File size: 2,842 Bytes
057c157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*-
"""tonal.159

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1d2iQuX1rG4rDuN_HjwOCnEStQRLaq-0V
"""

import numpy as np
import pandas as pd
import os
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
import pandas as pd

import missingno as msno

import warnings
warnings.filterwarnings('ignore')

df = pd.read_csv("/content/ecommerce_sales_analysis.csv")
df.head()

df.tail()

df.shape

df.info()

df.describe().T

df.describe().T.plot(kind='bar')

df.isnull().sum()

sns.heatmap(df.isnull())

df.duplicated().sum()

numeric_df = df.select_dtypes(include=['number'])

plt.figure(figsize=(12, 6))
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()

df.columns.to_list()

import plotly.express as px

columns = ['product_id',
'product_name',
'category',
'price',
'review_score',
'review_count',
'sales_month_1',
'sales_month_2',
'sales_month_3',
'sales_month_4',
'sales_month_5',
'sales_month_6',
'sales_month_7',
'sales_month_8',
'sales_month_9',
'sales_month_10',
'sales_month_11',
'sales_month_12',]

for column in columns:

  if df[column].dtype == 'object' or df[column].dtype == 'category':
    column_counts = df[column].value_counts().reset_index()
    column_counts.columns = [column, 'count']

    fig = px.bar(
        column_counts,
        x=column,
        y='count',
        title=f'Distribution of {column}',
        labels={column: column, 'count': 'Count'},
        text='count'
    )

    fig.update_layout(
        xaxis_title=column,
        yaxis_title='Count',
        paper_bgcolor='rgba(0,0,0,0)',
        plot_bgcolor='rgba(0,0,0,0)',
        title_font=dict(size=18, family="Arial"),

        xaxis={'categoryorder':'total descending'}
    )

    fig.show()

  elif df[column].dtype == 'int64' or df[column].dtype == 'float64':

    fig = px.histogram(
        df,
        x=column,
        title=f'Distribution of {column}',
        labels={column: column, 'count': 'Count'},

    )

    fig.update_layout(
        xaxis_title=column,
        yaxis_title='Count',
        paper_bgcolor='rgba(0,0,0,0)',
        plot_bgcolor='rgba(0,0,0,0)',
        title_font=dict(size=18, family="Arial")
    )

    fig.show()

df

import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS
from collections import Counter
import pandas as pd

stop_words_list = set(STOPWORDS)

counts = Counter(df["category"].dropna().apply(lambda x: str(x)))

wcc = WordCloud(
    background_color="black",
    width=1600, height=800,
    max_words=2000,
    stopwords=stop_words_list
)
wcc.generate_from_frequencies(counts)

plt.figure(figsize=(10, 5), facecolor='k')
plt.imshow(wcc, interpolation='bilinear')
plt.axis("off")
plt.tight_layout(pad=0)
plt.show()