Added citation
Browse files
README.md
CHANGED
|
@@ -10,13 +10,6 @@ size_categories:
|
|
| 10 |
task_categories:
|
| 11 |
- image-classification
|
| 12 |
- image-segmentation
|
| 13 |
-
citation: |
|
| 14 |
-
@inproceedings{rao2025,
|
| 15 |
-
title={Using Multiple Input Modalities can Improve Data‐Efficiency and O.O.D. Generalization for ML with Satellite Imagery},
|
| 16 |
-
author={Arjun Rao and Esther Rolf},
|
| 17 |
-
year={2025},
|
| 18 |
-
booktitle={Under Review},
|
| 19 |
-
}
|
| 20 |
source_datasets:
|
| 21 |
- SustainBench
|
| 22 |
- USAVars
|
|
@@ -54,7 +47,7 @@ configs:
|
|
| 54 |
---
|
| 55 |
|
| 56 |
|
| 57 |
-
|
| 58 |
<img src="osm_usavars.png" alt="Sample Geographic Inputs with the USAVars Dataset" width="800"/>
|
| 59 |
|
| 60 |
-->
|
|
@@ -105,5 +98,19 @@ This dataset card contains usage instructions and metadata for all data-products
|
|
| 105 |
## Usage Instructions
|
| 106 |
* Download the `.h5.gz` files in `data/<source dataset name>`. Our source datasets include SustainBench, USAVars, and BigEarthNet2.0
|
| 107 |
* You may use pigz (https://linux.die.net/man/1/pigz) to decompress the archive. This is especially recommended for USAVars' train-split, which is 117 GB when uncompressed. This can be done with `pigz -d <.h5.gz>`
|
| 108 |
-
* Datasets with auxiliary geographic inputs can be read with H5PY.
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
task_categories:
|
| 11 |
- image-classification
|
| 12 |
- image-segmentation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
source_datasets:
|
| 14 |
- SustainBench
|
| 15 |
- USAVars
|
|
|
|
| 47 |
---
|
| 48 |
|
| 49 |
|
| 50 |
+
# Geolayers-Data
|
| 51 |
<img src="osm_usavars.png" alt="Sample Geographic Inputs with the USAVars Dataset" width="800"/>
|
| 52 |
|
| 53 |
-->
|
|
|
|
| 98 |
## Usage Instructions
|
| 99 |
* Download the `.h5.gz` files in `data/<source dataset name>`. Our source datasets include SustainBench, USAVars, and BigEarthNet2.0
|
| 100 |
* You may use pigz (https://linux.die.net/man/1/pigz) to decompress the archive. This is especially recommended for USAVars' train-split, which is 117 GB when uncompressed. This can be done with `pigz -d <.h5.gz>`
|
| 101 |
+
* Datasets with auxiliary geographic inputs can be read with H5PY.
|
| 102 |
+
|
| 103 |
+
Citation:
|
| 104 |
+
|
| 105 |
+
```
|
| 106 |
+
@inproceedings{
|
| 107 |
+
rao2025using,
|
| 108 |
+
title={Using Multiple Input Modalities can Improve Data-Efficiency and O.O.D. Generalization for {ML} with Satellite Imagery},
|
| 109 |
+
author={Arjun Rao and Esther Rolf},
|
| 110 |
+
booktitle={TerraBytes - ICML 2025 workshop},
|
| 111 |
+
year={2025},
|
| 112 |
+
url={https://openreview.net/forum?id=p5nSQMPUyo}
|
| 113 |
+
}
|
| 114 |
+
```
|
| 115 |
+
---
|
| 116 |
+
|