File size: 7,894 Bytes
961b0e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515e630
961b0e7
 
 
 
 
 
 
 
 
64ee9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
dataset_info:
  features:
  - name: content
    dtype: string
    id: field
  - name: description
    list:
    - name: user_id
      dtype: string
      id: question
    - name: value
      dtype: string
      id: suggestion
    - name: status
      dtype: string
      id: question
  - name: description-suggestion
    dtype: string
    id: suggestion
  - name: description-suggestion-metadata
    struct:
    - name: type
      dtype: string
      id: suggestion-metadata
    - name: score
      dtype: float32
      id: suggestion-metadata
    - name: agent
      dtype: string
      id: suggestion-metadata
  - name: quality
    list:
    - name: user_id
      dtype: string
      id: question
    - name: value
      dtype: int32
      id: suggestion
    - name: status
      dtype: string
      id: question
  - name: quality-suggestion
    dtype: int32
    id: suggestion
  - name: quality-suggestion-metadata
    struct:
    - name: type
      dtype: string
      id: suggestion-metadata
    - name: score
      dtype: float32
      id: suggestion-metadata
    - name: agent
      dtype: string
      id: suggestion-metadata
  - name: age_group
    list:
    - name: user_id
      dtype: string
      id: question
    - name: value
      dtype: string
      id: suggestion
    - name: status
      dtype: string
      id: question
  - name: age_group-suggestion
    dtype: string
    id: suggestion
  - name: age_group-suggestion-metadata
    struct:
    - name: type
      dtype: string
      id: suggestion-metadata
    - name: score
      dtype: float32
      id: suggestion-metadata
    - name: agent
      dtype: string
      id: suggestion-metadata
  - name: external_id
    dtype: string
    id: external_id
  - name: metadata
    dtype: string
    id: metadata
  splits:
  - name: train
    num_bytes: 76240752
    num_examples: 60
  download_size: 0
  dataset_size: 76240752
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---
# Dataset Card for "multi-modal"

This dataset has been created with [Argilla](https://docs.argilla.io).

As shown in the sections below, this dataset can be loaded into Argilla as explained in [Load with Argilla](#load-with-argilla) or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).

## Dataset Description

- **Homepage:** https://argilla.io
- **Repository:** https://github.com/argilla-io/argilla

Argilla supports Markdown within its text fields. This means you can easily add formatting like **bold** and *italic* text, [links](https://www.google.com), and even insert HTML elements like images, audios, videos, and iframes.

A multi-modal dataset can be used to create a dataset with text and different types of media content. It can be useful for different tasks, such as image captioning, video captioning, audio captioning, and so on.

So, this is a multi-modal dataset example that uses three different datasets from Hugging Face:

* **Video**: We use an action recognition dataset, the [ucf101-subset](https://huggingface.co/datasets/sayakpaul/ucf101-subset) from the [UCF101](https://www.crcv.ucf.edu/data/UCF101.php). This dataset contains realistic action videos from YouTube, classified in 101 actions.

* **Audio**: We use an audio classification dataset, the [ccmusic-database/bel_folk](https://huggingface.co/datasets/ccmusic-database/bel_folk). This dataset contains 1 minute audio clips of Chinese folk music, and the genre of the music.

* **Image**: We use an image classification dataset, the [zishuod/pokemon-icons](https://huggingface.co/datasets/zishuod/pokemon-icons). This dataset contains images of Pokemon that need to be classified.

### Dataset Summary

This dataset contains:

* A dataset configuration file conforming to the Argilla dataset format named `argilla.yaml`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla.

* Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`.

### Load with Argilla

To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code:

```python
import argilla as rg

ds = rg.FeedbackDataset.from_huggingface("argilla/multi-modal")
```

### Load with `datasets`

To load this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:

```python
from datasets import load_dataset

ds = load_dataset("argilla/multi-modal")
```

### Supported Tasks

- Multi-modal classification
- Multi-modal transcription

## Dataset Structure

### Data in Argilla

The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, and **guidelines**.

The **fields** are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.

| Field Name | Title | Type | Required | Markdown |
| ---------- | ----- | ---- | -------- | -------- |
| text | Text | text | True | False |


The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.

| Question Name | Title | Type | Required | Description | Values/Labels |
| ------------- | ----- | ---- | -------- | ----------- | ------------- |
| label | Label | label_selection | True | N/A | ['World', 'Sports', 'Business', 'Sci/Tech'] |


The **suggestions** are human or machine generated recommendations for each question to assist the annotator during the annotation process, so those are always linked to the existing questions, and named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above, but the column name is appended with "-suggestion" and the metadata is appended with "-suggestion-metadata".

**✨ NEW** The **metadata** is a dictionary that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`.

The **guidelines**, are optional as well, and are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section.

#### Data in "multi-modal" Dataset

* **Fields:** These are the records, each of them is a video, audio or image file encoded in base64.
    
    * **text** is of type `text`.

* **Questions:** These are the questions that should be annotated.
    
    * **TextQuestion** is a feature to describe the content in detail.
    * **RatingQuestion** will allow us to rate the content's quality effectively.
    * **LabelQuestion** is for tagging the content with the most suitable age group.

* **Metadata:** Three metadata properties are added to streamline content management.

    * **groups** is to identify the assigned annotator group.
    * **media** will specify the media source.
    * **source-dataset** will highlight the source dataset of the content in each record.

### Data Splits

The dataset contains a single split, which is `train`.