false; expecteds[F64][F64] = true; expecteds[F64][C64] = false; expecteds[F64][BF16] = false; expecteds[F64][C128] = true; expecteds[F64][F8E5M2] = false; expecteds[F64][F8E4M3FN] = false; expecteds[F64][F8E4M3B11FNUZ] = false; expecteds[F64][F8E5M2FNUZ] = false; expecteds[F64][F8E4M3FNUZ] = false; expecteds[C64][PRED] = false; expecteds[C64][S2] = false; expecteds[C64][S4] = false; expecteds[C64][S8] = false; expecteds[C64][S16] = false; expecteds[C64][S32] = false; expecteds[C64][S64] = false; expecteds[C64][U2] = false; expecteds[C64][U4] = false; expecteds[C64][U8] = false; expecteds[C64][U16] = false; expecteds[C64][U32] = false; expecteds[C64][U64] = false; expecteds[C64][F16] = false; expecteds[C64][F32] = false; expecteds[C64][F64] = false; expecteds[C64][C64] = true; expecteds[C64][BF16] = false; expecteds[C64][C128] = true; expecteds[C64][F8E5M2] = false; expecteds[C64][F8E4M3FN] = false; expecteds[C64][F8E4M3B11FNUZ] = false; expecteds[C64][F8E5M2FNUZ] = false; expecteds[C64][F8E4M3FNUZ] = false; expecteds[BF16][PRED] = false; expecteds[BF16][S2] = false; expecteds[BF16][S4] = false; expecteds[BF16][S8] = false; expecteds[BF16][S16] = false; expecteds[BF16][S32] = false; expecteds[BF16][S64] = false; expecteds[BF16][U2] = false; expecteds[BF16][U4] = false; expecteds[BF16][U8] = false; expecteds[BF16][U16] = false; expecteds[BF16][U32] = false; expecteds[BF16][U64] = false; expecteds[BF16][F16] = false; expecteds[BF16][F32] = true; expecteds[BF16][F64] = true; expecteds[BF16][C64] = true; expecteds[BF16][BF16] = true; expecteds[BF16][C128] = true; expecteds[BF16][F8E5M2] = false; expecteds[BF16][F8E4M3FN] = false; expecteds[BF16][F8E4M3B11FNUZ] = false; expecteds[BF16][F8E5M2FNUZ] = false; expecteds[BF16][F8E4M3FNUZ] = false; expecteds[C128][PRED] = false; expecteds[C128][S2] = false; expecteds[C128][S4] = false; expecteds[C128][S8] = false; expecteds[C128][S16] = false; expecteds[C128][S32] = false; expecteds[C128][S64] = false; expecteds[C128][U2] = false; expecteds[C128][U4] = false; expecteds[C128][U8] = false; expecteds[C128][U16] = false; expecteds[C128][U32] = false; expecteds[C128][U64] = false; expecteds[C128][F16] = false; expecteds[C128][F32] = false; expecteds[C128][F64] = false; expecteds[C128][C64] = false; expecteds[C128][BF16] = false; expecteds[C128][C128] = true; expecteds[C128][F8E5M2] = false; expecteds[C128][F8E4M3FN] = false; expecteds[C128][F8E4M3B11FNUZ] = false; expecteds[C128][F8E5M2FNUZ] = false; expecteds[C128][F8E4M3FNUZ] = false; expecteds[F8E5M2][PRED] = false; expecteds[F8E5M2][S2] = false; expecteds[F8E5M2][S4] = false; expecteds[F8E5M2][S8] = false; expecteds[F8E5M2][S16] = false; expecteds[F8E5M2][S32] = false; expecteds[F8E5M2][S64] = false; expecteds[F8E5M2][U2] = false; expecteds[F8E5M2][U4] = false; expecteds[F8E5M2][U8] = false; expecteds[F8E5M2][U16] = false; expecteds[F8E5M2][U32] = false; expecteds[F8E5M2][U64] = false; expecteds[F8E5M2][F16] = true; expecteds[F8E5M2][F32] = true; expecteds[F8E5M2][F64] = true; expecteds[F8E5M2][C64] = true; expecteds[F8E5M2][BF16] = true; expecteds[F8E5M2][C128] = true; expecteds[F8E5M2][F8E5M2] = true; expecteds[F8E5M2][F8E4M3FN] = false; expecteds[F8E5M2][F8E4M3B11FNUZ] = false; expecteds[F8E5M2][F8E5M2FNUZ] = false; expecteds[F8E5M2][F8E4M3FNUZ] = false; expecteds[F8E4M3FN][PRED] = false; expecteds[F8E4M3FN][S2] = false; expecteds[F8E4M3FN][S4] = false; expecteds[F8E4M3FN][S8] = false; expecteds[F8E4M3FN][S16] = false; expecteds[F8E4M3FN][S32] = false; expecteds[F8E4M3FN][S64] = false; expecteds[F8E4M3FN][U2] = false; expecteds[F8E4M3FN][U4] = false; expecteds[F8E4M3FN][U8] = false; expecteds[F8E4M3FN][U16] = false; expecteds[F8E4M3FN][U32] = false; expecteds[F8E4M3FN][U64] = false; expecteds[F8E4M3FN][F16] = true; expecteds[F8E4M3FN][F32] = true; expecteds[F8E4M3FN][F64] = true; expecteds[F8E4M3FN][C64] = true; expecteds[F8E4M3FN][BF16] = true; expecteds[F8E4M3FN][C128] = true; expecteds[F8E4M3FN][F8E5M2] = false; expecteds[F8E4M3FN][F8E4M3FN] = true; expecteds[F8E4M3FN][F8E4M3B11FNUZ] = false; expecteds[F8E4M3B11FNUZ][PRED] = false; expecteds[F8E4M3B11FNUZ][S2] = false; expecteds[F8E4M3B11FNUZ][S4] = false; expecteds[F8E4M3B11FNUZ][S8] = false; expecteds[F8E4M3B11FNUZ][S16] = false; expecteds[F8E4M3B11FNUZ][S32] = false; expecteds[F8E4M3B11FNUZ][S64] = false; expecteds[F8E4M3B11FNUZ][U2] = false; expecteds[F8E4M3B11FNUZ][U4] = false; expecteds[F8E4M3B11FNUZ][U8] = false; expecteds[F8E4M3B11FNUZ][U16] = false; expecteds[F8E4M3B11FNUZ][U32] = false; expecteds[F8E4M3B11FNUZ][U64] = false; expecteds[F8E4M3B11FNUZ][F16] = true; expecteds[F8E4M3B11FNUZ][F32] = true; expecteds[F8E4M3B11FNUZ][F64] = true; expecteds[F8E4M3B11FNUZ][C64] = true; expecteds[F8E4M3B11FNUZ][BF16] = true; expecteds[F8E4M3B11FNUZ][C128] = true; expecteds[F8E4M3B11FNUZ][F8E5M2] = false; expecteds[F8E4M3B11FNUZ][F8E4M3FN] = false; expecteds[F8E4M3B11FNUZ][F8E4M3B11FNUZ] = true; expecteds[F8E4M3B11FNUZ][F8E4M3FNUZ] = false; expecteds[F8E4M3B11FNUZ][F8E5M2FNUZ] = false; expecteds[F8E4M3FN][F8E5M2FNUZ] = false; expecteds[F8E4M3FN][F8E4M3FNUZ] = false; expecteds[F8E5M2FNUZ][PRED] = false; expecteds[F8E5M2FNUZ][S2] = false; expecteds[F8E5M2FNUZ][S4] = false; expecteds[F8E5M2FNUZ][S8] = false; expecteds[F8E5M2FNUZ][S16] = false; expecteds[F8E5M2FNUZ][S32] = false; expecteds[F8E5M2FNUZ][S64] = false; expecteds[F8E5M2FNUZ][U2] = false; expecteds[F8E5M2FNUZ][U4] = false; expecteds[F8E5M2FNUZ][U8] = false; expecteds[F8E5M2FNUZ][U16] = false; expecteds[F8E5M2FNUZ][U32] = false; expecteds[F8E5M2FNUZ][U64] = false; expecteds[F8E5M2FNUZ][F16] = true; expecteds[F8E5M2FNUZ][F32] = true; expecteds[F8E5M2FNUZ][F64] = true; expecteds[F8E5M2FNUZ][C64] = true; expecteds[F8E5M2FNUZ][BF16] = true; expecteds[F8E5M2FNUZ][C128] = true; expecteds[F8E5M2FNUZ][F8E5M2] = false; expecteds[F8E5M2FNUZ][F8E4M3FN] = false; expecteds[F8E5M2FNUZ][F8E4M3B11FNUZ] = false; expecteds[F8E5M2FNUZ][F8E5M2FNUZ] = true; expecteds[F8E5M2FNUZ][F8E4M3FNUZ] = false; expecteds[F8E4M3FNUZ][PRED] = false; expecteds[F8E4M3FNUZ][S2] = false; expecteds[F8E4M3FNUZ][S4] = false; expecteds[F8E4M3FNUZ][S8] = false; expecteds[F8E4M3FNUZ][S16] = false; expecteds[F8E4M3FNUZ][S32] = false; expecteds[F8E4M3FNUZ][S64] = false; expecteds[F8E4M3FNUZ][U2] = false; expecteds[F8E4M3FNUZ][U4] = false; expecteds[F8E4M3FNUZ][U8] = false; expecteds[F8E4M3FNUZ][U16] = false; expecteds[F8E4M3FNUZ][U32] = false; expecteds[F8E4M3FNUZ][U64] = false; expecteds[F8E4M3FNUZ][F16] = true; expecteds[F8E4M3FNUZ][F32] = true; expecteds[F8E4M3FNUZ][F64] = true; expecteds[F8E4M3FNUZ][C64] = true; expecteds[F8E4M3FNUZ][BF16] = true; expecteds[F8E4M3FNUZ][C128] = true; expecteds[F8E4M3FNUZ][F8E5M2] = false; expecteds[F8E4M3FNUZ][F8E4M3FN] = false; expecteds[F8E4M3FNUZ][F8E4M3B11FNUZ] = false; expecteds[F8E4M3FNUZ][F8E5M2FNUZ] = false; expecteds[F8E4M3FNUZ][F8E4M3FNUZ] = true; for (int from_type_int = PrimitiveType_MIN; from_type_int < PrimitiveType_ARRAYSIZE; ++from_type_int) { auto from_type = static_cast<PrimitiveType>(from_type_int); if (!primitive_util::IsArrayType(from_type)) { continue; } for (int to_type_int = PrimitiveType_MIN; to_type_int < PrimitiveType_ARRAYSIZE; ++to_type_int) { auto to_type = static_cast<PrimitiveType>(to_type_int); if (!primitive_util::IsArrayType(to_type)) { continue; } bool expected = expecteds[from_type][to_type]; bool actual = primitive_util::CastPreservesValues(from_type, to_type); EXPECT_EQ(expected, actual) << primitive_util::LowercasePrimitiveTypeName(from_type) << " -> " << primitive_util::LowercasePrimitiveTypeName(to_type); } } } } }
1,784
cpp
tensorflow/tensorflow
literal
third_party/xla/xla/literal.cc
third_party/xla/xla/literal_test.cc
#ifndef XLA_LITERAL_H_ #define XLA_LITERAL_H_ #include <algorithm> #include <climits> #include <complex> #include <cstdint> #include <cstring> #include <initializer_list> #include <limits> #include <memory> #include <optional> #include <ostream> #include <string> #include <type_traits> #include <utility> #include <variant> #include <vector> #include "absl/base/attributes.h" #include "absl/base/casts.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/index_util.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/maybe_owning.h" #include "xla/primitive_util.h" #include "xla/printer.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/bitmap.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/statusor.h" namespace xla { class Literal; class LiteralSlice; class LiteralBase { public: using DynamicSizeType = ShapeUtil::DynamicSizeType; virtual ~LiteralBase() = 0; bool operator==(const LiteralBase& other) const { return Equal(other, false); } bool operator!=(const LiteralBase& other) const { return !(*this == other); } bool Equal(const LiteralBase& other, bool layout_sensitive) const; const Shape& shape() const; LiteralProto ToProto() const; template <typename NativeT> absl::Span<const NativeT> data(const ShapeIndex& shape_index = {}) const; const void* untyped_data(const ShapeIndex& shape_index = {}) const; int64_t size_bytes(const ShapeIndex& shape_index = {}) const; absl::StatusOr<int64_t> SerializedSize() const { return ShapeUtil::SerializedSize(shape()); } template <typename OutputIterator> absl::Status Serialize(OutputIterator output) const { return SerializeWithShapeProto(shape().ToProto(), output); } absl::Status SerializeToString(std::string* output) const; absl::StatusOr<std::string> SerializeAsString() const; std::string GetR1U8AsString() const; void Print(Printer* printer) const; void PrintOneline(Printer* printer) const; void PrintWithoutShape(Printer* printer) const; void PrintWithoutShapeOneline(Printer* printer) const; void PrintWithLayout(Printer* printer) const; void PrintWithLayoutOneline(Printer* printer) const; std::string ToString() const; std::string ToStringOneline() const; std::string ToStringWithoutShape() const; std::string ToStringWithoutShapeOneline() const; std::string ToStringWithLayout() const; std::string ToStringWithLayoutOneline() const; template <typename NativeT> NativeT Get(absl::Span<const int64_t> multi_index, const ShapeIndex& shape_index) const; template <typename NativeT> NativeT Get(absl::Span<const int64_t> multi_index) const; DynamicSizeType GetDynamicSize(int64_t dim_index, const ShapeIndex& shape_index) const; DynamicSizeType GetDynamicSize(int64_t dim_index) const; template <typename NativeT> NativeT GetFirstElement() const; std::optional<int64_t> GetFirstInteger() const; std::string GetAsString(absl::Span<const int64_t> multi_index, const ShapeIndex& shape_index = {}) const; template <typename T> typename std::enable_if<std::numeric_limits<T>::is_specialized, bool>::type IsEqualAt(absl::Span<const int64_t> multi_index, T value) const { if (auto as_s64 = GetIntegralAsS64(multi_index)) { return *as_s64 == value; } complex128 as_complex128 = *GetAsComplex128(multi_index); return as_complex128.imag() == 0 && as_complex128.real() == value; } bool IsEqualAt(absl::Span<const int64_t> multi_index, complex128 value) const { if (auto as_s64 = GetIntegralAsS64(multi_index)) { return *as_s64 == value.real() && value.imag() == 0; } auto as_complex128 = GetAsComplex128(multi_index); return *as_complex128 == value; } std::optional<int64_t> GetIntegralAsS64( absl::Span<const int64_t> multi_index) const; std::optional<double> GetAsDouble( absl::Span<const int64_t> multi_index) const; std::optional<complex128> GetAsComplex128( absl::Span<const int64_t> multi_index) const; std::optional<double> GetSumAsDouble( absl::Span<const int64_t> linear_indices) const; void EachCellAsString( absl::FunctionRef<void(absl::Span<const int64_t> indices, const std::string& value)> per_cell) const; template <typename NativeT> void EachCell( absl::FunctionRef<void(absl::Span<const int64_t> indices, NativeT value)> per_cell) const; bool IsAll(const Literal& scalar) const; bool IsAll(int8_t value) const; bool IsAllFloat(float value) const; bool IsAllComplex(complex64 value) const; bool IsAllFirst() const; template <typename T> int64_t CountEqual(T value) const; template <typename T> int64_t CountEqual(std::complex<T> value) const; bool IsR1Iota() const; std::optional<int64_t> IsR1StridedIota() const; bool IsZero(absl::Span<const int64_t> indices) const; int64_t element_count(const ShapeIndex& index = {}) const { if (index.empty()) { return ShapeUtil::ElementsIn(shape()); } return ShapeUtil::ElementsIn(ShapeUtil::GetSubshape(shape(), index)); } template <typename H> friend H AbslHashValue(H state, const LiteralBase& value) { return LiteralBase::Hash(std::move(state), value); } template <typename H, bool kIsLayoutSensitive = true, int64_t kByteLimit = std::numeric_limits<int64_t>::max()> static H Hash(H state, const LiteralBase& literal) { state = Shape::Hash<H, kIsLayoutSensitive>(std::move(state), literal.shape()); ShapeUtil::ForEachSubshape(literal.shape(), [&](const Shape& subshape, const ShapeIndex& index) { if (!subshape.IsArray()) { return; } CHECK(LayoutUtil::IsDenseArray(subshape)); const int64_t size_bytes = literal.size_bytes(index); const int64_t bytes_to_hash = std::min(size_bytes, kByteLimit); const bool use_physical_order = kIsLayoutSensitive || !subshape.has_layout(); auto data = absl::MakeConstSpan( static_cast<const char*>(literal.untyped_data(index)), size_bytes); if (use_physical_order) { state = H::combine(std::move(state), data.first(bytes_to_hash)); return; } const int64_t elem_size = ShapeUtil::ByteSizeOfPrimitiveType(subshape.element_type()); absl::Span<const int64_t> minor_to_major = subshape.layout().minor_to_major(); DimensionVector elem_index(subshape.dimensions_size()); absl::Span<int64_t> elem_index_span(elem_index.data(), elem_index.size()); int64_t bytes_hashed = 0; while (bytes_hashed < bytes_to_hash) { int64_t offset = elem_size * IndexUtil::MultidimensionalIndexToLinearIndex( subshape, minor_to_major, elem_index); state = H::combine(std::move(state), data.subspan(offset, elem_size)); if (!IndexUtil::BumpIndices(subshape, elem_index_span)) return; bytes_hashed += elem_size; } }); return std::move(state); } absl::StatusOr<Literal> ConvertToShape(const Shape& dest_shape) const; absl::StatusOr<Literal> BitcastConvert(const Shape& dest_shape) const; absl::StatusOr<Literal> Convert(PrimitiveType primitive_dest_type) const; Literal Clone() const; std::unique_ptr<Literal> CloneToUnique() const; Literal Relayout(const Layout& new_layout, const ShapeIndex& shape_index = {}) const; Literal Relayout(const Shape& shape_with_layout) const; Literal ToStatic() const; Literal ToBoundedDynamic(const Shape& bounded_shape) const; absl::StatusOr<Literal> Reshape(absl::Span<const int64_t> dimensions) const; absl::StatusOr<Literal> Broadcast(const Shape& result_shape, absl::Span<const int64_t> dimensions) const; Literal Transpose(absl::Span<const int64_t> permutation) const; Literal Slice(absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices) const; template <typename NativeT> Literal Replicate(int64_t times) const; bool IsDetermined(const ShapeIndex& shape_index = {}) const; bool IsKnown(const ShapeIndex& shape_index = {}) const; static Literal CreateFromShape(const Shape& shape); static Literal CreateFromShapeWithUnknownLeafArrays(const Shape& shape); static Literal CreateFromShapeWithUndeterminedLeafArrays(const Shape& shape); protected: class Piece; void BuildPieceSubtree(const Shape& shape, Piece* piece); template <typename OutputIterator> absl::Status SerializeWithShapeProto(const ShapeProto& proto, OutputIterator output) const; template <typename OutputIterator> class SerializeState { public: SerializeState(const ShapeProto& shape, OutputIterator output) : output_(output) { WriteShape(shape); } int64_t num_written() const { return num_written_; } template <typename NativeT> void WriteElement(NativeT element) { constexpr PrimitiveType primitive_type = primitive_util::NativeToPrimitiveType<NativeT>(); static_assert(primitive_util::BitWidth(primitive_type) % 8 == 0); if constexpr (primitive_util::IsComplexType(primitive_type)) { WriteElement(element.real()); WriteElement(element.imag()); } else { constexpr PrimitiveType unsigned_type = primitive_util::UnsignedIntegralTypeForBitWidth( primitive_util::BitWidth(primitive_type)); using UnsignedT = primitive_util::NativeTypeOf<unsigned_type>; UnsignedT unsigned_element = absl::bit_cast<UnsignedT>(element); if constexpr (sizeof(UnsignedT) == 1) { *output_++ = absl::bit_cast<char>(unsigned_element); ++num_written_; } else { for (int i = 0; i < sizeof unsigned_element; ++i) { *output_++ = static_cast<char>(unsigned_element); unsigned_element >>= CHAR_BIT; ++num_written_; } } } } template <typename NativeT> void WriteElements(absl::Span<const NativeT> elements) { constexpr PrimitiveType primitive_type = primitive_util::NativeToPrimitiveType<NativeT>(); constexpr int bits_per_element = primitive_util::BitWidth(primitive_type); if constexpr (bits_per_element < 8) { static_assert(!primitive_util::IsFloatingPointType(primitive_type)); static_assert(!primitive_util::IsComplexType(primitive_type)); static_assert(8 % bits_per_element == 0); constexpr int elements_per_byte = 8 / bits_per_element; int64_t bytes = elements.size() / elements_per_byte; for (int64_t i = 0; i < bytes; ++i) { uint8_t byte = 0; for (int b = 0; b < elements_per_byte; ++b) { uint8_t src = static_cast<uint8_t>(elements[i * elements_per_byte + b]) & LsbMask<uint8_t>(bits_per_element); byte |= src << (b * bits_per_element); } WriteElement(byte); } int64_t rest = elements.size() % elements_per_byte; if (rest != 0) { uint8_t byte = 0; for (int64_t b = 0; b < rest; ++b) { uint8_t src = static_cast<uint8_t>(elements[bytes * elements_per_byte + b]) & LsbMask<uint8_t>(bits_per_element); byte |= src << (b * bits_per_element); } WriteElement(byte); } } else { for (NativeT element : elements) { WriteElement(element); } } } void WriteDynamicSizes(absl::Span<const DynamicSizeType> sizes) { WriteElements(sizes); } private: void WriteShape(const ShapeProto& proto) { std::string shape_bytes = proto.SerializeAsString(); uint64_t shape_size = shape_bytes.size(); WriteElement(shape_size); output_ = std::copy(shape_bytes.begin(), shape_bytes.end(), output_); num_written_ += shape_bytes.size(); } OutputIterator output_; int64_t num_written_ = 0; }; template <typename InputIterator> class DeserializeState { public: DeserializeState(InputIterator input, InputIterator end) : input_(input), end_(end) {} int64_t num_read() const { return num_read_; } template <typename NativeT> ABSL_MUST_USE_RESULT bool ReadElement(NativeT& element) { constexpr PrimitiveType primitive_type = primitive_util::NativeToPrimitiveType<NativeT>(); static_assert(primitive_util::BitWidth(primitive_type) % 8 == 0); if constexpr (primitive_util::IsComplexType(primitive_type)) { using ComponentT = primitive_util::NativeTypeOf<primitive_util::ComplexComponentType( primitive_type)>; ComponentT real; if (!ReadElement(real)) { return false; } ComponentT imag; if (!ReadElement(imag)) { return false; } element = NativeT(real, imag); } else { constexpr PrimitiveType unsigned_type = primitive_util::UnsignedIntegralTypeForBitWidth( primitive_util::BitWidth(primitive_type)); using UnsignedT = primitive_util::NativeTypeOf<unsigned_type>; if constexpr (sizeof(UnsignedT) == 1) { if (at_end()) { return false; } element = absl::bit_cast<NativeT>(*input_++); ++num_read_; } else { UnsignedT unsigned_element = 0; for (int i = 0, shift = 0; i < sizeof unsigned_element; ++i, shift += CHAR_BIT) { if (at_end()) { return false; } unsigned_element |= static_cast<UnsignedT>(static_cast<unsigned char>(*input_++)) << shift; ++num_read_; } element = absl::bit_cast<NativeT>(unsigned_element); } } return true; } template <typename NativeT> ABSL_MUST_USE_RESULT bool ReadElements(absl::Span<NativeT> elements) { constexpr PrimitiveType primitive_type = primitive_util::NativeToPrimitiveType<NativeT>(); constexpr int bits_per_element = primitive_util::BitWidth(primitive_type); if constexpr (bits_per_element < 8) { static_assert(!primitive_util::IsFloatingPointType(primitive_type)); static_assert(!primitive_util::IsComplexType(primitive_type)); static_assert(8 % bits_per_element == 0); constexpr int elements_per_byte = 8 / bits_per_element; int64_t bytes = elements.size() / elements_per_byte; for (int64_t i = 0; i < bytes; ++i) { uint8_t byte; if (!ReadElement(byte)) { return false; } for (int b = 0; b < elements_per_byte; ++b) { elements[i * elements_per_byte + b] = static_cast<NativeT>(byte & LsbMask<uint8_t>(bits_per_element)); byte >>= bits_per_element; } } int64_t rest = elements.size() % elements_per_byte; if (rest != 0) { uint8_t byte; if (!ReadElement(byte)) { return false; } for (int64_t b = 0; b < rest; ++b) { elements[bytes * elements_per_byte + b] = static_cast<NativeT>(byte & LsbMask<uint8_t>(bits_per_element)); byte >>= bits_per_element; } } } else { for (NativeT& element : elements) { if (!ReadElement(element)) { return false; } } } return true; } bool ReadDynamicSizes(absl::Span<DynamicSizeType> sizes) { return ReadElements(sizes); } absl::StatusOr<Shape> ReadShape(uint64_t size) { std::string shape_bytes; shape_bytes.reserve(size); while (shape_bytes.size() < size) { if (at_end()) { return InvalidArgument("Failed to read shape data"); } shape_bytes.push_back(*input_++); ++num_read_; } ShapeProto proto; if (!proto.ParseFromString(shape_bytes)) { return InvalidArgument("Failed to parse shape protobuf"); } Shape shape(proto); TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(shape)); return std::move(shape); } bool at_end() const { return input_ == end_; } private: InputIterator input_; InputIterator end_; int64_t num_read_ = 0; }; enum class ArrayValueState { kKnown = 0, kUnknown = 1, kUndetermined = 2 }; class Piece { public: ArrayValueState get_array_value_state() const; void set_array_value_state(ArrayValueState state); template <typename NativeT> absl::Span<const NativeT> data() const; template <typename NativeT> absl::Span<NativeT> data(); void* untyped_data(); const void* untyped_data() const; template <typename NativeT> NativeT Get(absl::Span<const int64_t> index) const; template <typename NativeT> void Set(absl::Span<const int64_t> index, NativeT value); DynamicSizeType GetDynamicSize(int64_t dim_index) const; void SetDynamicSize(int64_t dim_index, DynamicSizeType size); void AllocateBuffers(); void DeallocateBuffers(); const char* buffer() const; char* buffer() { return const_cast<char*>(const_cast<const Piece*>(this)->buffer(
#include "xla/literal.h" #include <algorithm> #include <cmath> #include <complex> #include <cstdint> #include <functional> #include <limits> #include <random> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/casts.h" #include "absl/hash/hash.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/index_util.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::HasSubstr; class LiteralUtilTest : public ::testing::Test { protected: LiteralUtilTest() { Array4D<float> arr4d({ { { {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, }, { {11, 12, 13}, {14, 15, 16}, {17, 18, 19}, }, }, { { {101, 102, 103}, {104, 105, 106}, {107, 108, 109}, }, { {201, 202, 203}, {204, 205, 206}, {207, 208, 209}, }, }, }); layout_r2_dim0major_ = LayoutUtil::MakeLayout({1, 0}); layout_r2_dim0minor_ = LayoutUtil::MakeLayout({0, 1}); layout_r3_dim0major_ = LayoutUtil::MakeLayout({2, 1, 0}); layout_r3_dim0minor_ = LayoutUtil::MakeLayout({0, 1, 2}); layout_r4_dim0major_ = LayoutUtil::MakeLayout({3, 2, 1, 0}); layout_r4_dim0minor_ = LayoutUtil::MakeLayout({0, 1, 2, 3}); literal_r4_2x2x3x3_dim0major_ = LiteralUtil::CreateR4FromArray4DWithLayout<float>(arr4d, layout_r4_dim0major_); literal_r4_2x2x3x3_dim0minor_ = LiteralUtil::CreateR4FromArray4DWithLayout<float>(arr4d, layout_r4_dim0minor_); } Layout layout_r2_dim0major_; Layout layout_r2_dim0minor_; Layout layout_r3_dim0major_; Layout layout_r3_dim0minor_; Layout layout_r4_dim0major_; Layout layout_r4_dim0minor_; Literal literal_r4_2x2x3x3_dim0major_; Literal literal_r4_2x2x3x3_dim0minor_; }; TEST_F(LiteralUtilTest, LiteralScalarToString) { auto true_lit = LiteralUtil::CreateR0<bool>(true); EXPECT_EQ("pred[] true", true_lit.ToString()); auto false_lit = LiteralUtil::CreateR0<bool>(false); EXPECT_EQ("pred[] false", false_lit.ToString()); auto u4_lit = LiteralUtil::CreateR0<u4>(u4(5)); EXPECT_EQ("u4[] 5", u4_lit.ToString()); auto u32_lit = LiteralUtil::CreateR0<uint32_t>(42); EXPECT_EQ("u32[] 42", u32_lit.ToString()); auto s4_lit = LiteralUtil::CreateR0<s4>(s4(-3)); EXPECT_EQ("s4[] -3", s4_lit.ToString()); auto s32_lit = LiteralUtil::CreateR0<int32_t>(-999); EXPECT_EQ("s32[] -999", s32_lit.ToString()); auto f32_lit = LiteralUtil::CreateR0<float>(3.14f); EXPECT_EQ("f32[] 3.14", f32_lit.ToString()); auto f16_lit = LiteralUtil::CreateR0<half>(static_cast<half>(0.5f)); EXPECT_EQ("f16[] 0.5", f16_lit.ToString()); auto c64_lit = LiteralUtil::CreateR0<complex64>({3.14f, 2.78f}); EXPECT_EQ("c64[] (3.14, 2.78)", c64_lit.ToString()); auto c128_lit = LiteralUtil::CreateR0<complex128>({3.14, 2.78}); EXPECT_EQ("c128[] (3.14, 2.78)", c128_lit.ToString()); auto bf16_lit = LiteralUtil::CreateR0<bfloat16>(static_cast<bfloat16>(0.5f)); EXPECT_EQ("bf16[] 0.5", bf16_lit.ToString()); auto bf16_lit_truncated = LiteralUtil::CreateR0<bfloat16>(static_cast<bfloat16>(3.14f)); ASSERT_EQ("bf16[] 3.141", bf16_lit_truncated.ToString()); auto bf16_lit_truncated2 = LiteralUtil::CreateR0<bfloat16>(static_cast<bfloat16>(9.001f)); EXPECT_EQ("bf16[] 9", bf16_lit_truncated2.ToString()); auto f8e5m2_lit = LiteralUtil::CreateR0<tsl::float8_e5m2>(tsl::float8_e5m2(0.5)); EXPECT_EQ("f8e5m2[] 0.5", f8e5m2_lit.ToString()); auto f8e5m2_lit_truncated = LiteralUtil::CreateR0<tsl::float8_e5m2>(tsl::float8_e5m2(3.141)); EXPECT_EQ("f8e5m2[] 3", f8e5m2_lit_truncated.ToString()); auto f8e4m3_lit = LiteralUtil::CreateR0<tsl::float8_e4m3fn>(tsl::float8_e4m3fn(0.5)); EXPECT_EQ("f8e4m3fn[] 0.5", f8e4m3_lit.ToString()); auto f8e4m3b11fnuz_lit = LiteralUtil::CreateR0<tsl::float8_e4m3b11fnuz>( tsl::float8_e4m3b11fnuz(0.5)); EXPECT_EQ("f8e4m3b11fnuz[] 0.5", f8e4m3b11fnuz_lit.ToString()); auto f8e4m3fnuz_lit = LiteralUtil::CreateR0<tsl::float8_e4m3fnuz>(tsl::float8_e4m3fnuz(0.5)); EXPECT_EQ("f8e4m3fnuz[] 0.5", f8e4m3fnuz_lit.ToString()); auto f8e5m2fnuz_lit = LiteralUtil::CreateR0<tsl::float8_e5m2fnuz>(tsl::float8_e5m2fnuz(0.5)); EXPECT_EQ("f8e5m2fnuz[] 0.5", f8e5m2fnuz_lit.ToString()); } TEST_F(LiteralUtilTest, LiteralVectorToString) { auto pred_vec = LiteralUtil::CreateR1<bool>({true, false, true}); EXPECT_EQ("pred[3] {1, 0, 1}", pred_vec.ToString()); } TEST_F(LiteralUtilTest, R2ToString) { const auto literal = LiteralUtil::CreateR2({{1, 2}, {3, 4}, {5, 6}}); const std::string expected = R"(s32[3,2] { { 1, 2 }, { 3, 4 }, { 5, 6 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, R2DynamicToString) { auto literal = LiteralUtil::CreateR2({{1, 2}, {3, 4}, {5, 6}}); literal.SetDynamicSize(0, {}, 2); const std::string expected = R"(s32[<=3,2](2,2) { { 1, 2 }, { 3, 4 } })"; EXPECT_EQ(expected, literal.ToString()); auto literal2 = LiteralUtil::CreateR2({{1, 2, 3}, {4, 5, 6}}); literal2.SetDynamicSize(1, {}, 2); const std::string expected2 = R"(s32[2,<=3](2,2) { { 1, 2 }, { 4, 5 } })"; EXPECT_EQ(expected2, literal2.ToString()); } TEST_F(LiteralUtilTest, R2BoolDynamicToString) { auto literal = LiteralUtil::CreateR2<bool>( {{true, true, true}, {true, true, true}, {true, true, true}}); literal.SetDynamicSize(0, {}, 2); const std::string expected = R"(pred[<=3,3](2,3) { { 1, 1, 1 }, { 1, 1, 1 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, R3ToString) { const auto literal = LiteralUtil::CreateR3({{{1}, {2}}, {{3}, {4}}, {{5}, {6}}}); const std::string expected = R"(s32[3,2,1] { { {1}, {2} }, { {3}, {4} }, { {5}, {6} } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, R6ToString) { const auto literal = LiteralUtil::CreateFromDimensions(S32, {2, 2, 1, 1, 1, 2}); const std::string expected = R"(s32[2,2,1,1,1,2] { { { { { { 0, 0 } } } }, { { { { 0, 0 } } } } }, { { { { { 0, 0 } } } }, { { { { 0, 0 } } } } } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, TupleToString) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); const std::string expected = R"(( f32[] 1, f32[2,2] { { 1, 2 }, { 3, 4 } } ))"; EXPECT_EQ(expected, tuple.ToString()); } TEST_F(LiteralUtilTest, CreateR3FromArray3d) { Array3D<float> array_3d({ {{1.0f, 2.0f}, {3.0f, 4.0f}, {5.0f, 6.0f}}, {{7.0f, 8.0f}, {9.0f, 10.0f}, {11.0f, 12.0f}}, }); auto literal = LiteralUtil::CreateR3FromArray3D(array_3d); EXPECT_THAT(literal.shape().dimensions(), ElementsAre(2, 3, 2)); std::string result = literal.ToString(); const std::string expected = R"(f32[2,3,2] { { { 1, 2 }, { 3, 4 }, { 5, 6 } }, { { 7, 8 }, { 9, 10 }, { 11, 12 } } })"; EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, LiteralR4F32ProjectedStringifies) { auto literal = LiteralUtil::CreateR4Projected<float>({ {1, 2}, {1001, 1002}, {2001, 2002}, }, 1, 2); EXPECT_THAT(literal.shape().dimensions(), ElementsAre(1, 2, 3, 2)); std::string result = literal.ToString(); const std::string expected = R"(f32[1,2,3,2] { { { { 1, 2 }, { 1001, 1002 }, { 2001, 2002 } }, { { 1, 2 }, { 1001, 1002 }, { 2001, 2002 } } } })"; EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, LiteralR4F32Stringifies) { EXPECT_THAT(literal_r4_2x2x3x3_dim0major_.shape().dimensions(), ElementsAre(2, 2, 3, 3)); std::string result = literal_r4_2x2x3x3_dim0major_.ToString(); const std::string expected = R"(f32[2,2,3,3] { { { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }, { { 11, 12, 13 }, { 14, 15, 16 }, { 17, 18, 19 } } }, { { { 101, 102, 103 }, { 104, 105, 106 }, { 107, 108, 109 } }, { { 201, 202, 203 }, { 204, 205, 206 }, { 207, 208, 209 } } } })"; EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, EachCellR2F32) { auto literal = LiteralUtil::CreateR2<float>({ {3.1f, 4.2f}, {9.3f, 12.4f}, }); std::vector<std::tuple<int64_t, int64_t, std::string>> seen; literal.EachCellAsString( [&seen](absl::Span<const int64_t> indices, const std::string& value) { seen.emplace_back(indices[0], indices[1], value); }); using Elem = std::tuple<int64_t, int64_t, std::string>; std::vector<Elem> expected = {Elem(0, 0, "3.1"), Elem(0, 1, "4.2"), Elem(1, 0, "9.3"), Elem(1, 1, "12.4")}; EXPECT_EQ(expected, seen); } TEST_F(LiteralUtilTest, ScalarEquality) { auto f32_42 = LiteralUtil::CreateR0<float>(42.0); auto f32_42_clone = LiteralUtil::CreateR0<float>(42.0); EXPECT_EQ(f32_42, f32_42); EXPECT_EQ(f32_42, f32_42_clone); auto f32_123 = LiteralUtil::CreateR0<float>(123.0); EXPECT_NE(f32_42, f32_123); auto f64_42 = LiteralUtil::CreateR0<double>(42.0); EXPECT_NE(f32_42, f64_42); } TEST_F(LiteralUtilTest, NonScalarEquality) { auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto matrix_clone = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto matrix_different = LiteralUtil::CreateR2<float>({{4.0, 3.0}, {1.0, 2.0}}); auto vector_literal = LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0, 4.0}); auto scalar = LiteralUtil::CreateR0<float>(1.0); Literal nil(ShapeUtil::MakeNil()); EXPECT_EQ(matrix, matrix); EXPECT_EQ(matrix, matrix_clone); EXPECT_NE(matrix, matrix_different); EXPECT_NE(matrix, vector_literal); EXPECT_NE(matrix, scalar); EXPECT_NE(matrix, nil); EXPECT_EQ(nil, nil); } TEST_F(LiteralUtilTest, TokenEquality) { auto token0 = LiteralUtil::CreateToken(); auto token1 = LiteralUtil::CreateToken(); auto scalar = LiteralUtil::CreateR0<float>(1.0); EXPECT_EQ(token0, token1); EXPECT_NE(token0, scalar); EXPECT_EQ(LiteralUtil::MakeTuple({&token0}), LiteralUtil::MakeTuple({&token0})); EXPECT_EQ(LiteralUtil::MakeTuple({&token0, &scalar}), LiteralUtil::MakeTuple({&token1, &scalar})); EXPECT_NE(LiteralUtil::MakeTuple({&token0, &scalar}), LiteralUtil::MakeTuple({&scalar, &token1})); } TEST_F(LiteralUtilTest, DifferentLayoutEquality) { Literal colmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {0, 1})); colmajor.Set<float>({0, 0}, 1.0); colmajor.Set<float>({0, 1}, 2.0); colmajor.Set<float>({1, 0}, 3.0); colmajor.Set<float>({1, 1}, 4.0); Literal rowmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {1, 0})); rowmajor.Set<float>({0, 0}, 1.0); rowmajor.Set<float>({0, 1}, 2.0); rowmajor.Set<float>({1, 0}, 3.0); rowmajor.Set<float>({1, 1}, 4.0); EXPECT_EQ(rowmajor, colmajor); } TEST_F(LiteralUtilTest, DifferentLayoutInEquality) { Literal colmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {0, 1})); colmajor.Set<float>({0, 0}, 1.0); colmajor.Set<float>({0, 1}, 2.0); colmajor.Set<float>({1, 0}, 3.0); colmajor.Set<float>({1, 1}, 4.0); Literal rowmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {1, 0})); rowmajor.Set<float>({0, 0}, 1.0); rowmajor.Set<float>({0, 1}, 2.0); rowmajor.Set<float>({1, 0}, 3.0); rowmajor.Set<float>({1, 1}, 4.0); EXPECT_FALSE(rowmajor.Equal(colmajor, true)); EXPECT_FALSE(colmajor.Equal(rowmajor, true)); } TEST_F(LiteralUtilTest, TupleEquality) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple1 = LiteralUtil::MakeTuple({&scalar, &matrix}); auto scalar_clone = LiteralUtil::CreateR0<float>(1.0); auto tuple2 = LiteralUtil::MakeTuple({&scalar_clone, &matrix}); EXPECT_EQ(tuple1, tuple2); auto reversed_tuple = LiteralUtil::MakeTuple({&matrix, &scalar}); EXPECT_NE(tuple1, reversed_tuple); auto scalar_42 = LiteralUtil::CreateR0<float>(42.0); auto different_tuple = LiteralUtil::MakeTuple({&scalar_42, &matrix}); EXPECT_NE(tuple1, different_tuple); } TEST_F(LiteralUtilTest, DynamicShapeEquality) { auto r1 = LiteralUtil::CreateR1<float>({1.0, 2.0}); r1.SetDynamicSize(0, {}, 1); auto r2 = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); r2.SetDynamicSize(0, {}, 1); auto tuple1 = LiteralUtil::MakeTuple({&r1, &r2}); auto r1_clone = LiteralUtil::CreateR1<float>({1.0, 3.0}); r1_clone.SetDynamicSize(0, {}, 1); auto tuple2 = LiteralUtil::MakeTuple({&r1_clone, &r2}); EXPECT_EQ(tuple1, tuple2); auto r2_clone = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); r2_clone.SetDynamicSize(0, {}, 2); auto tuple_3 = LiteralUtil::MakeTuple({&r1_clone, &r2_clone}); EXPECT_NE(tuple1, tuple_3); } TEST_F(LiteralUtilTest, C64Equality) { auto vector = LiteralUtil::CreateR1<complex64>({{1.0, 2.0}, {3.0, 4.0}}); auto vector_clone = LiteralUtil::CreateR1<complex64>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(vector, vector_clone); auto vector_reversed = LiteralUtil::CreateR1<complex64>({{3.0, 4.0}, {1.0, 2.0}}); EXPECT_NE(vector, vector_reversed); } TEST_F(LiteralUtilTest, C128Equality) { auto vector = LiteralUtil::CreateR1<complex128>({{1.0, 2.0}, {3.0, 4.0}}); auto vector_clone = LiteralUtil::CreateR1<complex128>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(vector, vector_clone); auto vector_reversed = LiteralUtil::CreateR1<complex128>({{3.0, 4.0}, {1.0, 2.0}}); EXPECT_NE(vector, vector_reversed); } TEST_F(LiteralUtilTest, IsAllTuple) { auto element1 = LiteralUtil::CreateR0<float>(0.0); auto element2 = LiteralUtil::CreateR2<float>({{0.0, 0.0}, {0.0, 0.0}}); auto tuple = LiteralUtil::MakeTuple({&element1, &element1}); EXPECT_FALSE(tuple.IsAll(0)); EXPECT_FALSE(tuple.IsAll(1)); } TEST_F(LiteralUtilTest, CreateFromShapeTuple) { auto scalar = LiteralUtil::CreateR0<float>(0.0); auto matrix = LiteralUtil::CreateR2<int32_t>({{0, 0}, {0, 0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); auto x = Literal::CreateFromShape(tuple.shape()); EXPECT_EQ(tuple, x); } TEST_F(LiteralUtilTest, IsAll) { EXPECT_TRUE(LiteralUtil::CreateR0<bool>(false).IsAll(0)); EXPECT_TRUE(LiteralUtil::CreateR0<bool>(true).IsAll(1)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAll(1)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAll(2)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(true).IsAll(0)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(true).IsAll(2)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(true).IsAll(-1)); auto int8_min = std::numeric_limits<int8_t>::min(); EXPECT_FALSE(LiteralUtil::CreateR0<uint8_t>(255).IsAll(int8_min)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(42.0).IsAll(42)); EXPECT_FALSE(LiteralUtil::CreateR0<float>(42.0001).IsAll(42)); EXPECT_TRUE(LiteralUtil::CreateR1<int>({100, 100, 100}).IsAll(100)); EXPECT_FALSE(LiteralUtil::CreateR1<double>({100, 100, 100.001}).IsAll(100)); EXPECT_TRUE(LiteralUtil::CreateR2<uint64_t>({{8, 8}, {8, 8}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<uint64_t>({{8, 8}, {8, 9}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<uint64_t>({{9, 8}, {8, 8}}).IsAll(8)); half h8(8.0f); half h9(9.0f); EXPECT_TRUE(LiteralUtil::CreateR2<half>({{h8}, {h8}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<half>({{h8}, {h9}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<half>({{h9}, {h8}}).IsAll(8)); bfloat16 b8(8.0f); bfloat16 b9(9.0f); EXPECT_TRUE(LiteralUtil::CreateR2<bfloat16>({{b8}, {b8}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<bfloat16>({{b8}, {b9}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<bfloat16>({{b9}, {b8}}).IsAll(8)); bfloat16 b91(9.001f); bfloat16 b90(9.00f); EXPECT_TRUE(LiteralUtil::CreateR2<bfloat16>({{b91}, {b90}}).IsAll(9.0)); tsl::float8_e5m2 q16(8); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e5m2>({q16}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e5m2>({q16}).IsAll(9)); tsl::float8_e4m3fn r16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3fn>({r16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3fn>({r16}).IsAll(9)); tsl::float8_e4m3b11fnuz s16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3b11fnuz>({s16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3b11fnuz>({s16}).IsAll(9)); tsl::float8_e4m3fnuz t16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3fnuz>({t16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3fnuz>({t16}).IsAll(9)); tsl::float8_e5m2fnuz u16(8); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e5m2fnuz>({u16}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e5m2fnuz>({u16}).IsAll(9)); complex64 c8_9 = {8, 9}; EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c8_9}}).IsAll(8)); auto uint64_max = std::numeric_limits<uint64_t>::max(); EXPECT_FALSE(LiteralUtil::CreateR2<uint64_t>( {{uint64_max, uint64_max}, {uint64_max, uint64_max}}) .IsAll(-1)); } TEST_F(LiteralUtilTest, IsAllFloat) { EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAllFloat(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int8_t>(0).IsAllFloat(0)); EXPECT_FALSE(LiteralUtil::CreateR0<uint8_t>(0).IsAllFloat(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int>(0).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(0).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(.5).IsAllFloat(.5)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(-.5).IsAllFloat(-.5)); EXPECT_FALSE(LiteralUtil::CreateR0<float>(-.5).IsAllFloat(-.49)); EXPECT_FALSE( LiteralUtil::CreateR2<float>({{0, 0, 0}, {0, .1, 0}}).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR2<float>({{.5, .5, .5}, {.5, .5, .5}}) .IsAllFloat(.5)); EXPECT_TRUE(LiteralUtil::CreateR0<double>(0).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR0<double>(.5).IsAllFloat(.5)); EXPECT_TRUE(LiteralUtil::CreateR0<double>(-.5).IsAllFloat(-.5)); EXPECT_FALSE(LiteralUtil::CreateR0<double>(-.5).IsAllFloat(-.49)); EXPECT_FALSE( LiteralUtil::CreateR2<double>({{0, 0, 0}, {0, .1, 0}}).IsAllFloat(0)); EXPECT_TRUE( LiteralUtil::CreateR0<bfloat16>(bfloat16(128.)).IsAllFloat(128.5)); } TEST_F(LiteralUtilTest, IsAllComplex) { EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int8_t>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<uint8_t>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<float>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<double>(0).IsAllComplex(0)); complex64 c8_9 = {8, 9}; complex64 c7_9 = {7, 9}; EXPECT_TRUE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c8_9}}) .IsAllComplex({8.0f, 9.0f})); EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c7_9}, {c8_9}}) .IsAllComplex({8.0f, 9.0f})); EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c7_9}}) .IsAllComplex({8.0f, 9.0f})); } TEST_F(LiteralUtilTest, IsAllFirst) { EXPECT_FALSE(LiteralUtil::CreateR1<bool>({false, true}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<bool>({false, false}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<int8_t>({1, 1, 2}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<int8_t>({5, 5, 5, 5}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<uint8_t>({1, 1, 2}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<int32_t>({5, 5, 5, 5}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<int32_t>({1, 1, 2}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<uint32_t>({5, 5, 5, 5}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<uint32_t>({1, 1, 2}).IsAllFirst()); complex64 c8_9 = {8, 9}; complex64 c7_9 = {7, 9}; EXPECT_TRUE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c8_9}}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c7_9}, {c8_9}}).IsAllFirst()); } TEST_F(LiteralUtilTest, CountEqualInt) { EXPECT_EQ(LiteralUtil::CreateR1<int8_t>({}).CountEqual<int8_t>(1), 0); EXPECT_EQ( LiteralUtil::CreateR1<int8_t>({1, 2, 3, 4, 5, 100}).CountEqual<int8_t>(2), 1); EXPECT_EQ(LiteralUtil::CreateR1<int8_t>({0, 3, 6, 0, 9, 18, 0}) .CountEqual<int8_t>(0), 3); EXPECT_EQ(LiteralUtil::CreateR1<int32_t>({234, 345, 4, 45, 5467, 5467, 5467}) .CountEqual<int32_t>(5467), 3); } TEST_F(LiteralUtilTest, CountEqualFloat) { EXPECT_EQ(LiteralUtil::CreateR1<float>({}).CountEqual<float>(0), 0); EXPECT_EQ(LiteralUtil::CreateR1<float>({1.1, 2.2, 3.3, 4.4, 5.5, 100.6}) .CountEqual<float>(3.3), 1); EXPECT_EQ(LiteralUtil::CreateR1<float>({7.62, 3, 7.75, 7.62, 7.3, 2, 7.62}) .CountEqual<float>(7.62), 3); EXPECT_EQ(LiteralUtil::CreateR1<float>( {NAN, 0, 6.8, NAN, NAN, NAN, 63.12, 24.6, NAN}) .CountEqual<float>(NAN), 5); } TEST_F(LiteralUtilTest, CountEqualBool) { EXPECT_EQ(LiteralUtil::CreateR1<bool>({false, true}).CountEqual<bool>(false), 1); } TEST_F(LiteralUtilTest, CountEqualComplex) { EXPECT_EQ(LiteralUtil::CreateR1<std::complex<double>>( {std::complex<float>(1, 2), std::complex<float>(3, 4), std::complex<float>(5, 6), std::complex<float>(6, 7)}) .CountEqual<float>(std::complex<float>(5, 6)), 1); } TEST_F(LiteralUtilTest, CountEqualMismatched) { EXPECT_EQ(LiteralUtil::CreateR1<float>({13, 10.5, 15.6, 22.7}) .CountEqual<int8_t>(13), 1); EXPECT_EQ( LiteralUtil::CreateR1<float>({10.5, 15.6, 22.7}).CountEqual<int8_t>(1), 0); EXPECT_EQ(LiteralUtil::CreateR1<std::complex<float>>( {std::complex<float>(1, 2), std::complex<float>(3, 4), std::complex<float>(5, 6), std::complex<float>(6, 7)}) .CountEqual<float>(1), 0); } TEST_F(LiteralUtilTest, IsZero) { auto scalar_zero = LiteralUtil::CreateR0<float>(0.0f); auto scalar_one = LiteralUtil::CreateR0<float>(1.0f); EXPECT_TRUE(scalar_zero.IsZero({})); EXPECT_FALSE(scalar_one.IsZero({})); auto array = LiteralUtil::CreateR2<uint32_t>({{1, 2, 0, 3}, {1, 0, 1, 2}}); EXPECT_FALSE(array.IsZero({0, 1})); EXPECT_TRUE(array.IsZero({0, 2})); EXPECT_TRUE(array.IsZero({1, 1})); EXPECT_FALSE(array.IsZero({1, 2})); auto complex_zero = LiteralUtil::CreateR0<complex64>(0.0f); auto complex_nonzero = LiteralUtil::CreateR0<complex64>(0.5f); EXPECT_TRUE(complex_zero.IsZero({})); EXPECT_FALSE(complex_nonzero.IsZero({})); } template <typename T> class LiteralUtilTestTemplated : public ::testing::Test {}; using TestedTypes = ::testing::Types<float, int32_t, uint32_t, complex64>; TYPED_TEST_SUITE(LiteralUtilTestTemplated, TestedTypes); TYPED_TEST(LiteralUtilTestTemplated, Relayout2x2) { TypeParam half = TypeParam(1) / TypeParam(2); auto data = LiteralUtil::CreateR2<TypeParam>({{half, 2}, {3, 4}}); const Layout layout01 = LayoutUtil::MakeLayout({0, 1}); const Layout layout10 = LayoutUtil::MakeLayout({1, 0}); auto data01 = data.Relayout(layout01); EXPECT_TRUE(LayoutUtil::Equal(data01.shape().layout(), layout01)); EXPECT_EQ(data, data01); auto data10 = data.Relayout(layout10); EXPECT_TRUE(LayoutUtil::Equal(data10.shape().layout(), layout10)); EXPECT_EQ(data, data10); } TEST_F(LiteralUtilTest, ReshapeR0) { auto original = LiteralUtil::CreateR0<float>(1.7f); auto reshape = original.Reshape({}).value(); EXPECT_EQ(original, reshape); } TEST_F(LiteralUtilTest, ReshapeR4) { auto original = LiteralUtil::CreateR4WithLayout<float>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}, layout_r4_dim0major_); auto expected = LiteralUtil::CreateR3WithLayout<float>({ {{10, 11}, {12, 13}, {14, 15}, {16, 17}}, {{18, 19}, {20, 21}, {22, 23}, {24, 25}}, {{26, 27}, {28, 29}, {30, 31}, {32, 33}}, }, layout_r3_dim0major_); auto reshape = original.Reshape({3, 4, 2}).value(); EXPECT_EQ(expected, reshape); } TEST_F(LiteralUtilTest, ReshapeR4Dim0Minor) { auto original = LiteralUtil::CreateR4WithLayout<float>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}, layout_r4_dim0minor_); auto expected = LiteralUtil::CreateR3WithLayout<float>({ {{10, 11}, {12, 13}, {14, 15}, {16, 17}}, {{18, 19}, {20, 21}, {22, 23}, {24, 25}}, {{26, 27}, {28, 29}, {30, 31}, {32, 33}}, }, layout_r3_dim0major_); auto reshape = original.Reshape({3, 4, 2}).value(); EXPECT_EQ(expected, reshape); } TEST_F(LiteralUtilTest, TransposeR0) { auto original = LiteralUtil::CreateR0<float>(1.7f); auto reshape = original.Transpose({}); EXPECT_EQ(original, reshape); } TEST_F(LiteralUtilTest, TransposeR4) { auto original = LiteralUtil::CreateR4<float>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}); auto reshape = original.Transpose({2, 3, 0, 1}); reshape.EachCell<float>([&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>( {indices[2], indices[3], indices[0], indices[1]})); }); } TEST_F(LiteralUtilTest, TransposeDynamicR2) { auto original = LiteralUtil::CreateR2<float>({{1, 2, 3}, {4, 5, 6}}); original.SetDynamicSize(1, 1); auto reshape = original.Transpose({1, 0}); reshape.EachCell<float>([&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>({indices[1], indices[0]})); }); } TEST_F(LiteralUtilTest, ToStaticR2) { auto original = LiteralUtil::CreateR2<float>({{1, 2, 3}, {4, 5, 6}}); original.SetDynamicSize(1, 1); auto static_literal = original.ToStatic(); EXPECT_EQ(static_literal.shape(), ShapeUtil::MakeShape(F32, {2, 1})); EXPECT_TRUE(static_literal.shape().is_static()); static_literal.EachCell<float>( [&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>({indices[0], indices[1]})); }); } TEST_F(LiteralUtilTest, ToBoundedDynamicR2) { auto original = LiteralUtil::CreateR2<float>({{1}, {4}}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2, 3}, {false, true}); auto dynamic_literal = original.ToBoundedDynamic(dynamic_shape); EXPECT_EQ(dynamic_literal.shape(), dynamic_shape); dynamic_literal.EachCell<float>( [&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>({indices[0], indices[1]})); }); } TEST_F(LiteralUtilTest, TestR4RelayoutEquivalence) { auto dim0minor_relaid_to_dim0major = literal_r4_2x2x3x3_dim0minor_.Relayout(layout_r4_dim0major_); EXPECT_EQ(literal_r4_2x2x3x3_dim0major_, dim0minor_relaid_to_dim0major); auto dim0major_relaid_to_dim0minor = literal_r4_2x2x3x3_dim0major_.Relayout(layout_r4_dim0minor_); EXPECT_EQ(literal_r4_2x2x3x3_dim0minor_, dim0major_relaid_to_dim0minor); } template <bool kIsLayoutSensitive> struct HashTester { template <typename H> friend H AbslHashValue(H h, const HashTester& key) { return Literal::Hash<H, kIsLayoutSensitive, 64>( std::move(h), *key.literal); } const Literal* literal; }; TEST_F(LiteralUtilTest, TestR2LinearLayout) { auto mat_dim0minor = LiteralUtil::CreateR2WithLayout<int32_t>( {{1, 2, 3}, {4, 5, 6}}, layout_r2_dim0minor_); EXPECT_EQ(mat_dim0minor.element_count(), 6); EXPECT_THAT(mat_dim0minor.data<int32_t>(), ElementsAre(1, 4, 2, 5, 3, 6)); auto relaid_mat_to_dim0major = mat_
1,785
cpp
tensorflow/tensorflow
reference_util
third_party/xla/xla/reference_util.cc
third_party/xla/xla/reference_util_test.cc
#ifndef XLA_REFERENCE_UTIL_H_ #define XLA_REFERENCE_UTIL_H_ #include <algorithm> #include <array> #include <functional> #include <memory> #include <utility> #include <vector> #include "absl/functional/function_ref.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/client/padding.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { class ReferenceUtil { public: template <typename T> static std::unique_ptr<Array2D<T>> TransposeArray2D( const Array2D<T>& operand) { auto result = std::make_unique<Array2D<T>>(operand.width(), operand.height()); for (int64_t w = 0; w < operand.width(); ++w) { for (int64_t h = 0; h < operand.height(); ++h) { (*result)(w, h) = operand(h, w); } } return result; } template <typename T> static std::unique_ptr<Array2D<T>> MatmulArray2D(const Array2D<T>& lhs, const Array2D<T>& rhs) { return HloEvaluator::MatmulArray2D(lhs, rhs); } static std::unique_ptr<Array2D<double>> Array2DF32ToF64( const Array2D<float>& input); static std::unique_ptr<Array4D<float>> ConvArray4D( const Array4D<float>& lhs, const Array4D<float>& rhs, std::pair<int64_t, int64_t> kernel_stride, Padding padding); static std::unique_ptr<Array4D<float>> ConvArray4DGeneralDimensions( const Array4D<float>& lhs, const Array4D<float>& rhs, std::pair<int64_t, int64_t> kernel_stride, Padding padding, ConvolutionDimensionNumbers dimension_numbers); static std::unique_ptr<Array4D<float>> ConvArray4DGeneralDimensionsDilated( const Array4D<float>& lhs, const Array4D<float>& rhs, std::pair<int64_t, int64_t> kernel_stride, Padding padding, std::pair<int64_t, int64_t> lhs_dilation, std::pair<int64_t, int64_t> rhs_dilation, ConvolutionDimensionNumbers dnums); static std::unique_ptr<Array3D<float>> ConvArray3D(const Array3D<float>& lhs, const Array3D<float>& rhs, int64_t kernel_stride, Padding padding); static std::unique_ptr<Array3D<float>> ConvArray3DGeneralDimensionsDilated( const Array3D<float>& lhs, const Array3D<float>& rhs, int64_t kernel_stride, Padding padding, int64_t lhs_dilation, int64_t rhs_dilation, const ConvolutionDimensionNumbers& dnums); static std::unique_ptr<Array4D<float>> SeparableConvArray4D( const Array4D<float>& input, const Array4D<float>& depthwise_weights, const Array4D<float>& pointwise_weights, std::pair<int64_t, int64_t> kernel_stride, Padding padding); static std::unique_ptr<std::vector<float>> ReduceToColArray2D( const Array2D<float>& matrix, float init, absl::FunctionRef<float(float, float)> reduce_function); static std::unique_ptr<std::vector<float>> ReduceToRowArray2D( const Array2D<float>& matrix, float init, absl::FunctionRef<float(float, float)> reduce_function); template <typename T> static std::vector<T> ReduceR2ToR1(const Array2D<T>& input, int dimension_to_reduce, T init, absl::FunctionRef<T(T, T)> freduce) { std::vector<T> result(dimension_to_reduce == 0 ? input.n2() : input.n1(), init); for (int i0 = 0; i0 < input.n1(); ++i0) { for (int i1 = 0; i1 < input.n2(); ++i1) { int output = dimension_to_reduce == 0 ? i1 : i0; result[output] = freduce(result[output], input(i0, i1)); } } return result; } static std::vector<float> Reduce4DTo1D( const Array4D<float>& array, float init, absl::Span<const int64_t> dims, absl::FunctionRef<float(float, float)> reduce_function); static std::unique_ptr<Array4D<float>> Broadcast1DTo4D( const std::vector<float>& array, const std::vector<int64_t>& bounds, int64_t broadcast_from_dim); static std::unique_ptr<Array2D<float>> Reduce3DTo2D( const Array3D<float>& array, float init, absl::Span<const int64_t> dims, absl::FunctionRef<float(float, float)> reduce_function); static std::unique_ptr<Array2D<float>> MapArray2D( const Array2D<float>& matrix, absl::FunctionRef<float(float)> map_function); static std::unique_ptr<Array2D<float>> MapArray2D( const Array2D<float>& lhs, const Array2D<float>& rhs, absl::FunctionRef<float(float, float)> map_function); static std::unique_ptr<Array3D<float>> MapArray3D( const Array3D<float>& array, absl::FunctionRef<float(float)> map_function); static std::unique_ptr<Array3D<float>> MapArray3D( const Array3D<float>& lhs, const Array3D<float>& rhs, absl::FunctionRef<float(float, float)> map_function); static int64_t WindowCount(int64_t unpadded_width, int64_t window_len, int64_t stride, Padding padding); static std::unique_ptr<std::vector<float>> ReduceWindow1DAdd( absl::Span<const float> operand, float init, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, Padding padding); static std::unique_ptr<Array3D<float>> ReduceWindow3DAdd( const Array3D<float>& operand, float init, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, Padding padding); static std::unique_ptr<Array4D<float>> ReduceWindow4DAdd( const Array4D<float>& operand, float init, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, Padding padding); static std::unique_ptr<std::vector<float>> ReduceWindow1DGeneric( absl::Span<const float> operand, float init, absl::FunctionRef<float(float, float)> reduce_func, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, absl::Span<const std::pair<int64_t, int64_t>> padding); static std::unique_ptr<Array4D<float>> ReduceWindow4DGeneric( const Array4D<float>& operand, float init, absl::FunctionRef<float(float, float)> reduce_func, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, Padding padding); static std::unique_ptr<Array4D<float>> ReduceWindow4DGeneric( const Array4D<float>& operand, float init, absl::FunctionRef<float(float, float)> reduce_func, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, absl::Span<const std::pair<int64_t, int64_t>> padding); static std::unique_ptr<Array4D<float>> BatchNorm4D( const Array4D<float>& input, const Array4D<float>& mean, const Array4D<float>& var, const Array4D<float>& scale, const Array4D<float>& offset, float epsilon); static std::unique_ptr<Array4D<float>> SelectAndScatter4DGePlus( const Array4D<float>& operand, const Array4D<float>& source, float init, absl::Span<const int64_t> window, absl::Span<const int64_t> stride, bool same_padding); template <typename T> static std::unique_ptr<Array2D<T>> Concat2D(const Array2D<T>& lhs, const Array2D<T>& rhs, int concatenate_dimension) { CHECK(0 <= concatenate_dimension && concatenate_dimension < 2); auto result = std::make_unique<Array2D<T>>( concatenate_dimension == 0 ? lhs.n1() + rhs.n1() : lhs.n1(), concatenate_dimension == 1 ? lhs.n2() + rhs.n2() : lhs.n2()); for (int64_t i0 = 0; i0 < result->n1(); ++i0) { for (int64_t i1 = 0; i1 < result->n2(); ++i1) { (*result)(i0, i1) = i0 < lhs.n1() && i1 < lhs.n2() ? lhs(i0, i1) : rhs(i0 >= lhs.n1() ? i0 - lhs.n1() : i0, i1 >= lhs.n2() ? i1 - lhs.n2() : i1); } } return result; } template <typename T> static std::unique_ptr<Array3D<T>> Concat3D(const Array3D<T>& lhs, const Array3D<T>& rhs, int concatenate_dimension) { CHECK(0 <= concatenate_dimension && concatenate_dimension < 3); const int64_t lhs_dims[] = {lhs.n1(), lhs.n2(), lhs.n3()}; const int64_t rhs_dims[] = {rhs.n1(), rhs.n2(), rhs.n3()}; int64_t out_dims[] = {rhs.n1(), rhs.n2(), rhs.n3()}; for (int i = 0; i < 3; ++i) { if (i != concatenate_dimension) { out_dims[i] = lhs_dims[i]; CHECK_EQ(lhs_dims[i], rhs_dims[i]); } else { out_dims[i] = lhs_dims[i] + rhs_dims[i]; } } auto result = std::make_unique<Array3D<T>>(out_dims[0], out_dims[1], out_dims[2]); for (int64_t i0 = 0; i0 < result->n1(); ++i0) { for (int64_t i1 = 0; i1 < result->n2(); ++i1) { for (int64_t i2 = 0; i2 < result->n3(); ++i2) { (*result)(i0, i1, i2) = i0 < lhs.n1() && i1 < lhs.n2() && i2 < lhs.n3() ? lhs(i0, i1, i2) : rhs(i0 >= lhs.n1() ? i0 - lhs.n1() : i0, i1 >= lhs.n2() ? i1 - lhs.n2() : i1, i2 >= lhs.n3() ? i2 - lhs.n3() : i2); } } } return result; } template <typename T> static std::unique_ptr<Array4D<T>> Concat4D(const Array4D<T>& lhs, const Array4D<T>& rhs, int concatenate_dimension) { CHECK(0 <= concatenate_dimension && concatenate_dimension < 4); const int64_t lhs_dims[] = {lhs.n1(), lhs.n2(), lhs.n3(), lhs.n4()}; const int64_t rhs_dims[] = {rhs.n1(), rhs.n2(), rhs.n3(), rhs.n4()}; int64_t out_dims[] = {rhs.n1(), rhs.n2(), rhs.n3(), rhs.n4()}; for (int i = 0; i < 4; ++i) { if (i != concatenate_dimension) { out_dims[i] = lhs_dims[i]; CHECK_EQ(lhs_dims[i], rhs_dims[i]); } else { out_dims[i] = lhs_dims[i] + rhs_dims[i]; } } auto result = std::make_unique<Array4D<T>>(out_dims[0], out_dims[1], out_dims[2], out_dims[3]); for (int64_t i0 = 0; i0 < result->n1(); ++i0) { for (int64_t i1 = 0; i1 < result->n2(); ++i1) { for (int64_t i2 = 0; i2 < result->n3(); ++i2) { for (int64_t i3 = 0; i3 < result->n4(); ++i3) { (*result)(i0, i1, i2, i3) = i0 < lhs.n1() && i1 < lhs.n2() && i2 < lhs.n3() && i3 < lhs.n4() ? lhs(i0, i1, i2, i3) : rhs(i0 >= lhs.n1() ? i0 - lhs.n1() : i0, i1 >= lhs.n2() ? i1 - lhs.n2() : i1, i2 >= lhs.n3() ? i2 - lhs.n3() : i2, i3 >= lhs.n4() ? i3 - lhs.n4() : i3); } } } } return result; } template <typename T> static std::vector<T> ClampSlice1D(absl::Span<const T> input, int64_t start, int64_t size) { start = std::min<int64_t>(std::max<int64_t>(0, start), input.size() - size); std::vector<T> result; for (int64_t i = 0; i < size; ++i) { result.push_back(input[(start + i)]); } return result; } template <typename T> static std::unique_ptr<Array2D<T>> Slice2D(const Array2D<T>& input, std::array<int64_t, 2> starts, std::array<int64_t, 2> limits, std::array<int64_t, 2> strides) { CHECK_LE(starts[0], input.n1()); CHECK_LE(starts[1], input.n2()); CHECK_LE(limits[0], input.n1()); CHECK_LE(limits[1], input.n2()); CHECK_GE(strides[0], 1); CHECK_GE(strides[1], 1); auto result = std::make_unique<Array2D<T>>( CeilOfRatio(limits[0] - starts[0], strides[0]), CeilOfRatio(limits[1] - starts[1], strides[1])); for (int64_t i0 = 0; i0 < result->n1(); ++i0) { for (int64_t i1 = 0; i1 < result->n2(); ++i1) { (*result)(i0, i1) = input(starts[0] + i0 * strides[0], starts[1] + i1 * strides[1]); } } return result; } template <typename T> static std::unique_ptr<Array3D<T>> Slice3D(const Array3D<T>& input, std::array<int64_t, 3> starts, std::array<int64_t, 3> limits, std::array<int64_t, 3> strides) { CHECK_LE(starts[0], input.n1()); CHECK_LE(starts[1], input.n2()); CHECK_LE(starts[2], input.n3()); CHECK_LE(limits[0], input.n1()); CHECK_LE(limits[1], input.n2()); CHECK_LE(limits[2], input.n3()); CHECK_GE(strides[0], 1); CHECK_GE(strides[1], 1); CHECK_GE(strides[2], 1); auto result = std::make_unique<Array3D<T>>( CeilOfRatio(limits[0] - starts[0], strides[0]), CeilOfRatio(limits[1] - starts[1], strides[1]), CeilOfRatio(limits[2] - starts[2], strides[2])); for (int64_t i0 = 0; i0 < result->n1(); ++i0) { for (int64_t i1 = 0; i1 < result->n2(); ++i1) { for (int64_t i2 = 0; i2 < result->n3(); ++i2) { (*result)(i0, i1, i2) = input(starts[0] + i0 * strides[0], starts[1] + i1 * strides[1], starts[2] + i2 * strides[2]); } } } return result; } template <typename T> static std::unique_ptr<Array4D<T>> Slice4D(const Array4D<T>& input, std::array<int64_t, 4> starts, std::array<int64_t, 4> limits, std::array<int64_t, 4> strides) { CHECK_LE(starts[0], input.n1()); CHECK_LE(starts[1], input.n2()); CHECK_LE(starts[2], input.n3()); CHECK_LE(starts[3], input.n4()); CHECK_LE(limits[0], input.n1()); CHECK_LE(limits[1], input.n2()); CHECK_LE(limits[2], input.n3()); CHECK_LE(limits[3], input.n4()); CHECK_GE(strides[0], 1); CHECK_GE(strides[1], 1); CHECK_GE(strides[2], 1); CHECK_GE(strides[3], 1); auto result = std::make_unique<Array4D<T>>( CeilOfRatio(limits[0] - starts[0], strides[0]), CeilOfRatio(limits[1] - starts[1], strides[1]), CeilOfRatio(limits[2] - starts[2], strides[2]), CeilOfRatio(limits[3] - starts[3], strides[3])); for (int64_t i0 = 0; i0 < result->n1(); ++i0) { for (int64_t i1 = 0; i1 < result->n2(); ++i1) { for (int64_t i2 = 0; i2 < result->n3(); ++i2) { for (int64_t i3 = 0; i3 < result->n4(); ++i3) { (*result)(i0, i1, i2, i3) = input(starts[0] + i0 * strides[0], starts[1] + i1 * strides[1], starts[2] + i2 * strides[2], starts[3] + i3 * strides[3]); } } } } return result; } static std::unique_ptr<Array2D<float>> MapWithIndexArray2D( const Array2D<float>& matrix, absl::FunctionRef<float(float, int64_t, int64_t)> map_function); template <typename F> static std::unique_ptr<Array4D<float>> MapArray4D(const Array4D<float>& input, F&& map_function) { return MapWithIndexArray4D( input, [&](float value, int64_t, int64_t, int64_t, int64_t) { return map_function(value); }); } template <typename F> static std::unique_ptr<Array4D<float>> MapWithIndexArray4D( const Array4D<float>& input, F&& map_function) { auto result = std::make_unique<Array4D<float>>( input.planes(), input.depth(), input.height(), input.width()); for (int64_t plane = 0; plane < input.planes(); ++plane) { for (int64_t depth = 0; depth < input.depth(); ++depth) { for (int64_t height = 0; height < input.height(); ++height) { for (int64_t width = 0; width < input.width(); ++width) { (*result)(plane, depth, height, width) = map_function(input(plane, depth, height, width), plane, depth, height, width); } } } } return result; } template <typename F> static std::unique_ptr<Array4D<float>> MapArray4D(const Array4D<float>& lhs, const Array4D<float>& rhs, F&& map_function) { return MapWithIndexArray4D( lhs, rhs, [&](float lhs, float rhs, int64_t, int64_t, int64_t, int64_t) { return map_function(lhs, rhs); }); } template <typename F> static std::unique_ptr<Array4D<float>> MapWithIndexArray4D( const Array4D<float>& lhs, const Array4D<float>& rhs, F&& map_function) { auto result = std::make_unique<Array4D<float>>(lhs.planes(), lhs.depth(), lhs.height(), lhs.width()); for (int64_t plane = 0; plane < lhs.planes(); ++plane) { for (int64_t depth = 0; depth < lhs.depth(); ++depth) { for (int64_t height = 0; height < lhs.height(); ++height) { for (int64_t width = 0; width < lhs.width(); ++width) { (*result)(plane, depth, height, width) = map_function( lhs(plane, depth, height, width), rhs(plane, depth, height, width), plane, depth, height, width); } } } } return result; } template <typename NativeT> static std::unique_ptr<Array2D<NativeT>> PadArray2D( const Array2D<NativeT>& operand, const PaddingConfig& padding, const NativeT pad) { int64_t in0 = operand.n1(); int64_t high_padding0 = padding.dimensions(0).edge_padding_high(); int64_t low_padding0 = padding.dimensions(0).edge_padding_low(); int64_t interior_padding0 = padding.dimensions(0).interior_padding(); int64_t out0 = in0 + low_padding0 + high_padding0 + (in0 - 1) * interior_padding0; int64_t in1 = operand.n2(); int64_t high_padding1 = padding.dimensions(1).edge_padding_high(); int64_t low_padding1 = padding.dimensions(1).edge_padding_low(); int64_t interior_padding1 = padding.dimensions(1).interior_padding(); int64_t out1 = in1 + low_padding1 + high_padding1 + (in1 - 1) * interior_padding1; auto result = std::make_unique<Array2D<NativeT>>(out0, out1); result->Fill(pad); int64_t o0 = low_padding0; for (int64_t i0 = 0; i0 < in0; ++i0) { int64_t o1 = low_padding1; for (int64_t i1 = 0; i1 < in1; ++i1) { if (o0 >= 0 && o1 >= 0 && o0 < out0 && o1 < out1) { (*result)(o0, o1) = operand(i0, i1); } o1 += interior_padding1 + 1; } o0 += interior_padding0 + 1; } return result; } template <typename NativeT> static Array3D<NativeT> PadArray3D(const Array3D<NativeT>& operand, const PaddingConfig& padding, const NativeT pad) { CHECK_EQ(padding.dimensions_size(), 3); const int64_t input_bounds[] = {operand.n1(), operand.n2(), operand.n3()}; int64_t pad_low[3]; int64_t pad_high[3]; int64_t pad_interior[3]; int64_t output_bounds[3]; for (int64_t i = 0; i < 3; ++i) { pad_low[i] = padding.dimensions(i).edge_padding_low(); pad_high[i] = padding.dimensions(i).edge_padding_high(); CHECK_LE(0, pad_low[i]); CHECK_LE(0, pad_high[i]); CHECK_LE(0, padding.dimensions(i).interior_padding()) << "not implemented"; pad_interior[i] = padding.dimensions(i).interior_padding(); output_bounds[i] = pad_low[i] + input_bounds[i] + pad_high[i] + (input_bounds[i] - 1) * pad_interior[i]; } Array3D<NativeT> result(output_bounds[0], output_bounds[1], output_bounds[2]); int indices[] = {0, 0, 0}; for (indices[0] = 0; indices[0] < output_bounds[0]; ++indices[0]) { for (indices[1] = 0; indices[1] < output_bounds[1]; ++indices[1]) { for (indices[2] = 0; indices[2] < output_bounds[2]; ++indices[2]) { NativeT* value = &result(indices[0], indices[1], indices[2]); bool value_padded = false; for (int i = 0; i < 3; ++i) { bool in_low_padding = indices[i] < pad_low[i]; bool in_high_padding = indices[i] >= output_bounds[i] - pad_high[i]; if (in_low_padding || in_high_padding) { *value = pad; value_padded = true; } if (pad_interior[i] && (indices[i] - pad_low[i]) % (pad_interior[i] + 1)) { *value = pad; value_padded = true; } } if (value_padded) { continue; } *value = operand((indices[0] - pad_low[0]) / (pad_interior[0] + 1), (indices[1] - pad_low[1]) / (pad_interior[1] + 1), (indices[2] - pad_low[2]) / (pad_interior[2] + 1)); } } } return result; } template <typename NativeT> static Array4D<NativeT> PadArray4D(const Array4D<NativeT>& operand, const PaddingConfig& padding, const NativeT pad) { CHECK_EQ(padding.dimensions_size(), 4); const int64_t input_bounds[] = {operand.n1(), operand.n2(), operand.n3(), operand.n4()}; int64_t pad_low[4]; int64_t pad_high[4]; int64_t pad_interior[4]; int64_t output_bounds[4]; for (int64_t i = 0; i < 4; ++i) { pad_low[i] = padding.dimensions(i).edge_padding_low(); pad_high[i] = padding.dimensions(i).edge_padding_high(); CHECK_LE(0, padding.dimensions(i).interior_padding()) << "not implemented"; pad_interior[i] = padding.dimensions(i).interior_padding(); output_bounds[i] = pad_low[i] + input_bounds[i] + pad_high[i] + (input_bounds[i] - 1) * pad_interior[i]; } Array4D<NativeT> result(output_bounds[0], output_bounds[1], output_bounds[2], output_bounds[3]); result.Each([&](absl::Span<const int64_t> indices, NativeT* value) { for (int i = 0; i < 4; ++i) { bool in_low_padding = indices[i] < pad_low[i]; bool in_high_padding = indices[i] >= output_bounds[i] - pad_high[i]; if (in_low_padding || in_high_padding) { *value = pad; return; } if (pad_interior[i] && (indices[i] - pad_low[i]) % (pad_interior[i] + 1)) { *value = pad; return; } } *value = operand((indices[0] - pad_low[0]) / (pad_interior[0] + 1), (indices[1] - pad_low[1]) / (pad_interior[1] + 1), (indices[2] - pad_low[2]) / (pad_interior[2] + 1), (indices[3] - pad_low[3]) / (pad_interior[3] + 1)); }); return result; } template <typename F, typename T1, typename... Ts> static std::unique_ptr<Array2D<T1>> ApplyElementwise2D( F&& f, const Array2D<T1>& array1, const Array2D<Ts>&... arrays) { AssertSameSize2D(array1, arrays...); auto result = std::make_unique<Array2D<T1>>(array1.n1(), array1.n2()); for (int64_t i = 0; i < array1.n1(); ++i) { for (int64_t j = 0; j < array1.n2(); ++j) { (*result)(i, j) = f(array1(i, j), arrays(i, j)...); } } return result; } private: template <typename T1, typename T2, typename... Ts> static void AssertSameSize2D(const Array2D<T1>& array1, const Array2D<T2>& array2, const Array2D<Ts>&... arrays) { static_assert(std::is_same<T1, T2>::value, "Args must be same type."); CHECK_EQ(array1.n1(), array2.n1()); CHECK_EQ(array1.n2(), array2.n2()); AssertSameSize2D(array2, arrays...); } template <typename Array1> static void AssertSameSize2D(const Array1& array1) {} ReferenceUtil(const ReferenceUtil&) = delete; ReferenceUtil& operator=(const ReferenceUtil&) = delete; }; } #endif #include "xla/reference_util.h" #include <array> #include <cmath> #include <functional> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "xla/client/xla_builder.h" #include "xla/hlo/evaluator/hlo_evaluator.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/literal_util.h" #include "xla/service/shape_inference.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/math/math_util.h" #include "tsl/platform/logging.h" namespace xla { std::unique_ptr<Array2D<double>> ReferenceUtil::Array2DF32ToF64( const Array2D<float>& input) { auto result = std::make_unique<Array2D<double>>(input.height(), input.width()); for (int64_t rowno = 0; rowno < input.height(); ++rowno) { for (int64_t colno = 0; colno < input.width(); ++colno) { (*result)(rowno, colno) = input(rowno, colno); } } return result; } std::unique_ptr<Array3D<float>> ReferenceUtil::ConvArray3D( const Array3D<float>& lhs, const Array3D<float>& rhs, int64_t kernel_stride, Padding padding) { return ConvArray3DGeneralDimensionsDilated( lhs, rhs, kernel_stride, padding, 1, 1, XlaBuilder::CreateDefaultConvDimensionNumbers(1)); } std::unique_ptr<Array3D<float>> ReferenceUtil::ConvArray3DGeneralDimensionsDilated( const Array3D<float>& lhs, const Array3D<float>& rhs, int64_t kernel_stride, Padding padding, int64_t lhs_dilation, int64_t rhs_dilation, const ConvolutionDimensionNumbers& dnums) { CHECK_EQ(dnums.input_spatial_dimensions_size(), 1); CHECK_EQ(dnums.kernel_spatial_dimensions_size(), 1); CHECK_EQ(dnums.output_spatial_dimensions_size(), 1);
#include "xla/reference_util.h" #include <cmath> #include <memory> #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/client/padding.h" #include "xla/literal.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class ReferenceUtilTest : public ::testing::Test { protected: ReferenceUtilTest() { matrix_ = std::make_unique<Array2D<float>>(rows_, cols_); for (int64_t i = 0; i < rows_; ++i) { for (int64_t j = 0; j < cols_; ++j) { (*matrix_)(i, j) = i * cols_ + j + 1; } } } const int64_t rows_ = 2; const int64_t cols_ = 3; std::unique_ptr<Array2D<float>> matrix_; }; TEST_F(ReferenceUtilTest, TransposeArray2D) { auto result = ReferenceUtil::TransposeArray2D(*matrix_); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near<float>({{1.f, 4.f}, {2.f, 5.f}, {3.f, 6.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MatmulArray2D) { Array2D<float> rhs({ {7.f, 8.f}, {9.f, 10.f}, {11.f, 12.f}, }); auto result = ReferenceUtil::MatmulArray2D(*matrix_, rhs); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near<float>({{58.f, 64.f}, {139.f, 154.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ReduceToColArray2D) { auto add = [](float lhs, float rhs) { return lhs + rhs; }; auto result = ReferenceUtil::ReduceToColArray2D(*matrix_, 0.0f, add); auto actual_literal = LiteralUtil::CreateR1<float>(*result); LiteralTestUtil::ExpectR1Near<float>({6.f, 15.f}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ReduceToRowArray2D) { auto add = [](float lhs, float rhs) { return lhs + rhs; }; auto result = ReferenceUtil::ReduceToRowArray2D(*matrix_, 0.0f, add); auto actual_literal = LiteralUtil::CreateR1<float>(*result); LiteralTestUtil::ExpectR1Near<float>({5.f, 7.f, 9.f}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, Array2DF32ToF64Test) { auto result = ReferenceUtil::Array2DF32ToF64(*matrix_); ASSERT_EQ(result->height(), matrix_->height()); ASSERT_EQ(result->width(), matrix_->width()); for (int64_t rowno = 0; rowno < matrix_->height(); ++rowno) { for (int64_t colno = 0; colno < matrix_->width(); ++colno) { EXPECT_EQ(static_cast<double>((*matrix_)(rowno, colno)), (*result)(rowno, colno)); } } } TEST_F(ReferenceUtilTest, Reduce4Dto1DZeroSizedArray) { auto result = LiteralUtil::CreateR1<float>(ReferenceUtil::Reduce4DTo1D( Array4D<float>(1, 0, 1, 1), 0, {0, 1, 2}, [](float a, float b) { return a + b; })); LiteralTestUtil::ExpectR1Equal<float>({0}, result); } TEST_F(ReferenceUtilTest, MapArray2D) { auto identity = [](float value) { return std::log(std::exp(value)); }; auto result = ReferenceUtil::MapArray2D(*matrix_, identity); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2NearArray2D(*matrix_, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapArray3D) { auto identity = [](float value) { return std::log(std::exp(value)); }; Array3D<float> input(2, 3, 4); input.FillIota(0); auto result = ReferenceUtil::MapArray3D(input, identity); auto actual_literal = LiteralUtil::CreateR3FromArray3D(*result); LiteralTestUtil::ExpectR3NearArray3D(input, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapWithIndexArray2D) { auto add_index = [](float value, int64_t row, int64_t col) { return value + row + col; }; auto result = ReferenceUtil::MapWithIndexArray2D(*matrix_, add_index); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near<float>({{1.f, 3.f, 5.f}, {5.f, 7.f, 9.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapArray4D) { auto input = std::make_unique<Array4D<float>>(2, 3, 4, 5); input->FillWithMultiples(1.0f); auto multiply_by_two = [](float value) { return 2 * value; }; auto result = ReferenceUtil::MapArray4D(*input, multiply_by_two); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); Array4D<float> expected(2, 3, 4, 5); expected.FillWithMultiples(2.0f); LiteralTestUtil::ExpectR4NearArray4D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, MapWithIndexArray4D) { auto input = std::make_unique<Array4D<float>>(2, 3, 4, 5); input->FillWithMultiples(1.0f); auto subtract_index = [](float value, int64_t plane, int64_t depth, int64_t height, int64_t width) { return value - (3 * 4 * 5 * plane + 4 * 5 * depth + 5 * height + width); }; auto result = ReferenceUtil::MapWithIndexArray4D(*input, subtract_index); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); Array4D<float> expected(2, 3, 4, 5); expected.Fill(0.0f); LiteralTestUtil::ExpectR4NearArray4D(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceArray2D) { auto result = ReferenceUtil::Slice2D(*matrix_, {{0, 0}}, {{2, 2}}, {{1, 1}}); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near<float>({{1.f, 2.f}, {4.f, 5.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceStridedArray2D) { auto result = ReferenceUtil::Slice2D(*matrix_, {{0, 0}}, {{2, 3}}, {{1, 2}}); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*result); LiteralTestUtil::ExpectR2Near<float>({{1.f, 3.f}, {4.f, 6.f}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceArray3D) { Array3D<float> input(2, 3, 4); input.FillIota(0); auto result = ReferenceUtil::Slice3D(input, {{0, 0, 0}}, {{2, 2, 2}}, {{1, 1, 1}}); auto actual_literal = LiteralUtil::CreateR3FromArray3D(*result); LiteralTestUtil::ExpectR3Near<float>( {{{0.f, 1.f}, {4.f, 5.f}}, {{12.f, 13.f}, {16.f, 17.f}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceStridedArray3D) { Array3D<float> input(2, 3, 4); input.FillIota(0); auto result = ReferenceUtil::Slice3D(input, {{0, 0, 0}}, {{2, 3, 4}}, {{1, 2, 2}}); auto actual_literal = LiteralUtil::CreateR3FromArray3D(*result); LiteralTestUtil::ExpectR3Near<float>( {{{0.f, 2.f}, {8.f, 10.f}}, {{12.f, 14.f}, {20.f, 22.f}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceArray4D) { Array4D<float> input(2, 3, 4, 5); input.FillIota(0); auto result = ReferenceUtil::Slice4D(input, {{1, 0, 0, 0}}, {{2, 2, 2, 2}}, {{1, 1, 1, 1}}); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); LiteralTestUtil::ExpectR4Near<float>( {{{{60.f, 61.f}, {65.f, 66.f}}, {{80.f, 81.f}, {85.f, 86.f}}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, SliceStridedArray4D) { Array4D<float> input(2, 3, 4, 5); input.FillIota(0); auto result = ReferenceUtil::Slice4D(input, {{1, 0, 0, 0}}, {{2, 3, 4, 5}}, {{1, 2, 2, 2}}); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*result); LiteralTestUtil::ExpectR4Near<float>( {{{{60.f, 62.f, 64.f}, {70.f, 72.f, 74.f}}, {{100.f, 102.f, 104.f}, {110.f, 112.f, 114.f}}}}, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvArray3DWithSamePadding) { Array3D<float> input = {{{1, 2, 3, 4}}}; Array3D<float> weights = {{{5, 6}}}; std::unique_ptr<Array3D<float>> actual = ReferenceUtil::ConvArray3D(input, weights, 1, Padding::kSame); Array3D<float> expected = {{{17, 28, 39, 20}}}; auto actual_literal = LiteralUtil::CreateR3FromArray3D(*actual); LiteralTestUtil::ExpectR3NearArray3D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvArray3DWithValidPadding) { Array3D<float> input = {{{1, 2, 3, 4}}}; Array3D<float> weights = {{{5, 6}}}; std::unique_ptr<Array3D<float>> actual = ReferenceUtil::ConvArray3D(input, weights, 1, Padding::kValid); Array3D<float> expected = {{{17, 28, 39}}}; auto actual_literal = LiteralUtil::CreateR3FromArray3D(*actual); LiteralTestUtil::ExpectR3NearArray3D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvWithSamePadding) { Array4D<float> input(1, 1, 4, 4); input.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); Array4D<float> weights(1, 1, 2, 2); weights.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); std::unique_ptr<Array4D<float>> actual = ReferenceUtil::ConvArray4D(input, weights, {1, 1}, Padding::kSame); Array4D<float> expected(1, 1, 4, 4); expected.FillWithYX(Array2D<float>({ {100, 126, 152, 76}, {204, 230, 256, 124}, {308, 334, 360, 172}, {149, 160, 171, 80}, })); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvWithValidPadding) { Array4D<float> input(1, 1, 4, 4); input.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); Array4D<float> weights(1, 1, 2, 2); weights.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); std::unique_ptr<Array4D<float>> actual = ReferenceUtil::ConvArray4D(input, weights, {1, 1}, Padding::kValid); Array4D<float> expected(1, 1, 3, 3); expected.FillWithYX(Array2D<float>({ {1*5+2*6+5*7+6*8, 126, 152}, {204, 230, 256}, {308, 334, 11*5+12*6+15*7+16*8}, })); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvGeneralDimensionsWithSamePadding) { Array4D<float> input({ {{{1, 2, 3, 4}}, {{5, 6, 7, 8}}, {{9, 10, 11, 12}}}, {{{13, 14, 15, 16}}, {{17, 18, 19, 20}}, {{21, 22, 23, 24}}} }); Array4D<float> weight({{ {{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}, {{13, 14, 15}, {16, 17, 18}} }}); ConvolutionDimensionNumbers dimension_numbers; dimension_numbers.set_input_batch_dimension(2); dimension_numbers.set_input_feature_dimension(0); dimension_numbers.set_output_batch_dimension(2); dimension_numbers.set_output_feature_dimension(0); dimension_numbers.add_input_spatial_dimensions(1); dimension_numbers.add_output_spatial_dimensions(1); dimension_numbers.add_input_spatial_dimensions(3); dimension_numbers.add_output_spatial_dimensions(3); dimension_numbers.set_kernel_output_feature_dimension(0); dimension_numbers.set_kernel_input_feature_dimension(2); dimension_numbers.add_kernel_spatial_dimensions(1); dimension_numbers.add_kernel_spatial_dimensions(3); std::unique_ptr<Array4D<float>> actual = ReferenceUtil::ConvArray4DGeneralDimensions( input, weight, {1, 1}, Padding::kSame, dimension_numbers); Array4D<float> expected({{ {{1110, 1688, 1838, 1226}}, {{1683, 2514, 2685, 1761}}, {{878, 1280, 1358, 866}} }}); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ConvGeneralDimensionsWithValidPadding) { Array4D<float> input({ {{{1, 2, 3, 4}}, {{5, 6, 7, 8}}, {{9, 10, 11, 12}}}, {{{13, 14, 15, 16}}, {{17, 18, 19, 20}}, {{21, 22, 23, 24}}} }); Array4D<float> weight({{ {{1, 7, 13}, {4, 10, 16}}, {{2, 8, 14}, {5, 11, 17}}, {{3, 9, 15}, {6, 12, 18}} }}); ConvolutionDimensionNumbers dimension_numbers; dimension_numbers.set_input_batch_dimension(2); dimension_numbers.set_input_feature_dimension(0); dimension_numbers.set_output_batch_dimension(2); dimension_numbers.set_output_feature_dimension(0); dimension_numbers.add_input_spatial_dimensions(1); dimension_numbers.add_output_spatial_dimensions(1); dimension_numbers.add_input_spatial_dimensions(3); dimension_numbers.add_output_spatial_dimensions(3); dimension_numbers.set_kernel_output_feature_dimension(0); dimension_numbers.set_kernel_input_feature_dimension(2); dimension_numbers.add_kernel_spatial_dimensions(3); dimension_numbers.add_kernel_spatial_dimensions(1); std::unique_ptr<Array4D<float>> actual = ReferenceUtil::ConvArray4DGeneralDimensions( input, weight, {1, 1}, Padding::kValid, dimension_numbers); Array4D<float> expected({{{{2514, 2685}}}}); auto actual_literal = LiteralUtil::CreateR4FromArray4D(*actual); LiteralTestUtil::ExpectR4NearArray4D<float>(expected, actual_literal, ErrorSpec(0.0001)); } TEST_F(ReferenceUtilTest, ApplyElementwise2D) { Array2D<float> a({{1, 2}, {3, 4}}); Array2D<float> b({{10, 20}, {30, 40}}); Array2D<float> c({{100, 200}, {300, 400}}); auto actual = ReferenceUtil::ApplyElementwise2D( [](float x, float y, float z) { return 100 * x + 10 * y + z; }, a, b, c); auto actual_literal = LiteralUtil::CreateR2FromArray2D(*actual); LiteralTestUtil::ExpectR2Near({{300.f, 600.f}, {900.f, 1200.f}}, actual_literal, ErrorSpec(0.0001)); } } }
1,786
cpp
tensorflow/tensorflow
status_macros
third_party/xla/xla/status_macros.cc
third_party/xla/xla/status_macros_test.cc
#ifndef XLA_STATUS_MACROS_H_ #define XLA_STATUS_MACROS_H_ #include <memory> #include <ostream> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/base/optimization.h" #include "absl/status/status.h" #include "xla/statusor.h" #include "tsl/platform/macros.h" #include "tsl/platform/status.h" namespace xla { namespace status_macros { extern const char kPossibleAutoJitAlternative[]; class MakeErrorStream { public: class MakeErrorStreamWithOutput { public: explicit MakeErrorStreamWithOutput(MakeErrorStream* error_stream) : wrapped_error_stream_(error_stream) {} template <typename T> MakeErrorStreamWithOutput& operator<<(const T& value) { *wrapped_error_stream_ << value; return *this; } operator absl::Status() { return wrapped_error_stream_->GetStatus(); } template <typename T> operator absl::StatusOr<T>() { return wrapped_error_stream_->GetStatus(); } private: MakeErrorStream* wrapped_error_stream_; MakeErrorStreamWithOutput(const MakeErrorStreamWithOutput&) = delete; MakeErrorStreamWithOutput& operator=(const MakeErrorStreamWithOutput&) = delete; }; enum PriorMessageHandling { kAppendToPriorMessage, kPrependToPriorMessage }; template <typename ERROR_CODE_TYPE> MakeErrorStream(const char* file, int line, ERROR_CODE_TYPE code); template <typename T> MakeErrorStreamWithOutput& operator<<(const T& value) { CheckNotDone(); impl_->stream_ << value; return impl_->make_error_stream_with_output_wrapper_; } MakeErrorStream& with_log_stack_trace() { impl_->should_log_stack_trace_ = true; return *this; } MakeErrorStreamWithOutput& add_ret_check_failure(const char* condition); private: class Impl { public: Impl(const char* file, int line, tsl::error::Code code, MakeErrorStream* error_stream, bool is_logged_by_default = true); Impl(const absl::Status& status, PriorMessageHandling prior_message_handling, const char* file, int line, MakeErrorStream* error_stream); ~Impl(); absl::Status GetStatus(); void CheckNotDone() const; private: const char* file_; int line_; absl::StatusCode code_; PriorMessageHandling prior_message_handling_ = kAppendToPriorMessage; std::string prior_message_; bool is_done_; std::ostringstream stream_; bool should_log_; int log_severity_; bool should_log_stack_trace_; MakeErrorStreamWithOutput make_error_stream_with_output_wrapper_; friend class MakeErrorStream; Impl(const Impl&) = delete; Impl& operator=(const Impl&) = delete; }; void CheckNotDone() const; absl::Status GetStatus() const { return impl_->GetStatus(); } std::unique_ptr<Impl> impl_; MakeErrorStream(const MakeErrorStream&) = delete; MakeErrorStream& operator=(const MakeErrorStream&) = delete; }; template <typename ERROR_CODE_TYPE> TF_ATTRIBUTE_NOINLINE MakeErrorStream::MakeErrorStream(const char* file, int line, ERROR_CODE_TYPE code) : impl_(new Impl(file, line, code, this, true)) {} class StatusAdaptorForMacros { public: explicit StatusAdaptorForMacros(absl::Status status) : status_(std::move(status)) {} StatusAdaptorForMacros(const StatusAdaptorForMacros&) = delete; StatusAdaptorForMacros& operator=(const StatusAdaptorForMacros&) = delete; explicit operator bool() const { return ABSL_PREDICT_TRUE(status_.ok()); } absl::Status&& Consume() { return std::move(status_); } private: absl::Status status_; }; } } #define TF_RET_CHECK(condition) \ while (ABSL_PREDICT_FALSE(!(condition))) \ return xla::status_macros::MakeErrorStream(__FILE__, __LINE__, \ ::tsl::error::INTERNAL) \ .with_log_stack_trace() \ .add_ret_check_failure(#condition) #endif #include "xla/status_macros.h" #include <algorithm> #include <string> #include "absl/base/attributes.h" #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tsl/platform/logging.h" #include "tsl/platform/stacktrace.h" #include "tsl/platform/status.h" namespace xla { namespace status_macros { ABSL_CONST_INIT const char kPossibleAutoJitAlternative[] = "This error might be occurring with the use of xla.compile. If it is not " "necessary that every Op be compiled with XLA, an alternative is to use " "auto_jit with OptimizerOptions.global_jit_level = ON_2 or the environment " "variable TF_XLA_FLAGS=\"tf_xla_auto_jit=2\" which will attempt to use xla " "to compile as much of the graph as the compiler is able to."; static void LogError(const absl::Status& status, const char* filename, int line, int log_severity, bool should_log_stack_trace) { if (ABSL_PREDICT_TRUE(log_severity != tsl::NUM_SEVERITIES)) { std::string stack_trace; if (should_log_stack_trace) { stack_trace = absl::StrCat("\n", tsl::CurrentStackTrace()); } switch (log_severity) { case tsl::INFO: LOG(INFO) << status << stack_trace; break; case tsl::WARNING: LOG(WARNING) << status << stack_trace; break; case tsl::ERROR: LOG(ERROR) << status << stack_trace; break; case tsl::FATAL: LOG(FATAL) << status << stack_trace; break; case tsl::NUM_SEVERITIES: break; default: LOG(FATAL) << "Unknown LOG severity " << log_severity; } } } static absl::Status MakeError(const char* filename, int line, absl::StatusCode code, const std::string& message, bool should_log, int log_severity, bool should_log_stack_trace) { if (ABSL_PREDICT_FALSE(code == absl::StatusCode::kOk)) { LOG(ERROR) << "Cannot create error with status OK"; code = absl::StatusCode::kUnknown; } const absl::Status status = absl::Status(code, message); if (ABSL_PREDICT_TRUE(should_log)) { LogError(status, filename, line, log_severity, should_log_stack_trace); } return status; } MakeErrorStream::MakeErrorStreamWithOutput& MakeErrorStream::add_ret_check_failure(const char* condition) { return *this << "RET_CHECK failure (" << impl_->file_ << ":" << impl_->line_ << ") " << condition << " "; } void MakeErrorStream::CheckNotDone() const { impl_->CheckNotDone(); } MakeErrorStream::Impl::Impl(const char* file, int line, tsl::error::Code code, MakeErrorStream* error_stream, bool is_logged_by_default) : file_(file), line_(line), code_(static_cast<absl::StatusCode>(code)), is_done_(false), should_log_(is_logged_by_default), log_severity_(tsl::ERROR), should_log_stack_trace_(false), make_error_stream_with_output_wrapper_(error_stream) {} MakeErrorStream::Impl::Impl(const absl::Status& status, PriorMessageHandling prior_message_handling, const char* file, int line, MakeErrorStream* error_stream) : file_(file), line_(line), code_(!status.ok() ? static_cast<absl::StatusCode>(status.code()) : absl::StatusCode::kUnknown), prior_message_handling_(prior_message_handling), prior_message_(status.message()), is_done_(false), should_log_(true), log_severity_(tsl::ERROR), should_log_stack_trace_(false), make_error_stream_with_output_wrapper_(error_stream) { DCHECK(!status.ok()) << "Attempted to append/prepend error text to status OK"; } MakeErrorStream::Impl::~Impl() { if (!is_done_) { LOG(ERROR) << "MakeErrorStream destructed without getting absl::Status: " << file_ << ":" << line_ << " " << stream_.str(); } } absl::Status MakeErrorStream::Impl::GetStatus() { if (is_done_) { LOG(ERROR) << "MakeErrorStream got absl::Status more than once: " << file_ << ":" << line_ << " " << stream_.str(); } is_done_ = true; const std::string& stream_str = stream_.str(); const std::string str = prior_message_handling_ == kAppendToPriorMessage ? absl::StrCat(prior_message_, stream_str) : absl::StrCat(stream_str, prior_message_); if (ABSL_PREDICT_FALSE(str.empty())) { return MakeError( file_, line_, code_, absl::StrCat(str, "Error without message at ", file_, ":", line_), true , tsl::ERROR , should_log_stack_trace_); } else { return MakeError(file_, line_, code_, str, should_log_, log_severity_, should_log_stack_trace_); } } void MakeErrorStream::Impl::CheckNotDone() const { if (is_done_) { LOG(ERROR) << "MakeErrorStream shift called after getting absl::Status: " << file_ << ":" << line_ << " " << stream_.str(); } } } }
#include "xla/status_macros.h" #include <functional> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { absl::Status RetCheckFail() { TF_RET_CHECK(2 > 3); return absl::OkStatus(); } absl::Status RetCheckFailWithExtraMessage() { TF_RET_CHECK(2 > 3) << "extra message"; return absl::OkStatus(); } absl::Status RetCheckSuccess() { TF_RET_CHECK(3 > 2); return absl::OkStatus(); } TEST(StatusMacros, RetCheckFailing) { absl::Status status = RetCheckFail(); EXPECT_EQ(status.code(), tsl::error::INTERNAL); EXPECT_THAT(status.message(), ::testing::ContainsRegex("RET_CHECK failure.*2 > 3")); } TEST(StatusMacros, RetCheckFailingWithExtraMessage) { absl::Status status = RetCheckFailWithExtraMessage(); EXPECT_EQ(status.code(), tsl::error::INTERNAL); EXPECT_THAT(status.message(), ::testing::ContainsRegex("RET_CHECK.*2 > 3 extra message")); } TEST(StatusMacros, RetCheckSucceeding) { absl::Status status = RetCheckSuccess(); EXPECT_IS_OK(status); } absl::StatusOr<int> CreateIntSuccessfully() { return 42; } absl::StatusOr<int> CreateIntUnsuccessfully() { return tsl::errors::Internal("foobar"); } TEST(StatusMacros, AssignOrAssertOnOK) { TF_ASSERT_OK_AND_ASSIGN(int result, CreateIntSuccessfully()); EXPECT_EQ(42, result); } absl::Status ReturnStatusOK() { return absl::OkStatus(); } absl::Status ReturnStatusError() { return (tsl::errors::Internal("foobar")); } using StatusReturningFunction = std::function<absl::Status()>; absl::StatusOr<int> CallStatusReturningFunction( const StatusReturningFunction& func) { TF_RETURN_IF_ERROR(func()); return 42; } TEST(StatusMacros, ReturnIfErrorOnOK) { absl::StatusOr<int> rc = CallStatusReturningFunction(ReturnStatusOK); EXPECT_IS_OK(rc); EXPECT_EQ(42, std::move(rc).value()); } TEST(StatusMacros, ReturnIfErrorOnError) { absl::StatusOr<int> rc = CallStatusReturningFunction(ReturnStatusError); EXPECT_FALSE(rc.ok()); EXPECT_EQ(rc.status().code(), tsl::error::INTERNAL); } TEST(StatusMacros, AssignOrReturnSuccessfully) { absl::Status status = []() { TF_ASSIGN_OR_RETURN(int value, CreateIntSuccessfully()); EXPECT_EQ(value, 42); return absl::OkStatus(); }(); EXPECT_IS_OK(status); } TEST(StatusMacros, AssignOrReturnUnsuccessfully) { absl::Status status = []() { TF_ASSIGN_OR_RETURN(int value, CreateIntUnsuccessfully()); (void)value; return absl::OkStatus(); }(); EXPECT_FALSE(status.ok()); EXPECT_EQ(status.code(), tsl::error::INTERNAL); } }
1,787
cpp
tensorflow/tensorflow
window_util
third_party/xla/xla/window_util.cc
third_party/xla/xla/window_util_test.cc
#ifndef XLA_WINDOW_UTIL_H_ #define XLA_WINDOW_UTIL_H_ #include "absl/types/span.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace window_util { Window MakeWindow(absl::Span<const int64_t> sizes); Window MakeWindow(absl::Span<const int64_t> sizes, absl::Span<const int64_t> strides); PaddingConfig MakeSymmetricPadding(absl::Span<const int64_t> sizes); std::string ToString(const WindowDimension& dim); std::string ToString(const Window& window); bool HasStride(const Window& window); bool HasPadding(const Window& window); bool HasSymmetricPadding(const Window& window); bool HasNegativePadding(const Window& window); bool HasSymmetricPadding(const PaddingConfig& padding_config); bool HasBaseDilation(const Window& window); bool HasWindowDilation(const Window& window); bool HasDilation(const Window& window); bool HasOverlappingWindow(const Window& window); bool HasWindowReversal(const Window& window); bool AllOrNoneReversed(const Window& window); bool IsTrivialWindowDimension(const WindowDimension& window_dimension); int64_t DilatedBound(int64_t bound, int64_t dilation); int64_t StridedBound(int64_t bound, int64_t window_size, int64_t stride); } } #endif #include "xla/window_util.h" #include <functional> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/functional/function_ref.h" #include "absl/strings/str_cat.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { namespace window_util { Window MakeWindow(absl::Span<const int64_t> sizes) { Window window; for (int64_t size : sizes) { auto* dimension = window.add_dimensions(); dimension->set_size(size); dimension->set_stride(1); dimension->set_base_dilation(1); dimension->set_window_dilation(1); } return window; } Window MakeWindow(absl::Span<const int64_t> sizes, absl::Span<const int64_t> strides) { Window window; CHECK_EQ(sizes.size(), strides.size()); for (auto nb = 0; nb < sizes.size(); ++nb) { auto* dimension = window.add_dimensions(); dimension->set_size(sizes[nb]); dimension->set_stride(strides[nb]); dimension->set_base_dilation(1); dimension->set_window_dilation(1); } return window; } PaddingConfig MakeSymmetricPadding(absl::Span<const int64_t> sizes) { PaddingConfig config; for (int64_t size : sizes) { auto* dimension = config.add_dimensions(); dimension->set_edge_padding_low(size); dimension->set_edge_padding_high(size); } return config; } std::string ToString(const WindowDimension& dim) { using absl::StrAppend; using absl::StrCat; std::string str = StrCat("(size=", dim.size()); if (dim.stride() != 1) { StrAppend(&str, ",stride=", dim.stride()); } if (dim.padding_low() != 0) { StrAppend(&str, ",padding_low=", dim.padding_low()); } if (dim.padding_high() != 0) { StrAppend(&str, ",padding_high=", dim.padding_high()); } if (dim.base_dilation() != 1) { StrAppend(&str, ",base_dilation=", dim.base_dilation()); } if (dim.window_dilation() != 1) { StrAppend(&str, ",window_dilation=", dim.window_dilation()); } if (dim.window_reversal()) { StrAppend(&str, ",window_reversal"); } StrAppend(&str, ")"); return str; } std::string ToString(const Window& window) { using absl::StrAppend; using absl::StrCat; std::string str; const auto add_field = [&](const char* heading, absl::FunctionRef<std::string(const WindowDimension&)> format) { StrAppend(&str, heading, "="); const char* prefix = ""; for (const auto& window_dimension : window.dimensions()) { StrAppend(&str, prefix, format(window_dimension)); prefix = "x"; } }; if (window.dimensions_size() > 0) { add_field("size", [](const WindowDimension& dim) { return StrCat(dim.size()); }); } if (HasStride(window)) { add_field(" stride", [](const WindowDimension& dim) { return StrCat(dim.stride()); }); } if (HasPadding(window)) { add_field(" pad", [](const WindowDimension& dim) { return StrCat(dim.padding_low(), "_", dim.padding_high()); }); } if (HasBaseDilation(window)) { add_field(" lhs_dilate", [](const WindowDimension& dim) { return StrCat(dim.base_dilation()); }); } if (HasWindowDilation(window)) { add_field(" rhs_dilate", [](const WindowDimension& dim) { return StrCat(dim.window_dilation()); }); } if (HasWindowReversal(window)) { add_field(" rhs_reversal", [](const WindowDimension& dim) { return StrCat(dim.window_reversal() ? 1 : 0); }); } return str; } bool HasStride(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.stride() != 1) { return true; } } return false; } bool HasPadding(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.padding_low() != 0 || dim.padding_high() != 0) { return true; } } return false; } bool HasSymmetricPadding(const Window& window) { return absl::c_all_of(window.dimensions(), [](const WindowDimension& dim) { return dim.padding_low() == dim.padding_high(); }); } bool HasSymmetricPadding(const PaddingConfig& padding_config) { return absl::c_all_of(padding_config.dimensions(), [](const PaddingConfig::PaddingConfigDimension& dim) { return dim.edge_padding_low() == dim.edge_padding_high(); }); } bool HasNegativePadding(const Window& window) { return absl::c_any_of(window.dimensions(), [](const WindowDimension& dim) { return dim.padding_low() < 0 || dim.padding_high() < 0; }); } bool HasBaseDilation(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.base_dilation() != 1) { return true; } } return false; } bool HasWindowDilation(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.window_dilation() != 1) { return true; } } return false; } bool HasWindowReversal(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.window_reversal()) { return true; } } return false; } bool AllOrNoneReversed(const Window& window) { if (window.dimensions().empty()) { return true; } bool reversed = window.dimensions()[0].window_reversal(); return absl::c_all_of(window.dimensions(), [&](const WindowDimension& dim) { return dim.window_reversal() == reversed; }); } bool HasDilation(const Window& window) { return HasBaseDilation(window) || HasWindowDilation(window); } bool IsTrivialWindowDimension(const WindowDimension& window_dimension) { return window_dimension.size() == 1 && window_dimension.stride() == 1 && window_dimension.padding_low() == 0 && window_dimension.padding_high() == 0 && window_dimension.window_dilation() == 1 && window_dimension.base_dilation() == 1; } bool HasOverlappingWindow(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.size() > dim.stride()) { return true; } } return false; } int64_t DilatedBound(int64_t bound, int64_t dilation) { CHECK_GE(bound, 0); CHECK_GE(dilation, 1); if (bound == 0) { return 0; } return (bound - 1) * dilation + 1; } int64_t StridedBound(int64_t bound, int64_t window_size, int64_t stride) { CHECK_GE(window_size, 0); CHECK_GE(bound, 0); CHECK_GE(stride, 1); if (bound == 0 || window_size > bound) { return 0; } return (bound - window_size) / stride + 1; } } }
#include "xla/window_util.h" #include "xla/test.h" namespace xla { namespace { using ::testing::ElementsAre; TEST(WindowUtilTest, HasOverlappingWindowTest) { EXPECT_FALSE( window_util::HasOverlappingWindow(window_util::MakeWindow({1, 1}))); EXPECT_TRUE( window_util::HasOverlappingWindow(window_util::MakeWindow({2, 2, 2, 2}))); } TEST(WindowUtilTest, MakeWindowStrideTest) { Window w = window_util::MakeWindow({1, 2}, {3, 4}); EXPECT_EQ(w.dimensions()[0].size(), 1); EXPECT_EQ(w.dimensions()[1].size(), 2); EXPECT_EQ(w.dimensions()[0].stride(), 3); EXPECT_EQ(w.dimensions()[1].stride(), 4); } } }
1,788
cpp
tensorflow/tensorflow
text_literal_reader
third_party/xla/xla/text_literal_reader.cc
third_party/xla/xla/text_literal_reader_test.cc
#ifndef XLA_TEXT_LITERAL_READER_H_ #define XLA_TEXT_LITERAL_READER_H_ #include <memory> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/literal.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" namespace xla { class TextLiteralReader { public: static absl::StatusOr<Literal> ReadPath(absl::string_view path); private: explicit TextLiteralReader(tsl::RandomAccessFile* file); absl::StatusOr<Literal> ReadAllLines(); std::unique_ptr<tsl::RandomAccessFile> file_; TextLiteralReader(const TextLiteralReader&) = delete; TextLiteralReader& operator=(const TextLiteralReader&) = delete; }; } #endif #include "xla/text_literal_reader.h" #include <limits> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "xla/literal.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/io/buffered_inputstream.h" #include "tsl/lib/io/random_inputstream.h" #include "tsl/platform/protobuf.h" namespace xla { absl::StatusOr<Literal> TextLiteralReader::ReadPath(absl::string_view path) { CHECK(!absl::EndsWith(path, ".gz")) << "TextLiteralReader no longer supports reading .gz files"; std::unique_ptr<tsl::RandomAccessFile> file; absl::Status s = tsl::Env::Default()->NewRandomAccessFile(std::string(path), &file); if (!s.ok()) { return s; } TextLiteralReader reader(file.release()); return reader.ReadAllLines(); } TextLiteralReader::TextLiteralReader(tsl::RandomAccessFile* file) : file_(file) {} absl::StatusOr<Literal> TextLiteralReader::ReadAllLines() { tsl::io::RandomAccessInputStream stream(file_.get()); tsl::io::BufferedInputStream buf(&stream, 65536); std::string shape_string; absl::Status s = buf.ReadLine(&shape_string); if (!s.ok()) { return s; } absl::StripAsciiWhitespace(&shape_string); TF_ASSIGN_OR_RETURN(Shape shape, ParseShape(shape_string)); if (shape.element_type() != F32) { return Unimplemented( "unsupported element type for text literal reading: %s", ShapeUtil::HumanString(shape)); } Literal result(shape); const float fill = std::numeric_limits<float>::quiet_NaN(); result.PopulateWithValue<float>(fill); std::vector<absl::string_view> pieces; std::vector<absl::string_view> coordinates; std::vector<int64_t> coordinate_values; std::string line; while (buf.ReadLine(&line).ok()) { pieces = absl::StrSplit(line, ':'); absl::string_view coordinates_string = absl::StripAsciiWhitespace(pieces[0]); absl::string_view value_string = absl::StripAsciiWhitespace(pieces[1]); if (!absl::ConsumePrefix(&coordinates_string, "(")) { return InvalidArgument( "expected '(' at the beginning of coordinates: \"%s\"", line); } if (!absl::ConsumeSuffix(&coordinates_string, ")")) { return InvalidArgument("expected ')' at the end of coordinates: \"%s\"", line); } float value; if (!absl::SimpleAtof(value_string, &value)) { return InvalidArgument("could not parse value as float: \"%s\"", value_string); } coordinates = absl::StrSplit(coordinates_string, ','); coordinate_values.clear(); for (absl::string_view piece : coordinates) { int64_t coordinate_value; if (!absl::SimpleAtoi(piece, &coordinate_value)) { return InvalidArgument( "could not parse coordinate member as int64_t: \"%s\"", std::string(piece)); } coordinate_values.push_back(coordinate_value); } if (coordinate_values.size() != shape.dimensions_size()) { return InvalidArgument( "line did not have expected number of coordinates; want %d got %u: " "\"%s\"", shape.dimensions_size(), coordinate_values.size(), line); } result.Set<float>(coordinate_values, value); } return std::move(result); } }
#include "xla/text_literal_reader.h" #include <string> #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" namespace xla { namespace { TEST(TextLiteralReaderTest, ReadsR3File) { std::string contents = R"(f32[1,2,3] (0,0,0): 42.5 (0,0,1): 43.5 (0,0,2): 44.5 (0,1,0): 45.5 (0,1,1): 46.5 (0,1,2): 47.5 )"; std::string fname = tsl::testing::TmpDir() + "/ReadsR3File.data.txt"; EXPECT_TRUE( tsl::WriteStringToFile(tsl::Env::Default(), fname, contents).ok()); Literal literal = TextLiteralReader::ReadPath(fname).value(); EXPECT_TRUE( ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {1, 2, 3}), literal.shape())); EXPECT_EQ(42.5, literal.Get<float>({0, 0, 0})); EXPECT_EQ(43.5, literal.Get<float>({0, 0, 1})); EXPECT_EQ(44.5, literal.Get<float>({0, 0, 2})); EXPECT_EQ(45.5, literal.Get<float>({0, 1, 0})); EXPECT_EQ(46.5, literal.Get<float>({0, 1, 1})); EXPECT_EQ(47.5, literal.Get<float>({0, 1, 2})); } } }
1,789
cpp
tensorflow/tensorflow
cpu_function_runtime
third_party/xla/xla/cpu_function_runtime.cc
tensorflow/compiler/tf2xla/cpu_function_runtime_test.cc
#ifndef XLA_CPU_FUNCTION_RUNTIME_H_ #define XLA_CPU_FUNCTION_RUNTIME_H_ #include <stdint.h> #include <cassert> #include <cstdlib> namespace xla { namespace cpu_function_runtime { struct EncodedBufferInfo { uint64_t packed_kind_and_size = 0; uint32_t entry_param_number = -1; uint32_t result_param_number = -1; }; class BufferInfo { public: explicit constexpr BufferInfo(const EncodedBufferInfo& encoded) : kind_(UnpackKind(encoded.packed_kind_and_size)), size_(UnpackSize(encoded.packed_kind_and_size)), entry_param_number_(encoded.entry_param_number), result_param_number_(encoded.result_param_number) {} bool is_constant() const { return kind() == Kind::kConstant; } bool is_entry_parameter() const { return kind() == Kind::kParameter && entry_param_number_ >= 0; } uint32_t entry_parameter_number() const { assert(is_entry_parameter()); return entry_param_number_; } void set_result_parameter_number(uint32_t param_number) { result_param_number_ = param_number; } bool is_result_parameter() const { return result_param_number_ >= 0; } uint32_t result_parameter_number() const { assert(is_result_parameter()); return result_param_number_; } bool is_temp_buffer() const { return kind() == Kind::kTempBuffer; } bool is_on_stack_buffer() const { return kind() == Kind::kOnStackBuffer; } uint64_t size() const { return size_; } EncodedBufferInfo Encode() const { static_assert(sizeof(*this) == 16, ""); EncodedBufferInfo ret; ret.packed_kind_and_size = Pack(kind(), size_); ret.entry_param_number = entry_param_number_; ret.result_param_number = result_param_number_; return ret; } bool operator==(const BufferInfo& buffer_info) const { if (kind() != buffer_info.kind() || size() != buffer_info.size()) { return false; } return !is_entry_parameter() || entry_parameter_number() == buffer_info.entry_parameter_number(); } static BufferInfo MakeTempBuffer(uint64_t size) { return BufferInfo(Kind::kTempBuffer, size); } static BufferInfo MakeConstant(uint64_t size) { return BufferInfo(Kind::kConstant, size); } static BufferInfo MakeEntryParameter(uint64_t size, uint32_t entry_param_number) { return BufferInfo(Kind::kParameter, size, entry_param_number); } static BufferInfo MakeResultParameter(uint64_t size, uint32_t result_param_number) { return BufferInfo(Kind::kTempBuffer, size, -1, result_param_number); } static BufferInfo MakeOnStackBuffer(uint64_t size) { return BufferInfo(Kind::kOnStackBuffer, size); } private: BufferInfo() = default; enum class Kind : uint64_t { kConstant, kTempBuffer, kParameter, kOnStackBuffer }; Kind kind() const { return static_cast<Kind>(kind_); } explicit BufferInfo(Kind kind, uint64_t size) : BufferInfo(kind, size, -1, -1) {} explicit BufferInfo(Kind kind, uint64_t size, uint32_t entry_param_number) : BufferInfo(kind, size, entry_param_number, -1) {} explicit BufferInfo(Kind kind, uint64_t size, uint32_t entry_param_number, uint32_t result_param_number) : kind_(kind), size_(size), entry_param_number_(entry_param_number), result_param_number_(result_param_number) {} static uint64_t Pack(Kind kind, uint64_t size) { return (static_cast<uint64_t>(size) << 2) | static_cast<uint64_t>(kind); } static inline constexpr Kind UnpackKind(uint64_t packed) { return static_cast<Kind>((packed << 62) >> 62); } static inline constexpr uint64_t UnpackSize(uint64_t packed) { return packed >> 2; } Kind kind_ : 2; uint64_t size_ : 62; int32_t entry_param_number_ = -1; int32_t result_param_number_ = -1; }; inline constexpr size_t Align() { return 64; } inline constexpr size_t MinAlign() { return 16; } #define XLA_ALIGN alignas(xla::cpu_function_runtime::Align()) size_t AlignedBufferBytes(const BufferInfo* buffer_infos, size_t n, bool allocate_entry_params); void* MallocContiguousBuffers(const BufferInfo* buffer_infos, size_t n, bool allocate_entry_params, void** bufs, bool annotate_initialized); void FreeContiguous(void* contiguous); } } #endif #include "xla/cpu_function_runtime.h" #include "absl/base/dynamic_annotations.h" namespace xla { namespace { void* aligned_malloc(size_t size, int minimum_alignment) { #if defined(__ANDROID__) || defined(OS_ANDROID) || defined(OS_CYGWIN) return memalign(minimum_alignment, size); #elif defined(_WIN32) return _aligned_malloc(size, minimum_alignment); #else void* ptr = nullptr; const int required_alignment = sizeof(void*); if (minimum_alignment < required_alignment) return malloc(size); if (posix_memalign(&ptr, minimum_alignment, size) != 0) return nullptr; else return ptr; #endif } void aligned_free(void* aligned_memory) { #if defined(_WIN32) _aligned_free(aligned_memory); #else free(aligned_memory); #endif } size_t align_to(size_t n, size_t align) { return (((n - 1) / align) + 1) * align; } } namespace cpu_function_runtime { size_t AlignedBufferBytes(const BufferInfo* buffer_infos, size_t n, bool allocate_entry_params) { size_t total = 0; for (size_t i = 0; i < n; ++i) { bool should_allocate = buffer_infos[i].is_temp_buffer() || (buffer_infos[i].is_entry_parameter() && allocate_entry_params); if (should_allocate) { total += align_to(buffer_infos[i].size(), Align()); } } return total; } void* MallocContiguousBuffers(const BufferInfo* buffer_infos, size_t n, bool allocate_entry_params, void** bufs, bool annotate_initialized) { const size_t total = AlignedBufferBytes(buffer_infos, n, allocate_entry_params); void* contiguous = nullptr; if (total > 0) { contiguous = aligned_malloc(total, Align()); if (annotate_initialized) { ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(contiguous, total); } } uintptr_t pos = reinterpret_cast<uintptr_t>(contiguous); for (size_t i = 0; i < n; ++i) { bool should_allocate = buffer_infos[i].is_temp_buffer() || (buffer_infos[i].is_entry_parameter() && allocate_entry_params); if (should_allocate) { bufs[i] = reinterpret_cast<void*>(pos); pos += align_to(buffer_infos[i].size(), Align()); } else { bufs[i] = nullptr; } } return contiguous; } void FreeContiguous(void* contiguous) { if (contiguous != nullptr) { aligned_free(contiguous); } } } }
#include "xla/cpu_function_runtime.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using ::xla::cpu_function_runtime::BufferInfo; TEST(XlaCompiledCpuFunctionTest, AlignmentValue) { EXPECT_EQ(xla::cpu_function_runtime::Align(), Allocator::kAllocatorAlignment); EXPECT_LE(xla::cpu_function_runtime::MinAlign(), Allocator::kAllocatorAlignment); } std::vector<BufferInfo> SizesToBufferInfos(const intptr_t* sizes, size_t n) { std::vector<BufferInfo> buffer_infos; std::transform(sizes, sizes + n, std::back_inserter(buffer_infos), [&](intptr_t size) { if (size == -1) { int64_t on_stack_buffer_size = 4; return BufferInfo::MakeOnStackBuffer(on_stack_buffer_size); } return BufferInfo::MakeTempBuffer(size); }); return buffer_infos; } size_t AlignedBufferBytesFromSizes(const intptr_t* sizes, size_t n) { std::vector<BufferInfo> buffer_infos = SizesToBufferInfos(sizes, n); return AlignedBufferBytes(buffer_infos.data(), n, false); } void* MallocContiguousBuffersFromSizes(const intptr_t* sizes, size_t n, void** bufs, bool annotate_initialized) { std::vector<BufferInfo> buffer_infos = SizesToBufferInfos(sizes, n); return MallocContiguousBuffers(buffer_infos.data(), n, false, bufs, annotate_initialized); } TEST(XlaCompiledCpuFunctionTest, AlignedBufferBytes) { EXPECT_EQ(AlignedBufferBytesFromSizes(nullptr, 0), 0); static constexpr intptr_t sizesA[1] = {-1}; EXPECT_EQ(AlignedBufferBytesFromSizes(sizesA, 1), 0); static constexpr intptr_t sizesB[1] = {3}; EXPECT_EQ(AlignedBufferBytesFromSizes(sizesB, 1), 64); static constexpr intptr_t sizesC[1] = {32}; EXPECT_EQ(AlignedBufferBytesFromSizes(sizesC, 1), 64); static constexpr intptr_t sizesD[7] = {1, -1, 32, -1, 64, 2, 3}; EXPECT_EQ(AlignedBufferBytesFromSizes(sizesD, 7), 320); } void* add_ptr(void* base, uintptr_t delta) { return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(base) + delta); } TEST(XlaCompiledCpuFunctionTest, MallocFreeContiguousBuffers) { void* base = MallocContiguousBuffersFromSizes(nullptr, 0, nullptr, false); EXPECT_EQ(base, nullptr); xla::cpu_function_runtime::FreeContiguous(base); static constexpr intptr_t sizesA[1] = {-1}; void* bufA[1]; base = MallocContiguousBuffersFromSizes(sizesA, 1, bufA, false); EXPECT_EQ(base, nullptr); EXPECT_EQ(bufA[0], nullptr); xla::cpu_function_runtime::FreeContiguous(base); static constexpr intptr_t sizesB[1] = {3}; void* bufB[1]; base = MallocContiguousBuffersFromSizes(sizesB, 1, bufB, false); EXPECT_NE(base, nullptr); EXPECT_EQ(bufB[0], add_ptr(base, 0)); char* bufB0_bytes = static_cast<char*>(bufB[0]); bufB0_bytes[0] = 'A'; bufB0_bytes[1] = 'B'; bufB0_bytes[2] = 'C'; xla::cpu_function_runtime::FreeContiguous(base); static constexpr intptr_t sizesC[1] = {3}; void* bufC[1]; base = MallocContiguousBuffersFromSizes(sizesC, 1, bufC, true); EXPECT_NE(base, nullptr); EXPECT_EQ(bufC[0], add_ptr(base, 0)); char* bufC0_bytes = static_cast<char*>(bufC[0]); bufC0_bytes[0] = 'A'; bufC0_bytes[1] = 'B'; bufC0_bytes[2] = 'C'; xla::cpu_function_runtime::FreeContiguous(base); static constexpr intptr_t sizesD[7] = {1, -1, 32, -1, 64, 2, 3}; void* bufD[7]; base = MallocContiguousBuffersFromSizes(sizesD, 7, bufD, false); EXPECT_NE(base, nullptr); EXPECT_EQ(bufD[0], add_ptr(base, 0)); EXPECT_EQ(bufD[1], nullptr); EXPECT_EQ(bufD[2], add_ptr(base, 64)); EXPECT_EQ(bufD[3], nullptr); EXPECT_EQ(bufD[4], add_ptr(base, 128)); EXPECT_EQ(bufD[5], add_ptr(base, 192)); EXPECT_EQ(bufD[6], add_ptr(base, 256)); for (int i = 0; i < 7; ++i) { const intptr_t size = sizesD[i]; if (size != -1) { char* bufD_bytes = static_cast<char*>(bufD[i]); for (size_t j = 0; j < size; ++j) { bufD_bytes[j] = 'A' + j; } } } xla::cpu_function_runtime::FreeContiguous(base); } void CheckRoundTripIsOk(const BufferInfo& buffer_info) { BufferInfo round_trip(buffer_info.Encode()); ASSERT_EQ(round_trip, buffer_info); } TEST(XlaCompiledCpuFunctionTest, BufferInfoTest) { CheckRoundTripIsOk(BufferInfo::MakeTempBuffer(0)); CheckRoundTripIsOk(BufferInfo::MakeTempBuffer(4)); CheckRoundTripIsOk(BufferInfo::MakeOnStackBuffer(0)); CheckRoundTripIsOk(BufferInfo::MakeOnStackBuffer(4)); CheckRoundTripIsOk(BufferInfo::MakeConstant(0)); CheckRoundTripIsOk(BufferInfo::MakeConstant(4)); CheckRoundTripIsOk( BufferInfo::MakeEntryParameter(0, 4)); CheckRoundTripIsOk( BufferInfo::MakeEntryParameter(4, 0)); } } }
1,790
cpp
tensorflow/tensorflow
shape_tree
third_party/xla/xla/shape_tree.cc
third_party/xla/xla/shape_tree_test.cc
#ifndef XLA_SHAPE_TREE_H_ #define XLA_SHAPE_TREE_H_ #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <type_traits> #include <utility> #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/lib/gtl/iterator_range.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace internal { class IndexTable { public: struct Entry { size_t node_id; std::make_signed_t<size_t> children_start_id = -1; }; IndexTable() = default; explicit IndexTable(const Shape& shape); bool empty() const { return entries_.empty(); } const Entry& operator[](ShapeIndexView index) const; private: void CreateEntry(Entry& entry, const Shape& shape, size_t& next_node_id); absl::InlinedVector<Entry, 1> entries_; }; } template <typename T> class ShapeTree { template <typename U> friend class ShapeTree; public: using Node = std::pair<ShapeIndex, T>; using Nodes = absl::InlinedVector<Node, 1>; using IndexTable = internal::IndexTable; template <typename Iterator, typename ValueType> class LeafIterator; ShapeTree() : ShapeTree(ShapeUtil::MakeNil()) {} explicit ShapeTree(Shape shape) : ShapeTree(std::make_shared<Shape>(std::move(shape))) {} explicit ShapeTree(const Shape* shape) : ShapeTree(shape, CreateNodes(*shape)) {} ShapeTree(Shape shape, const T& init_value) : ShapeTree(std::make_shared<Shape>(std::move(shape)), init_value) {} ShapeTree(const Shape* shape, const T& init_value) : ShapeTree(shape, CreateNodes(*shape, init_value)) {} const T& element(ShapeIndexView index) const { return find(index)->second; } T* mutable_element(ShapeIndexView index) { return &find(index)->second; } const Shape& shape() const { return *shape_; } void replace_shape_ptr(const Shape& shape) { if (shape_storage_ != nullptr) { DCHECK_EQ(shape, *shape_storage_); shape_storage_ = nullptr; } shape_ = &shape; } bool IsLeaf(ShapeIndexView index) const { return index_table_[index].children_start_id == -1; } using iterator = typename Nodes::iterator; using const_iterator = typename Nodes::const_iterator; using reverse_iterator = typename Nodes::reverse_iterator; using const_reverse_iterator = typename Nodes::const_reverse_iterator; using leaf_iterator = LeafIterator<iterator, Node>; using const_leaf_iterator = LeafIterator<const_iterator, const Node>; using reverse_leaf_iterator = std::reverse_iterator<leaf_iterator>; using const_reverse_leaf_iterator = std::reverse_iterator<const_leaf_iterator>; iterator begin() { return nodes_.begin(); } iterator end() { return nodes_.end(); } const_iterator begin() const { return nodes_.begin(); } const_iterator end() const { return nodes_.end(); } reverse_iterator rbegin() { return nodes_.rbegin(); } reverse_iterator rend() { return nodes_.rend(); } const_reverse_iterator rbegin() const { return nodes_.rbegin(); } const_reverse_iterator rend() const { return nodes_.rend(); } leaf_iterator leaf_begin() { return leaf_iterator(*this, nodes_.begin()); } leaf_iterator leaf_end() { return leaf_iterator(*this, nodes_.end()); } const_leaf_iterator leaf_begin() const { return const_leaf_iterator(*this, nodes_.begin()); } const_leaf_iterator leaf_end() const { return const_leaf_iterator(*this, nodes_.end()); } tsl::gtl::iterator_range<leaf_iterator> leaves() { return tsl::gtl::make_range(leaf_begin(), leaf_end()); } tsl::gtl::iterator_range<const_leaf_iterator> leaves() const { return tsl::gtl::make_range(leaf_begin(), leaf_end()); } reverse_leaf_iterator leaf_rbegin() { return reverse_leaf_iterator(leaf_end()); } reverse_leaf_iterator leaf_rend() { return reverse_leaf_iterator(leaf_begin()); } const_reverse_leaf_iterator leaf_rbegin() const { return const_reverse_leaf_iterator(leaf_end()); } const_reverse_leaf_iterator leaf_rend() const { return const_reverse_leaf_iterator(leaf_begin()); } iterator find(ShapeIndexView index) { return nodes_.begin() + index_table_[index].node_id; } const_iterator find(ShapeIndexView index) const { return nodes_.begin() + index_table_[index].node_id; } int64_t leaf_count() const { return std::distance(leaf_begin(), leaf_end()); } void ForEachElement( absl::FunctionRef<void(const ShapeIndex&, const T&)> func) const { for (const Node& node : nodes_) { func(node.first, node.second); } } void ForEachMutableElement( absl::FunctionRef<void(const ShapeIndex&, T*)> func) { for (Node& node : nodes_) { func(node.first, &node.second); } } absl::Status ForEachElementWithStatus( absl::FunctionRef<absl::Status(const ShapeIndex&, const T&)> func) const { for (const Node& node : nodes_) { TF_RETURN_IF_ERROR(func(node.first, node.second)); } return absl::OkStatus(); } absl::Status ForEachMutableElementWithStatus( absl::FunctionRef<absl::Status(const ShapeIndex&, T*)> func) { for (Node& node : nodes_) { TF_RETURN_IF_ERROR(func(node.first, &node.second)); } return absl::OkStatus(); } void ForEachElementPostOrder( absl::FunctionRef<void(const ShapeIndex&, const T&)> func) const { for (auto node = nodes_.rbegin(); node != nodes_.rend(); ++node) { func(node->first, node->second); } } void ForEachMutableElementPostOrder( absl::FunctionRef<void(const ShapeIndex&, T*)> func) { for (auto node = nodes_.rbegin(); node != nodes_.rend(); ++node) { func(node->first, &node->second); } } absl::Status ForEachElementPostOrderWithStatus( absl::FunctionRef<absl::Status(const ShapeIndex&, const T&)> func) const { for (auto node = nodes_.rbegin(); node != nodes_.rend(); ++node) { TF_RETURN_IF_ERROR(func(node->first, node->second)); } return absl::OkStatus(); } absl::Status ForEachMutableElementPostOrderWithStatus( absl::FunctionRef<absl::Status(const ShapeIndex&, T*)> func) { for (auto node = nodes_.rbegin(); node != nodes_.rend(); ++node) { TF_RETURN_IF_ERROR(func(node->first, &node->second)); } return absl::OkStatus(); } template <typename U> ShapeTree<U> Map(absl::FunctionRef<U(const T&)> func) { typename ShapeTree<U>::Nodes result_nodes; result_nodes.reserve(nodes_.size()); for (const Node& node : nodes_) { result_nodes.push_back({node.first, func(node.second)}); } ShapeTree<U> result(shape_, std::move(result_nodes)); result.index_table_ = index_table_; result.shape_storage_ = shape_storage_; return result; } template <typename U> absl::StatusOr<ShapeTree<U>> MapWithStatus( absl::FunctionRef<absl::StatusOr<U>(const T&)> func) { typename ShapeTree<U>::Nodes result_nodes; result_nodes.reserve(nodes_.size()); for (const Node& node : nodes_) { TF_ASSIGN_OR_RETURN(U result, func(node.second)); result_nodes.push_back({node.first, std::move(result)}); } ShapeTree<U> result(shape_, std::move(result_nodes)); result.index_table_ = index_table_; result.shape_storage_ = shape_storage_; return result; } void CopySubtreeFrom(const ShapeTree<T>& other, const ShapeIndex& src_index, const ShapeIndex& dst_index) { const Shape& src_shape = ShapeUtil::GetSubshape(other.shape(), src_index); const Shape& dst_shape = ShapeUtil::GetSubshape(shape(), dst_index); CHECK(ShapeUtil::Compatible(src_shape, dst_shape)) << src_shape << ", " << dst_shape; auto replace_shape_index_prefix = [&](const ShapeIndex& index) { auto without_prefix = ShapeIndexView(index).subspan(src_index.size()); ShapeIndex result; result.reserve(dst_index.size() + without_prefix.size()); result.insert(result.end(), dst_index.begin(), dst_index.end()); result.insert(result.end(), without_prefix.begin(), without_prefix.end()); return result; }; auto first = other.find(src_index); auto last = first + ShapeUtil::SubshapeCount(src_shape); std::transform(first, last, find(dst_index), [&](const Node& node) -> Node { return {replace_shape_index_prefix(node.first), node.second}; }); } absl::StatusOr<ShapeTree<T>> SubShapeTree(const ShapeIndex& index) const { TF_ASSIGN_OR_RETURN(const Shape* sub_shape, ShapeUtil::TryGetSubshape(shape(), index)); size_t count = ShapeUtil::SubshapeCount(*sub_shape); Nodes sub_tree_nodes; sub_tree_nodes.reserve(count); for (auto it = find(index), end = it + count; it != end; ++it) { auto without_prefix = ShapeIndexView(it->first).subspan(index.size()); sub_tree_nodes.push_back(Node{without_prefix, it->second}); } return ShapeTree(sub_shape, std::move(sub_tree_nodes)); } bool operator==(const ShapeTree<T>& other) const { return nodes_ == other.nodes_; } bool operator!=(const ShapeTree<T>& other) const { return !(*this == other); } private: explicit ShapeTree(std::shared_ptr<Shape> shape) : ShapeTree(shape.get()) { shape_storage_.swap(shape); } ShapeTree(std::shared_ptr<Shape> shape, const T& init_value) : ShapeTree(shape.get(), init_value) { shape_storage_.swap(shape); } ShapeTree(const Shape* shape, Nodes nodes) : nodes_(std::move(nodes)), index_table_(*shape), shape_(shape) { DCHECK_EQ(nodes_.size(), ShapeUtil::SubshapeCount(*shape)); } template <typename... Ts> static Nodes CreateNodes(const Shape& shape, Ts&&... args) { Nodes nodes; ShapeUtil::ForEachSubshape( shape, [&](const Shape&, const ShapeIndex& index) { nodes.push_back({index, T(std::forward<Ts>(args)...)}); }); return nodes; } Nodes nodes_; IndexTable index_table_; std::shared_ptr<Shape> shape_storage_; const Shape* shape_; }; template <typename T> template <typename Iterator, typename ValueType> class ShapeTree<T>::LeafIterator { public: using iterator_category = std::bidirectional_iterator_tag; using value_type = ValueType; using difference_type = ptrdiff_t; using pointer = value_type*; using reference = value_type&; LeafIterator(const ShapeTree& tree, Iterator it) : tree_(tree), it_(it) { while ((it_ != tree_.nodes_.end()) && !IsLeaf()) ++it_; } LeafIterator& operator++() { do { ++it_; } while ((it_ != tree_.nodes_.end()) && !IsLeaf()); return *this; } LeafIterator operator++(int) { auto prev = *this; ++(*this); return prev; } LeafIterator& operator--() { do { --it_; } while ((it_ != tree_.nodes_.begin()) && !IsLeaf()); return *this; } LeafIterator operator--(int) { auto prev = *this; --(*this); return prev; } bool operator==(const LeafIterator& other) const { return it_ == other.it_; } bool operator!=(const LeafIterator& other) const { return !(*this == other); } ValueType& operator*() const { return *it_; } ValueType* operator->() const { return &*it_; } private: bool IsLeaf() const { return tree_.IsLeaf(it_->first); } const ShapeTree<T>& tree_; Iterator it_; }; } #endif #include "xla/shape_tree.h" #include <cstddef> #include <cstdint> #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/logging.h" namespace xla { namespace internal { IndexTable::IndexTable(const Shape& shape) : entries_(1) { size_t next_node_id = 0; CreateEntry(entries_[0], shape, next_node_id); } void IndexTable::CreateEntry(Entry& entry, const Shape& shape, size_t& next_node_id) { entry.node_id = next_node_id++; if (!shape.IsTuple()) return; size_t children_start_id = entries_.size(); entry.children_start_id = children_start_id; entries_.resize(entries_.size() + shape.tuple_shapes_size()); for (size_t i = 0; i < shape.tuple_shapes_size(); ++i) { CreateEntry(entries_[children_start_id + i], shape.tuple_shapes(i), next_node_id); } } const IndexTable::Entry& IndexTable::operator[](ShapeIndexView index) const { const Entry* result = &entries_.front(); for (int64_t i : index) { CHECK_GE(result->children_start_id, 0); result = &entries_[result->children_start_id + i]; } return *result; } } }
#include "xla/shape_tree.h" #include <iterator> #include <memory> #include <utility> #include <vector> #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class ShapeTreeTest : public ::testing::Test { protected: ShapeTreeTest() { array_shape_ = ShapeUtil::MakeShape(F32, {42, 42, 123}); tuple_shape_ = ShapeUtil::MakeTupleShape({array_shape_, array_shape_, array_shape_}); nested_tuple_shape_ = ShapeUtil::MakeTupleShape( {array_shape_, ShapeUtil::MakeTupleShape({array_shape_, array_shape_}), ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({array_shape_, array_shape_}), array_shape_})}); } void TestShapeConstructor(const Shape& shape, int expected_num_nodes); void TestInitValueConstructor(const Shape& shape, int expected_num_nodes); Shape array_shape_; Shape tuple_shape_; Shape nested_tuple_shape_; }; TEST_F(ShapeTreeTest, DefaultConstructor) { ShapeTree<int> int_tree; EXPECT_TRUE(ShapeUtil::IsEmptyTuple(int_tree.shape())); ShapeTree<bool> bool_tree; EXPECT_TRUE(ShapeUtil::IsEmptyTuple(bool_tree.shape())); } void ShapeTreeTest::TestShapeConstructor(const Shape& shape, int expected_num_nodes) { ShapeTree<int> int_tree(shape); int num_nodes = 0; int_tree.ForEachElement([&num_nodes](const ShapeIndex& , int data) { EXPECT_EQ(0, data); ++num_nodes; }); EXPECT_EQ(expected_num_nodes, num_nodes); ShapeTree<bool> bool_tree(shape); num_nodes = 0; bool_tree.ForEachElement( [&num_nodes](const ShapeIndex& , bool data) { EXPECT_EQ(false, data); ++num_nodes; }); EXPECT_EQ(expected_num_nodes, num_nodes); } TEST_F(ShapeTreeTest, ShapeConstructor) { TestShapeConstructor(array_shape_, 1); TestShapeConstructor(tuple_shape_, 4); TestShapeConstructor(nested_tuple_shape_, 10); } void ShapeTreeTest::TestInitValueConstructor(const Shape& shape, int expected_num_nodes) { ShapeTree<int> tree(shape, 42); int num_nodes = 0; tree.ForEachElement([&num_nodes](const ShapeIndex& , int data) { EXPECT_EQ(42, data); ++num_nodes; }); EXPECT_EQ(expected_num_nodes, num_nodes); num_nodes = 0; tree.ForEachMutableElement( [&num_nodes](const ShapeIndex& , int* data) { EXPECT_EQ(42, *data); *data = num_nodes; ++num_nodes; }); EXPECT_EQ(expected_num_nodes, num_nodes); num_nodes = 0; tree.ForEachElement([&num_nodes](const ShapeIndex& , int data) { EXPECT_EQ(num_nodes, data); ++num_nodes; }); EXPECT_EQ(expected_num_nodes, num_nodes); } TEST_F(ShapeTreeTest, InitValueConstructor) { TestInitValueConstructor(array_shape_, 1); TestInitValueConstructor(tuple_shape_, 4); TestInitValueConstructor(nested_tuple_shape_, 10); } TEST_F(ShapeTreeTest, EmptyTupleMustHaveNoLeaves) { ShapeTree<int> shape_tree{ShapeUtil::MakeTupleShape({})}; EXPECT_EQ(0, shape_tree.leaf_count()); } TEST_F(ShapeTreeTest, NestedEmptyTuple) { Shape shape( ShapeUtil::MakeTupleShape({ShapeUtil::MakeTupleShape({}), array_shape_})); ShapeTree<int> shape_tree{shape}; EXPECT_EQ(ShapeUtil::GetLeafCount(shape), shape_tree.leaf_count()); } TEST_F(ShapeTreeTest, ArrayShape) { ShapeTree<int> shape_tree{array_shape_}; *shape_tree.mutable_element({}) = 42; EXPECT_EQ(42, shape_tree.element({})); *shape_tree.mutable_element({}) = 123; EXPECT_EQ(123, shape_tree.element({})); EXPECT_TRUE(ShapeUtil::Compatible(array_shape_, shape_tree.shape())); ShapeTree<int> copy{shape_tree}; EXPECT_EQ(123, copy.element({})); *copy.mutable_element({}) = 99; EXPECT_EQ(99, copy.element({})); EXPECT_EQ(123, shape_tree.element({})); copy = shape_tree; EXPECT_EQ(123, copy.element({})); } TEST_F(ShapeTreeTest, TupleShape) { ShapeTree<int> shape_tree{tuple_shape_}; *shape_tree.mutable_element({}) = 1; *shape_tree.mutable_element({0}) = 42; *shape_tree.mutable_element({1}) = 123; *shape_tree.mutable_element({2}) = -100; EXPECT_EQ(1, shape_tree.element({})); EXPECT_EQ(42, shape_tree.element({0})); EXPECT_EQ(123, shape_tree.element({1})); EXPECT_EQ(-100, shape_tree.element({2})); EXPECT_TRUE(ShapeUtil::Compatible(tuple_shape_, shape_tree.shape())); int sum = 0; shape_tree.ForEachElement( [&sum](const ShapeIndex& , int data) { sum += data; }); EXPECT_EQ(66, sum); ShapeTree<int> copy{shape_tree}; EXPECT_EQ(1, copy.element({})); EXPECT_EQ(42, copy.element({0})); EXPECT_EQ(123, copy.element({1})); EXPECT_EQ(-100, copy.element({2})); shape_tree.ForEachMutableElement( [](const ShapeIndex& , int* data) { *data = 0; }); EXPECT_EQ(0, shape_tree.element({})); EXPECT_EQ(0, shape_tree.element({0})); EXPECT_EQ(0, shape_tree.element({1})); EXPECT_EQ(0, shape_tree.element({2})); EXPECT_EQ(1, copy.element({})); EXPECT_EQ(42, copy.element({0})); EXPECT_EQ(123, copy.element({1})); EXPECT_EQ(-100, copy.element({2})); copy = shape_tree; EXPECT_EQ(0, copy.element({})); EXPECT_EQ(0, copy.element({0})); EXPECT_EQ(0, copy.element({1})); EXPECT_EQ(0, copy.element({2})); } TEST_F(ShapeTreeTest, NestedTupleShape) { ShapeTree<int> shape_tree{nested_tuple_shape_}; *shape_tree.mutable_element({0}) = 42; *shape_tree.mutable_element({1, 1}) = 123; *shape_tree.mutable_element({2, 0, 1}) = -100; EXPECT_EQ(42, shape_tree.element({0})); EXPECT_EQ(123, shape_tree.element({1, 1})); EXPECT_EQ(-100, shape_tree.element({2, 0, 1})); EXPECT_TRUE(ShapeUtil::Compatible(nested_tuple_shape_, shape_tree.shape())); ShapeTree<int> copy{shape_tree}; EXPECT_EQ(42, copy.element({0})); EXPECT_EQ(123, copy.element({1, 1})); EXPECT_EQ(-100, copy.element({2, 0, 1})); *copy.mutable_element({0}) = 1; *copy.mutable_element({1, 1}) = 2; *copy.mutable_element({2, 0, 1}) = 3; EXPECT_EQ(1, copy.element({0})); EXPECT_EQ(2, copy.element({1, 1})); EXPECT_EQ(3, copy.element({2, 0, 1})); EXPECT_EQ(42, shape_tree.element({0})); EXPECT_EQ(123, shape_tree.element({1, 1})); EXPECT_EQ(-100, shape_tree.element({2, 0, 1})); copy = shape_tree; EXPECT_EQ(42, copy.element({0})); EXPECT_EQ(123, copy.element({1, 1})); EXPECT_EQ(-100, copy.element({2, 0, 1})); } TEST_F(ShapeTreeTest, InvalidIndexingTuple) { ShapeTree<int> shape_tree{tuple_shape_}; #ifndef NDEBUG EXPECT_DEATH(shape_tree.element({4}), ""); #endif } TEST_F(ShapeTreeTest, InvalidIndexingNestedTuple) { ShapeTree<int> shape_tree{nested_tuple_shape_}; #ifndef NDEBUG EXPECT_DEATH(shape_tree.element({0, 0}), ""); #endif } TEST_F(ShapeTreeTest, ShapeTreeOfNonCopyableType) { ShapeTree<std::unique_ptr<int>> shape_tree{tuple_shape_}; EXPECT_EQ(shape_tree.element({2}).get(), nullptr); *shape_tree.mutable_element({2}) = std::make_unique<int>(42); EXPECT_EQ(*shape_tree.element({2}), 42); } TEST_F(ShapeTreeTest, CopySubtreeFromArrayShape) { ShapeTree<int> source(array_shape_); *source.mutable_element({}) = 42; ShapeTree<int> destination(array_shape_, 123); EXPECT_EQ(destination.element({}), 123); destination.CopySubtreeFrom(source, {}, {}); EXPECT_EQ(destination.element({}), 42); } TEST_F(ShapeTreeTest, FullCopySubtreeFromTupleShape) { ShapeTree<int> source(tuple_shape_); *source.mutable_element({}) = 10; *source.mutable_element({0}) = 11; *source.mutable_element({1}) = 12; *source.mutable_element({2}) = 13; ShapeTree<int> destination(tuple_shape_, 0); destination.CopySubtreeFrom(source, {}, {}); EXPECT_EQ(destination.element({}), 10); EXPECT_EQ(destination.element({0}), 11); EXPECT_EQ(destination.element({1}), 12); EXPECT_EQ(destination.element({2}), 13); } TEST_F(ShapeTreeTest, SingleElementCopySubtreeFromTupleShape) { ShapeTree<int> source(tuple_shape_); *source.mutable_element({}) = 10; *source.mutable_element({0}) = 11; *source.mutable_element({1}) = 12; *source.mutable_element({2}) = 13; ShapeTree<int> destination(tuple_shape_, 0); destination.CopySubtreeFrom(source, {0}, {1}); EXPECT_EQ(destination.element({}), 0); EXPECT_EQ(destination.element({0}), 0); EXPECT_EQ(destination.element({1}), 11); EXPECT_EQ(destination.element({2}), 0); } TEST_F(ShapeTreeTest, CopySubtreeIntoNestedShape) { ShapeTree<int> source( ShapeUtil::MakeTupleShape({array_shape_, array_shape_})); *source.mutable_element({}) = 10; *source.mutable_element({0}) = 11; *source.mutable_element({1}) = 12; ShapeTree<int> destination(nested_tuple_shape_, 0); destination.CopySubtreeFrom(source, {}, {2, 0}); EXPECT_EQ(destination.element({}), 0); EXPECT_EQ(destination.element({0}), 0); EXPECT_EQ(destination.element({1}), 0); EXPECT_EQ(destination.element({1, 0}), 0); EXPECT_EQ(destination.element({1, 1}), 0); EXPECT_EQ(destination.element({2}), 0); EXPECT_EQ(destination.element({2, 0}), 10); EXPECT_EQ(destination.element({2, 0, 0}), 11); EXPECT_EQ(destination.element({2, 0, 1}), 12); EXPECT_EQ(destination.element({2, 1}), 0); } TEST_F(ShapeTreeTest, CopySubtreeFromNestedShape) { ShapeTree<int> source(nested_tuple_shape_, 42); *source.mutable_element({1}) = 10; *source.mutable_element({1, 0}) = 11; *source.mutable_element({1, 1}) = 12; ShapeTree<int> destination( ShapeUtil::MakeTupleShape({array_shape_, array_shape_}), 0); destination.CopySubtreeFrom(source, {1}, {}); EXPECT_EQ(destination.element({}), 10); EXPECT_EQ(destination.element({0}), 11); EXPECT_EQ(destination.element({1}), 12); } TEST_F(ShapeTreeTest, OperatorEquals) { { ShapeTree<int> a(array_shape_, 123); ShapeTree<int> b(array_shape_, 42); ShapeTree<int> c(array_shape_, 42); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(b == c); } { ShapeTree<int> a(tuple_shape_); *a.mutable_element({}) = 10; *a.mutable_element({0}) = 11; *a.mutable_element({1}) = 12; ShapeTree<int> b(tuple_shape_); *b.mutable_element({}) = 10; *b.mutable_element({0}) = 42; *b.mutable_element({1}) = 11; ShapeTree<int> c(tuple_shape_); *c.mutable_element({}) = 10; *c.mutable_element({0}) = 42; *c.mutable_element({1}) = 11; EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(b == c); EXPECT_FALSE(b != c); } } TEST_F(ShapeTreeTest, ConstructWithPointerToShape) { ShapeTree<int> t(&nested_tuple_shape_, 42); int num_nodes = 0; t.ForEachElement([&num_nodes](const ShapeIndex& , int data) { EXPECT_EQ(42, data); ++num_nodes; }); EXPECT_EQ(10, num_nodes); } TEST_F(ShapeTreeTest, CopyWithPointerToShape) { ShapeTree<int> source(&nested_tuple_shape_, 0); ShapeTree<int> dest(source); EXPECT_EQ(&dest.shape(), &nested_tuple_shape_); } TEST_F(ShapeTreeTest, CopyAssignWithPointerToShape) { ShapeTree<int> source(&nested_tuple_shape_, 0); ShapeTree<int> dest; dest = source; EXPECT_EQ(&dest.shape(), &nested_tuple_shape_); } TEST_F(ShapeTreeTest, IterateSimple) { ShapeTree<int> t(nested_tuple_shape_, 42); int num_nodes = 0; for (auto index_to_data : t) { EXPECT_EQ(42, index_to_data.second); ++num_nodes; } EXPECT_EQ(10, num_nodes); } TEST_F(ShapeTreeTest, ConstIterate) { const ShapeTree<int> t(nested_tuple_shape_, 42); int num_nodes = 0; for (const auto& index_to_data : t) { EXPECT_EQ(42, index_to_data.second); ++num_nodes; } EXPECT_EQ(10, num_nodes); } TEST_F(ShapeTreeTest, IterateAndMutate) { ShapeTree<int> t(nested_tuple_shape_, 42); int i = 0; for (auto& index_to_data : t) { EXPECT_EQ(42, index_to_data.second); if (i == 1) { index_to_data.second = 98; } ++i; } (*t.begin()).second = 78; EXPECT_EQ(78, (*t.begin()).second); i = 0; for (auto& index_to_data : t) { if (i == 0) { EXPECT_EQ(78, index_to_data.second); } else if (i == 1) { EXPECT_EQ(98, index_to_data.second); } else { EXPECT_EQ(42, index_to_data.second); } ++i; } EXPECT_EQ(78, (*t.begin()).second); EXPECT_EQ(98, (*std::next(t.begin())).second); } TEST_F(ShapeTreeTest, IterateOrder) { ShapeTree<int> t(nested_tuple_shape_, 42); std::vector<ShapeIndex> v; v.reserve(t.leaf_count()); for (auto index_to_data : t) { v.push_back(index_to_data.first); } EXPECT_EQ(v, (std::vector<ShapeIndex>{{}, {0}, {1}, {1, 0}, {1, 1}, {2}, {2, 0}, {2, 0, 0}, {2, 0, 1}, {2, 1}})); } TEST_F(ShapeTreeTest, ReverseIterateOrder) { ShapeTree<int> t(nested_tuple_shape_, 42); std::vector<ShapeIndex> v; v.reserve(t.leaf_count()); for (auto it = t.rbegin(); it != t.rend(); ++it) { v.push_back(it->first); } EXPECT_EQ(v, (std::vector<ShapeIndex>{ {2, 1}, {2, 0, 1}, {2, 0, 0}, {2, 0}, {2}, {1, 1}, {1, 0}, {1}, {0}, {}, })); } TEST_F(ShapeTreeTest, Find) { ShapeTree<int> t(nested_tuple_shape_, 42); auto found = t.find({1, 0}); EXPECT_NE(found, t.end()); EXPECT_EQ(found->first, ShapeIndex({1, 0})); EXPECT_EQ(found->second, 42); } TEST_F(ShapeTreeTest, ConstFind) { const ShapeTree<int> t(nested_tuple_shape_, 42); auto found = t.find({1, 0}); EXPECT_NE(found, t.end()); EXPECT_EQ(found->first, ShapeIndex({1, 0})); EXPECT_EQ(found->second, 42); } TEST_F(ShapeTreeTest, IterateOrderLeaves) { ShapeTree<int> t(nested_tuple_shape_, 42); std::vector<ShapeIndex> v; const auto& leaves = t.leaves(); v.reserve(t.leaf_count()); for (auto index_to_data : leaves) { v.push_back(index_to_data.first); } EXPECT_EQ(v, (std::vector<ShapeIndex>{ {0}, {1, 0}, {1, 1}, {2, 0, 0}, {2, 0, 1}, {2, 1}})); } TEST_F(ShapeTreeTest, ReverseIterateOrderLeaves) { ShapeTree<int> t(nested_tuple_shape_, 42); std::vector<ShapeIndex> v; v.reserve(t.leaf_count()); for (auto it = t.leaf_rbegin(); it != t.leaf_rend(); ++it) { v.push_back(it->first); } EXPECT_EQ(v, (std::vector<ShapeIndex>{ {2, 1}, {2, 0, 1}, {2, 0, 0}, {1, 1}, {1, 0}, {0}, })); } void BM_Construct(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } for (auto s : state) { ShapeTree<int> shape_tree(shape); } } void BM_ConstructUnowned(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } for (auto s : state) { ShapeTree<int> shape_tree(&shape); } } void BM_Copy(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } ShapeTree<int> shape_tree(shape); for (auto s : state) { ShapeTree<int> copy = shape_tree; tsl::testing::DoNotOptimize(copy); } } void BM_Move(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } ShapeTree<int> shape_tree(shape); for (auto s : state) { ShapeTree<int> copy = std::move(shape_tree); shape_tree = std::move(copy); } } void BM_ForEach(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } ShapeTree<int> shape_tree(shape); for (auto s : state) { shape_tree.ForEachMutableElement([](const ShapeIndex& index, int* data) { tsl::testing::DoNotOptimize(index); }); } } void BM_Iterate(::testing::benchmark::State& state) { const int depth = state.range(0); const int fan_out = state.range(1); Shape shape = ShapeUtil::MakeShape(F32, {32, 64, 128}); for (int i = 0; i < depth; ++i) { std::vector<xla::Shape> shapes(fan_out, shape); shape = ShapeUtil::MakeTupleShape(shapes); } ShapeTree<int> shape_tree(shape); for (auto s : state) { for (auto& iter : shape_tree) { tsl::testing::DoNotOptimize(iter.second); } } } #define BENCHMARK_WITH_ARGS(name) \ BENCHMARK(name)->ArgPair(2, 8)->ArgPair(1, 1000) BENCHMARK_WITH_ARGS(BM_Construct); BENCHMARK_WITH_ARGS(BM_ConstructUnowned); BENCHMARK_WITH_ARGS(BM_Copy); BENCHMARK_WITH_ARGS(BM_Move); BENCHMARK_WITH_ARGS(BM_ForEach); BENCHMARK_WITH_ARGS(BM_Iterate); } }
1,791
cpp
tensorflow/tensorflow
layout
third_party/xla/xla/layout.cc
third_party/xla/xla/layout_test.cc
#ifndef XLA_LAYOUT_H_ #define XLA_LAYOUT_H_ #include <cstdint> #include <limits> #include <memory> #include <ostream> #include <string> #include "absl/container/inlined_vector.h" #include "absl/types/span.h" #include "xla/printer.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { class Shape; class Tile { public: Tile() = default; explicit Tile(absl::Span<const int64_t> dimensions) : dimensions_(dimensions.begin(), dimensions.end()) {} static Tile CreateFromProto(const TileProto& tile_proto) { return Tile(tile_proto.dimensions()); } TileProto ToProto() const; void SetProto(TileProto& tile_proto) const; bool operator==(const Tile& other) const { return dimensions() == other.dimensions(); } bool operator!=(const Tile& other) const { return !(*this == other); } void Print(Printer* printer) const; std::string ToString() const; int64_t dimension(int i) const { return dimensions_[i]; } absl::Span<const int64_t> dimensions() const { return dimensions_; } Tile& add_dimensions(int64_t value) { dimensions_.push_back(value); return *this; } Tile& clear_dimensions() { dimensions_.clear(); return *this; } static constexpr int64_t kCombineDimension = std::numeric_limits<int64_t>::min(); template <typename H> friend H AbslHashValue(H h, const Tile& t) { return H::combine(std::move(h), t.dimensions_); } private: absl::InlinedVector<int64_t, 2> dimensions_; }; using TileVector = absl::InlinedVector<Tile, 3>; class SplitConfig { public: SplitConfig(int64_t dimension, absl::Span<const int64_t> split_indices) : dimension_(dimension), split_indices_(split_indices.begin(), split_indices.end()) {} static SplitConfig CreateFromProto( const SplitConfigProto& split_config_proto) { return SplitConfig(split_config_proto.dimension(), split_config_proto.split_indices()); } SplitConfigProto ToProto() const; void SetProto(SplitConfigProto& split_config_proto) const; bool operator==(const SplitConfig& other) const { return dimension() == other.dimension() && split_indices() == other.split_indices(); } bool operator!=(const SplitConfig& other) const { return !(*this == other); } std::string ToString() const; int64_t dimension() const { return dimension_; } SplitConfig& set_dimension(int64_t dimension) { dimension_ = dimension; return *this; } absl::Span<const int64_t> split_indices() const { return split_indices_; } int64_t split_indices(int64_t idx) const { return split_indices_.at(idx); } int64_t split_indices_size() const { return split_indices_.size(); } SplitConfig& add_split_indices(int64_t split_index) { split_indices_.push_back(split_index); return *this; } SplitConfig& clear_split_indices() { split_indices_.clear(); return *this; } template <typename H> friend H AbslHashValue(H h, const SplitConfig& t) { return H::combine(std::move(h), t.dimension_, t.split_indices_); } private: int64_t dimension_; absl::InlinedVector<int64_t, 1> split_indices_; }; class Layout { public: Layout(); Layout(const Layout& other); Layout(Layout&& other); ~Layout(); explicit Layout(absl::Span<const int64_t> minor_to_major); explicit Layout(absl::Span<const int64_t> minor_to_major, absl::Span<const DimLevelType> dim_level_types, absl::Span<const bool> dim_unique, absl::Span<const bool> dim_ordered, absl::Span<const Tile> tiles, int64_t tail_padding_alignment_in_elements = 1, PrimitiveType index_primitive_type = PRIMITIVE_TYPE_INVALID, PrimitiveType element_primitive_type = PRIMITIVE_TYPE_INVALID, int64_t element_size_in_bits = 0, int64_t memory_space = 0, absl::Span<const SplitConfig> split_configs = {}, std::unique_ptr<Shape> physical_shape = nullptr, int64_t dynamic_shape_metadata_prefix_bytes = 0); Layout& operator=(const Layout& other); Layout& operator=(Layout&& other); static Layout CreateFromProto(const LayoutProto& proto); LayoutProto ToProto() const; void SetProto(LayoutProto& proto) const; void Print(Printer* printer) const; std::string ToString() const; class Equal { public: Equal() = default; bool operator()(const Layout& lhs, const Layout& rhs); Equal& IgnoreTiles() { ignore_tiles_ = true; return *this; } Equal& IgnoreTailPaddingAlignmentInElements() { ignore_tail_padding_alignment_in_elements_ = true; return *this; } Equal& IgnoreIndexPrimitiveType() { ignore_index_primitive_type_ = true; return *this; } Equal& IgnorePointerPrimitiveType() { ignore_pointer_primitive_type_ = true; return *this; } Equal& IgnoreMemorySpace() { ignore_memory_space_ = true; return *this; } Equal& IgnoreSplitConfigs() { ignore_split_configs_ = true; return *this; } Equal& IgnorePhysicalShape() { ignore_physical_shape_ = true; return *this; } Equal& IgnoreElementSize() { ignore_element_size_ = true; return *this; } Equal& MinorToMajorOnly() { return IgnoreTiles() .IgnoreIndexPrimitiveType() .IgnorePointerPrimitiveType() .IgnoreMemorySpace() .IgnorePhysicalShape() .IgnoreElementSize() .IgnoreTailPaddingAlignmentInElements(); } private: bool ignore_tiles_ = false; bool ignore_tail_padding_alignment_in_elements_ = false; bool ignore_element_size_ = false; bool ignore_index_primitive_type_ = false; bool ignore_pointer_primitive_type_ = false; bool ignore_memory_space_ = false; bool ignore_split_configs_ = false; bool ignore_physical_shape_ = false; }; bool operator==(const Layout& other) const; bool operator!=(const Layout& other) const { return !(*this == other); } int dim_level_types_size() const { return n_dim_level_types_; } DimLevelType dim_level_type(int index) const { return dim_attributes_[index].dim_level_type; } Layout& set_dim_level_type(int index, DimLevelType dim_level_type) { dim_attributes_[index].dim_level_type = dim_level_type; return *this; } Layout& add_dim_level_type(DimLevelType dim_level_type) { while (n_dim_level_types_ >= dim_attributes_.size()) { dim_attributes_.push_back(DimInfo()); } dim_attributes_[n_dim_level_types_].dim_level_type = dim_level_type; n_dim_level_types_++; return *this; } Layout& clear_dim_level_types() { n_dim_level_types_ = 0; return *this; } int dim_unique_size() const { return n_dim_unique_; } bool dim_unique(int index) const { return dim_attributes_[index].dim_unique; } Layout& set_dim_unique(int index, bool unique) { dim_attributes_[index].dim_unique = unique; return *this; } Layout& add_dim_unique(bool unique) { while (n_dim_unique_ >= dim_attributes_.size()) { dim_attributes_.push_back(DimInfo()); } dim_attributes_[n_dim_unique_].dim_unique = unique; n_dim_unique_++; return *this; } int dim_ordered_size() const { return n_dim_ordered_; } bool dim_ordered(int index) const { return dim_attributes_[index].dim_ordered; } Layout& set_dim_ordered(int index, bool ordered) { dim_attributes_[index].dim_ordered = ordered; return *this; } Layout& add_dim_ordered(bool ordered) { while (n_dim_ordered_ >= dim_attributes_.size()) { dim_attributes_.push_back(DimInfo()); } dim_attributes_[n_dim_ordered_].dim_ordered = ordered; n_dim_ordered_++; return *this; } int minor_to_major_size() const { return minor_to_major_.size(); } int64_t minor_to_major(int index) const { return minor_to_major_[index]; } Layout& set_minor_to_major(int index, int64_t value) { minor_to_major_[index] = value; return *this; } Layout& add_minor_to_major(int64_t value) { minor_to_major_.push_back(value); return *this; } Layout& clear_minor_to_major() { minor_to_major_.clear(); return *this; } Layout& DeleteDimension(int64_t dim_to_delete); absl::Span<const int64_t> minor_to_major() const { return minor_to_major_; } DimensionVector* mutable_minor_to_major() { return &minor_to_major_; } int64_t tiles_size() const { return tiles_.size(); } const Tile& tiles(int index) const { return tiles_[index]; } Tile* mutable_tiles(int index) { return &tiles_[index]; } Tile* add_tiles() { tiles_.push_back(Tile()); return &tiles_.back(); } Layout& clear_tiles() { tiles_.clear(); return *this; } absl::Span<const Tile> tiles() const { return tiles_; } TileVector* mutable_tiles() { return &tiles_; } int64_t element_size_in_bits() const { return element_size_in_bits_; } Layout& set_element_size_in_bits(int64_t value) { element_size_in_bits_ = value; return *this; } int64_t tail_padding_alignment_in_elements() const { return tail_padding_alignment_in_elements_; } Layout& set_tail_padding_alignment_in_elements(int64_t value) { tail_padding_alignment_in_elements_ = value; return *this; } PrimitiveType index_primitive_type() const { return index_primitive_type_; } Layout& set_index_primitive_type(PrimitiveType value) { index_primitive_type_ = value; return *this; } PrimitiveType pointer_primitive_type() const { return pointer_primitive_type_; } Layout& set_pointer_primitive_type(PrimitiveType value) { pointer_primitive_type_ = value; return *this; } static constexpr int64_t kDefaultMemorySpace = 0; static constexpr int64_t kGenericFastMemorySpace = 1; static constexpr int64_t kHostMemorySpace = 5; int64_t memory_space() const { return memory_space_; } Layout& set_memory_space(int64_t value) { memory_space_ = value; return *this; } int split_configs_size() const { return split_configs_.size(); } const SplitConfig& split_configs(int index) const { return split_configs_.at(index); } SplitConfig* mutable_split_configs(int index) { return &split_configs_.at(index); } Layout& add_split_configs(const SplitConfig& split_config) { split_configs_.push_back(split_config); return *this; } void clear_split_configs() { split_configs_.clear(); } absl::Span<const SplitConfig> split_configs() const { return split_configs_; } bool has_physical_shape() const { return physical_shape_ != nullptr; } const Shape& physical_shape() const { CHECK(has_physical_shape()); return *physical_shape_; } Shape* mutable_physical_shape(); void clear_physical_shape(); int64_t dynamic_shape_metadata_prefix_bytes() const { return dynamic_shape_metadata_prefix_bytes_; } void set_dynamic_shape_metadata_prefix_bytes(int64_t bytes) { dynamic_shape_metadata_prefix_bytes_ = bytes; } void Swap(Layout* other) { using std::swap; swap(*this, *other); } void Clear() { *this = Layout(); } template <typename H> friend H AbslHashValue(H h, const Layout& l) { return H::combine(std::move(h), l.minor_to_major_, l.tiles_, l.element_size_in_bits_, l.index_primitive_type_, l.pointer_primitive_type_, l.memory_space_, l.split_configs_, l.tail_padding_alignment_in_elements_); } private: struct DimInfo { DimInfo() : dim_level_type(DIM_DENSE), dim_unique(false), dim_ordered(false) {} DimLevelType dim_level_type : 6; bool dim_unique : 1; bool dim_ordered : 1; }; absl::InlinedVector<DimInfo, InlineRank()> dim_attributes_; uint8_t n_dim_level_types_ = 0; uint8_t n_dim_unique_ = 0; uint8_t n_dim_ordered_ = 0; PrimitiveType index_primitive_type_ : 8; PrimitiveType pointer_primitive_type_ : 8; int8_t memory_space_ = 0; int64_t element_size_in_bits_ = 0; DimensionVector minor_to_major_; TileVector tiles_; absl::InlinedVector<SplitConfig, 1> split_configs_; int64_t tail_padding_alignment_in_elements_ = 1; std::unique_ptr<Shape> physical_shape_; int64_t dynamic_shape_metadata_prefix_bytes_ = 0; }; std::ostream& operator<<(std::ostream& out, const Tile& Tile); std::ostream& operator<<(std::ostream& out, const Layout& layout); } #endif #include "xla/layout.h" #include <cstdint> #include <memory> #include <ostream> #include <string> #include <utility> #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/layout_util.h" #include "xla/primitive_util.h" #include "xla/printer.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { TileProto Tile::ToProto() const { TileProto tile_proto; SetProto(tile_proto); return tile_proto; } void Tile::SetProto(TileProto& tile_proto) const { tile_proto.Clear(); for (int64_t i : dimensions()) { tile_proto.add_dimensions(i); } } void Tile::Print(Printer* printer) const { printer->Append("("); AppendJoin(printer, dimensions(), ",", [&](Printer* printer, int64_t dim) { if (dim >= 0) { printer->Append(dim); } else { if (dim == kCombineDimension) { printer->Append("*"); } else { printer->Append("Invalid value "); printer->Append(dim); } } }); printer->Append(")"); } std::string Tile::ToString() const { StringPrinter printer; Print(&printer); return std::move(printer).ToString(); } Layout::Layout() : index_primitive_type_(PRIMITIVE_TYPE_INVALID), pointer_primitive_type_(PRIMITIVE_TYPE_INVALID) {} SplitConfigProto SplitConfig::ToProto() const { SplitConfigProto split_config_proto; split_config_proto.set_dimension(dimension_); for (int64_t i : split_indices_) { split_config_proto.add_split_indices(i); } return split_config_proto; } void SplitConfig::SetProto(SplitConfigProto& split_config_proto) const { split_config_proto.Clear(); split_config_proto.set_dimension(dimension_); for (int64_t i : split_indices_) { split_config_proto.add_split_indices(i); } } std::string SplitConfig::ToString() const { return absl::StrCat("(", dimension_, ":", absl::StrJoin(split_indices_, ","), ")"); } Layout::Layout(absl::Span<const int64_t> minor_to_major) : index_primitive_type_(PRIMITIVE_TYPE_INVALID), pointer_primitive_type_(PRIMITIVE_TYPE_INVALID), minor_to_major_(minor_to_major.begin(), minor_to_major.end()) {} Layout::Layout(absl::Span<const int64_t> minor_to_major, absl::Span<const DimLevelType> dim_level_types, absl::Span<const bool> dim_unique, absl::Span<const bool> dim_ordered, absl::Span<const Tile> tiles, int64_t tail_padding_alignment_in_elements, PrimitiveType index_primitive_type, PrimitiveType element_primitive_type, int64_t element_size_in_bits, int64_t memory_space, absl::Span<const SplitConfig> split_configs, std::unique_ptr<Shape> physical_shape, int64_t dynamic_shape_metadata_prefix_bytes) : index_primitive_type_(index_primitive_type), pointer_primitive_type_(element_primitive_type), memory_space_(memory_space), element_size_in_bits_(element_size_in_bits), minor_to_major_(minor_to_major.begin(), minor_to_major.end()), tiles_(tiles.begin(), tiles.end()), split_configs_(split_configs.begin(), split_configs.end()), tail_padding_alignment_in_elements_(tail_padding_alignment_in_elements), physical_shape_(std::move(physical_shape)), dynamic_shape_metadata_prefix_bytes_( dynamic_shape_metadata_prefix_bytes) { n_dim_level_types_ = dim_level_types.size(); n_dim_unique_ = dim_unique.size(); n_dim_ordered_ = dim_ordered.size(); const int n_attributes = std::max<int>( n_dim_level_types_, std::max<int>(n_dim_unique_, n_dim_ordered_)); dim_attributes_.resize(n_attributes); for (int i = 0; i < n_attributes; i++) { if (i < n_dim_level_types_) dim_attributes_[i].dim_level_type = dim_level_types[i]; if (i < n_dim_unique_) dim_attributes_[i].dim_unique = dim_unique[i]; if (i < n_dim_ordered_) dim_attributes_[i].dim_ordered = dim_ordered[i]; } } Layout::Layout(const Layout& other) : dim_attributes_(other.dim_attributes_), n_dim_level_types_(other.n_dim_level_types_), n_dim_unique_(other.n_dim_unique_), n_dim_ordered_(other.n_dim_ordered_), index_primitive_type_(other.index_primitive_type_), pointer_primitive_type_(other.pointer_primitive_type_), memory_space_(other.memory_space_), element_size_in_bits_(other.element_size_in_bits_), minor_to_major_(other.minor_to_major_), tiles_(other.tiles_), split_configs_(other.split_configs_), tail_padding_alignment_in_elements_( other.tail_padding_alignment_in_elements_), physical_shape_(other.physical_shape_ != nullptr ? std::make_unique<Shape>(*other.physical_shape_) : nullptr), dynamic_shape_metadata_prefix_bytes_( other.dynamic_shape_metadata_prefix_bytes_) {} Layout::Layout(Layout&& other) = default; Layout::~Layout() = default; Layout& Layout::operator=(const Layout& other) { if (this != &other) { dim_attributes_ = other.dim_attributes_; n_dim_level_types_ = other.n_dim_level_types_; n_dim_unique_ = other.n_dim_unique_; n_dim_ordered_ = other.n_dim_ordered_; minor_to_major_ = other.minor_to_major_; tiles_ = other.tiles_; tail_padding_alignment_in_elements_ = other.tail_padding_alignment_in_elements_; index_primitive_type_ = other.index_primitive_type_; pointer_primitive_type_ = other.pointer_primitive_type_; element_size_in_bits_ = other.element_size_in_bits_; memory_space_ = other.memory_space_; split_configs_ = other.split_configs_; if (other.physical_shape_ != nullptr) { physical_shape_ = std::make_unique<Shape>(*other.physical_shape_); } else { physical_shape_ = nullptr; } dynamic_shape_metadata_prefix_bytes_ = other.dynamic_shape_metadata_prefix_bytes_; } return *this; } Layout& Layout::operator=(Layout&& other) = default; Layout Layout::CreateFromProto(const LayoutProto& proto) { Layout layout; for (int dim_level_type : proto.dim_level_types()) { layout.add_dim_level_type(static_cast<DimLevelType>(dim_level_type)); } for (bool dim_unique : proto.dim_unique()) { layout.add_dim_unique(dim_unique); } for (bool dim_ordered : proto.dim_ordered()) { layout.add_dim_ordered(dim_ordered); } layout.minor_to_major_.reserve(proto.minor_to_major_size()); for (const int64_t dimension : proto.minor_to_major()) { layout.add_minor_to_major(dimension); } for (const TileProto& tile_proto : proto.tiles()) { *layout.add_tiles() = Tile::CreateFromProto(tile_proto); } if (proto.tail_padding_alignment_in_elements() != 0) { layout.set_tail_padding_alignment_in_elements( proto.tail_padding_alignment_in_elements()); } else { layout.set_tail_padding_alignment_in_elements(1); } layout.set_index_primitive_type(proto.index_primitive_type()); layout.set_pointer_primitive_type(proto.pointer_primitive_type()); layout.set_element_size_in_bits(proto.element_size_in_bits()); layout.set_memory_space(proto.memory_space()); for (const SplitConfigProto& split_config_proto : proto.split_configs()) { layout.add_split_configs(SplitConfig::CreateFromProto(split_config_proto)); } if (proto.has_physical_shape()) { *layout.mutable_physical_shape() = Shape(proto.physical_shape()); } layout.set_dynamic_shape_metadata_prefix_bytes( proto.dynamic_shape_metadata_prefix_bytes()); return layout; } LayoutProto Layout::ToProto() const { LayoutProto proto; SetProto(proto); return proto; } void Layout::SetProto(LayoutProto& proto) const { proto.Clear(); for (int i = 0; i < n_dim_level_types_; i++) { proto.add_dim_level_types(dim_level_type(i)); } for (int i = 0; i < n_dim_unique_; i++) { proto.add_dim_unique(dim_unique(i)); } for (int i = 0; i < n_dim_ordered_; i++) { proto.add_dim_ordered(dim_ordered(i)); } proto.mutable_minor_to_major()->Reserve(minor_to_major_size()); for (const int64_t dimension : minor_to_major()) { proto.add_minor_to_major(dimension); } for (const Tile& tile : tiles()) { tile.SetProto(*proto.add_tiles()); } proto.set_tail_padding_alignment_in_elements( tail_padding_alignment_in_elements()); proto.set_index_primitive_type(index_primitive_type()); proto.set_pointer_primitive_type(pointer_primitive_type()); proto.set_element_size_in_bits(element_size_in_bits_); proto.set_memory_space(memory_space_); for (const SplitConfig& split_config : split_configs()) { split_config.SetProto(*proto.add_split_configs()); } if (has_physical_shape()) { *proto.mutable_physical_shape() = physical_shape_->ToProto(); } proto.set_dynamic_shape_metadata_prefix_bytes( dynamic_shape_metadata_prefix_bytes_); } namespace { absl::string_view DimLevelTypeAbbrev(DimLevelType dim_level_type) { switch (dim_level_type) { case DIM_DENSE: return "D"; case DIM_COMPRESSED: return "C"; case DIM_SINGLETON: return "S"; case xla::DIM_LOOSE_COMPRESSED: return "H"; default: LOG(FATAL) << "Invalid DimLevelType value: " << dim_level_type; } } } void Layout::Print(Printer* printer) const { printer->Append("{"); AppendJoin(printer, minor_to_major(), ","); bool colon_printed = false; auto print_colon = [&]() { if (colon_printed) return; printer->Append(":"); colon_printed = true; }; if (n_dim_level_types_ > 0) { auto print_one = [&](int i) { printer->Append(DimLevelTypeAbbrev(dim_level_type(i))); if (n_dim_unique_ > 0 && !dim_unique(i)) { printer->Append("+"); } if (n_dim_ordered_ > 0 && !dim_ordered(i)) { printer->Append("~"); } }; print_colon(); printer->Append("D("); print_one(0); for (int i = 1; i < n_dim_level_types_; ++i) { printer->Append(","); print_one(i); } printer->Append(")"); } if (!tiles().empty()) { print_colon(); printer->Append("T"); for (const Tile& tile : tiles()) { tile.Print(printer); } } if (tail_padding_alignment_in_elements() != 1) { print_colon(); printer->Append("L("); printer->Append(tail_padding_alignment_in_elements()); printer->Append(")"); } if (index_primitive_type() != PRIMITIVE_TYPE_INVALID) { print_colon(); if (primitive_util::IsIntegralType(index_primitive_type())) { printer->Append("#("); printer->Append( primitive_util::LowercasePrimitiveTypeName(index_primitive_type())); printer->Append(")"); } else { printer->Append("#(invalid)"); } } if (pointer_primitive_type() != PRIMITIVE_TYPE_INVALID) { print_colon(); if (primitive_util::IsIntegralType(pointer_primitive_type())) { printer->Append("*("); printer->Append( primitive_util::LowercasePrimitiveTypeName(pointer_primitive_type())); printer->Append(")"); } else { printer->Append("*(invalid)"); } } if (element_size_in_bits() != 0) { print_colon(); printer->Append("E("); printer->Append(element_size_in_bits()); printer->Append(")"); } if (memory_space() != 0) { print_colon(); printer->Append("S("); printer->Append(memory_space()); printer->Append(")"); } if (!split_configs().empty()) { print_colon(); printer->Append("SC"); for (const auto& split_config : split_configs()) { printer->Append(split_config.ToString()); } } if (has_physical_shape()) { print_colon(); printer->Append("P("); physical_shape_->Print(printer, true); printer->Append(")"); } if (dynamic_shape_metadata_prefix_bytes_ > 0) { print_colon(); printer->Append("M("); printer->Append(dynamic_shape_metadata_prefix_bytes()); printer->Append(")"); } printer->Append("}"); } std::string Layout::ToString() const { StringPrinter printer; Print(&printer); return std::move(printer).ToString(); } bool Layout::Equal::operator()(const Layout& lhs, const Layout& rhs) { if (!LayoutUtil::IsDense(lhs) || !LayoutUtil::IsDense(rhs)) { if (lhs.dim_level_types_size() != rhs.dim_level_types_size()) { return false; } for (int i = 0; i < lhs.dim_level_types_size(); i++) { if (lhs.dim_level_type(i) != rhs.dim_level_type(i)) { return false; } } if (lhs.dim_unique_size() != rhs.dim_unique_size()) { return false; } for (int i = 0; i < lhs.dim_unique_size(); i++) { if (lhs.dim_unique(i) != rhs.dim_unique(i)) { return false; } } if (lhs.dim_ordered_size() != rhs.dim_ordered_size()) { return false; } for (int i = 0; i < lhs.dim_ordered_size(); i++) { if (lhs.dim_ordered(i) != rhs.dim_ordered(i)) { return false; } } } if (lhs.minor_to_major() != rhs.minor_to_major()) { return false; } if (!ignore_tiles_ && lhs.tiles() != rhs.tiles()) { return false; } if (!ignore_tail_padding_alignment_in_elements_ && lhs.tail_padding_alignment_in_elements() != rhs.tail_padding_alignment_in_elements()) { return false; } if (!ignore_index_primitive_type_ && lhs.index_primitive_type() != rhs.index_primitive_type()) { return false; } if (!ignore_pointer_primitive_type_ && lhs.pointer_primitive_type() != rhs.pointer_primitive_type()) { return false; } if (!ignore_element_size_ && lhs.element_size_in_bits() != rhs.element_size_in_bits()) { return false; } if (!ignore_memory_space_ && lhs.memory_space() != rhs.memory_space()) { return false; } if (!ignore_split_configs_ && lhs.split_configs() != rhs.split_
#include "xla/layout.h" #include <cstdint> #include <memory> #include <sstream> #include <vector> #include "xla/shape_util.h" #include "xla/test.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class LayoutTest : public ::testing::Test {}; TEST_F(LayoutTest, ToString) { EXPECT_EQ(Layout().ToString(), "{}"); EXPECT_EQ(Layout({4, 5, 6}).ToString(), "{4,5,6}"); EXPECT_EQ(Layout({4, 5, 6}).ToString(), "{4,5,6}"); EXPECT_EQ(Layout({3, 2, 1, 0}, {}, {}, {}, {Tile({42, 123}), Tile({4, 5})}) .ToString(), "{3,2,1,0:T(42,123)(4,5)}"); EXPECT_EQ(Layout({3, 2, 1, 0}, {}, {}, {}, {Tile({42, 123}), Tile({4, 5})}) .set_tail_padding_alignment_in_elements(100) .set_element_size_in_bits(42) .ToString(), "{3,2,1,0:T(42,123)(4,5)L(100)E(42)}"); EXPECT_EQ(Layout({3, 2, 1, 0}, {}, {}, {}, {Tile({42, 123}), Tile({4, 5})}) .set_memory_space(3) .ToString(), "{3,2,1,0:T(42,123)(4,5)S(3)}"); EXPECT_EQ(Layout({0, 1}, {}, {}, {}, {Tile({123})}) .add_split_configs(SplitConfig(0, {3})) .add_split_configs(SplitConfig(1, {0, 4})) .ToString(), "{0,1:T(123)SC(0:3)(1:0,4)}"); } TEST_F(LayoutTest, StreamOut) { { std::ostringstream oss; oss << Tile({7, 8}); EXPECT_EQ(oss.str(), "(7,8)"); } { std::ostringstream oss; oss << Layout({0, 1, 2}); EXPECT_EQ(oss.str(), "{0,1,2}"); } } TEST_F(LayoutTest, Equality) { EXPECT_EQ(Layout(), Layout()); const std::vector<int64_t> empty_dims; EXPECT_EQ(Layout(empty_dims), Layout(empty_dims)); EXPECT_EQ(Layout(), Layout(empty_dims)); EXPECT_EQ(Layout({0, 1, 2, 3}), Layout({0, 1, 2, 3})); EXPECT_NE(Layout({0, 1, 2, 3}), Layout({0, 1, 2})); EXPECT_EQ(Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})}), Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})})); EXPECT_NE(Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})}), Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 45})})); EXPECT_NE(Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})}), Layout({0, 1, 2, 3})); EXPECT_EQ(Layout({0, 1, 2}).set_element_size_in_bits(33), Layout({0, 1, 2}).set_element_size_in_bits(33)); EXPECT_NE(Layout({0, 1, 2}).set_element_size_in_bits(33), Layout({0, 1, 2}).set_element_size_in_bits(7)); EXPECT_EQ(Layout({0, 1, 2}).set_memory_space(3), Layout({0, 1, 2}).set_memory_space(3)); EXPECT_NE(Layout({0, 1, 2}).set_memory_space(1), Layout({0, 1, 2}).set_memory_space(3)); EXPECT_FALSE(Layout::Equal()(Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})}), Layout({0, 1, 2}))); EXPECT_EQ(Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {2})), Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {2}))); EXPECT_NE(Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {2})), Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {3}))); EXPECT_TRUE(Layout::Equal().IgnoreTiles()( Layout({0, 1, 2}, {}, {}, {}, {Tile({42, 44})}), Layout({0, 1, 2}))); EXPECT_FALSE(Layout::Equal()( Layout({0, 1, 2}, {}, {}, {}, {}, 1, PRIMITIVE_TYPE_INVALID, PRIMITIVE_TYPE_INVALID, 32), Layout({0, 1, 2}, {}, {}, {}, {}, 1, PRIMITIVE_TYPE_INVALID, PRIMITIVE_TYPE_INVALID, 1))); EXPECT_TRUE(Layout::Equal().IgnoreElementSize()( Layout({0, 1, 2}).set_element_size_in_bits(32), Layout({0, 1, 2}).set_element_size_in_bits(1))); EXPECT_TRUE(Layout::Equal().IgnoreMemorySpace()( Layout({0, 1, 2}).set_memory_space(1), Layout({0, 1, 2}).set_memory_space(3))); EXPECT_TRUE(Layout::Equal().IgnoreSplitConfigs()( Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {2})), Layout({0, 1, 2}).add_split_configs(SplitConfig(0, {3})))); } TEST_F(LayoutTest, LayoutToFromProto) { auto expect_unchanged = [](const Layout& layout) { EXPECT_EQ(layout, Layout::CreateFromProto(layout.ToProto())); }; expect_unchanged(Layout()); expect_unchanged(Layout({1, 3, 2, 0})); expect_unchanged(Layout({0, 1}).set_element_size_in_bits(42)); expect_unchanged( Layout({3, 2, 1, 0}, {}, {}, {}, {Tile({42, 123}), Tile({4, 5})})); expect_unchanged(Layout({1, 0}, {DIM_DENSE, DIM_COMPRESSED}, {}, {}, {})); expect_unchanged( Layout({1, 0}, {DIM_DENSE, DIM_COMPRESSED}, {}, {}, {}, 1, PRIMITIVE_TYPE_INVALID, PRIMITIVE_TYPE_INVALID, 0, 0, {}, std::make_unique<Shape>(ShapeUtil::MakeShape(S32, {10, 10})))); expect_unchanged(Layout({0, 1}, {}, {}, {}, {Tile({123})}) .add_split_configs(SplitConfig(0, {3})) .add_split_configs(SplitConfig(1, {0, 4}))); } } }
1,792
cpp
tensorflow/tensorflow
parse_flags_from_env
third_party/xla/xla/parse_flags_from_env.cc
third_party/xla/xla/parse_flags_from_env_test.cc
#ifndef XLA_PARSE_FLAGS_FROM_ENV_H_ #define XLA_PARSE_FLAGS_FROM_ENV_H_ #include <vector> #include "absl/strings/string_view.h" #include "xla/tsl/util/command_line_flags.h" #include "xla/types.h" namespace xla { void ParseFlagsFromEnvAndDieIfUnknown(absl::string_view envvar, const std::vector<tsl::Flag>& flag_list); void ParseFlagsFromEnvAndIgnoreUnknown(absl::string_view envvar, const std::vector<tsl::Flag>& flag_list); void ResetFlagsFromEnvForTesting(absl::string_view envvar, int** pargc, std::vector<char*>** pargv); } #endif #include "xla/parse_flags_from_env.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <memory> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/strings/ascii.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/tsl/util/command_line_flags.h" #include "tsl/platform/logging.h" namespace xla { static const char kWS[] = " \t\r\n"; namespace { struct FreeDeleter { void operator()(char* ptr) { free(ptr); } }; struct EnvArgv { EnvArgv() : initialized(false), argc(0) {} bool initialized; int argc; std::vector<char*> argv; std::vector<std::unique_ptr<char, FreeDeleter>> argv_save; }; } static void AppendToEnvArgv(const char* s0, size_t s0len, const char* s1, size_t s1len, EnvArgv* a) { if (s0 == nullptr) { a->argv.push_back(nullptr); a->argv_save.push_back(nullptr); } else { std::string s = std::string(s0, s0len) + std::string(s1, s1len); char* str = strdup(s.c_str()); a->argv.push_back(str); a->argv_save.emplace_back(str); a->argc++; } } static size_t FindFirstOf(const std::string& s, const char* x, size_t pos) { size_t result = s.find_first_of(x, pos); return result == std::string::npos ? s.size() : result; } static size_t FindFirstNotOf(const std::string& s, const char* x, size_t pos) { size_t result = s.find_first_not_of(x, pos); return result == std::string::npos ? s.size() : result; } static void ParseArgvFromString(const std::string& flag_str, EnvArgv* a) { size_t b = FindFirstNotOf(flag_str, kWS, 0); while (b != flag_str.size() && flag_str[b] == '-') { size_t e = b; while (e != flag_str.size() && isascii(flag_str[e]) && (strchr("-_", flag_str[e]) != nullptr || absl::ascii_isalnum(flag_str[e]))) { e++; } if (e != flag_str.size() && flag_str[e] == '=' && e + 1 != flag_str.size() && strchr("'\"", flag_str[e + 1]) != nullptr) { int c; e++; size_t eflag = e; char quote = flag_str[e]; e++; std::string value; for (; e != flag_str.size() && (c = flag_str[e]) != quote; e++) { if (quote == '"' && c == '\\' && e + 1 != flag_str.size()) { e++; c = flag_str[e]; } value += c; } if (e != flag_str.size()) { e++; } AppendToEnvArgv(flag_str.data() + b, eflag - b, value.data(), value.size(), a); } else { e = FindFirstOf(flag_str, kWS, e); AppendToEnvArgv(flag_str.data() + b, e - b, "", 0, a); } b = FindFirstNotOf(flag_str, kWS, e); } } static void SetArgvFromEnv(absl::string_view envvar, EnvArgv* a) { if (!a->initialized) { static const char kDummyArgv[] = "<argv[0]>"; AppendToEnvArgv(kDummyArgv, strlen(kDummyArgv), nullptr, 0, a); const char* env = getenv(std::string(envvar).c_str()); if (env == nullptr || env[0] == '\0') { } else if (env[strspn(env, kWS)] == '-') { ParseArgvFromString(env, a); } else { FILE* fp = fopen(env, "r"); if (fp != nullptr) { std::string str; char buf[512]; int n; while ((n = fread(buf, 1, sizeof(buf), fp)) > 0) { str.append(buf, n); } fclose(fp); ParseArgvFromString(str, a); } else { LOG(QFATAL) << "Could not open file \"" << env << "\" to read flags for environment variable \"" << envvar << "\". (We assumed \"" << env << "\" was a file name because it did not start with a \"--\".)"; } } AppendToEnvArgv(nullptr, 0, nullptr, 0, a); a->initialized = true; } } static absl::flat_hash_map<std::string, EnvArgv>& EnvArgvs() { static auto* env_argvs = new absl::flat_hash_map<std::string, EnvArgv>(); return *env_argvs; } static absl::Mutex env_argv_mu(absl::kConstInit); static void DieIfEnvHasUnknownFlagsLeft(absl::string_view envvar); void ParseFlagsFromEnvAndDieIfUnknown(absl::string_view envvar, const std::vector<tsl::Flag>& flag_list) { ParseFlagsFromEnvAndIgnoreUnknown(envvar, flag_list); DieIfEnvHasUnknownFlagsLeft(envvar); } void ParseFlagsFromEnvAndIgnoreUnknown( absl::string_view envvar, const std::vector<tsl::Flag>& flag_list) { absl::MutexLock lock(&env_argv_mu); auto* env_argv = &EnvArgvs()[envvar]; SetArgvFromEnv(envvar, env_argv); if (VLOG_IS_ON(1)) { VLOG(1) << "For env var " << envvar << " found arguments:"; for (int i = 0; i < env_argv->argc; i++) { VLOG(1) << " argv[" << i << "] = " << env_argv->argv[i]; } } QCHECK(tsl::Flags::Parse(&env_argv->argc, env_argv->argv.data(), flag_list)) << "Flag parsing failed.\n" << tsl::Flags::Usage(getenv(std::string(envvar).c_str()), flag_list); } static void DieIfEnvHasUnknownFlagsLeft(absl::string_view envvar) { absl::MutexLock lock(&env_argv_mu); auto* env_argv = &EnvArgvs()[envvar]; SetArgvFromEnv(envvar, env_argv); if (env_argv->argc != 1) { auto unknown_flags = absl::MakeSpan(env_argv->argv); unknown_flags.remove_prefix(1); LOG(QFATAL) << "Unknown flag" << (unknown_flags.size() > 1 ? "s" : "") << " in " << envvar << ": " << absl::StrJoin(unknown_flags, " "); } } void ResetFlagsFromEnvForTesting(absl::string_view envvar, int** pargc, std::vector<char*>** pargv) { absl::MutexLock lock(&env_argv_mu); EnvArgvs().erase(envvar); auto& env_argv = EnvArgvs()[envvar]; *pargc = &env_argv.argc; *pargv = &env_argv.argv; } }
#include "xla/parse_flags_from_env.h" #include <stdio.h> #include <stdlib.h> #include <string> #include <vector> #include "absl/strings/str_format.h" #include "xla/tsl/util/command_line_flags.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/subprocess.h" #include "tsl/platform/test.h" namespace xla { static void TestParseFlagsFromEnv(const char* msg) { int* pargc; std::vector<char*>* pargv; ResetFlagsFromEnvForTesting("TF_XLA_FLAGS", &pargc, &pargv); bool simple = false; std::string with_value; std::string embedded_quotes; std::string single_quoted; std::string double_quoted; std::vector<tsl::Flag> flag_list = { tsl::Flag("simple", &simple, ""), tsl::Flag("with_value", &with_value, ""), tsl::Flag("embedded_quotes", &embedded_quotes, ""), tsl::Flag("single_quoted", &single_quoted, ""), tsl::Flag("double_quoted", &double_quoted, ""), }; ParseFlagsFromEnvAndDieIfUnknown("TF_XLA_FLAGS", flag_list); CHECK_EQ(*pargc, 1) << msg; const std::vector<char*>& argv_second = *pargv; CHECK_NE(argv_second[0], nullptr) << msg; CHECK_EQ(argv_second[1], nullptr) << msg; CHECK(simple) << msg; CHECK_EQ(with_value, "a_value") << msg; CHECK_EQ(embedded_quotes, "single'double\"") << msg; CHECK_EQ(single_quoted, "single quoted \\\\ \n \"") << msg; CHECK_EQ(double_quoted, "double quoted \\ \n '\"") << msg; } static const char kTestFlagString[] = "--simple " "--with_value=a_value " "--embedded_quotes=single'double\" " "--single_quoted='single quoted \\\\ \n \"' " "--double_quoted=\"double quoted \\\\ \n '\\\"\" "; TEST(ParseFlagsFromEnv, Basic) { tsl::setenv("TF_XLA_FLAGS", kTestFlagString, true ); TestParseFlagsFromEnv("(flags in environment variable)"); } TEST(ParseFlagsFromEnv, File) { static const char* kTempVars[] = {"TEST_TMPDIR", "TMP"}; static const char kTempDir[] = "/tmp"; const char* tmp_dir = nullptr; for (int i = 0; i != TF_ARRAYSIZE(kTempVars) && tmp_dir == nullptr; i++) { tmp_dir = getenv(kTempVars[i]); } if (tmp_dir == nullptr) { tmp_dir = kTempDir; } std::string tmp_file = absl::StrFormat("%s/parse_flags_from_env.%d", tmp_dir, getpid()); FILE* fp = fopen(tmp_file.c_str(), "w"); CHECK_NE(fp, nullptr) << "can't write to " << tmp_file; for (int i = 0; kTestFlagString[i] != '\0'; i++) { putc(kTestFlagString[i], fp); } fflush(fp); CHECK_EQ(ferror(fp), 0) << "writes failed to " << tmp_file; fclose(fp); tsl::setenv("TF_XLA_FLAGS", tmp_file.c_str(), true ); TestParseFlagsFromEnv("(flags in file)"); unlink(tmp_file.c_str()); } static const char* binary_name; TEST(ParseFlagsFromEnv, EnvAndFlag) { static struct { const char* env; const char* arg; const char* expected_value; } test[] = { {nullptr, nullptr, "1\n"}, {nullptr, "--int_flag=2", "2\n"}, {"--int_flag=3", nullptr, "3\n"}, {"--int_flag=3", "--int_flag=2", "2\n"}, }; for (int i = 0; i != TF_ARRAYSIZE(test); i++) { if (test[i].env == nullptr) { tsl::unsetenv("TF_XLA_FLAGS"); } else { tsl::setenv("TF_XLA_FLAGS", test[i].env, true); } tsl::SubProcess child; std::vector<std::string> argv; argv.push_back(binary_name); argv.push_back("--recursing"); if (test[i].arg != nullptr) { argv.push_back(test[i].arg); } child.SetProgram(binary_name, argv); child.SetChannelAction(tsl::CHAN_STDOUT, tsl::ACTION_PIPE); child.SetChannelAction(tsl::CHAN_STDERR, tsl::ACTION_PIPE); CHECK(child.Start()) << "test " << i; std::string stdout_str; std::string stderr_str; int child_status = child.Communicate(nullptr, &stdout_str, &stderr_str); CHECK_EQ(child_status, 0) << "test " << i << "\nstdout\n" << stdout_str << "\nstderr\n" << stderr_str; stdout_str.erase(std::remove(stdout_str.begin(), stdout_str.end(), '\r'), stdout_str.end()); CHECK_EQ(stdout_str, test[i].expected_value) << "test " << i; } } TEST(ParseFlagsFromEnv, ErrorOutOnFlagFailure) { const char* env = "--int_flag=3parsefailure"; if (env == nullptr) { tsl::unsetenv("TF_XLA_FLAGS"); } else { tsl::setenv("TF_XLA_FLAGS", env, true); } tsl::SubProcess child; std::vector<std::string> argv; argv.push_back(binary_name); argv.push_back("--recursing"); child.SetProgram(binary_name, argv); child.SetChannelAction(tsl::CHAN_STDOUT, tsl::ACTION_PIPE); child.SetChannelAction(tsl::CHAN_STDERR, tsl::ACTION_PIPE); EXPECT_TRUE(child.Start()); std::string stdout_str; std::string stderr_str; int child_status = child.Communicate(nullptr, &stdout_str, &stderr_str); EXPECT_NE(child_status, 0); } TEST(ParseFlagsFromEnv, ErrorOutOnUnknownFlag) { const char* env = "--int_flag=3 --unknown_flag=value"; if (env == nullptr) { tsl::unsetenv("TF_XLA_FLAGS"); } else { tsl::setenv("TF_XLA_FLAGS", env, true); } tsl::SubProcess child; std::vector<std::string> argv; argv.push_back(binary_name); argv.push_back("--recursing"); child.SetProgram(binary_name, argv); child.SetChannelAction(tsl::CHAN_STDOUT, tsl::ACTION_PIPE); child.SetChannelAction(tsl::CHAN_STDERR, tsl::ACTION_PIPE); EXPECT_TRUE(child.Start()); std::string stdout_str; std::string stderr_str; int child_status = child.Communicate(nullptr, &stdout_str, &stderr_str); EXPECT_NE(child_status, 0); } } int main(int argc, char* argv[]) { xla::binary_name = argv[0]; bool recursing = false; int32_t int_flag = 1; const std::vector<tsl::Flag> flag_list = { tsl::Flag("recursing", &recursing, "Whether the binary is being invoked recursively."), tsl::Flag("int_flag", &int_flag, "An integer flag to test with"), }; std::string usage = tsl::Flags::Usage(argv[0], flag_list); xla::ParseFlagsFromEnvAndDieIfUnknown("TF_XLA_FLAGS", flag_list); tsl::Flags::Parse(&argc, argv, flag_list); if (recursing) { printf("%d\n", int_flag); exit(0); } testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
1,793
cpp
tensorflow/tensorflow
outfeed_receiver
third_party/xla/xla/python/outfeed_receiver.cc
third_party/xla/xla/python/outfeed_receiver_test.cc
#ifndef XLA_PYTHON_OUTFEED_RECEIVER_H_ #define XLA_PYTHON_OUTFEED_RECEIVER_H_ #include <cstdint> #include <functional> #include <memory> #include <optional> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/client/executable_build_options.h" #include "xla/client/xla_builder.h" #include "xla/literal.h" #include "xla/python/pjrt_ifrt/pjrt_client.h" #include "xla/python/pjrt_ifrt/pjrt_device.h" namespace xla { class OutfeedReceiverImpl; class OutfeedReceiver { public: using Callback = std::function<void(ifrt::PjRtDevice*, uint32_t, std::shared_ptr<Literal>)>; OutfeedReceiver( Callback callback, absl::Span<ifrt::PjRtClient* const> clients, ssize_t max_callback_queue_size_bytes, const std::optional<ExecutableBuildOptions>& executable_build_options); OutfeedReceiver(const OutfeedReceiver&) = delete; OutfeedReceiver& operator=(const OutfeedReceiver&) = delete; ~OutfeedReceiver(); void Start(); absl::StatusOr<XlaOp> AddOutfeedToBuilder(XlaBuilder* builder, XlaOp token, uint32_t consumer_id, std::vector<XlaOp> arrays, uint32_t device_idx); private: std::unique_ptr<OutfeedReceiverImpl> p_impl_; }; } #endif #include "xla/python/outfeed_receiver.h" #include <sys/types.h> #include <cstdint> #include <memory> #include <optional> #include <queue> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/client/executable_build_options.h" #include "xla/client/sharding_builder.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_executable.h" #include "xla/python/pjrt_ifrt/pjrt_client.h" #include "xla/python/pjrt_ifrt/pjrt_device.h" #include "xla/service/computation_placer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/casts.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tsl/profiler/lib/traceme.h" namespace xla { int constexpr kOutfeedHeaderWords = 2; uint32_t constexpr kOutfeedHeaderStart = 271828; uint32_t constexpr kOutfeedCidShutdown = 0; class OutfeedData { public: OutfeedData(ifrt::PjRtDevice* device, uint32_t consumer_id, Shape shape) : device_(device), consumer_id_(consumer_id), shape_(shape), literal_(nullptr), literal_size_bytes_(0) {} ifrt::PjRtDevice* device() { return device_; } uint32_t consumer_id() const { return consumer_id_; } Shape shape() const { return shape_; } std::unique_ptr<Literal> literal() { CHECK(literal_); return std::move(literal_); } void SetLiteral(std::unique_ptr<Literal> literal); ssize_t literal_size_bytes() const { return literal_size_bytes_; } std::string DebugString() const; private: ifrt::PjRtDevice* device_; uint32_t consumer_id_; Shape shape_; std::unique_ptr<Literal> literal_; ssize_t literal_size_bytes_; }; void OutfeedData::SetLiteral(std::unique_ptr<Literal> literal) { literal_ = std::move(literal); shape_ = literal_->shape(); int total_size_bytes = 0; ShapeUtil::ForEachSubshape( shape_, [&](const Shape& literal_subshape, const ShapeIndex& index) { if (!literal_subshape.IsTuple()) { total_size_bytes += ShapeUtil::ByteSizeOf(literal_subshape, 8); } }); literal_size_bytes_ = total_size_bytes; } std::string OutfeedData::DebugString() const { return absl::StrFormat("dev=%s; cons=%d; shape=%s", device_->DebugString(), consumer_id_, shape_.ToString()); } class OutfeedReceiverImpl { public: OutfeedReceiverImpl( OutfeedReceiver::Callback callback, absl::Span<ifrt::PjRtClient* const> clients, ssize_t max_callback_queue_size_bytes, const std::optional<ExecutableBuildOptions>& executable_build_options); OutfeedReceiverImpl(const OutfeedReceiverImpl&) = delete; OutfeedReceiverImpl& operator=(const OutfeedReceiverImpl&) = delete; ~OutfeedReceiverImpl(); void Start(); absl::StatusOr<XlaOp> AddOutfeedToBuilder(XlaBuilder* builder, XlaOp token, uint32_t consumer_id, std::vector<XlaOp> arrays, uint32_t device_idx); private: bool CallbackQueueHasSpace() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return callback_queue_size_bytes_ < max_callback_queue_size_bytes_; } bool ShutdownDone() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return (num_working_callback_threads_ == 0 && num_listening_threads_ == 0); } void CallbackThreadLoop(int device_idx); void DeviceListenerThreadLoop(int device_idx); absl::Status SendShutdownOutfeedHeader(int device_idx); absl::StatusOr<std::unique_ptr<Literal>> ReceiveRawFromOutfeed( ifrt::PjRtDevice* device, const Shape& shape); void EnqueueReceivedData(uint32_t device_idx, std::unique_ptr<OutfeedData> received) ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_); void Shutdown(); OutfeedReceiver::Callback callback_; std::vector<ifrt::PjRtDevice*> devices_; uint64_t max_callback_queue_size_bytes_; std::optional<ExecutableBuildOptions> executable_build_options_; absl::Mutex mu_; absl::flat_hash_map<uint32_t, Shape> shape_registry_ ABSL_GUARDED_BY(mu_); uint64_t callback_queue_size_bytes_ ABSL_GUARDED_BY(mu_); int num_listening_threads_ ABSL_GUARDED_BY(mu_); bool shutdown_started_ ABSL_GUARDED_BY(mu_); int num_working_callback_threads_ ABSL_GUARDED_BY(mu_); std::vector<std::queue<std::unique_ptr<OutfeedData>>> callback_queues_ ABSL_GUARDED_BY(mu_); std::unique_ptr<tsl::thread::ThreadPool> threads_; }; OutfeedReceiverImpl::OutfeedReceiverImpl( OutfeedReceiver::Callback callback, absl::Span<ifrt::PjRtClient* const> clients, ssize_t max_callback_queue_size_bytes, const std::optional<ExecutableBuildOptions>& executable_build_options) : executable_build_options_(executable_build_options) { callback_ = callback; max_callback_queue_size_bytes_ = max_callback_queue_size_bytes; for (const auto& client : clients) { for (auto device : client->addressable_devices()) { devices_.push_back(tensorflow::down_cast<ifrt::PjRtDevice*>(device)); } } CHECK_GT(devices_.size(), 0); callback_queues_ = std::vector<std::queue<std::unique_ptr<OutfeedData>>>(devices_.size()); callback_queue_size_bytes_ = 0; num_listening_threads_ = 0; num_working_callback_threads_ = 0; shutdown_started_ = false; } void OutfeedReceiverImpl::Start() { { absl::MutexLock lock(&mu_); CHECK(!shutdown_started_); } int num_threads = 2 * devices_.size(); threads_ = std::make_unique<tsl::thread::ThreadPool>( tsl::Env::Default(), "outfeed_receiver", num_threads); for (int device_idx = 0; device_idx < devices_.size(); ++device_idx) { threads_->Schedule( [this, device_idx]() { DeviceListenerThreadLoop(device_idx); }); threads_->Schedule( [this, device_idx]() { CallbackThreadLoop(device_idx); }); } } void OutfeedReceiverImpl::Shutdown() { VLOG(2) << "Shutdown start"; { absl::MutexLock lock(&mu_); CHECK(!shutdown_started_); shutdown_started_ = true; } for (int device_idx = 0; device_idx < devices_.size(); ++device_idx) { TF_CHECK_OK(SendShutdownOutfeedHeader(device_idx)); } VLOG(2) << "Shutdown waiting for listening and callback threads to stop"; absl::MutexLock lock(&mu_); mu_.Await(absl::Condition(this, &OutfeedReceiverImpl::ShutdownDone)); VLOG(2) << "Shutdown done"; } OutfeedReceiverImpl::~OutfeedReceiverImpl() { VLOG(2) << "~OutfeedReceiverImpl"; Shutdown(); } void OutfeedReceiverImpl::DeviceListenerThreadLoop(int device_idx) { { absl::MutexLock lock(&mu_); ++num_listening_threads_; } ifrt::PjRtDevice* device = devices_[device_idx]; while (true) { Shape header_shape = ShapeUtil::MakeShape(U32, {kOutfeedHeaderWords}); std::unique_ptr<Literal> header = ReceiveRawFromOutfeed(device, header_shape).value(); absl::Span<uint32_t> header_data = header->data<uint32_t>(); CHECK_EQ(header_data.size(), kOutfeedHeaderWords); CHECK_EQ(header_data[0], kOutfeedHeaderStart); uint32_t consumer_id = header_data[1]; Shape shape; { absl::MutexLock lock(&mu_); auto registered_shape = shape_registry_.find(consumer_id); if (registered_shape == shape_registry_.end()) { LOG(FATAL) << "[" << device->DebugString() << "] Cannot find registered shape for consumer ID " << consumer_id << ". Perhaps the code was compiled with a different instance " << "of OutfeedReceiver."; } shape = registered_shape->second; } auto received = std::make_unique<OutfeedData>(device, consumer_id, shape); VLOG(2) << "Listener received header " << received->DebugString(); if (consumer_id == kOutfeedCidShutdown) { VLOG(2) << "[" << device->DebugString() << "] Listener received shutdown header"; absl::MutexLock lock(&mu_); --num_listening_threads_; VLOG(2) << "[" << device->DebugString() << "] Enqueue shutdown callback"; EnqueueReceivedData(device_idx, std::move(received)); return; } std::unique_ptr<Literal> data = ReceiveRawFromOutfeed(device, shape).value(); received->SetLiteral(std::move(data)); absl::MutexLock lock(&mu_); EnqueueReceivedData(device_idx, std::move(received)); } } void OutfeedReceiverImpl::EnqueueReceivedData( uint32_t device_idx, std::unique_ptr<OutfeedData> received) ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { mu_.Await(absl::Condition(this, &OutfeedReceiverImpl::CallbackQueueHasSpace)); ssize_t literal_size_bytes = received->literal_size_bytes(); callback_queue_size_bytes_ += literal_size_bytes; VLOG(2) << "Listener enqueues data " << received->DebugString() << " of size " << literal_size_bytes << " bytes; " << (1 + callback_queues_[device_idx].size()) << " callbacks in queue of total size " << callback_queue_size_bytes_ << " bytes.\n"; callback_queues_[device_idx].push(std::move(received)); } absl::StatusOr<std::unique_ptr<Literal>> OutfeedReceiverImpl::ReceiveRawFromOutfeed(ifrt::PjRtDevice* device, const Shape& shape) { auto literal = std::make_unique<Literal>(shape); TF_RETURN_IF_ERROR( device->client()->TransferFromOutfeed(device, literal.get())); return literal; } void OutfeedReceiverImpl::CallbackThreadLoop(int device_idx) { const ifrt::PjRtDevice* device = devices_[device_idx]; { absl::MutexLock lock(&mu_); num_working_callback_threads_++; } while (true) { std::unique_ptr<OutfeedData> received; { absl::MutexLock lock(&mu_); mu_.Await(absl::Condition( +[](std::queue<std::unique_ptr<OutfeedData>>* queue) { return !queue->empty(); }, &callback_queues_[device_idx])); received = std::move(callback_queues_[device_idx].front()); callback_queues_[device_idx].pop(); callback_queue_size_bytes_ -= received->literal_size_bytes(); VLOG(2) << "[" << device->DebugString() << "] Dequeued callback for " << received->DebugString() << "; " << callback_queues_[device_idx].size() << " callbacks in queue of total size " << callback_queue_size_bytes_ << " bytes.\n"; } if (received->consumer_id() == kOutfeedCidShutdown) { VLOG(2) << "[" << device->DebugString() << "] Callback loop received shutdown signal"; { absl::MutexLock lock(&mu_); CHECK(callback_queues_[device_idx].empty()); --num_working_callback_threads_; } VLOG(2) << "[" << device->DebugString() << "] Callback loop done"; return; } { tsl::profiler::TraceMe traceme("OutfeedReceiver::Callback"); callback_(received->device(), received->consumer_id(), received->literal()); } } } absl::Status OutfeedReceiverImpl::SendShutdownOutfeedHeader(int device_idx) { const ifrt::PjRtDevice* device = devices_[device_idx]; constexpr int consumer_id = kOutfeedCidShutdown; VLOG(2) << "[" << device->DebugString() << "] SendSpecialHeader cons=" << consumer_id; XlaBuilder builder( absl::StrFormat("special_outfeed_header_%d_%d", consumer_id, device_idx)); XlaOp cst_operand = xla::ConstantR0<int32_t>(&builder, 0); XlaOp outfeed = AddOutfeedToBuilder(&builder, CreateToken(&builder), consumer_id, {}, 0) .value(); XlaOp add_dep = xla::internal::XlaBuilderFriend::BuildAddDependency( &builder, cst_operand, outfeed, ShapeUtil::MakeScalarShape(S32)); XlaComputation computation = builder.Build(add_dep).value(); CompileOptions compile_options; if (executable_build_options_) { compile_options.executable_build_options = *executable_build_options_; } compile_options.executable_build_options.set_num_replicas(1); compile_options.executable_build_options.set_num_partitions(1); DeviceAssignment device_assignment(1, 1); device_assignment(0, 0) = device->Id().value(); compile_options.executable_build_options.set_device_assignment( device_assignment); TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtLoadedExecutable> executable, devices_[device_idx]->client()->pjrt_client()->Compile( computation, std::move(compile_options))); ExecuteOptions execute_options; TF_ASSIGN_OR_RETURN( std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> output_buffers, executable->Execute({{}}, execute_options)); return absl::OkStatus(); } absl::StatusOr<XlaOp> OutfeedReceiverImpl::AddOutfeedToBuilder( XlaBuilder* builder, XlaOp token, uint32_t consumer_id, std::vector<XlaOp> arrays, uint32_t device_idx) { XlaOp data = Tuple(builder, std::move(arrays)); Shape shape_with_layout = builder->GetShape(data).value(); ShapeUtil::ForEachMutableSubshape( &shape_with_layout, [](Shape* subshape, const ShapeIndex&) { if (!subshape->has_layout()) { LayoutUtil::SetToDefaultLayout(subshape); } }); VLOG(2) << "RegisterShape cons=" << consumer_id << "; shape=" << shape_with_layout.ToString(); { absl::MutexLock lock(&mu_); auto found = shape_registry_.find(consumer_id); if (found != shape_registry_.end()) { if (!ShapeUtil::Equal(shape_with_layout, found->second)) { return InvalidArgument( "Shape %s does not match previous shape %s used " "for consumer id %d", shape_with_layout.DebugString(), found->second.DebugString(), consumer_id); } } else { shape_registry_.insert({consumer_id, shape_with_layout}); } } std::vector<uint32_t> header{kOutfeedHeaderStart, consumer_id}; XlaOp header_op = ConstantR1<uint32_t>(builder, header); builder->SetSharding(sharding_builder::AssignDevice(device_idx)); token = OutfeedWithToken( header_op, token, ShapeUtil::MakeShape(U32, {kOutfeedHeaderWords}), ""); if (consumer_id != kOutfeedCidShutdown) { token = OutfeedWithToken(data, token, shape_with_layout, ""); } builder->ClearSharding(); return token; } OutfeedReceiver::OutfeedReceiver( Callback callback, absl::Span<ifrt::PjRtClient* const> clients, ssize_t max_callback_queue_size_bytes, const std::optional<ExecutableBuildOptions>& executable_build_options) { p_impl_ = std::make_unique<OutfeedReceiverImpl>(callback, clients, max_callback_queue_size_bytes, executable_build_options); } OutfeedReceiver::~OutfeedReceiver() = default; void OutfeedReceiver::Start() { p_impl_->Start(); } absl::StatusOr<XlaOp> OutfeedReceiver::AddOutfeedToBuilder( XlaBuilder* builder, XlaOp token, uint32_t consumer_id, std::vector<XlaOp> arrays, uint32_t device_idx) { if (consumer_id == kOutfeedCidShutdown) { return InvalidArgument("Consumer ID cannot be a reserved value: %d", consumer_id); } return p_impl_->AddOutfeedToBuilder(builder, token, consumer_id, arrays, device_idx); } }
#include "xla/python/outfeed_receiver.h" #include <memory> #include <optional> #include <vector> #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/client/client_library.h" #include "xla/client/executable_build_options.h" #include "xla/client/xla_builder.h" #include "xla/pjrt/cpu/cpu_client.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_stream_executor_client.h" #include "xla/service/platform_util.h" #include "xla/test.h" namespace xla { namespace { absl::Status CompileAndExecute(XlaBuilder* builder, XlaOp root, int device_id, PjRtClient* client) { XlaComputation computation = builder->Build(root).value(); CompileOptions compile_options; compile_options.executable_build_options.set_num_replicas(1); compile_options.executable_build_options.set_num_partitions(1); DeviceAssignment device_assignment(1, 1); device_assignment(0, 0) = device_id; compile_options.executable_build_options.set_device_assignment( device_assignment); TF_ASSIGN_OR_RETURN(std::unique_ptr<PjRtLoadedExecutable> executable, client->Compile(computation, std::move(compile_options))); ExecuteOptions execute_options; TF_ASSIGN_OR_RETURN( std::vector<std::vector<std::unique_ptr<PjRtBuffer>>> output_buffers, executable->Execute({{}}, execute_options)); return absl::OkStatus(); } class Accumulator { public: struct Data { uint32_t consumer_id; std::shared_ptr<Literal> data; }; void Receive(uint32_t consumer_id, std::shared_ptr<Literal> data) { absl::MutexLock lock(&mutex_); received_.push_back(Data{consumer_id, data}); } std::vector<Data> received() { absl::MutexLock lock(&mutex_); return received_; } private: absl::Mutex mutex_; std::vector<Data> received_ ABSL_GUARDED_BY(mutex_); }; TEST(OutfeedReceiverTest, ReceiveOutfeedSimple) { TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<PjRtClient> cpu_client, GetTfrtCpuClient(CpuClientOptions())); auto ifrt_cpu_client = ifrt::PjRtClient::Create(cpu_client); std::vector<ifrt::PjRtClient*> clients{ifrt_cpu_client.get()}; auto receiver = std::make_unique<Accumulator>(); OutfeedReceiver::Callback callback = [&receiver](xla::ifrt::PjRtDevice* device, uint32_t consumer_id, std::shared_ptr<Literal> data) { receiver->Receive(consumer_id, data); }; auto outfeed_receiver = std::make_shared<OutfeedReceiver>(callback, clients, 128, std::nullopt); outfeed_receiver->Start(); XlaBuilder builder("execute_test_outfeed"); constexpr int consumer_id0 = 5; const Shape shape0 = ShapeUtil::MakeShape(U32, {16}); XlaOp data = Iota(&builder, shape0, 0); XlaOp send = outfeed_receiver ->AddOutfeedToBuilder(&builder, CreateToken(&builder), consumer_id0, {data}, 0) .value(); EXPECT_TRUE(CompileAndExecute(&builder, send, 0, cpu_client.get()).ok()); outfeed_receiver = nullptr; std::vector<Accumulator::Data> received = receiver->received(); EXPECT_EQ(1, received.size()); EXPECT_EQ(consumer_id0, received[0].consumer_id); EXPECT_EQ(ShapeUtil::MakeTupleShape({shape0}), received[0].data->shape()); } TEST(OutfeedReceiverTest, ReceiveOutfeedTwoComputations) { TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<PjRtClient> cpu_client, GetTfrtCpuClient(CpuClientOptions())); auto ifrt_cpu_client = ifrt::PjRtClient::Create(cpu_client); std::vector<ifrt::PjRtClient*> clients{ifrt_cpu_client.get()}; auto receiver = std::make_unique<Accumulator>(); OutfeedReceiver::Callback callback = [&receiver](xla::ifrt::PjRtDevice* device, uint32_t consumer_id, std::shared_ptr<Literal> data) { receiver->Receive(consumer_id, data); }; auto outfeed_receiver = std::make_shared<OutfeedReceiver>(callback, clients, 128, std::nullopt); outfeed_receiver->Start(); XlaBuilder builder0("execute_test_outfeed_0"); constexpr int consumer_id0 = 5; const Shape shape0 = ShapeUtil::MakeShape(U32, {16}); XlaOp data0 = Iota(&builder0, shape0, 0); XlaOp send0 = outfeed_receiver ->AddOutfeedToBuilder(&builder0, CreateToken(&builder0), consumer_id0, {data0}, 0) .value(); EXPECT_TRUE(CompileAndExecute(&builder0, send0, 0, cpu_client.get()).ok()); XlaBuilder builder1("execute_test_outfeed_1"); constexpr int consumer_id1 = 6; const Shape shape1 = ShapeUtil::MakeShape(U32, {128}); XlaOp data1 = Iota(&builder1, shape1, 0); XlaOp send1 = outfeed_receiver ->AddOutfeedToBuilder(&builder1, CreateToken(&builder1), consumer_id1, {data1}, 0) .value(); EXPECT_TRUE(CompileAndExecute(&builder1, send1, 0, cpu_client.get()).ok()); outfeed_receiver = nullptr; std::vector<Accumulator::Data> received = receiver->received(); EXPECT_EQ(2, received.size()); EXPECT_EQ(consumer_id0, received[0].consumer_id); EXPECT_EQ(ShapeUtil::MakeTupleShape({shape0}), received[0].data->shape()); EXPECT_EQ(consumer_id1, received[1].consumer_id); EXPECT_EQ(ShapeUtil::MakeTupleShape({shape1}), received[1].data->shape()); } TEST(OutfeedReceiverTest, ReceiveOutfeedTwoOutfeed) { TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<PjRtClient> cpu_client, GetTfrtCpuClient(CpuClientOptions())); auto ifrt_cpu_client = ifrt::PjRtClient::Create(cpu_client); std::vector<ifrt::PjRtClient*> clients{ifrt_cpu_client.get()}; auto receiver = std::make_unique<Accumulator>(); OutfeedReceiver::Callback callback = [&receiver](xla::ifrt::PjRtDevice* device, uint32_t consumer_id, std::shared_ptr<Literal> data) { receiver->Receive(consumer_id, data); }; auto outfeed_receiver = std::make_shared<OutfeedReceiver>(callback, clients, 128, std::nullopt); outfeed_receiver->Start(); XlaBuilder builder("execute_test_outfeed"); constexpr int consumer_id0 = 5; const Shape shape0 = ShapeUtil::MakeShape(U32, {16}); XlaOp data0 = Iota(&builder, shape0, 0); XlaOp send0 = outfeed_receiver ->AddOutfeedToBuilder(&builder, CreateToken(&builder), consumer_id0, {data0}, 0) .value(); constexpr int consumer_id1 = 6; const Shape shape1 = ShapeUtil::MakeShape(U32, {128}); XlaOp data1 = Iota(&builder, shape1, 0); XlaOp send1 = outfeed_receiver ->AddOutfeedToBuilder(&builder, send0, consumer_id1, {data1}, 0) .value(); EXPECT_TRUE(CompileAndExecute(&builder, send1, 0, cpu_client.get()).ok()); outfeed_receiver = nullptr; std::vector<Accumulator::Data> received = receiver->received(); EXPECT_EQ(2, received.size()); EXPECT_EQ(consumer_id0, received[0].consumer_id); EXPECT_EQ(ShapeUtil::MakeTupleShape({shape0}), received[0].data->shape()); EXPECT_EQ(consumer_id1, received[1].consumer_id); EXPECT_EQ(ShapeUtil::MakeTupleShape({shape1}), received[1].data->shape()); } TEST(OutfeedReceiverTest, DifferentShapeForConsumerIdError) { TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<PjRtClient> cpu_client, GetTfrtCpuClient(CpuClientOptions())); auto ifrt_cpu_client = ifrt::PjRtClient::Create(cpu_client); std::vector<ifrt::PjRtClient*> clients{ifrt_cpu_client.get()}; auto receiver = std::make_unique<Accumulator>(); OutfeedReceiver::Callback callback = [&receiver](xla::ifrt::PjRtDevice* device, uint32_t consumer_id, std::shared_ptr<Literal> data) { receiver->Receive(consumer_id, data); }; auto outfeed_receiver = std::make_shared<OutfeedReceiver>(callback, clients, 128, std::nullopt); outfeed_receiver->Start(); XlaBuilder builder("execute_test_outfeed"); constexpr int consumer_id0 = 5; const Shape shape0 = ShapeUtil::MakeShape(U32, {16}); XlaOp data0 = Iota(&builder, shape0, 0); XlaOp send0 = outfeed_receiver ->AddOutfeedToBuilder(&builder, CreateToken(&builder), consumer_id0, {data0}, 0) .value(); const Shape shape1 = ShapeUtil::MakeShape(U32, {128}); XlaOp data1 = Iota(&builder, shape1, 0); absl::StatusOr<XlaOp> send1 = outfeed_receiver->AddOutfeedToBuilder( &builder, send0, consumer_id0, {data1}, 0); EXPECT_FALSE(send1.ok()); EXPECT_THAT( send1.status().ToString(), testing::ContainsRegex( #if defined(PLATFORM_WINDOWS) "does not match previous shape \\w*/*\\w* *\\n?element_type")); #else "does not match previous shape (go/\\w+[ " "]+\\n)?element_type")); #endif } TEST(OutfeedReceiverTest, InvalidConsumerIdError) { TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<PjRtClient> cpu_client, GetTfrtCpuClient(CpuClientOptions())); auto ifrt_cpu_client = ifrt::PjRtClient::Create(cpu_client); std::vector<ifrt::PjRtClient*> clients{ifrt_cpu_client.get()}; auto receiver = std::make_unique<Accumulator>(); OutfeedReceiver::Callback callback = [&receiver](xla::ifrt::PjRtDevice* device, uint32_t consumer_id, std::shared_ptr<Literal> data) { receiver->Receive(consumer_id, data); }; auto outfeed_receiver = std::make_shared<OutfeedReceiver>(callback, clients, 128, std::nullopt); outfeed_receiver->Start(); XlaBuilder builder("execute_test_outfeed"); const Shape shape0 = ShapeUtil::MakeShape(U32, {16}); XlaOp data0 = Iota(&builder, shape0, 0); absl::StatusOr<XlaOp> send0 = outfeed_receiver->AddOutfeedToBuilder( &builder, CreateToken(&builder), 0, {data0}, 0); EXPECT_FALSE(send0.ok()); EXPECT_THAT(send0.status().ToString(), testing::HasSubstr("Consumer ID cannot be a reserved value")); } } }
1,794
cpp
tensorflow/tensorflow
sharding
third_party/xla/xla/python/ifrt/sharding.cc
third_party/xla/xla/python/ifrt/sharding_test.cc
#ifndef XLA_PYTHON_IFRT_SHARDING_H_ #define XLA_PYTHON_IFRT_SHARDING_H_ #include <memory> #include <optional> #include <ostream> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/log/check.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/ir/sharding_param.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.pb.h" namespace xla { namespace ifrt { struct DeserializeShardingOptions; class Sharding : public llvm::RTTIExtends<Sharding, Serializable> { public: using DeserializeOptions = DeserializeShardingOptions; const DeviceList& devices() const { return devices_; } MemoryKind memory_kind() const { return memory_kind_; } bool IsFullyReplicated() const { return is_fully_replicated_; } bool operator==(const Sharding& other) const; bool operator!=(const Sharding& other) const { return !(*this == other); } virtual absl::StatusOr<Shape> GetShardShape(const Shape& shape) const = 0; virtual bool HasSamePartitioning(const Sharding& other) const = 0; virtual absl::StatusOr<std::unique_ptr<Sharding>> WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const = 0; virtual absl::StatusOr< std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> Disassemble(const Shape& shape) const = 0; virtual absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> Disassemble(const DynamicShape& dynamic_shape) const = 0; virtual absl::StatusOr<std::vector<IndexDomain>> IndexDomains( const Shape& shape) const = 0; static absl::StatusOr<std::unique_ptr<Sharding>> FromProto( DeviceList::LookupDeviceFunc lookup_device, const ShardingProto& sharding_proto); absl::StatusOr<ShardingProto> ToProto() const; virtual std::string DebugString() const = 0; static char ID; protected: Sharding(DeviceList devices, MemoryKind memory_kind, bool is_fully_replicated) : devices_(devices), memory_kind_(memory_kind), is_fully_replicated_(is_fully_replicated) {} DeviceList devices_; MemoryKind memory_kind_; bool is_fully_replicated_; }; std::ostream& operator<<(std::ostream& os, const Sharding& sharding); class SingleDeviceSharding final : public llvm::RTTIExtends<SingleDeviceSharding, Sharding> { public: static std::unique_ptr<SingleDeviceSharding> Create(Device* device, MemoryKind memory_kind); ~SingleDeviceSharding() override = default; absl::StatusOr<Shape> GetShardShape(const Shape& shape) const override; bool HasSamePartitioning(const Sharding& other) const override; absl::StatusOr<std::unique_ptr<Sharding>> WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const override; absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> Disassemble(const Shape& shape) const override; absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> Disassemble(const DynamicShape& dynamic_shape) const override; absl::StatusOr<std::vector<IndexDomain>> IndexDomains( const Shape& shape) const override; std::string DebugString() const override; static char ID; private: explicit SingleDeviceSharding(Device* device, MemoryKind memory_kind) : llvm::RTTIExtends<SingleDeviceSharding, Sharding>( DeviceList({device}), memory_kind, true) {} }; class OpaqueSharding : public llvm::RTTIExtends<OpaqueSharding, Sharding> { public: static std::unique_ptr<OpaqueSharding> Create(DeviceList devices, MemoryKind memory_kind); ~OpaqueSharding() override = default; absl::StatusOr<Shape> GetShardShape(const Shape& shape) const override; bool HasSamePartitioning(const Sharding& other) const override; absl::StatusOr<std::unique_ptr<Sharding>> WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const override; absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> Disassemble(const Shape& shape) const override; absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> Disassemble(const DynamicShape& dynamic_shape) const override; absl::StatusOr<std::vector<IndexDomain>> IndexDomains( const Shape& shape) const override; std::string DebugString() const override; static char ID; private: explicit OpaqueSharding(DeviceList devices, MemoryKind memory_kind); }; class ConcreteSharding : public llvm::RTTIExtends<ConcreteSharding, Sharding> { public: static std::unique_ptr<ConcreteSharding> Create( DeviceList devices, MemoryKind memory_kind, Shape shape, std::vector<Shape> shard_shapes); static std::unique_ptr<ConcreteSharding> Create( DeviceList devices, MemoryKind memory_kind, DynamicShape dynamic_shape, std::vector<DynamicShape> shard_dynamic_shapes); bool has_dynamic_shape() const { DCHECK(this); return std::holds_alternative<DynamicShape>(shape_) && std::holds_alternative<std::vector<DynamicShape>>(shard_shapes_); } bool has_static_shape() const { DCHECK(this); return std::holds_alternative<Shape>(shape_) && std::holds_alternative<std::vector<Shape>>(shard_shapes_); } const Shape& shape() const { DCHECK(has_static_shape()); return std::get<Shape>(shape_); } const DynamicShape& dynamic_shape() const { DCHECK(has_dynamic_shape()); return std::get<DynamicShape>(shape_); } const std::vector<Shape>& shard_shapes() const { DCHECK(this); DCHECK(std::holds_alternative<std::vector<Shape>>(shard_shapes_)); return std::get<std::vector<Shape>>(shard_shapes_); } const std::vector<DynamicShape>& shard_dynamic_shapes() const { DCHECK(this); DCHECK(std::holds_alternative<std::vector<DynamicShape>>(shard_shapes_)); return std::get<std::vector<DynamicShape>>(shard_shapes_); } ~ConcreteSharding() override = default; absl::StatusOr<Shape> GetShardShape(const Shape& shape) const override; bool HasSamePartitioning(const Sharding& other) const override; absl::StatusOr<std::unique_ptr<Sharding>> WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const override; absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> Disassemble(const Shape& shape) const override; absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> Disassemble(const DynamicShape& dynamic_shape) const override; absl::StatusOr<std::vector<IndexDomain>> IndexDomains( const Shape& shape) const override; std::string DebugString() const override; static char ID; private: ConcreteSharding(DeviceList devices, MemoryKind memory_kind, Shape shape, std::vector<Shape> shard_shapes); ConcreteSharding(DeviceList devices, MemoryKind memory_kind, DynamicShape dynamic_shape, std::vector<DynamicShape> shard_dynamic_shapes); std::variant<Shape, DynamicShape> shape_; std::variant<std::vector<Shape>, std::vector<DynamicShape>> shard_shapes_; }; class ConcreteEvenSharding : public llvm::RTTIExtends<ConcreteEvenSharding, Sharding> { public: static std::unique_ptr<ConcreteEvenSharding> Create( DeviceList devices, MemoryKind memory_kind, Shape shape, Shape shard_shape, bool is_fully_replicated = false); Shape shape() const { DCHECK(this); return shape_; } const Shape& shard_shape() const { DCHECK(this); return shard_shape_; } ~ConcreteEvenSharding() override = default; absl::StatusOr<Shape> GetShardShape(const Shape& shape) const override; bool HasSamePartitioning(const Sharding& other) const override; absl::StatusOr<std::unique_ptr<Sharding>> WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const override; absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> Disassemble(const Shape& shape) const override; absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> Disassemble(const DynamicShape& dynamic_shape) const override; absl::StatusOr<std::vector<IndexDomain>> IndexDomains( const Shape& shape) const override; std::string DebugString() const override; static char ID; private: ConcreteEvenSharding(DeviceList devices, MemoryKind memory_kind, Shape shape, Shape shard_shape, bool is_fully_replicated); Shape shape_; Shape shard_shape_; }; class ShardingParamSharding : public llvm::RTTIExtends<ShardingParamSharding, Sharding> { public: static absl::StatusOr<std::unique_ptr<ShardingParamSharding>> Create( ShardingParam sharding_param, DeviceList devices, MemoryKind memory_kind); const ShardingParam& sharding_param() const { return sharding_param_; } absl::StatusOr<Shape> GetShardShape(const Shape& shape) const override; bool HasSamePartitioning(const Sharding& other) const override; absl::StatusOr<std::unique_ptr<Sharding>> WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const override; absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> Disassemble(const Shape& shape) const override; absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> Disassemble(const DynamicShape& dynamic_shape) const override; absl::StatusOr<std::vector<IndexDomain>> IndexDomains( const Shape& shape) const override; std::string DebugString() const override; static char ID; private: ShardingParamSharding(ShardingParam sharding_param, DeviceList devices, MemoryKind memory_kind); ShardingParam sharding_param_; }; struct DeserializeShardingOptions : llvm::RTTIExtends<DeserializeShardingOptions, DeserializeOptions> { explicit DeserializeShardingOptions( DeviceList::LookupDeviceFunc lookup_device) : lookup_device(lookup_device) {} static char ID; DeviceList::LookupDeviceFunc lookup_device; }; } } #endif #include "xla/python/ifrt/sharding.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <ostream> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/ir/sharding_param.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { bool ComputeIsFullyReplicated(const ShardingParam& sharding_param) { return llvm::all_of(sharding_param.dim_shards(), [](auto shards) { return shards == 1; }); } template <typename ContainerT> class MajorToMinorIter { public: using IteratorT = typename ContainerT::const_iterator; using ValueT = typename ContainerT::value_type; static MajorToMinorIter<ContainerT> cbegin( absl::Span<const ContainerT> containers) { std::vector<IteratorT> iters; iters.reserve(containers.size()); for (const ContainerT& container : containers) { iters.push_back(container.cbegin()); } return MajorToMinorIter(containers, std::move(iters)); } std::vector<ValueT> operator*() const { std::vector<ValueT> result; result.reserve(iters_.size()); for (const auto& iter : iters_) { result.push_back(*iter); } return result; } void operator++() { for (int i = iters_.size() - 1; i >= 0; --i) { ++iters_[i]; if (iters_[i] != containers_[i].end()) { break; } if (i != 0) { iters_[i] = containers_[i].begin(); } } } bool IsEnd() const { return iters_.empty() || iters_[0] == containers_[0].end(); } private: MajorToMinorIter(absl::Span<const ContainerT> containers, std::vector<IteratorT> iters) : containers_(containers), iters_(iters) { DCHECK_EQ(iters.size(), containers.size()); } absl::Span<const ContainerT> containers_; std::vector<IteratorT> iters_; }; std::vector<Index> GetTileIndices(absl::Span<const int64_t> dim_shards) { std::vector<std::vector<int64_t>> indices; indices.reserve(dim_shards.size()); for (const int64_t dim_shard : dim_shards) { std::vector<int64_t> index(dim_shard); absl::c_iota(index, 0); indices.push_back(std::move(index)); } std::vector<Index> result; int64_t shard_count = absl::c_accumulate(dim_shards, 1, std::multiplies<int64_t>()); result.reserve(shard_count); for (auto iter = MajorToMinorIter<std::vector<int64_t>>::cbegin(indices); !iter.IsEnd(); ++iter) { result.push_back(Index(*iter)); } return result; } } char Sharding::ID = 0; char SingleDeviceSharding::ID = 0; char OpaqueSharding::ID = 0; char ConcreteSharding::ID = 0; char ConcreteEvenSharding::ID = 0; char ShardingParamSharding::ID = 0; char DeserializeShardingOptions::ID = 0; bool Sharding::operator==(const Sharding& other) const { if (this == &other) { return true; } return HasSamePartitioning(other) && memory_kind_ == other.memory_kind_ && devices() == other.devices(); } absl::StatusOr<std::unique_ptr<Sharding>> Sharding::FromProto( DeviceList::LookupDeviceFunc lookup_device, const ShardingProto& sharding_proto) { return Deserialize<Sharding>( sharding_proto.serialized_sharding(), std::make_unique<DeserializeShardingOptions>(std::move(lookup_device))); } absl::StatusOr<ShardingProto> Sharding::ToProto() const { ShardingProto sharding_proto; TF_ASSIGN_OR_RETURN(*sharding_proto.mutable_serialized_sharding(), Serialize(const_cast<Sharding&>(*this))); return sharding_proto; } std::ostream& operator<<(std::ostream& os, const Sharding& sharding) { return os << sharding.DebugString(); } std::unique_ptr<SingleDeviceSharding> SingleDeviceSharding::Create( Device* device, MemoryKind memory_kind) { return std::unique_ptr<SingleDeviceSharding>( new SingleDeviceSharding(device, memory_kind)); } absl::StatusOr<Shape> SingleDeviceSharding::GetShardShape( const Shape& shape) const { return shape; } bool SingleDeviceSharding::HasSamePartitioning(const Sharding& other) const { if (this == &other) { return true; } return llvm::isa<SingleDeviceSharding>(&other); } absl::StatusOr<std::unique_ptr<Sharding>> SingleDeviceSharding::WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const { if (devices.has_value() && devices->size() != 1) { return InvalidArgument( "SingleDeviceSharding can only have one device, but was asked to have " "%d devices", devices->size()); } return Create(devices.value_or(devices_).front(), memory_kind.value_or(memory_kind_)); } absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> SingleDeviceSharding::Disassemble(const Shape& shape) const { DCHECK(this); return std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>{ {shape, SingleDeviceSharding::Create(devices_[0], memory_kind_)}}; } absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> SingleDeviceSharding::Disassemble(const DynamicShape& dynamic_shape) const { DCHECK(this); return std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>{ {dynamic_shape, SingleDeviceSharding::Create(devices_[0], memory_kind_)}}; } absl::StatusOr<std::vector<IndexDomain>> SingleDeviceSharding::IndexDomains( const Shape& shape) const { DCHECK(this); std::vector<IndexDomain> result; result.reserve(1); result.push_back(IndexDomain(shape)); return result; } std::string SingleDeviceSharding::DebugString() const { DCHECK(this); return absl::StrFormat("SingleDeviceSharding(%s, memory_kind: %s)", devices_.front()->ToString(), memory_kind_.DebugString()); } std::unique_ptr<OpaqueSharding> OpaqueSharding::Create(DeviceList devices, MemoryKind memory_kind) { return std::unique_ptr<OpaqueSharding>( new OpaqueSharding(std::move(devices), memory_kind)); } OpaqueSharding::OpaqueSharding(DeviceList devices, MemoryKind memory_kind) : llvm::RTTIExtends<OpaqueSharding, Sharding>( std::move(devices), memory_kind, false) {} absl::StatusOr<Shape> OpaqueSharding::GetShardShape(const Shape& shape) const { return InvalidArgument( "OpaqueSharding does not have shard shape information"); } bool OpaqueSharding::HasSamePartitioning(const Sharding& other) const { if (this == &other) { return true; } return false; } absl::StatusOr<std::unique_ptr<Sharding>> OpaqueSharding::WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const { if (devices.has_value() && devices->size() != devices_.size()) { return InvalidArgument( "OpaqueSharding should have the same number of devices as the current " "sharding, but was asked to have %d devices", devices->size()); } return Create(devices.value_or(devices_), memory_kind.value_or(memory_kind_)); } absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> OpaqueSharding::Disassemble(const Shape& shape) const { DCHECK(this); return InvalidArgument( "OpaqueSharding does not have shard shape information"); } absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> OpaqueSharding::Disassemble(const DynamicShape& dynamic_shape) const { DCHECK(this); return InvalidArgument( "OpaqueSharding does not have shard shape information"); } absl::StatusOr<std::vector<IndexDomain>> OpaqueSharding::IndexDomains( const Shape& shape) const { DCHECK(this); return InvalidArgument( "OpaqueSharding does not have index domain information"); } std::string OpaqueSharding::DebugString() const { DCHECK(this); return absl::StrFormat( "OpaqueSharding(devices: %s, memory_kind: %s)", absl::StrJoin(devices_, ",", [](std::string* out, const Device* device) { absl::StrAppend(out, device->ToString()); }), memory_kind_.DebugString()); } std::unique_ptr<ConcreteSharding> ConcreteSharding::Create( DeviceList devices, MemoryKind memory_kind, Shape shape, std::vector<Shape> shard_shapes) { CHECK_EQ(devices.size(), shard_shapes.size()); return std::unique_ptr<ConcreteSharding>( new ConcreteSharding(std::move(devices), memory_kind, std::move(shape), std::move(shard_shapes))); } std::unique_ptr<ConcreteSharding> ConcreteSharding::Create( DeviceList devices, MemoryKind memory_kind, DynamicShape dynamic_shape, std::vector<DynamicShape> shard_dynamic_shapes) { CHECK_EQ(devices.size(), shard_dynamic_shapes.size()); return std::unique_ptr<ConcreteSharding>(new ConcreteSharding( std::move(devices), memory_kind, std::move(dynamic_shape), std::move(shard_dynamic_shapes))); } ConcreteSharding::ConcreteSharding(DeviceList devices, MemoryKind memory_kind, Shape shape, std::vector<Shape> shard_shapes) : llvm::RTTIExtends<ConcreteSharding, Sharding>( std::move(devices), memory_kind, false), shape_(std::move(shape)), shard_shapes_(std::move(shard_shapes)) {} ConcreteSharding::ConcreteSharding( DeviceList devices, MemoryKind memory_kind, DynamicShape dynamic_shape, std::vector<DynamicShape> shard_dynamic_shapes) : llvm::RTTIExtends<ConcreteSharding, Sharding>( std::move(devices), memory_kind, false), shape_(std::move(dynamic_shape)), shard_shapes_(std::move(shard_dynamic_shapes)) {} absl::StatusOr<Shape> ConcreteSharding::GetShardShape( const Shape& shape) const { return InvalidArgument("ConcreteSharding does not have a fixed shard shape"); } bool ConcreteSharding::HasSamePartitioning(const Sharding& other) const { if (this == &other) { return true; } const auto* other_concrete_sharding = llvm::dyn_cast<ConcreteSharding>(&other); if (!other_concrete_sharding) { return false; } return shape_ == other_concrete_sharding->shape_ && shard_shapes_ == other_concrete_sharding->shard_shapes_; } absl::StatusOr<std::unique_ptr<Sharding>> ConcreteSharding::WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const { if (devices.has_value() && devices->size() != devices_.size()) { return InvalidArgument( "ConcreteSharding should have the same number of devices as the " "current sharding, but was asked to have %d devices", devices->size()); } if (has_static_shape()) { return Create(devices.value_or(devices_), memory_kind.value_or(memory_kind_), std::get<Shape>(shape_), std::get<std::vector<Shape>>(shard_shapes_)); } else { return Create(devices.value_or(devices_), memory_kind.value_or(memory_kind_), std::get<DynamicShape>(shape_), std::get<std::vector<DynamicShape>>(shard_shapes_)); } } absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> ConcreteSharding::Disassemble(const Shape& shape) const { DCHECK(this); if (!has_static_shape()) { return InvalidArgument( "ConcreteSharding holds dynamic shape, but was asked " "to disassemble static shape %s", shape.DebugString()); } if (shape != std::get<Shape>(shape_)) { return InvalidArgument( "ConcreteSharding can only disassemble shape %s, but was asked " "to disassemble shape %s", std::get<Shape>(shape_).DebugString(), shape.DebugString()); } std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>> result; result.reserve(devices_.size()); const std::vector<Shape>& shard_shapes = std::get<std::vector<Shape>>(shard_shapes_); for (int i = 0; i < devices_.size(); ++i) { result.push_back({shard_shapes[i], SingleDeviceSharding::Create(devices_[i], memory_kind_)}); } return result; } absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> ConcreteSharding::Disassemble(const DynamicShape& dynamic_shape) const { DCHECK(this); if (!has_dynamic_shape()) { return InvalidArgument( "ConcreteSharding holds static shape, but was asked " "to disassemble dynamic shape %s", dynamic_shape.DebugString()); } if (dynamic_shape != std::get<DynamicShape>(shape_)) { return InvalidArgument( "ConcreteSharding can only disassemble dynamic shape %s, but was asked " "to disassemble dynamic shape %s", std::get<DynamicShape>(shape_).DebugString(), dynamic_shape.DebugString()); } std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>> result; result.reserve(devices_.size()); const std::vector<DynamicShape>& shard_dynamic_shapes = std::get<std::vector<DynamicShape>>(shard_shapes_); for (int i = 0; i < devices_.size(); ++i) { result.push_back({shard_dynamic_shapes[i], SingleDeviceSharding::Create(devices_[i], memory_kind_)}); } return result; } absl::StatusOr<std::vector<IndexDomain>> ConcreteSharding::IndexDomains( const Shape& shape) const { DCHECK(this); return InvalidArgument( "ConcreteSharding does not have index domain information"); } std::string ConcreteSharding::DebugString() const { DCHECK(this); return std::visit( [this](const auto& shape, const auto& shard_shapes) { return absl::StrFormat( "ConcreteSharding(devices: %s, shape: %s, shard_shapes: %s, " "memory_kind: %s)", absl::StrJoin(devices_, ",", [](std::string* out, const Device* device) { absl::StrAppend(out, device->ToString()); }), shape.DebugString(), absl::StrJoin(shard_shapes, ",", [](std::string* out, const auto& shard_shape) { absl::StrAppend(out, shard_shape.DebugString()); }), memory_kind_.DebugString()); }, shape_, shard_shapes_); } std::unique_ptr<ConcreteEvenSharding> ConcreteEvenSharding::Create( DeviceList devices, MemoryKind memory_kind, Shape shape, Shape shard
#include "xla/python/ifrt/sharding.h" #include <memory> #include <optional> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "llvm/Support/Casting.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/ir/sharding_param.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::SizeIs; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; class SingleDeviceShardingTest : public test_util::ShardingTest {}; class OpaqueShardingTest : public test_util::ShardingTest {}; class ConcreteShardingTest : public test_util::ShardingTest {}; class ConcreteEvenShardingTest : public test_util::ShardingTest {}; class ShardingParamShardingTest : public test_util::ShardingTest {}; TEST_P(SingleDeviceShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device_list.devices().front(), MemoryKind()); EXPECT_TRUE(sharding->IsFullyReplicated()); } TEST_P(SingleDeviceShardingTest, GetShardShape) { auto device_list = GetDevices({0}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device_list.devices().front(), MemoryKind()); EXPECT_THAT(sharding->GetShardShape(Shape({10, 20})), IsOkAndHolds(Shape({10, 20}))); } TEST_P(SingleDeviceShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0}); std::shared_ptr<const Sharding> sharding0 = SingleDeviceSharding::Create( device_list0.devices().front(), MemoryKind()); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({1}); std::shared_ptr<const Sharding> sharding1 = SingleDeviceSharding::Create( device_list1.devices().front(), MemoryKind()); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(SingleDeviceShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0}); std::shared_ptr<const Sharding> sharding0 = SingleDeviceSharding::Create( device_list0.devices().front(), MemoryKind()); { auto device_list1 = GetDevices({1}); std::shared_ptr<const Sharding> sharding1 = SingleDeviceSharding::Create( device_list1.devices().front(), MemoryKind()); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); EXPECT_EQ(*new_sharding, *sharding1); } { auto device_list1 = GetDevices({0, 1}); EXPECT_THAT(sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("SingleDeviceSharding can only have one " "device, but was asked to have 2 devices"))); } } TEST_P(SingleDeviceShardingTest, IndexDomains) { auto device_list = GetDevices({0}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device_list.devices().front(), MemoryKind()); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(shape))); } TEST_P(SingleDeviceShardingTest, Disassemble) { auto device_list = GetDevices({0}); std::shared_ptr<const Sharding> sharding = SingleDeviceSharding::Create(device_list.devices().front(), MemoryKind()); { Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(1)); const auto& [result_shape, result_sharding] = disassembled[0]; EXPECT_EQ(shape, result_shape); EXPECT_EQ(*result_sharding, *sharding); } { TF_ASSERT_OK_AND_ASSIGN( DynamicShape dynamic_shape, DynamicShape::Create(Shape({10, 20}), BoundedDynamicShapeTag({true, true}))); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(dynamic_shape)); ASSERT_THAT(disassembled, SizeIs(1)); const auto& [result_shape, result_sharding] = disassembled[0]; EXPECT_EQ(dynamic_shape, result_shape); EXPECT_EQ(*result_sharding, *sharding); } } TEST_P(OpaqueShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = OpaqueSharding::Create(device_list, MemoryKind()); EXPECT_FALSE(sharding->IsFullyReplicated()); } TEST_P(OpaqueShardingTest, GetShardShape) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = OpaqueSharding::Create(device_list, MemoryKind()); EXPECT_THAT(sharding->GetShardShape(Shape({10, 20})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("OpaqueSharding does not have shard shape"))); } TEST_P(OpaqueShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding0 = OpaqueSharding::Create(device_list0, MemoryKind()); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = OpaqueSharding::Create(device_list0, MemoryKind()); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(OpaqueShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding0 = OpaqueSharding::Create(device_list0, MemoryKind()); { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = OpaqueSharding::Create(device_list0, MemoryKind()); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); ASSERT_TRUE(llvm::isa<OpaqueSharding>(*new_sharding)); EXPECT_THAT(new_sharding->devices().devices(), ElementsAreArray(device_list1.devices())); } { auto device_list1 = GetDevices({0, 1, 2, 3}); EXPECT_THAT( sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("OpaqueSharding should have the same number of " "devices as the current sharding, but was asked to " "have 4 devices"))); } } TEST_P(OpaqueShardingTest, FailedToDisassemble) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = OpaqueSharding::Create(device_list, MemoryKind()); EXPECT_THAT( sharding->Disassemble(Shape({30})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("OpaqueSharding does not have shard shape information"))); TF_ASSERT_OK_AND_ASSIGN( DynamicShape dynamic_shape, DynamicShape::Create(Shape({30}), BoundedDynamicShapeTag({true}))); EXPECT_THAT( sharding->Disassemble(dynamic_shape), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("OpaqueSharding does not have shard shape information"))); } TEST_P(OpaqueShardingTest, IndexDomainsFails) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = OpaqueSharding::Create(device_list, MemoryKind()); EXPECT_THAT( sharding->IndexDomains(Shape({30})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("OpaqueSharding does not have index domain information"))); } TEST_P(ConcreteShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; shard_shapes.reserve(2); shard_shapes.push_back(Shape({10})); shard_shapes.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding = ConcreteSharding::Create( device_list, MemoryKind(), Shape({30}), shard_shapes); EXPECT_FALSE(sharding->IsFullyReplicated()); } TEST_P(ConcreteShardingTest, GetShardShape) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; shard_shapes.reserve(2); shard_shapes.push_back(Shape({10})); shard_shapes.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding = ConcreteSharding::Create( device_list, MemoryKind(), Shape({30}), shard_shapes); EXPECT_THAT( sharding->GetShardShape(Shape({30})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteSharding does not have a fixed shard shape"))); } TEST_P(ConcreteShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0, 1}); std::vector<Shape> shard_shapes0; shard_shapes0.reserve(2); shard_shapes0.push_back(Shape({10})); shard_shapes0.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding0 = ConcreteSharding::Create( device_list0, MemoryKind(), Shape({30}), shard_shapes0); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({2, 3}); std::vector<Shape> shard_shapes1; shard_shapes1.reserve(2); shard_shapes1.push_back(Shape({10})); shard_shapes1.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding1 = ConcreteSharding::Create( device_list1, MemoryKind(), Shape({30}), shard_shapes1); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3, 4}); std::vector<Shape> shard_shapes1; shard_shapes1.reserve(3); shard_shapes1.push_back(Shape({10})); shard_shapes1.push_back(Shape({20})); shard_shapes1.push_back(Shape({30})); std::shared_ptr<const Sharding> sharding1 = ConcreteSharding::Create( device_list1, MemoryKind(), Shape({60}), shard_shapes1); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3}); std::vector<Shape> shard_shapes1; shard_shapes1.reserve(2); shard_shapes1.push_back(Shape({10})); shard_shapes1.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding1 = ConcreteSharding::Create( device_list1, MemoryKind(), Shape({40}), shard_shapes1); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3}); std::vector<Shape> shard_shapes1; shard_shapes1.reserve(2); shard_shapes1.push_back(Shape({10000})); shard_shapes1.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding1 = ConcreteSharding::Create( device_list1, MemoryKind(), Shape({30}), shard_shapes1); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(ConcreteShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0, 1}); std::vector<Shape> shard_shapes0; shard_shapes0.reserve(2); shard_shapes0.push_back(Shape({10})); shard_shapes0.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding0 = ConcreteSharding::Create( device_list0, MemoryKind(), Shape({30}), shard_shapes0); { auto device_list1 = GetDevices({0, 1}); std::vector<Shape> shard_shapes1; shard_shapes1.reserve(2); shard_shapes1.push_back(Shape({10})); shard_shapes1.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding1 = ConcreteSharding::Create( device_list1, MemoryKind(), Shape({30}), shard_shapes1); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); EXPECT_EQ(*new_sharding, *sharding1); } { auto device_list1 = GetDevices({0, 1, 2, 3}); EXPECT_THAT( sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteSharding should have the same number of " "devices as the current sharding, but was asked to " "have 4 devices"))); } } TEST_P(ConcreteShardingTest, Disassemble) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; shard_shapes.reserve(2); shard_shapes.push_back(Shape({10})); shard_shapes.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding = ConcreteSharding::Create( device_list, MemoryKind(), Shape({30}), shard_shapes); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(Shape({30}))); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < 2; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, shard_shapes[i]); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create(device_list[i], MemoryKind())); } } TEST_P(ConcreteShardingTest, DisassembleDynamicShape) { DeviceList device_list = GetDevices({0, 1}); TF_ASSERT_OK_AND_ASSIGN( DynamicShape dynamic_shape, DynamicShape::Create(Shape({10}), BoundedDynamicShapeTag({true}))); TF_ASSERT_OK_AND_ASSIGN( DynamicShape shard_dynamic_shape1, DynamicShape::Create(Shape({3}), BoundedDynamicShapeTag({true}))); TF_ASSERT_OK_AND_ASSIGN( DynamicShape shard_dynamic_shape2, DynamicShape::Create(Shape({7}), BoundedDynamicShapeTag({true}))); std::vector<DynamicShape> shard_dynamic_shapes{ std::move(shard_dynamic_shape1), std::move(shard_dynamic_shape2)}; auto sharding = ConcreteSharding::Create(device_list, MemoryKind(), dynamic_shape, shard_dynamic_shapes); EXPECT_THAT(sharding->Disassemble(Shape({10})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteSharding holds dynamic shape"))); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(DynamicShape(dynamic_shape))); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < disassembled.size(); ++i) { const auto& [dynamic_shape, sharding] = disassembled[i]; EXPECT_EQ(dynamic_shape, shard_dynamic_shapes[i]); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create(device_list[i], MemoryKind())); } } TEST_P(ConcreteShardingTest, DisassembleFailsForUnexpectedShape) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; shard_shapes.reserve(2); shard_shapes.push_back(Shape({10})); shard_shapes.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding = ConcreteSharding::Create( device_list, MemoryKind(), Shape({30}), shard_shapes); EXPECT_THAT(sharding->Disassemble(Shape({40})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteSharding can only disassemble"))); } TEST_P(ConcreteShardingTest, IndexDomainsFails) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; shard_shapes.reserve(2); shard_shapes.push_back(Shape({10})); shard_shapes.push_back(Shape({20})); std::shared_ptr<const Sharding> sharding = ConcreteSharding::Create( device_list, MemoryKind(), Shape({30}), shard_shapes); EXPECT_THAT(sharding->IndexDomains(Shape({30})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteSharding does not have index " "domain information"))); } TEST_P(ConcreteEvenShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0, 1}); { std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(device_list, MemoryKind(), Shape({30}), Shape({15}), true); EXPECT_TRUE(sharding->IsFullyReplicated()); } { std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create( device_list, MemoryKind(), Shape({30}), Shape({15}), false); EXPECT_FALSE(sharding->IsFullyReplicated()); } } TEST_P(ConcreteEvenShardingTest, GetShardShape) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(device_list, MemoryKind(), Shape({30}), Shape({15}), true); EXPECT_THAT(sharding->GetShardShape(Shape({30})), IsOkAndHolds(Shape({15}))); EXPECT_THAT( sharding->GetShardShape(Shape({45})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteEvenSharding has a shard shape for shape [30], " "but was asked to get a shard shape for shape [45]"))); } TEST_P(ConcreteEvenShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding0 = ConcreteEvenSharding::Create(device_list0, MemoryKind(), Shape({30}), Shape({15}), true); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(device_list1, MemoryKind(), Shape({30}), Shape({15}), true); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3, 4}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(device_list1, MemoryKind(), Shape({30}), Shape({15}), true); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(device_list1, MemoryKind(), Shape({45}), Shape({15}), true); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(device_list1, MemoryKind(), Shape({30}), Shape({10}), true); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create( device_list1, MemoryKind(), Shape({30}), Shape({15}), false); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(ConcreteEvenShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding0 = ConcreteEvenSharding::Create(device_list0, MemoryKind(), Shape({30}), Shape({15}), true); { auto device_list1 = GetDevices({2, 3}); std::shared_ptr<const Sharding> sharding1 = ConcreteEvenSharding::Create(device_list1, MemoryKind(), Shape({30}), Shape({15}), true); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); EXPECT_EQ(*new_sharding, *sharding1); } { auto device_list1 = GetDevices({0, 1, 2, 3}); EXPECT_THAT( sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteEvenSharding should have the same number of " "devices as the current sharding, but was asked to " "have 4 devices"))); } } TEST_P(ConcreteEvenShardingTest, Disassemble) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(device_list, MemoryKind(), Shape({30}), Shape({15}), false); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(Shape({30}))); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < 2; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({15})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create(device_list[i], MemoryKind())); } } TEST_P(ConcreteEvenShardingTest, DisassembleFailsForUnexpectedShape) { auto device_list = GetDevices({0, 1}); std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(device_list, MemoryKind(), Shape({30}), Shape({15}), false); EXPECT_THAT(sharding->Disassemble(Shape({40})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("ConcreteEvenSharding can only disassemble"))); } TEST_P(ConcreteEvenShardingTest, IndexDomainsFails) { auto device_list = GetDevices({0, 1}); std::vector<Shape> shard_shapes; std::shared_ptr<const Sharding> sharding = ConcreteEvenSharding::Create(device_list, MemoryKind(), Shape({30}), Shape({15}), false); EXPECT_THAT( sharding->IndexDomains(Shape({30})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr( "ConcreteEvenSharding does not have index domain information"))); } TEST_P(ShardingParamShardingTest, CreateFailsWhenDeviceCountNotMatch) { auto device_list = GetDevices({0, 1}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; EXPECT_THAT(ShardingParamSharding::Create(param, device_list, MemoryKind()), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("Device counts don't match. From " "ShardingParam 6 vs from DeviceList 2"))); } TEST_P(ShardingParamShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); { ShardingParam param{{1, 1}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_TRUE(param_sharding->IsFullyReplicated()); } { ShardingParam param{{1, 6}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_FALSE(param_sharding->IsFullyReplicated()); } { ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_FALSE(param_sharding->IsFullyReplicated()); } } TEST_P(ShardingParamShardingTest, GetShardShape) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_THAT(sharding->GetShardShape(Shape({6, 6})), IsOkAndHolds(Shape({3, 2}))); EXPECT_THAT(sharding->GetShardShape(Shape({6, 6, 6})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("Numbers of dimensions don't match. From " "Shape 3 vs from ShardingParam 2"))); } TEST_P(ShardingParamShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param0{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding0, ShardingParamSharding::Create(param0, device_list0, MemoryKind())); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); ShardingParam param1{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding1, ShardingParamSharding::Create(param1, device_list1, MemoryKind())); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({3, 4, 5}); ShardingParam param1{{3, 1}, {{1, 0}, {1, 3}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding1, ShardingParamSharding::Create(param1, device_list1, MemoryKind())); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); ShardingParam param1{{3, 2}, {{0, 1}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding1, ShardingParamSharding::Create(param1, device_list1, MemoryKind())); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(ShardingParamShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param0{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding0, ShardingParamSharding::Create(param0, device_list0, MemoryKind())); { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); ShardingParam param1{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> sharding1, ShardingParamSharding::Create(param1, device_list1, MemoryKind())); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); EXPECT_EQ(*new_sharding, *sharding1); } { auto device_list1 = GetDevices({0, 1, 2}); EXPECT_THAT( sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("ShardingParamSharding should have the same number of " "devices as the current sharding, but was asked to " "have 3 devices"))); } } TEST_P(ShardingParamShardingTest, Disassemble) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, param_sharding->Disassemble(Shape({6, 6}))); ASSERT_THAT(disassembled, SizeIs(6)); for (int i = 0; i < 6; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({3, 2})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create(device_list[i], MemoryKind())); } } TEST_P(ShardingParamShardingTest, DisassembleFailsWhenRankNotMatch) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_THAT(param_sharding->Disassemble(Shape({6, 6, 6})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("Numbers of dimensions don't match. From " "Shape 3 vs from ShardingParam 2"))); } TEST_P(ShardingParamShardingTest, DisassembleFailsForUnevenSharding) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); EXPECT_THAT( param_sharding->Disassemble(Shape({7, 6})), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("Uneven shard is not supported. dim: 7, dim_shards: 2"))); } TEST_P(ShardingParamShardingTest, IndexDomain) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{0, 1}, {2, 3}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, param_sharding->IndexDomains(Shape({6, 6}))); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({3, 2})), IndexDomain(Index({0, 2}), Shape({3, 2})), IndexDomain(Index({0, 4}), Shape({3, 2})), IndexDomain(Index({3, 0}), Shape({3, 2})), IndexDomain(Index({3, 2}), Shape({3, 2})), IndexDomain(Index({3, 4}), Shape({3, 2})))); } TEST_P(ShardingParamShardingTest, IndexDomainWithPermutation) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 3}, {{1, 0}, {3, 2}}}; TF_ASSERT_OK_AND_ASSIGN( std::shared_ptr<const Sharding> param_sharding, ShardingParamSharding::Create(param, device_list, MemoryKind())); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, param_sharding->IndexDomains(Shape({6, 6}))); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({3, 2})), IndexDomain(Index({0, 4}), Shape({3, 2})), IndexDomain(Index({3, 2}), Shape({3, 2})), IndexDomain(Index({0, 2}), Shape({3, 2})), IndexDomain(Index({3, 0}), Shape({3, 2})), IndexDomain(Index({3, 4}), Shape({3, 2})))); } TEST_P(ShardingParamShardingTest, IndexDomainWithReplication) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); ShardingParam param{{2, 1}, {{0, 1}, {2, 3}}}; TF_ASSERT_OK_AND_ASSIGN(
1,795
cpp
tensorflow/tensorflow
aggregate_profile
third_party/xla/xla/python/aggregate_profile.cc
third_party/xla/xla/python/aggregate_profile_test.cc
#ifndef XLA_PYTHON_AGGREGATE_PROFILE_H_ #define XLA_PYTHON_AGGREGATE_PROFILE_H_ #include "absl/types/span.h" #include "tsl/profiler/protobuf/profiled_instructions.pb.h" namespace xla { void AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto> profiles, int percentile, tensorflow::profiler::ProfiledInstructionsProto *result_profile); } #endif #include "xla/python/aggregate_profile.h" #include <algorithm> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/types/span.h" #include "xla/python/xplane_to_profile_instructions.h" namespace xla { void AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto> profiles, int percentile, tensorflow::profiler::ProfiledInstructionsProto *result_profile) { if (percentile < 0 || percentile > 100) return; absl::flat_hash_map<std::string, HloLatencyInfo> hlo_latency_info; for (const auto &profile : profiles) { for (const auto &cost : profile.costs()) { hlo_latency_info[cost.name()].durations.emplace_back(cost.cost_us()); } } for (const auto &iter : hlo_latency_info) { auto *cost = result_profile->add_costs(); std::vector<double> durations = iter.second.durations; int index = 0; if (durations.size() > 1) { std::sort(durations.begin(), durations.end()); index = percentile / 100.0 * (durations.size() - 1); } cost->set_cost_us(durations[index]); cost->set_name(iter.first); } } }
#include "xla/python/aggregate_profile.h" #include <map> #include <string> #include <vector> #include "absl/types/span.h" #include "tsl/platform/test.h" #include "tsl/profiler/protobuf/profiled_instructions.pb.h" namespace xla { namespace { using tensorflow::profiler::ProfiledInstructionsProto; TEST(AggregateProfiledInstructionsProtoTest, aggregateAndGetPercentile) { tensorflow::profiler::ProfiledInstructionsProto profile_a; { auto *cost_a = profile_a.add_costs(); cost_a->set_cost_us(10); cost_a->set_name("reduce"); } { auto *cost_a = profile_a.add_costs(); cost_a->set_cost_us(30); cost_a->set_name("copy"); } tensorflow::profiler::ProfiledInstructionsProto profile_c; { auto *cost_c = profile_c.add_costs(); cost_c->set_cost_us(30); cost_c->set_name("reduce"); } std::vector<tensorflow::profiler::ProfiledInstructionsProto> profiles = { profile_a, profile_c}; std::vector<int> custom_call_costs = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}; for (int cost : custom_call_costs) { tensorflow::profiler::ProfiledInstructionsProto profile_custom_call; { auto *cost_c = profile_custom_call.add_costs(); cost_c->set_cost_us(cost); cost_c->set_name("custom-call"); } profiles.push_back(profile_custom_call); } tensorflow::profiler::ProfiledInstructionsProto result_90th; AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto>( profiles.data(), profiles.size()), 90, &result_90th); EXPECT_EQ(result_90th.costs_size(), 3); std::map<std::string, float> costs; for (const auto &cost : result_90th.costs()) { costs[cost.name()] = cost.cost_us(); } EXPECT_EQ(costs["copy"], 30); EXPECT_EQ(costs["custom-call"], 90); EXPECT_EQ(costs["reduce"], 10); tensorflow::profiler::ProfiledInstructionsProto result_10th; AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto>( profiles.data(), profiles.size()), 10, &result_10th); EXPECT_EQ(result_10th.costs_size(), 3); for (const auto &cost : result_10th.costs()) { costs[cost.name()] = cost.cost_us(); } EXPECT_EQ(costs["copy"], 30); EXPECT_EQ(costs["custom-call"], 10); EXPECT_EQ(costs["reduce"], 10); } TEST(AggregateProfiledInstructionsProtoTest, getIncorrectPercentile) { tensorflow::profiler::ProfiledInstructionsProto profile_a; { auto *cost_a = profile_a.add_costs(); cost_a->set_cost_us(10); cost_a->set_name("reduce"); } std::vector<tensorflow::profiler::ProfiledInstructionsProto> profiles = { profile_a}; tensorflow::profiler::ProfiledInstructionsProto result; AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto>( profiles.data(), profiles.size()), -1, &result); EXPECT_EQ(result.costs_size(), 0); AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto>( profiles.data(), profiles.size()), 101, &result); EXPECT_EQ(result.costs_size(), 0); AggregateProfiledInstructionsProto( absl::Span<const tensorflow::profiler::ProfiledInstructionsProto>( profiles.data(), profiles.size()), 100, &result); EXPECT_EQ(result.costs_size(), 1); } } }
1,796
cpp
tensorflow/tensorflow
xplane_to_profile_instructions
third_party/xla/xla/python/xplane_to_profile_instructions.cc
third_party/xla/xla/python/xplane_to_profile_instructions_test.cc
#ifndef XLA_PYTHON_XPLANE_TO_PROFILE_INSTRUCTIONS_H_ #define XLA_PYTHON_XPLANE_TO_PROFILE_INSTRUCTIONS_H_ #include <string> #include <vector> #include "absl/status/status.h" #include "tsl/profiler/protobuf/profiled_instructions.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace xla { extern const char kCostNameSep[]; struct HloLatencyInfo { std::vector<double> durations; }; absl::Status ConvertXplaneToProfiledInstructionsProto( std::vector<tensorflow::profiler::XSpace> xspaces, tensorflow::profiler::ProfiledInstructionsProto* profiled_instructions_proto); absl::Status ConvertXplaneUnderLogdirToProfiledInstructionsProto( const std::string& logdir, tensorflow::profiler::ProfiledInstructionsProto* profiled_instructions_proto); } #endif #include "xla/python/xplane_to_profile_instructions.h" #include <cstdint> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/xla.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/types.h" #include "tsl/profiler/convert/xla_op_utils.h" #include "tsl/profiler/protobuf/xplane.pb.h" #include "tsl/profiler/utils/file_system_utils.h" #include "tsl/profiler/utils/tf_xplane_visitor.h" #include "tsl/profiler/utils/xplane_schema.h" #include "tsl/profiler/utils/xplane_utils.h" #include "tsl/profiler/utils/xplane_visitor.h" namespace xla { namespace { constexpr char kXPlanePb[] = "xplane.pb"; constexpr char kCostNameSep[] = "::"; using tensorflow::profiler::XPlane; using tensorflow::profiler::XSpace; using tsl::profiler::CreateTfXPlaneVisitor; using tsl::profiler::FindPlanesWithPrefix; using tsl::profiler::FindPlaneWithName; using tsl::profiler::GetStatTypeStr; using tsl::profiler::HostEventType; using tsl::profiler::IsInternalEvent; using tsl::profiler::ProfilerJoinPath; using tsl::profiler::StatType; using tsl::profiler::XEventMetadataVisitor; using tsl::profiler::XEventVisitor; using tsl::profiler::XLineVisitor; using tsl::profiler::XPlaneVisitor; using tsl::profiler::XStatVisitor; void GetXPlaneLatencyInfo( const XPlaneVisitor& xplane, const absl::flat_hash_map<std::string, std::string>& hlo_module_info, absl::flat_hash_map<std::string, HloLatencyInfo>* hlo_latency_info) { xplane.ForEachLine([hlo_latency_info, hlo_module_info](const XLineVisitor& xline) { if (xline.DisplayName() == tsl::profiler::kXlaAsyncOpLineName) { return; } xline.ForEachEvent([hlo_latency_info, hlo_module_info](const XEventVisitor& xevent) { int64_t event_type = xevent.Type().value_or(HostEventType::kUnknownHostEventType); if (IsInternalEvent(event_type)) return; std::optional<std::string> hlo_name = std::nullopt; std::optional<std::string> hlo_module_name = std::nullopt; std::optional<std::string> fingerprint = std::nullopt; std::optional<int64_t> program_id = std::nullopt; auto for_each_stat = [&](const XStatVisitor& stat) { if (stat.ValueCase() == tsl::profiler::XStat::VALUE_NOT_SET) return; if (stat.Name() == GetStatTypeStr(StatType::kHloOp)) { hlo_name = stat.ToString(); } if (stat.Name() == GetStatTypeStr(StatType::kProgramId)) { program_id = stat.IntValue(); } if (stat.Name() == GetStatTypeStr(StatType::kHloModule)) { hlo_module_name = stat.ToString(); } }; xevent.Metadata().ForEachStat(for_each_stat); xevent.ForEachStat(for_each_stat); if (!hlo_name.has_value() || !hlo_module_name.has_value()) { return; } if (hlo_module_name.has_value()) { std::string fingerprint_key = hlo_module_name.value(); if (program_id.has_value()) { fingerprint_key = tsl::profiler::HloModuleNameWithProgramId( hlo_module_name.value(), program_id.value()); } if (hlo_module_info.contains(fingerprint_key)) { fingerprint = hlo_module_info.at(fingerprint_key); } } double latency = static_cast<double>(xevent.DurationNs()) / 1e3; std::string key = hlo_name.value(); if (fingerprint.has_value()) { key = absl::StrCat(fingerprint.value(), kCostNameSep, hlo_name.value()); } (*hlo_latency_info)[key].durations.emplace_back(latency); }); }); } std::unique_ptr<xla::HloModule> CreateModuleFromProto( const xla::HloModuleProto& proto) { auto config = xla::HloModule::CreateModuleConfigFromProto(proto, {}); if (config.ok()) { auto module = xla::HloModule::CreateFromProto(proto, config.value()); if (module.ok()) { return std::move(*module); } } return nullptr; } std::optional<std::string> GetHloModuleFingerprint( const xla::HloModuleProto& hlo_module_proto) { std::unique_ptr<xla::HloModule> hlo_module = CreateModuleFromProto(hlo_module_proto); if (hlo_module == nullptr) { return std::nullopt; } const auto& map = hlo_module->entry_computation() ->root_instruction() ->frontend_attributes() .map(); auto it = map.find("fingerprint_before_lhs"); if (it != map.end()) { return it->second; } return std::nullopt; } void GetXPlaneHloModuleInfo( const XPlaneVisitor& xplane, absl::flat_hash_map<std::string, std::string>* hlo_module_info) { xplane.ForEachEventMetadata([&](const XEventMetadataVisitor& event_metadata) { event_metadata.ForEachStat([&](const XStatVisitor& stat) { xla::HloProto hlo_proto; if (tsl::ParseProtoUnlimited(&hlo_proto, stat.BytesValue().data(), stat.BytesValue().size())) { const xla::HloModuleProto& hlo_module_proto = hlo_proto.hlo_module(); std::optional<std::string> fingerprint = GetHloModuleFingerprint(hlo_module_proto); if (fingerprint.has_value()) { std::string key_with_id = tsl::profiler::HloModuleNameWithProgramId( hlo_module_proto.name(), hlo_module_proto.id()); (*hlo_module_info)[key_with_id] = fingerprint.value(); } } }); }); } } absl::Status ConvertXplaneUnderLogdirToProfiledInstructionsProto( const std::string& logdir, tensorflow::profiler::ProfiledInstructionsProto* profiled_instructions_proto) { std::vector<std::string> children_path; TF_RETURN_IF_ERROR(tsl::Env::Default()->GetChildren(logdir, &children_path)); if (children_path.empty()) { return absl::NotFoundError( absl::StrCat("Could not find file under: ", logdir)); } std::vector<tensorflow::profiler::XSpace> xspaces; for (const std::string& child_path : children_path) { if (absl::StrContains(child_path, kXPlanePb)) { std::string xspace_path = ProfilerJoinPath(logdir, child_path); tensorflow::profiler::XSpace xspace; TF_RETURN_IF_ERROR( ReadBinaryProto(tsl::Env::Default(), xspace_path, &xspace)); xspaces.emplace_back(xspace); } } return ConvertXplaneToProfiledInstructionsProto(xspaces, profiled_instructions_proto); } absl::Status ConvertXplaneToProfiledInstructionsProto( std::vector<tensorflow::profiler::XSpace> xspaces, tensorflow::profiler::ProfiledInstructionsProto* profiled_instructions_proto) { absl::flat_hash_map<std::string, HloLatencyInfo> hlo_latency_info; absl::flat_hash_map<std::string, std::string> hlo_module_info; for (const XSpace& xspace : xspaces) { const XPlane* metadata_plane = FindPlaneWithName(xspace, tsl::profiler::kMetadataPlaneName); if (metadata_plane != nullptr) { XPlaneVisitor xplane = CreateTfXPlaneVisitor(metadata_plane); GetXPlaneHloModuleInfo(xplane, &hlo_module_info); } std::vector<const XPlane*> device_planes = FindPlanesWithPrefix(xspace, tsl::profiler::kGpuPlanePrefix); if (device_planes.empty()) { device_planes = FindPlanesWithPrefix(xspace, tsl::profiler::kTpuPlanePrefix); } if (device_planes.empty()) { device_planes = FindPlanesWithPrefix(xspace, tsl::profiler::kCustomPlanePrefix); } for (const XPlane* device_plane : device_planes) { XPlaneVisitor xplane = CreateTfXPlaneVisitor(device_plane); GetXPlaneLatencyInfo(xplane, hlo_module_info, &hlo_latency_info); } } for (const auto& iter : hlo_latency_info) { auto* cost = profiled_instructions_proto->add_costs(); std::vector<double> durations = iter.second.durations; double sum = std::accumulate(durations.begin(), durations.end(), 0.0); cost->set_cost_us(sum / durations.size()); cost->set_name(iter.first); } return absl::OkStatus(); } }
#include "xla/python/xplane_to_profile_instructions.h" #include <cstdint> #include <memory> #include <string> #include "xla/service/hlo.pb.h" #include "xla/tests/verified_hlo_module.h" #include "tsl/platform/test.h" #include "tsl/profiler/convert/xla_op_utils.h" #include "tsl/profiler/protobuf/profiled_instructions.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" #include "tsl/profiler/rpc/client/save_profile.h" #include "tsl/profiler/utils/file_system_utils.h" #include "tsl/profiler/utils/xplane_builder.h" #include "tsl/profiler/utils/xplane_schema.h" namespace xla { namespace { using tensorflow::profiler::XSpace; using tsl::profiler::GetStatTypeStr; using tsl::profiler::GpuPlaneName; using tsl::profiler::kHostThreadsPlaneName; using tsl::profiler::kMetadataPlaneName; using tsl::profiler::StatType; using tsl::profiler::XEventBuilder; using tsl::profiler::XLineBuilder; using tsl::profiler::XPlaneBuilder; void CreateXSpace(XSpace* space, int first_device_latency, int second_device_latency) { XPlaneBuilder host_plane(space->add_planes()); host_plane.SetName(kHostThreadsPlaneName); XLineBuilder thread1 = host_plane.GetOrCreateLine(10); thread1.SetName("thread1"); XEventBuilder event1 = thread1.AddEvent(*host_plane.GetOrCreateEventMetadata("event1")); event1.SetTimestampNs(150000); event1.SetDurationNs(10000); event1.AddStatValue(*host_plane.GetOrCreateStatMetadata("tf_op"), *host_plane.GetOrCreateStatMetadata("Relu")); XLineBuilder thread2 = host_plane.GetOrCreateLine(20); thread2.SetName("thread2"); XEventBuilder event2 = thread2.AddEvent(*host_plane.GetOrCreateEventMetadata("event2")); event2.SetTimestampNs(160000); event2.SetDurationNs(10000); event2.AddStatValue(*host_plane.GetOrCreateStatMetadata("tf_op"), *host_plane.GetOrCreateStatMetadata("Conv2D")); int64_t program_id = 1; XPlaneBuilder device_plane(space->add_planes()); device_plane.SetName(GpuPlaneName(0)); device_plane.SetId(0); XLineBuilder stream1 = device_plane.GetOrCreateLine(30); stream1.SetName("gpu stream 1"); XEventBuilder event3 = stream1.AddEvent(*device_plane.GetOrCreateEventMetadata("kernel1")); event3.SetTimestampNs(180000); event3.SetDurationNs(first_device_latency); event3.AddStatValue( *device_plane.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kHloOp)), *device_plane.GetOrCreateStatMetadata("custom-call")); event3.AddStatValue(*device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kHloModule)), *device_plane.GetOrCreateStatMetadata("test_module")); event3.AddStatValue(*device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kProgramId)), program_id); XPlaneBuilder device_plane_2(space->add_planes()); device_plane_2.SetName(GpuPlaneName(1)); device_plane_2.SetId(0); XLineBuilder stream2 = device_plane.GetOrCreateLine(30); stream2.SetName("gpu stream 1"); XEventBuilder event5 = stream1.AddEvent(*device_plane.GetOrCreateEventMetadata("kernel1")); event5.SetTimestampNs(180000); event5.SetDurationNs(second_device_latency); event5.AddStatValue( *device_plane.GetOrCreateStatMetadata(GetStatTypeStr(StatType::kHloOp)), *device_plane.GetOrCreateStatMetadata("custom-call")); event5.AddStatValue(*device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kHloModule)), *device_plane.GetOrCreateStatMetadata("test_module")); event5.AddStatValue(*device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kProgramId)), program_id); } void CreateXSpaceWithFingerprint(XSpace* space, int first_device_latency, int second_device_latency) { XPlaneBuilder metadata_plane(space->add_planes()); metadata_plane.SetName(kMetadataPlaneName); const char* hlo_text = R"( HloModule test_module apply_op { x = f32[] parameter(0) y = f32[] parameter(1) ROOT apply_op = f32[] add(x, y) } ENTRY ar { p0 = f32[32] parameter(0) p1 = f32[32, 32] parameter(1) p2 = f32[32, 32] parameter(2) p3 = f32[32] parameter(3) dot0 = f32[32,32]{1,0} custom-call(p1, p2), custom_call_target="__cublas$gemm" dot1 = f32[32,32]{1,0} custom-call(dot0, p2), custom_call_target="__cublas$gemm" dot2 = f32[32,32]{1,0} custom-call(dot1, p2), custom_call_target="__cublas$gemm" dot3 = f32[32,32]{1,0} custom-call(dot2, p2), custom_call_target="__cublas$gemm" dot4 = f32[32,32]{1,0} custom-call(dot3, p2), custom_call_target="__cublas$gemm" dot5 = f32[32,32]{1,0} custom-call(dot4, p2), custom_call_target="__cublas$gemm" dot6 = f32[32,32]{1,0} custom-call(dot5, p2), custom_call_target="__cublas$gemm" ar-start = f32[32] all-reduce-start(p0), to_apply=apply_op ar-done = f32[32] all-reduce-done(ar-start) %ag-start = (f32[32], f32[64]) all-gather-start(p3), dimensions={0} %ag-done = f32[64] all-gather-done(%ag-start) add0 = f32[32,32] add(dot0, dot1) add1 = f32[32,32] add(add0, dot2) add2 = f32[32,32] add(add1, dot3) add3 = f32[32,32] add(add2, dot4) add4 = f32[32,32] add(add3, dot5) add5 = f32[32,32] add(add4, dot6) ROOT t = (f32[32], f32[64], f32[32,32]) tuple(ar-done, %ag-done, add5) })"; xla::HloModuleConfig config; auto module = std::make_unique<VerifiedHloModule>( "test_module", config, false, true, ShapeUtil::ByteSizeOfElements); if (module->ParseHloStringAndVerifyModule(hlo_text).ok()) { HloInstruction* root = module->entry_computation()->root_instruction(); FrontendAttributes attributes; (*attributes.mutable_map())["fingerprint_before_lhs"] = "08a5"; root->add_frontend_attributes(attributes); xla::HloModuleProto hlo_module_proto = module->ToProto(); hlo_module_proto.set_id(1); xla::HloProto hlo_proto; *hlo_proto.mutable_hlo_module() = hlo_module_proto; int64_t program_id = 1; tsl::profiler::XEventMetadata* event_metadata = metadata_plane.GetOrCreateEventMetadata(program_id); event_metadata->set_name(tsl::profiler::HloModuleNameWithProgramId( hlo_proto.hlo_module().name(), program_id)); tsl::profiler::XStatsBuilder<tsl::profiler::XEventMetadata> event_stats( event_metadata, &metadata_plane); auto* hlo_proto_stat = metadata_plane.GetOrCreateStatMetadata( GetStatTypeStr(tsl::profiler::StatType::kHloProto)); event_stats.AddStatValue(*hlo_proto_stat, hlo_proto); } return CreateXSpace(space, first_device_latency, second_device_latency); } TEST(XplaneToProfiledInstructionsProtoTest, ConvertXplaneUnderLogdirToProfiledInstructionsProto) { tensorflow::profiler::ProfiledInstructionsProto profile_proto; std::string logdir = testing::TempDir() + "/logdir"; std::string run = tsl::profiler::GetCurrentTimeStampAsString(); const std::string path = tsl::profiler::ProfilerJoinPath(logdir, run); XSpace xspace_first_host; CreateXSpace(&xspace_first_host, 10000, 10000); auto status = tsl::profiler::SaveXSpace(logdir, run, "host_0", xspace_first_host); EXPECT_TRUE(status.ok()); XSpace xspace_2nd_host; CreateXSpace(&xspace_2nd_host, 15000, 5000); status = tsl::profiler::SaveXSpace(logdir, run, "host_1", xspace_2nd_host); EXPECT_TRUE(status.ok()); EXPECT_TRUE( ConvertXplaneUnderLogdirToProfiledInstructionsProto(path, &profile_proto) .ok()); EXPECT_EQ(profile_proto.costs_size(), 1); EXPECT_EQ(profile_proto.costs(0).cost_us(), 10); EXPECT_EQ(profile_proto.costs(0).name(), "custom-call"); } TEST(XplaneToProfiledInstructionsProtoTest, ConvertXplaneUnderLogdirToProfiledInstructionsProtoWithFingerprint) { tensorflow::profiler::ProfiledInstructionsProto profile_proto; std::string logdir = testing::TempDir() + "/logdir"; std::string run = tsl::profiler::GetCurrentTimeStampAsString(); const std::string path = tsl::profiler::ProfilerJoinPath(logdir, run); XSpace xspace_first_host; CreateXSpaceWithFingerprint(&xspace_first_host, 10000, 10000); auto status = tsl::profiler::SaveXSpace(logdir, run, "host_0", xspace_first_host); EXPECT_TRUE(status.ok()); XSpace xspace_2nd_host; CreateXSpaceWithFingerprint(&xspace_2nd_host, 15000, 5000); status = tsl::profiler::SaveXSpace(logdir, run, "host_1", xspace_2nd_host); EXPECT_TRUE(status.ok()); EXPECT_TRUE( ConvertXplaneUnderLogdirToProfiledInstructionsProto(path, &profile_proto) .ok()); EXPECT_EQ(profile_proto.costs_size(), 1); EXPECT_EQ(profile_proto.costs(0).cost_us(), 10); EXPECT_EQ(profile_proto.costs(0).name(), "08a5::custom-call"); } TEST(XplaneToProfiledInstructionsProtoTest, ConvertXplaneToProfiledInstructionsProto) { tensorflow::profiler::ProfiledInstructionsProto profile_proto; XSpace xspace_a; CreateXSpace(&xspace_a, 10000, 10000); XSpace xspace_b; CreateXSpace(&xspace_b, 15000, 5000); EXPECT_TRUE(ConvertXplaneToProfiledInstructionsProto({xspace_a, xspace_b}, &profile_proto) .ok()); EXPECT_EQ(profile_proto.costs_size(), 1); EXPECT_EQ(profile_proto.costs(0).cost_us(), 10); EXPECT_EQ(profile_proto.costs(0).name(), "custom-call"); } TEST(XplaneToProfiledInstructionsProtoTest, ConvertXplaneToProfiledInstructionsProtoWithFingerprint) { tensorflow::profiler::ProfiledInstructionsProto profile_proto; XSpace xspace_a; CreateXSpaceWithFingerprint(&xspace_a, 10000, 10000); XSpace xspace_b; CreateXSpaceWithFingerprint(&xspace_b, 15000, 5000); EXPECT_TRUE(ConvertXplaneToProfiledInstructionsProto({xspace_a, xspace_b}, &profile_proto) .ok()); EXPECT_EQ(profile_proto.costs_size(), 1); EXPECT_EQ(profile_proto.costs(0).cost_us(), 10); EXPECT_EQ(profile_proto.costs(0).name(), "08a5::custom-call"); } } }
1,797
cpp
tensorflow/tensorflow
pjrt_compiler
third_party/xla/xla/pjrt/pjrt_compiler.cc
third_party/xla/xla/pjrt/pjrt_compiler_test.cc
#ifndef XLA_PJRT_PJRT_COMPILER_H_ #define XLA_PJRT_PJRT_COMPILER_H_ #include <cstdint> #include <memory> #include <optional> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "mlir/IR/BuiltinOps.h" #include "xla/client/xla_computation.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_executable.h" #include "tsl/platform/fingerprint.h" namespace xla { using PjRtPlatformId = uint64_t; inline const char* CpuName() { static constexpr char kCpuName[] = "cpu"; return kCpuName; } inline const char* CudaName() { static constexpr char kCudaName[] = "cuda"; return kCudaName; } inline const char* RocmName() { static constexpr char kRocmName[] = "rocm"; return kRocmName; } inline const char* SyclName() { static constexpr char kSyclName[] = "sycl"; return kSyclName; } inline const char* TpuName() { static constexpr char kTpuName[] = "tpu"; return kTpuName; } inline PjRtPlatformId CpuId() { static const PjRtPlatformId kCpuId = tsl::Fingerprint64(CpuName()); return kCpuId; } inline PjRtPlatformId CudaId() { static const PjRtPlatformId kCudaId = tsl::Fingerprint64(CudaName()); return kCudaId; } inline PjRtPlatformId RocmId() { static const PjRtPlatformId kRocmId = tsl::Fingerprint64(RocmName()); return kRocmId; } inline PjRtPlatformId SyclId() { static const PjRtPlatformId kSyclId = tsl::Fingerprint64(SyclName()); return kSyclId; } inline PjRtPlatformId TpuId() { static const PjRtPlatformId kTpuId = tsl::Fingerprint64(TpuName()); return kTpuId; } class PjRtCompiler; class PjRtClient; class PjRtTopologyDescription { public: virtual ~PjRtTopologyDescription() = default; virtual PjRtPlatformId platform_id() const = 0; virtual absl::string_view platform_name() const = 0; virtual absl::string_view platform_version() const = 0; virtual std::optional<PjRtCompiler*> compiler() const { return std::nullopt; } virtual std::vector<std::unique_ptr<const PjRtDeviceDescription>> DeviceDescriptions() const = 0; virtual bool is_subslice_topology() const { return false; } virtual absl::StatusOr<int> ProcessCount() const { return absl::UnimplementedError("ProcessCount is unsupported."); } virtual absl::StatusOr<int> CoreCountOfDefaultType() const { return absl::UnimplementedError("CoreCountOfDefaultType is unsupported."); } virtual absl::StatusOr<int> LogicalDeviceCountOfDefaultType() const { return absl::UnimplementedError( "LogicalDeviceCountOfDefaultType is unsupported."); } virtual absl::StatusOr<int> CoreCountOfDefaultTypePerProcess() const { return absl::UnimplementedError( "CoreCountOfDefaultTypePerProcess is unsupported."); } virtual absl::StatusOr<int> CoreCountOfDefaultTypePerChip() const { return absl::UnimplementedError( "CoreCountOfDefaultTypePerChip is unsupported."); } virtual absl::StatusOr<std::string> Serialize() const = 0; virtual const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const = 0; virtual absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const = 0; }; class PjRtCompiler { public: virtual ~PjRtCompiler() = default; virtual absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client) = 0; virtual absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client) = 0; }; void PjRtRegisterCompiler(absl::string_view platform_name, std::unique_ptr<PjRtCompiler> compiler); absl::StatusOr<std::unique_ptr<PjRtExecutable>> PjRtCompile( CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client = nullptr); absl::StatusOr<std::unique_ptr<PjRtExecutable>> PjRtCompile( CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client = nullptr); } #endif #include "xla/pjrt/pjrt_compiler.h" #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "xla/pjrt/metrics.h" namespace xla { ABSL_CONST_INIT absl::Mutex registry_mutex(absl::kConstInit); absl::flat_hash_map<std::string, std::unique_ptr<PjRtCompiler>>* CompilerRegistry() { static auto* compiler_registry = new absl::flat_hash_map<std::string, std::unique_ptr<PjRtCompiler>>(); return compiler_registry; } class ScopedMetricHelper { public: explicit ScopedMetricHelper(absl::string_view metric_name) : metric_name_(metric_name) { if (metric_name == metrics::kPjrtCompilerCompileComputationMetricName) { metrics::RecordPjrtCompilerCompileComputationStatus(true); } else if (metric_name == metrics::kPjrtCompilerCompileModuleMetricName) { metrics::RecordPjrtCompilerCompileModuleStatus(true); } else { LOG(ERROR) << "No corresponding handler function for metric: " << metric_name; } } ~ScopedMetricHelper() { if (metric_name_ == metrics::kPjrtCompilerCompileComputationMetricName) { metrics::RecordPjrtCompilerCompileComputationStatus(false); } else if (metric_name_ == metrics::kPjrtCompilerCompileModuleMetricName) { metrics::RecordPjrtCompilerCompileModuleStatus(false); } } private: absl::string_view metric_name_; }; void PjRtRegisterCompiler(absl::string_view platform_name, std::unique_ptr<PjRtCompiler> compiler) { CHECK(compiler != nullptr); absl::MutexLock l(&registry_mutex); auto* compiler_registry = CompilerRegistry(); CHECK(!compiler_registry->contains(platform_name)); (*compiler_registry)[platform_name] = std::move(compiler); } absl::StatusOr<std::unique_ptr<PjRtExecutable>> PjRtCompile( CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client) { auto topology_compiler = topology.compiler(); ScopedMetricHelper helper(metrics::kPjrtCompilerCompileComputationMetricName); if (topology_compiler.has_value()) { return (*topology_compiler) ->Compile(std::move(options), computation, topology, client); } absl::ReaderMutexLock l(&registry_mutex); const auto* compiler_registry = CompilerRegistry(); auto it = compiler_registry->find(topology.platform_name()); if (it == compiler_registry->end()) { return tsl::errors::NotFound(absl::StrCat( "No compiler registered for platform ", topology.platform_name())); } return it->second->Compile(std::move(options), computation, topology, client); } absl::StatusOr<std::unique_ptr<PjRtExecutable>> PjRtCompile( CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client) { auto topology_compiler = topology.compiler(); ScopedMetricHelper helper(metrics::kPjrtCompilerCompileModuleMetricName); if (topology_compiler.has_value()) { return (*topology_compiler) ->Compile(std::move(options), module, topology, client); } absl::ReaderMutexLock l(&registry_mutex); const auto* compiler_registry = CompilerRegistry(); auto it = compiler_registry->find(topology.platform_name()); if (it == compiler_registry->end()) { return tsl::errors::NotFound(absl::StrCat( "No compiler registered for platform ", topology.platform_name())); } return it->second->Compile(std::move(options), module, topology, client); } }
#include "xla/pjrt/pjrt_compiler.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/client/xla_computation.h" #include "xla/pjrt/metrics.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_device_description.h" #include "tsl/lib/monitoring/cell_reader.h" #include "tsl/platform/status_matchers.h" namespace xla { using metrics::kPjrtCompilerCompileComputationMetricName; using metrics::kPjrtCompilerCompileModuleMetricName; using ::tsl::monitoring::testing::CellReader; using ::tsl::testing::StatusIs; namespace { class PjRtTestTopology : public PjRtTopologyDescription { public: PjRtPlatformId platform_id() const override { return 0; } absl::string_view platform_name() const override { return "not_registered"; } absl::string_view platform_version() const override { return "test"; } std::vector<std::unique_ptr<const PjRtDeviceDescription>> DeviceDescriptions() const override { LOG(FATAL) << "Unused"; } absl::StatusOr<std::string> Serialize() const override { return "test_topo"; } const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const override { LOG(FATAL) << "Unused"; } absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const override { return Unimplemented("TestTopology does not support GetDefaultLayout"); } }; TEST(PjRtCompilerTest, CompilerNotRegistered) { PjRtTestTopology topology; CompileOptions options; XlaComputation computation; auto res = PjRtCompile(options, computation, topology); EXPECT_TRUE(tsl::errors::IsNotFound(res.status())); } TEST(PjRtCompilerTest, CompilerRegistered) { class PjRtTestTopology : public PjRtTopologyDescription { public: PjRtPlatformId platform_id() const override { return 0; } absl::string_view platform_name() const override { return "registered"; } absl::string_view platform_version() const override { return "test"; } std::vector<std::unique_ptr<const PjRtDeviceDescription>> DeviceDescriptions() const override { LOG(FATAL) << "Unused"; } absl::StatusOr<std::string> Serialize() const override { return "test_topo"; } const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& Attributes() const override { LOG(FATAL) << "Unused"; } absl::StatusOr<Layout> GetDefaultLayout( PrimitiveType element_type, absl::Span<const int64_t> dims) const override { return Unimplemented("TestTopology does not support GetDefaultLayout"); } }; PjRtTestTopology topology; class PjRtTestCompiler : public PjRtCompiler { public: absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( CompileOptions options, const XlaComputation& computation, const PjRtTopologyDescription& topology, PjRtClient* client) override { return tsl::errors::Unimplemented("test compiler!"); } absl::StatusOr<std::unique_ptr<PjRtExecutable>> Compile( CompileOptions options, mlir::ModuleOp module, const PjRtTopologyDescription& topology, PjRtClient* client) override { return tsl::errors::Unimplemented("test compiler!"); } }; std::unique_ptr<PjRtCompiler> compiler = std::make_unique<PjRtTestCompiler>(); PjRtRegisterCompiler(topology.platform_name(), std::move(compiler)); CompileOptions options; XlaComputation computation; auto res = PjRtCompile(options, computation, topology); EXPECT_TRUE(tsl::errors::IsUnimplemented(res.status())); } TEST(PjRtCompilerTest, PjrtCompileComputationMetric) { PjRtTestTopology topology; xla::CompileOptions compile_options; XlaComputation xla_computation; CellReader<bool> metric_reader( std::string{kPjrtCompilerCompileComputationMetricName}); EXPECT_THAT(PjRtCompile(compile_options, xla_computation, topology, nullptr), StatusIs(tensorflow::error::NOT_FOUND)); EXPECT_FALSE(metric_reader.Read()); } TEST(PjRtCompilerTest, PjrtCompileModuleMetric) { PjRtTestTopology topology; xla::CompileOptions compile_options; mlir::ModuleOp module; CellReader<bool> metric_reader( std::string{kPjrtCompilerCompileModuleMetricName}); EXPECT_THAT(PjRtCompile(compile_options, module, topology, nullptr), StatusIs(tensorflow::error::NOT_FOUND)); EXPECT_FALSE(metric_reader.Read()); } } }
1,798
cpp
tensorflow/tensorflow
xla_sharding
third_party/xla/xla/python/pjrt_ifrt/xla_sharding.cc
third_party/xla/xla/python/pjrt_ifrt/xla_sharding_test.cc
#ifndef XLA_PYTHON_PJRT_IFRT_XLA_SHARDING_H_ #define XLA_PYTHON_PJRT_IFRT_XLA_SHARDING_H_ #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" namespace xla { namespace ifrt { class XlaCompatibleSharding : public llvm::RTTIExtends<XlaCompatibleSharding, Sharding> { public: using llvm::RTTIExtends<XlaCompatibleSharding, Sharding>::RTTIExtends; static char ID; }; class HloSharding final : public llvm::RTTIExtends<HloSharding, XlaCompatibleSharding> { public: static std::unique_ptr<HloSharding> Create(DeviceList devices, MemoryKind memory_kind, xla::HloSharding xla_hlo_sharding); const xla::HloSharding& xla_hlo_sharding() const { return xla_hlo_sharding_; } ~HloSharding() override = default; absl::StatusOr<Shape> GetShardShape(const Shape& shape) const override; bool HasSamePartitioning(const Sharding& other) const override; absl::StatusOr<std::unique_ptr<Sharding>> WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const override; absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> Disassemble(const Shape& shape) const override; absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> Disassemble(const DynamicShape& dynamic_shape) const override; absl::StatusOr<std::vector<IndexDomain>> IndexDomains( const Shape& shape) const override; std::string DebugString() const override; static char ID; private: HloSharding(DeviceList devices, MemoryKind memory_kind, xla::HloSharding xla_hlo_sharding); xla::HloSharding xla_hlo_sharding_; }; std::vector<IndexDomain> TEST_HloShardingIndexDomainsSlowPath( const HloSharding& sharding, const Shape& shape); } } #endif #include "xla/python/pjrt_ifrt/xla_sharding.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { char XlaCompatibleSharding::ID = 0; char HloSharding::ID = 0; namespace { bool NextIndex(Index::Elements* index, absl::Span<const int64_t> limit) { DCHECK_LE(index->size(), limit.size()); for (int64_t i = index->size() - 1; i >= 0; --i) { ++(*index)[i]; if ((*index)[i] < limit[i]) { return true; } (*index)[i] = 0; } return false; } std::vector<IndexDomain> IndexDomainsSlowPath( const xla::HloSharding& hlo_sharding, const DeviceList& devices, const Shape& shape) { auto xla_shape = xla::ShapeUtil::MakeShapeWithDescendingLayout( xla::PrimitiveType::S32, shape.dims()); if (devices.size() > 8) { LOG_FIRST_N(WARNING, 1) << "Taking a slow path for HloSharding::IndexDomains(). This will not " "scale for a large number of devices."; } std::vector<IndexDomain> result; result.reserve(devices.size()); Index::Elements origin(shape.dims().size()); Shape::Dimensions shard_shape(shape.dims().size()); for (int device_idx = 0; device_idx < devices.size(); ++device_idx) { auto tile_offset = hlo_sharding.TileOffsetForDevice(xla_shape, device_idx); auto tile_limit = hlo_sharding.TileLimitForDevice(xla_shape, device_idx); for (int i = 0; i < shape.dims().size(); ++i) { origin[i] = tile_offset[i]; shard_shape[i] = tile_limit[i] - tile_offset[i]; } result.push_back(IndexDomain(Index(origin), Shape(shard_shape))); } return result; } } std::unique_ptr<HloSharding> HloSharding::Create( DeviceList devices, MemoryKind memory_kind, xla::HloSharding xla_hlo_sharding) { return std::unique_ptr<HloSharding>(new HloSharding( std::move(devices), memory_kind, std::move(xla_hlo_sharding))); } HloSharding::HloSharding(DeviceList devices, MemoryKind memory_kind, xla::HloSharding xla_hlo_sharding) : llvm::RTTIExtends<HloSharding, XlaCompatibleSharding>( std::move(devices), memory_kind, xla_hlo_sharding.IsReplicated()), xla_hlo_sharding_(std::move(xla_hlo_sharding)) {} absl::StatusOr<Shape> HloSharding::GetShardShape(const Shape& shape) const { if (shape.dims().size() != xla_hlo_sharding_.TiledDataRank()) { return InvalidArgument( "Numbers of dimensions don't match. From Shape %d vs from " "HloSharding %d", shape.dims().size(), xla_hlo_sharding_.TiledDataRank()); } const absl::Span<const int64_t> tile_assignment_dims = xla_hlo_sharding_.tile_assignment().dimensions(); Shape::Dimensions tile_shape; tile_shape.reserve(shape.dims().size()); for (int64_t i = 0; i < shape.dims().size(); ++i) { tile_shape.push_back( xla::CeilOfRatio(shape.dims()[i], tile_assignment_dims[i])); } return Shape(std::move(tile_shape)); } bool HloSharding::HasSamePartitioning(const Sharding& other) const { if (this == &other) { return true; } const auto* other_hlo_sharding = llvm::dyn_cast<HloSharding>(&other); if (!other_hlo_sharding) { return false; } return xla_hlo_sharding_ == other_hlo_sharding->xla_hlo_sharding_; } absl::StatusOr<std::unique_ptr<Sharding>> HloSharding::WithDeviceAssignment( std::optional<DeviceList> devices, std::optional<MemoryKind> memory_kind) const { if (devices.has_value() && devices->size() != devices_.size()) { return InvalidArgument( "HloSharding should have the same number of devices as the current " "sharding, but was asked to have %d devices", devices->size()); } return Create(devices.value_or(devices_), memory_kind.value_or(memory_kind_), xla_hlo_sharding_); } absl::StatusOr<std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>>> HloSharding::Disassemble(const Shape& shape) const { TF_ASSIGN_OR_RETURN(auto index_domains, IndexDomains(shape)); std::vector<std::pair<Shape, std::shared_ptr<const Sharding>>> result; result.reserve(index_domains.size()); for (int i = 0; i < index_domains.size(); ++i) { result.push_back({index_domains[i].shape(), SingleDeviceSharding::Create(devices_[i], memory_kind_)}); } return result; } absl::StatusOr< std::vector<std::pair<DynamicShape, std::shared_ptr<const Sharding>>>> HloSharding::Disassemble(const DynamicShape& dynamic_shape) const { return InvalidArgument( "HloSharding can only disassemble static shape, but was asked " "to disassemble dynamic shape %s", dynamic_shape.DebugString()); } absl::StatusOr<std::vector<IndexDomain>> HloSharding::IndexDomains( const Shape& shape) const { auto format_shape = [&] { return absl::StrCat("[", absl::StrJoin(shape.dims(), ","), "]"); }; std::vector<IndexDomain> result; const int num_devices = devices_.size(); if (xla_hlo_sharding_.IsReplicated() || xla_hlo_sharding_.IsTileMaximal()) { IndexDomain element(shape); result.resize(num_devices, element); return result; } if (!xla_hlo_sharding_.IsTiled()) { return IndexDomainsSlowPath(xla_hlo_sharding_, devices_, shape); } for (const xla::OpSharding::Type subgroup_type : xla_hlo_sharding_.subgroup_types()) { if (subgroup_type != xla::OpSharding::REPLICATED) { return IndexDomainsSlowPath(xla_hlo_sharding_, devices_, shape); } } if (xla_hlo_sharding_.tile_assignment().num_elements() != num_devices) { return absl::InvalidArgumentError(absl::StrFormat( "sharding's tile_assignment_devices and device count does not " "match: %d vs. %d; shape=%s, sharding=%s", xla_hlo_sharding_.tile_assignment().num_elements(), num_devices, format_shape(), DebugString())); } if (xla_hlo_sharding_.TotalNumTiles() != num_devices) { return absl::InvalidArgumentError( absl::StrFormat("sharding's tile count and device count does not " "match: %d vs. %d; shape=%s, sharding=%s", xla_hlo_sharding_.TotalNumTiles(), num_devices, format_shape(), xla_hlo_sharding_.ToString())); } const int64_t tiled_data_rank = xla_hlo_sharding_.TiledDataRank(); if (shape.dims().size() != tiled_data_rank) { return absl::InvalidArgumentError( absl::StrFormat("shape must have %d dimensions, but has %d dimensions: " "shape=%s, sharding=%s", tiled_data_rank, shape.dims().size(), format_shape(), xla_hlo_sharding_.ToString())); } TF_ASSIGN_OR_RETURN(Shape tile_shape, GetShardShape(shape)); const absl::Span<const int64_t> tile_shape_dims = tile_shape.dims(); const absl::Span<const int64_t> tile_assignment_dims = xla_hlo_sharding_.tile_assignment().dimensions(); const int64_t replication_dim = xla_hlo_sharding_.SubgroupReplicationDim(); int64_t num_replicas; if (replication_dim == -1) { num_replicas = 1; } else { num_replicas = tile_assignment_dims[replication_dim]; } Index::Elements unique_tile_index(shape.dims().size()); std::vector<Index::Elements> origins(num_devices); Index::Elements origin(shape.dims().size()); int64_t device_assignment_index = 0; do { for (int64_t i = 0; i < shape.dims().size(); ++i) { origin[i] = std::min(tile_shape_dims[i] * unique_tile_index[i], shape.dims()[i]); } for (int64_t i = 0; i < num_replicas; ++i) { CHECK_LT(device_assignment_index, num_devices); const int64_t device_id = xla_hlo_sharding_.tile_assignment() .array() .data()[device_assignment_index]; if (device_id < 0 || device_id >= num_devices) { return absl::InvalidArgumentError( absl::StrFormat("Out of range device id in device_assignment: %d; " "valid range: [0, %d)", device_id, num_devices)); } origins[device_id] = origin; ++device_assignment_index; } } while (NextIndex(&unique_tile_index, tile_assignment_dims)); result.reserve(num_devices); for (int device_idx = 0; device_idx < num_devices; ++device_idx) { Shape::Dimensions actual_tile_shape; actual_tile_shape.reserve(tile_shape_dims.size()); for (int i = 0; i < tile_shape_dims.size(); ++i) { actual_tile_shape.push_back(std::min( tile_shape_dims[i], shape.dims()[i] - origins[device_idx][i])); } result.push_back(IndexDomain(Index(origins[device_idx]), Shape(std::move(actual_tile_shape)))); } return result; } std::string HloSharding::DebugString() const { return absl::StrFormat("HloSharding(memory_kind: %s, hlo_sharding: %s)", memory_kind_.DebugString(), xla_hlo_sharding_.ToString()); } std::vector<IndexDomain> TEST_HloShardingIndexDomainsSlowPath( const HloSharding& hlo_sharding, const Shape& shape) { return IndexDomainsSlowPath(hlo_sharding.xla_hlo_sharding(), hlo_sharding.devices(), shape); } } }
#include "xla/python/pjrt_ifrt/xla_sharding.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/tile_assignment.h" #include "xla/python/ifrt/index.h" #include "xla/python/ifrt/index_domain.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/sharding_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::SizeIs; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; class HloShardingTest : public test_util::ShardingTest {}; TEST_P(HloShardingTest, IsFullyReplicated) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); { auto xla_hlo_sharding = xla::HloSharding::Replicate(); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); EXPECT_TRUE(sharding->IsFullyReplicated()); } { auto xla_hlo_sharding = xla::HloSharding::IotaTile({1, 6}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); EXPECT_FALSE(sharding->IsFullyReplicated()); } { auto xla_hlo_sharding = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); EXPECT_FALSE(sharding->IsFullyReplicated()); } } TEST_P(HloShardingTest, GetShardShape) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); EXPECT_THAT(sharding->GetShardShape(Shape({6, 6})), IsOkAndHolds(Shape({3, 2}))); EXPECT_THAT(sharding->GetShardShape(Shape({6, 6, 6})), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("Numbers of dimensions don't match. From " "Shape 3 vs from HloSharding 2"))); } TEST_P(HloShardingTest, HasSamePartitioning) { auto device_list0 = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding0 = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding0 = HloSharding::Create(device_list0, MemoryKind(), xla_hlo_sharding0); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding0)); { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); auto xla_hlo_sharding1 = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding1 = HloSharding::Create(device_list1, MemoryKind(), xla_hlo_sharding1); EXPECT_TRUE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({3, 4, 5}); auto xla_hlo_sharding1 = xla::HloSharding::IotaTile({3, 1}); std::shared_ptr<const HloSharding> sharding1 = HloSharding::Create(device_list1, MemoryKind(), xla_hlo_sharding1); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); auto xla_hlo_sharding1 = xla::HloSharding::IotaTile({3, 2}); std::shared_ptr<const HloSharding> sharding1 = HloSharding::Create(device_list1, MemoryKind(), xla_hlo_sharding1); EXPECT_FALSE(sharding0->HasSamePartitioning(*sharding1)); } } TEST_P(HloShardingTest, WithDeviceAssignment) { auto device_list0 = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding0 = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding0 = HloSharding::Create(device_list0, MemoryKind(), xla_hlo_sharding0); { auto device_list1 = GetDevices({3, 4, 5, 0, 1, 2}); auto xla_hlo_sharding1 = xla::HloSharding::IotaTile({2, 3}); std::shared_ptr<const HloSharding> sharding1 = HloSharding::Create(device_list1, MemoryKind(), xla_hlo_sharding1); TF_ASSERT_OK_AND_ASSIGN( auto new_sharding, sharding0->WithDeviceAssignment(device_list1, std::nullopt)); EXPECT_EQ(*new_sharding, *sharding1); } { auto device_list1 = GetDevices({0, 1, 2}); EXPECT_THAT( sharding0->WithDeviceAssignment(device_list1, std::nullopt), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("HloSharding should have the same number of " "devices as the current sharding, but was asked to " "have 3 devices"))); } } TEST_P(HloShardingTest, IndexDomainsWithReplication) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Replicate(); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(shape), IndexDomain(shape))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithReplication) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Replicate(); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < 2; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({10, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create(device_list[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithTile) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile( xla::TileAssignment((absl::Span<const int64_t>){2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithTile) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile( xla::TileAssignment((absl::Span<const int64_t>){2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < 2; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({5, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create(device_list[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithUnevenTile) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile( xla::TileAssignment((absl::Span<const int64_t>){2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({11, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({6, 20})), IndexDomain(Index({6, 0}), Shape({5, 20})))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithUnevenTile) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile( xla::TileAssignment((absl::Span<const int64_t>){2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({11, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(2)); for (int i = 0; i < 2; ++i) { const auto& [shape, sharding] = disassembled[i]; if (i == 0) { EXPECT_EQ(shape, Shape({6, 20})); } else { EXPECT_EQ(shape, Shape({5, 20})); } EXPECT_EQ(*sharding, *SingleDeviceSharding::Create(device_list[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithPartialTile) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::PartialTile(xla::TileAssignment({2, 1, 3})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithPartialTile) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::PartialTile(xla::TileAssignment({2, 1, 3})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(6)); for (int i = 0; i < 6; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({5, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create(device_list[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithSubgroupReplicated) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::Subgroup( xla::TileAssignment({2, 1, 3}), {xla::OpSharding::REPLICATED}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithSubgroupReplicated) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::Subgroup( xla::TileAssignment({2, 1, 3}), {xla::OpSharding::REPLICATED}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(6)); for (int i = 0; i < 6; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({5, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create(device_list[i], MemoryKind())); } } TEST_P(HloShardingTest, IndexDomainsWithSubgroupMaximalSlowPath) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::Subgroup( xla::TileAssignment({2, 1, 3}), {xla::OpSharding::MAXIMAL}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto index_domains, sharding->IndexDomains(shape)); EXPECT_THAT(index_domains, ElementsAre(IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({0, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})), IndexDomain(Index({5, 0}), Shape({5, 20})))); EXPECT_THAT( index_domains, ElementsAreArray(TEST_HloShardingIndexDomainsSlowPath(*sharding, shape))); } TEST_P(HloShardingTest, DisassembleWithSubgroupMaximalSlowPath) { auto device_list = GetDevices({0, 1, 2, 3, 4, 5}); auto xla_hlo_sharding = xla::HloSharding::Subgroup( xla::TileAssignment({2, 1, 3}), {xla::OpSharding::MAXIMAL}); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); TF_ASSERT_OK_AND_ASSIGN(auto disassembled, sharding->Disassemble(shape)); ASSERT_THAT(disassembled, SizeIs(6)); for (int i = 0; i < 6; ++i) { const auto& [shape, sharding] = disassembled[i]; EXPECT_EQ(shape, Shape({5, 20})); EXPECT_EQ(*sharding, *SingleDeviceSharding::Create(device_list[i], MemoryKind())); } } TEST_P(HloShardingTest, DisassembleFailsWithInvalidDeviceCount) { auto device_list = GetDevices({0}); auto xla_hlo_sharding = xla::HloSharding::Tile( xla::TileAssignment((absl::Span<const int64_t>){2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10, 20}); EXPECT_THAT(sharding->Disassemble(shape), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("sharding's tile_assignment_devices and " "device count does not match: 2 vs. 1"))); } TEST_P(HloShardingTest, DisassembleFailsWithMismatchingShapeDimsSize) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile( xla::TileAssignment((absl::Span<const int64_t>){2, 1})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); Shape shape({10}); EXPECT_THAT( sharding->Disassemble(shape), StatusIs( tsl::error::INVALID_ARGUMENT, HasSubstr("shape must have 2 dimensions, but has 1 dimensions"))); } TEST_P(HloShardingTest, DisassembleFailsWithDynamicShape) { auto device_list = GetDevices({0, 1}); auto xla_hlo_sharding = xla::HloSharding::Tile( xla::TileAssignment((absl::Span<const int64_t>){2})); std::shared_ptr<const HloSharding> sharding = HloSharding::Create(device_list, MemoryKind(), xla_hlo_sharding); TF_ASSERT_OK_AND_ASSIGN( DynamicShape dynamic_shape, DynamicShape::Create(Shape({10}), BoundedDynamicShapeTag({true}))); EXPECT_THAT(sharding->Disassemble(dynamic_shape), StatusIs(tsl::error::INVALID_ARGUMENT, HasSubstr("can only disassemble static shape"))); } INSTANTIATE_TEST_SUITE_P(NumDevices, HloShardingTest, testing::Values(test_util::ShardingTestParam{ .num_devices = 6, .num_addressable_devices = 4})); } } }
1,799
cpp
tensorflow/tensorflow
pjrt_executable
third_party/xla/xla/pjrt/pjrt_executable.cc
third_party/xla/xla/pjrt/pjrt_executable_test.cc
#ifndef XLA_PJRT_PJRT_EXECUTABLE_H_ #define XLA_PJRT_PJRT_EXECUTABLE_H_ #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/client/executable_build_options.h" #include "xla/ffi/execution_context.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/executable_metadata.pb.h" #include "xla/pjrt/execute_options.pb.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/service/compiler.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { class MultiSliceConfig { public: virtual ~MultiSliceConfig(); virtual int32_t NumSlices() const = 0; virtual int32_t SliceId() const = 0; virtual absl::flat_hash_map<int32_t, int32_t> NumDevicesPerSlice() const = 0; virtual std::string Serialize() const = 0; }; struct CompileOptions { std::optional<std::vector<Shape>> argument_layouts; bool parameter_is_tupled_arguments = false; ExecutableBuildOptions executable_build_options; bool compile_portable_executable = false; int64_t profile_version = 0; const MultiSliceConfig* multi_slice_config = nullptr; using OptionOverride = std::variant<std::string, bool, int64_t, double>; std::vector<std::pair<std::string, OptionOverride>> env_option_overrides; std::optional<xla::Compiler::TargetConfig> target_config; PrecisionConfig::Precision matrix_unit_operand_precision = PrecisionConfig::DEFAULT; absl::Status ApplyAllOptionOverrides(); absl::Status ApplyOption(const std::string& key, const OptionOverride& value); absl::Status ApplyOptionFromString( const tsl::protobuf::FieldDescriptor* field, const std::string& value); static absl::StatusOr< std::vector<std::pair<std::string, CompileOptions::OptionOverride>>> LoadEnvOptionOverrides( const google::protobuf::Map<std::string, xla::OptionOverrideProto>& env_option_overrides); void SerializeEnvOptionOverrides( google::protobuf::Map<std::string, xla::OptionOverrideProto>* output_env_option_overrides) const; absl::StatusOr<CompileOptionsProto> ToProto() const; static absl::StatusOr<CompileOptions> FromProto( const CompileOptionsProto& proto); }; struct LoadOptions { struct ComputationOrigin { int x = 0; int y = 0; int z = 0; }; std::optional<ComputationOrigin> computation_origin; const MultiSliceConfig* multi_slice_config = nullptr; }; class ExecuteContext { public: virtual ~ExecuteContext() = default; ffi::ExecutionContext& ffi_context() { return ffi_context_; } const ffi::ExecutionContext& ffi_context() const { return ffi_context_; } private: ffi::ExecutionContext ffi_context_; }; struct PjRtTransferMetadata { Shape device_shape; }; class PjRtChunk; class CopyToDeviceStream; struct SendCallback { int64_t channel_id; std::function<absl::Status(const PjRtTransferMetadata& metadata, PjRtChunk chunk, size_t total_size_in_bytes, bool done)> callback; }; struct RecvCallback { int64_t channel_id; std::function<void(const PjRtTransferMetadata& metadata, std::unique_ptr<CopyToDeviceStream> stream)> callback; }; struct ExecuteOptions { bool arguments_are_tupled = false; bool untuple_result = false; int32_t launch_id = 0; const ExecuteContext* context = nullptr; bool strict_shape_checking = true; const MultiSliceConfig* multi_slice_config = nullptr; absl::Span<const std::vector<SendCallback>> send_callbacks; absl::Span<const std::vector<RecvCallback>> recv_callbacks; bool use_major_to_minor_data_layout_for_callbacks = false; enum class ExecutionMode { kDefault = 0, kSynchronous, kAsynchronous }; ExecutionMode execution_mode = ExecutionMode::kDefault; absl::flat_hash_set<int> non_donatable_input_indices; absl::StatusOr<ExecuteOptionsProto> ToProto() const; static absl::StatusOr<ExecuteOptions> FromProto( const ExecuteOptionsProto& proto); }; struct CompiledMemoryStats { int64_t generated_code_size_in_bytes = 0; int64_t argument_size_in_bytes = 0; int64_t output_size_in_bytes = 0; int64_t alias_size_in_bytes = 0; int64_t temp_size_in_bytes = 0; int64_t host_generated_code_size_in_bytes = 0; int64_t host_argument_size_in_bytes = 0; int64_t host_output_size_in_bytes = 0; int64_t host_alias_size_in_bytes = 0; int64_t host_temp_size_in_bytes = 0; std::string serialized_hlo_proto = ""; std::string DebugString() const; CompiledMemoryStatsProto ToProto(); static CompiledMemoryStats FromProto(const CompiledMemoryStatsProto& proto); void PopulateBufferStatsFromAllocations( absl::Span<const BufferAllocation> allocs); }; class PjRtExecutable { public: virtual ~PjRtExecutable() = default; virtual int num_replicas() const = 0; virtual int num_partitions() const = 0; virtual int64_t SizeOfGeneratedCodeInBytes() const = 0; virtual absl::string_view name() const = 0; virtual absl::StatusOr<std::vector<std::shared_ptr<HloModule>>> GetHloModules() const = 0; virtual absl::StatusOr<std::vector<Shape>> GetOutputShapes() const; virtual absl::StatusOr<std::vector<std::vector<PrimitiveType>>> GetOutputElementTypes() const; virtual absl::StatusOr<std::vector<std::vector<DimensionVector>>> GetOutputDimensions() const; virtual absl::StatusOr<std::vector<std::unique_ptr<PjRtLayout>>> GetParameterLayouts() const; virtual absl::StatusOr<std::vector<std::unique_ptr<PjRtLayout>>> GetOutputLayouts() const; virtual absl::StatusOr<std::vector<std::vector<absl::string_view>>> GetOutputMemoryKinds() const = 0; virtual std::optional<std::vector<OpSharding>> GetParameterShardings() const; virtual std::optional<std::vector<OpSharding>> GetOutputShardings() const; virtual absl::StatusOr<CompiledMemoryStats> GetCompiledMemoryStats() const { return Unimplemented("Retrieving CompiledMemoryStats is not supported."); } virtual absl::StatusOr<absl::flat_hash_map<std::string, PjRtValueType>> GetCostAnalysis() const = 0; virtual absl::StatusOr<std::string> SerializeExecutable() const { return Unimplemented("Serializing executable is not supported."); } virtual absl::StatusOr<std::string> FingerprintExecutable() const { return Unimplemented("Fingerprinting executable is not supported."); } virtual absl::StatusOr<struct CompileOptions> GetCompileOptions() const { return Unimplemented("CompileOptions not available."); } }; class PjRtExecutableUtil { public: static absl::StatusOr<absl::flat_hash_map<std::string, PjRtValueType>> RunHloCostAnalysis(const PjRtExecutable& executable, HloCostAnalysis* hlo_cost_analysis); static absl::StatusOr<absl::flat_hash_map<std::string, PjRtValueType>> RunHloCostAnalysis( const std::vector<std::shared_ptr<xla::HloModule>>& hlo_modules, HloCostAnalysis* hlo_cost_analysis); }; } #endif #include "xla/pjrt/pjrt_executable.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/client/executable_build_options.h" #include "xla/layout.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/pjrt/execute_options.pb.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/service/buffer_assignment.h" #include "xla/service/computation_layout.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_value.h" #include "xla/shape.h" #include "xla/shape_layout.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { void SetOptionOverride(OptionOverrideProto& option, const std::string& value) { option.set_string_field(value); } void SetOptionOverride(OptionOverrideProto& option, bool value) { option.set_bool_field(value); } void SetOptionOverride(OptionOverrideProto& option, int64_t value) { option.set_int_field(value); } void SetOptionOverride(OptionOverrideProto& option, double value) { option.set_double_field(value); } } absl::StatusOr<CompileOptionsProto> CompileOptions::ToProto() const { CompileOptionsProto output; if (argument_layouts.has_value()) { for (const auto& layout : *argument_layouts) { *output.add_argument_layouts() = layout.ToProto(); } } output.set_parameter_is_tupled_arguments(parameter_is_tupled_arguments); TF_ASSIGN_OR_RETURN(*output.mutable_executable_build_options(), executable_build_options.ToProto()); output.set_compile_portable_executable(compile_portable_executable); output.set_profile_version(profile_version); if (multi_slice_config != nullptr) { output.set_serialized_multi_slice_config(multi_slice_config->Serialize()); } for (auto& env_option_override : env_option_overrides) { auto& tmp = (*output.mutable_env_option_overrides())[env_option_override.first]; std::visit([&](const auto& arg) { SetOptionOverride(tmp, arg); }, env_option_override.second); } if (target_config.has_value()) { *output.mutable_target_config() = target_config->ToProto(); } return output; } void CompileOptions::SerializeEnvOptionOverrides( google::protobuf::Map<std::string, xla::OptionOverrideProto>* output_env_option_overrides) const { for (auto& env_option_override : env_option_overrides) { auto& tmp = (*output_env_option_overrides)[env_option_override.first]; std::visit([&](const auto& arg) { SetOptionOverride(tmp, arg); }, env_option_override.second); } } absl::StatusOr<CompileOptions> CompileOptions::FromProto( const CompileOptionsProto& proto) { if (!proto.serialized_multi_slice_config().empty()) { return Unimplemented( "multi_slice_config not supported in CompileOptions::FromProto."); } CompileOptions output; if (proto.argument_layouts_size() > 0) { std::vector<Shape> output_argument_layouts; output_argument_layouts.reserve(proto.argument_layouts_size()); for (const auto& argument_layout : proto.argument_layouts()) { output_argument_layouts.emplace_back(Shape(argument_layout)); } output.argument_layouts = std::move(output_argument_layouts); } output.parameter_is_tupled_arguments = proto.parameter_is_tupled_arguments(); TF_ASSIGN_OR_RETURN( ExecutableBuildOptions executable_build_options, ExecutableBuildOptionsFromProto(proto.executable_build_options())); output.executable_build_options = executable_build_options; output.compile_portable_executable = proto.compile_portable_executable(); output.profile_version = proto.profile_version(); TF_ASSIGN_OR_RETURN(output.env_option_overrides, LoadEnvOptionOverrides(proto.env_option_overrides())); if (proto.has_target_config()) { output.target_config = xla::Compiler::TargetConfig(proto.target_config()); } return output; } MultiSliceConfig::~MultiSliceConfig() = default; absl::StatusOr<ExecuteOptionsProto> ExecuteOptions::ToProto() const { ExecuteOptionsProto proto; proto.set_arguments_are_tupled(arguments_are_tupled); proto.set_untuple_result(untuple_result); proto.set_launch_id(launch_id); if (context != nullptr) { return absl::UnimplementedError( "ExecuteOptions with non-nullptr context is not serializable"); } proto.set_strict_shape_checking(strict_shape_checking); if (multi_slice_config != nullptr) { return absl::UnimplementedError( "ExecuteOptions with multi-slice config is not serializable"); } if (!send_callbacks.empty() || !recv_callbacks.empty()) { return absl::UnimplementedError( "ExecuteOptions with send/recv calbacks is not serializable"); } proto.set_use_major_to_minor_data_layout_for_callbacks( use_major_to_minor_data_layout_for_callbacks); switch (execution_mode) { case ExecutionMode::kDefault: proto.set_execution_mode(EXECUTION_MODE_DEFAULT); break; case ExecutionMode::kSynchronous: proto.set_execution_mode(EXECUTION_MODE_SYNCHRONOUS); break; case ExecutionMode::kAsynchronous: proto.set_execution_mode(EXECUTION_MODE_ASYNCHRONOUS); break; } proto.mutable_non_donatable_input_indices()->Add( non_donatable_input_indices.begin(), non_donatable_input_indices.end()); return proto; } absl::StatusOr<ExecuteOptions> ExecuteOptions::FromProto( const ExecuteOptionsProto& proto) { ExecuteOptions options; options.arguments_are_tupled = proto.arguments_are_tupled(); options.untuple_result = proto.untuple_result(); options.launch_id = proto.launch_id(); options.strict_shape_checking = proto.strict_shape_checking(); options.use_major_to_minor_data_layout_for_callbacks = proto.use_major_to_minor_data_layout_for_callbacks(); switch (proto.execution_mode()) { case EXECUTION_MODE_DEFAULT: options.execution_mode = ExecutionMode::kDefault; break; case EXECUTION_MODE_SYNCHRONOUS: options.execution_mode = ExecutionMode::kSynchronous; break; case EXECUTION_MODE_ASYNCHRONOUS: options.execution_mode = ExecutionMode::kAsynchronous; break; default: return absl::UnimplementedError( absl::StrCat("Unknown execution mode: ", proto.execution_mode())); } options.non_donatable_input_indices.insert( proto.non_donatable_input_indices().begin(), proto.non_donatable_input_indices().end()); return options; } CompiledMemoryStatsProto CompiledMemoryStats::ToProto() { CompiledMemoryStatsProto proto; proto.set_generated_code_size_in_bytes(generated_code_size_in_bytes); proto.set_argument_size_in_bytes(argument_size_in_bytes); proto.set_output_size_in_bytes(output_size_in_bytes); proto.set_alias_size_in_bytes(alias_size_in_bytes); proto.set_temp_size_in_bytes(temp_size_in_bytes); proto.mutable_hlo_proto()->ParseFromString(serialized_hlo_proto); proto.set_host_generated_code_size_in_bytes( host_generated_code_size_in_bytes); proto.set_host_argument_size_in_bytes(host_argument_size_in_bytes); proto.set_host_output_size_in_bytes(host_output_size_in_bytes); proto.set_host_alias_size_in_bytes(host_alias_size_in_bytes); proto.set_host_temp_size_in_bytes(host_temp_size_in_bytes); return proto; } CompiledMemoryStats CompiledMemoryStats::FromProto( const CompiledMemoryStatsProto& proto) { CompiledMemoryStats stats; stats.generated_code_size_in_bytes = proto.generated_code_size_in_bytes(); stats.argument_size_in_bytes = proto.argument_size_in_bytes(); stats.output_size_in_bytes = proto.output_size_in_bytes(); stats.alias_size_in_bytes = proto.alias_size_in_bytes(); stats.temp_size_in_bytes = proto.temp_size_in_bytes(); stats.serialized_hlo_proto = proto.hlo_proto().SerializeAsString(); stats.host_generated_code_size_in_bytes = proto.host_generated_code_size_in_bytes(); stats.host_argument_size_in_bytes = proto.host_argument_size_in_bytes(); stats.host_output_size_in_bytes = proto.host_output_size_in_bytes(); stats.host_alias_size_in_bytes = proto.host_alias_size_in_bytes(); stats.host_temp_size_in_bytes = proto.host_temp_size_in_bytes(); return stats; } void CompiledMemoryStats::PopulateBufferStatsFromAllocations( absl::Span<const BufferAllocation> allocs) { argument_size_in_bytes = 0; output_size_in_bytes = 0; temp_size_in_bytes = 0; alias_size_in_bytes = 0; host_argument_size_in_bytes = 0; host_output_size_in_bytes = 0; host_temp_size_in_bytes = 0; host_alias_size_in_bytes = 0; for (auto& alloc : allocs) { int64_t alloc_memory_space = -1; for (const auto& [value, _] : alloc.assigned_buffers()) { const HloPosition& defining_position = value->defining_position(); int64_t memory_space = Layout::kDefaultMemorySpace; if (defining_position.shape().has_layout()) { memory_space = defining_position.shape().layout().memory_space(); } if (alloc_memory_space == -1) { alloc_memory_space = memory_space; } else { CHECK(alloc_memory_space == memory_space && "expected same memory space for all assignments in allocation"); } } bool is_host = alloc_memory_space == Layout::kHostMemorySpace; int64_t size = alloc.size(); if (alloc.is_entry_computation_parameter()) { if (is_host) { host_argument_size_in_bytes += size; } else { argument_size_in_bytes += size; } if (alloc.is_parameter_aliased_with_output()) { if (is_host) { host_alias_size_in_bytes += size; } else { alias_size_in_bytes += size; } } } if (alloc.maybe_live_out()) { if (is_host) { host_output_size_in_bytes += size; } else { output_size_in_bytes += size; } } if (alloc.IsPreallocatedTempBuffer()) { if (is_host) { host_temp_size_in_bytes += size; } else { temp_size_in_bytes += size; } } } } void GetOpSharding(std::vector<OpSharding>& out, const OpSharding& sharding) { if (sharding.type() == OpSharding::TUPLE) { for (const OpSharding& s : sharding.tuple_shardings()) { GetOpSharding(out, s); } } else { out.push_back(sharding); } } std::optional<std::vector<OpSharding>> PjRtExecutable::GetOutputShardings() const { auto modules = GetHloModules(); if (!modules.ok() || (*modules).empty() || !(*modules)[0]->has_spmd_output_sharding()) { return std::nullopt; } std::vector<OpSharding> out; GetOpSharding(out, (*modules)[0]->spmd_output_sharding().ToProto()); return out; } std::optional<std::vector<OpSharding>> PjRtExecutable::GetParameterShardings() const { auto modules = GetHloModules(); if (!modules.ok() || (*modules).empty() || !(*modules)[0]->has_spmd_parameters_shardings()) { return std::nullopt; } std::vector<OpSharding> out; for (const auto& s : (*modules)[0]->spmd_parameters_shardings()) { GetOpSharding(out, s.ToProto()); } return out; } absl::StatusOr<std::vector<Shape>> PjRtExecutable::GetOutputShapes() const { TF_ASSIGN_OR_RETURN(auto modules, GetHloModules()); std::vector<Shape> output_shapes; output_shapes.reserve(modules.size()); for (const auto& module : modules) { output_shapes.push_back(module->result_shape()); } return output_shapes; } absl::StatusOr<std::vector<std::vector<PrimitiveType>>> PjRtExecutable::GetOutputElementTypes() const { TF_ASSIGN_OR_RETURN(auto output_shapes, GetOutputShapes()); std::vector<std::vector<PrimitiveType>> output_element_types; output_element_types.reserve(output_shapes.size()); for (int i = 0; i < output_shapes.size(); ++i) { const Shape& output_shape = output_shapes[i]; std::vector<PrimitiveType> element_types; if (output_shape.IsTuple()) { const auto& tuple_shapes = output_shape.tuple_shapes(); element_types.reserve(tuple_shapes.size()); for (int j = 0; j < tuple_shapes.size(); ++j) { if (tuple_shapes[j].IsTuple()) { return Unimplemented( "GetOutputElementTypes() doesn't support programs with " "nested-tupled outputs."); } element_types.push_back(tuple_shapes[j].element_type()); } } else { element_types.reserve(1); element_types.push_back(output_shape.element_type()); } output_element_types.push_back(std::move(element_types)); } return output_element_types; } absl::StatusOr<std::vector<std::vector<DimensionVector>>> PjRtExecutable::GetOutputDimensions() const { TF_ASSIGN_OR_RETURN(auto output_shapes, GetOutputShapes()); std::vector<std::vector<DimensionVector>> output_dimensions; output_dimensions.reserve(output_shapes.size()); for (int i = 0; i < output_shapes.size(); ++i) { const Shape& output_shape = output_shapes[i]; std::vector<DimensionVector> dimensions; if (output_shape.IsTuple()) { const auto& tuple_shapes = output_shape.tuple_shapes(); dimensions.reserve(tuple_shapes.size()); for (int j = 0; j < tuple_shapes.size(); ++j) { if (tuple_shapes[j].IsTuple()) { return Unimplemented( "GetOutputDimensions() doesn't support programs with " "nested-tupled outputs."); } dimensions.push_back( ShapeUtil::CreateDimensionVectorFromShape(tuple_shapes[j])); } } else { dimensions.reserve(1); dimensions.push_back( ShapeUtil::CreateDimensionVectorFromShape(output_shape)); } output_dimensions.push_back(std::move(dimensions)); } return output_dimensions; } absl::StatusOr<std::vector<std::unique_ptr<PjRtLayout>>> PjRtExecutable::GetParameterLayouts() const { TF_ASSIGN_OR_RETURN(std::vector<std::shared_ptr<HloModule>> hlo_modules, GetHloModules()); if (hlo_modules.size() > 1) { return Unimplemented( "PjRtExecutable::GetParameterLayouts doesn't support MPMD " "executables."); } if (hlo_modules.empty()) { return InvalidArgument( "PjRtExecutable::GetParameterLayouts: couldn't retrieve HLO module " "from executable."); } ComputationLayout comp_layout = hlo_modules[0]->entry_computation_layout(); TF_ASSIGN_OR_RETURN(std::vector<Layout> layouts, comp_layout.FlattenedParameterLayouts()); std::vector<std::unique_ptr<PjRtLayout>
#include "xla/pjrt/pjrt_executable.h" #include <string> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/client/executable_build_options.h" #include "xla/pjrt/compile_options.pb.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status_matchers.h" namespace xla { namespace { using ::tsl::testing::StatusIs; TEST(CompileOptionsTest, Serialization) { CompileOptions src; src.compile_portable_executable = true; src.parameter_is_tupled_arguments = true; src.profile_version = 1; src.argument_layouts = {ShapeUtil::MakeShape(S32, {1})}; ExecutableBuildOptions build_option; build_option.set_device_assignment(DeviceAssignment(1, 1)); src.executable_build_options = build_option; TF_ASSERT_OK_AND_ASSIGN(CompileOptionsProto proto, src.ToProto()); TF_ASSERT_OK_AND_ASSIGN(CompileOptions output, CompileOptions::FromProto(proto)); TF_ASSERT_OK_AND_ASSIGN(CompileOptionsProto output_proto, src.ToProto()); EXPECT_EQ(proto.SerializeAsString(), output_proto.SerializeAsString()); } TEST(CompileOptionsTest, MultiSliceConfigNotSupported) { CompileOptionsProto proto; *proto.mutable_serialized_multi_slice_config() = "multi_size_config"; auto option = CompileOptions::FromProto(proto); EXPECT_THAT( option.status(), StatusIs( absl::StatusCode::kUnimplemented, "multi_slice_config not supported in CompileOptions::FromProto.")); } TEST(ExecuteOptionsTest, Serialization) { ExecuteOptions src; src.arguments_are_tupled = true; src.untuple_result = false; src.launch_id = 1234; src.strict_shape_checking = true; src.execution_mode = ExecuteOptions::ExecutionMode::kAsynchronous; src.non_donatable_input_indices = {2, 3}; TF_ASSERT_OK_AND_ASSIGN(ExecuteOptionsProto proto, src.ToProto()); TF_ASSERT_OK_AND_ASSIGN(ExecuteOptions output, ExecuteOptions::FromProto(proto)); TF_ASSERT_OK_AND_ASSIGN(ExecuteOptionsProto output_proto, src.ToProto()); EXPECT_EQ(proto.SerializeAsString(), output_proto.SerializeAsString()); } TEST(ExecuteOptionsTest, SendRecvNotSupported) { ExecuteOptions options; std::vector<std::vector<SendCallback>> send_callbacks(1); options.send_callbacks = send_callbacks; std::vector<std::vector<RecvCallback>> recv_callbacks(1); options.recv_callbacks = recv_callbacks; EXPECT_THAT( options.ToProto(), StatusIs(absl::StatusCode::kUnimplemented, "ExecuteOptions with send/recv calbacks is not serializable")); } TEST(ExecuteOptionsTest, ApplyOptionsCanParseStrings) { using OptionOverride = std::variant<std::string, bool, int64_t, double>; std::vector<std::pair<std::string, OptionOverride>> env_override_options; env_override_options = { {"xla_gpu_use_runtime_fusion", std::string("True")}, {"xla_gpu_graph_min_graph_size", std::string("2")}, {"xla_gpu_redzone_scratch_max_megabytes", std::string("3400")}, {"xla_gpu_auto_spmd_partitioning_memory_budget_ratio", 0.9}, {"xla_gpu_pgle_profile_file_or_directory_path", std::string("abc")}}; CompileOptions src; src.env_option_overrides = env_override_options; auto s = src.ApplyAllOptionOverrides(); auto& debug_options = src.executable_build_options.debug_options(); EXPECT_EQ(debug_options.xla_gpu_use_runtime_fusion(), true); EXPECT_EQ(debug_options.xla_gpu_graph_min_graph_size(), 2); EXPECT_EQ(debug_options.xla_gpu_redzone_scratch_max_megabytes(), 3400); EXPECT_FLOAT_EQ( debug_options.xla_gpu_auto_spmd_partitioning_memory_budget_ratio(), 0.9); EXPECT_EQ(debug_options.xla_gpu_pgle_profile_file_or_directory_path(), "abc"); } TEST(CompiledMemoryStatsTest, Serialization) { CompiledMemoryStats stats; stats.generated_code_size_in_bytes = 2; stats.argument_size_in_bytes = 3; stats.output_size_in_bytes = 5; stats.alias_size_in_bytes = 7; stats.temp_size_in_bytes = 11; stats.host_generated_code_size_in_bytes = 13; stats.host_argument_size_in_bytes = 17; stats.host_output_size_in_bytes = 19; stats.host_alias_size_in_bytes = 23; stats.host_temp_size_in_bytes = 29; CompiledMemoryStatsProto serialized = stats.ToProto(); CompiledMemoryStats deserialized = CompiledMemoryStats::FromProto(serialized); EXPECT_EQ(serialized.SerializeAsString(), deserialized.ToProto().SerializeAsString()); } } }