File size: 27,884 Bytes
507feab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

def generate_brainwave(frequency, t, phase_shift=0):
    return np.sin(2 * np.pi * frequency * t + phase_shift)

def portal_organize(frequencies):
    # Example of organizing the data: averaging and normalizing
    organized_data = np.mean(frequencies, axis=0)
    normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
    return normalized_data

def scramble_data(data, delay):
    # Simulate a delay by shifting the data and adding a scrambling effect
    scrambled_data = np.roll(data, delay)  # Shift data by 'delay' samples
    scrambled_data += np.random.normal(0, 0.1, size=data.shape)  # Add noise as a scrambling effect
    return scrambled_data

def update(frame, lines, t, duration, sampling_rate):
    # Adjust time shifts for different movement speeds
    t_shifted1 = t + frame / (sampling_rate * 1.0)  # First layer speed (base)
    t_shifted2 = t + frame / (sampling_rate * 1.25)  # Second layer speed (slightly faster)
    t_shifted3 = t + frame / (sampling_rate * 1.75)  # Third layer speed (moderately faster)
    t_shifted4 = t + frame / (sampling_rate * 2.25)  # Fourth layer speed (fastest)
    t_shifted5 = t + frame / (sampling_rate * 3.0)   # Fifth layer speed (fastest)
    t_shifted6 = t + frame / (sampling_rate * 4.0)   # Sixth layer speed (with delay)

    # First layer: Alpha and Beta waves with financial frequencies
    alpha_wave = generate_brainwave(10, t_shifted1)  # Alpha (10 Hz)
    beta_wave = generate_brainwave(20, t_shifted1)   # Beta (20 Hz)
    financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5)  # Financial frequency (15 Hz)
    combined_wave1 = (alpha_wave + beta_wave) / 2

    # Transfer mechanism: Influence the second layer based on the first layer's financial frequencies
    influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
    # Update frequencies based on influence factor
    theta_frequency = 6 + influence_factor  # Adjusted Theta frequency
    gamma_frequency = 40 + influence_factor  # Adjusted Gamma frequency

    theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
    gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
    combined_wave2 = (theta_wave + gamma_wave) / 2

    # Transfer mechanism: Use second layer data to influence the third layer
    transfer_factor = np.mean(theta_wave)  # Transfer factor based on mean value of theta wave
    delta_frequency = 2 + transfer_factor  # Adjusted Delta frequency
    high_beta_frequency = 30 + transfer_factor  # Adjusted High Beta frequency

    delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
    high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
    combined_wave3 = (delta_wave + high_beta_wave) / 2

    # Transfer mechanism: Use third layer data to influence the fourth layer
    transfer_factor_3_to_4 = np.mean(delta_wave)  # Transfer factor based on mean value of delta wave
    mu_frequency = 12 + transfer_factor_3_to_4  # Adjusted Mu frequency
    low_gamma_frequency = 50 + transfer_factor_3_to_4  # Adjusted Low Gamma frequency

    mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
    low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
    combined_wave4 = (mu_wave + low_gamma_wave) / 2

    # Mirror effect: Reflect the fourth layer's wave around the x-axis
    mirrored_wave4 = -combined_wave4
    combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2

    # Combine data from the first four layers for the fifth layer
    transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4

    # Incorporate the transaction data into the fifth layer
    retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
    beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
    combined_wave5 = (retained_frequency + beta_high_wave) / 2

    # Security layer: Delay and scramble the data for the sixth layer
    delay = 100  # Number of samples to delay
    scrambled_wave6 = scramble_data(combined_wave5, delay)

    # Apply the portal to the scrambled sixth layer
    portal_data = portal_organize(np.array([scrambled_wave6, beta_high_wave]))

    # Update the data of the lines
    lines[0].set_ydata(combined_wave1)
    lines[1].set_ydata(combined_wave2)
    lines[2].set_ydata(combined_wave3)
    lines[3].set_ydata(combined_mirrored_wave4)  # Updated to use mirrored wave
    lines[4].set_ydata(combined_wave5)
    lines[5].set_ydata(scrambled_wave6)
    lines[6].set_ydata(portal_data)

    return lines

# Define parameters
duration = 5  # seconds
sampling_rate = 1000  # samples per second
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)

# Initialize the plot
fig, ax = plt.subplots()
alpha_wave = generate_brainwave(10, t)
beta_wave = generate_brainwave(20, t)
financial_wave = generate_brainwave(15, t, phase_shift=0.5)
combined_wave1 = (alpha_wave + beta_wave) / 2

theta_wave = generate_brainwave(6, t, phase_shift=0.3)
gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
combined_wave2 = (theta_wave + gamma_wave) / 2

delta_wave = generate_brainwave(2, t, phase_shift=1.0)
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
combined_wave3 = (delta_wave + high_beta_wave) / 2

mu_wave = generate_brainwave(12, t, phase_shift=2.0)
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
combined_wave4 = (mu_wave + low_gamma_wave) / 2

# Apply mirror effect to the fourth layer
mirrored_wave4 = -combined_wave4
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2

# Combine data from the first four layers for the fifth layer
transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4

# Incorporate the transaction data into the fifth layer
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
combined_wave5 = (retained_frequency + beta_high_wave) / 2

# Security layer: Delay and scramble the data for the sixth layer
delay = 100  # Number of samples to delay
scrambled_wave6 = scramble_data(combined_wave5, delay)

portal_data = portal_organize(np.array([scrambled_wave6, beta_high_wave]))

line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue')
line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--')
line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':')
line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.')
line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-')
line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red')
line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple')

ax.set_xlim(0, duration)
ax.set_ylim(-2, 2)
ax.set_title("6517.159.252")
ax.set_xlabel("Time (s)")
ax.set_ylabel("Amplitude")
ax.legend()

# Create the animation
ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True)

plt.show()

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from scipy.fftpack import fft, ifft

def generate_brainwave(frequency, t, phase_shift=0):
    return np.sin(2 * np.pi * frequency * t + phase_shift)

def portal_organize(frequencies):
    organized_data = np.mean(frequencies, axis=0)
    normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
    return normalized_data

def scramble_data(data, delay):
    scrambled_data = np.roll(data, delay)
    scrambled_data += np.random.normal(0, 0.1, size=data.shape)
    return scrambled_data

def encrypt_data(data):
    # Simulate encryption using Fourier Transform (for complexity)
    encrypted_data = fft(data)
    return encrypted_data

def decrypt_data(data):
    # Simulate decryption using Inverse Fourier Transform
    decrypted_data = ifft(data)
    return decrypted_data.real

def detect_anomalies(data):
    # Simple anomaly detection: Check for irregular spikes in the data
    anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
    return anomalies

def update(frame, lines, t, duration, sampling_rate):
    t_shifted1 = t + frame / (sampling_rate * 1.0)
    t_shifted2 = t + frame / (sampling_rate * 1.25)
    t_shifted3 = t + frame / (sampling_rate * 1.75)
    t_shifted4 = t + frame / (sampling_rate * 2.25)
    t_shifted5 = t + frame / (sampling_rate * 3.0)
    t_shifted6 = t + frame / (sampling_rate * 4.0)

    alpha_wave = generate_brainwave(10, t_shifted1)
    beta_wave = generate_brainwave(20, t_shifted1)
    financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5)
    combined_wave1 = (alpha_wave + beta_wave) / 2

    influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
    theta_frequency = 6 + influence_factor
    gamma_frequency = 40 + influence_factor

    theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
    gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
    combined_wave2 = (theta_wave + gamma_wave) / 2

    transfer_factor = np.mean(theta_wave)
    delta_frequency = 2 + transfer_factor
    high_beta_frequency = 30 + transfer_factor

    delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
    high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
    combined_wave3 = (delta_wave + high_beta_wave) / 2

    transfer_factor_3_to_4 = np.mean(delta_wave)
    mu_frequency = 12 + transfer_factor_3_to_4
    low_gamma_frequency = 50 + transfer_factor_3_to_4

    mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
    low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
    combined_wave4 = (mu_wave + low_gamma_wave) / 2

    mirrored_wave4 = -combined_wave4
    combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2

    transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
    retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
    beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
    combined_wave5 = (retained_frequency + beta_high_wave) / 2

    delay = 100
    scrambled_wave6 = scramble_data(combined_wave5, delay)

    # Encrypt the scrambled wave data
    encrypted_wave6 = encrypt_data(scrambled_wave6)

    # Detect any anomalies (simulating security breach detection)
    anomalies = detect_anomalies(scrambled_wave6)

    if np.any(anomalies):
        print("Security Alert: Anomalies detected in the data!")

    portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))

    lines[0].set_ydata(combined_wave1)
    lines[1].set_ydata(combined_wave2)
    lines[2].set_ydata(combined_wave3)
    lines[3].set_ydata(combined_mirrored_wave4)
    lines[4].set_ydata(combined_wave5)
    lines[5].set_ydata(scrambled_wave6)
    lines[6].set_ydata(portal_data)

    return lines

duration = 5
sampling_rate = 1000
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)

fig, ax = plt.subplots()
alpha_wave = generate_brainwave(10, t)
beta_wave = generate_brainwave(20, t)
financial_wave = generate_brainwave(15, t, phase_shift=0.5)
combined_wave1 = (alpha_wave + beta_wave) / 2

theta_wave = generate_brainwave(6, t, phase_shift=0.3)
gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
combined_wave2 = (theta_wave + gamma_wave) / 2

delta_wave = generate_brainwave(2, t, phase_shift=1.0)
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
combined_wave3 = (delta_wave + high_beta_wave) / 2

mu_wave = generate_brainwave(12, t, phase_shift=2.0)
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
combined_wave4 = (mu_wave + low_gamma_wave) / 2

mirrored_wave4 = -combined_wave4
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2

transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
combined_wave5 = (retained_frequency + beta_high_wave) / 2

delay = 100
scrambled_wave6 = scramble_data(combined_wave5, delay)

encrypted_wave6 = encrypt_data(scrambled_wave6)
anomalies = detect_anomalies(scrambled_wave6)

if np.any(anomalies):
    print("Security Alert: Anomalies detected in the data!")

portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))

line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue')
line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--')
line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':')
line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.')
line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-')
line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red')
line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple')

ax.set_xlim(0, duration)
ax.set_ylim(-2, 2)
ax.set_title("Complex Backend Security with Encrypted Waves and Anomaly Detection")
ax.set_xlabel("Time (s)")
ax.set_ylabel("Amplitude")
ax.legend()

ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True)

plt.show()

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from scipy.fftpack import fft, ifft

def generate_brainwave(frequency, t, phase_shift=0):
    return np.sin(2 * np.pi * frequency * t + phase_shift)

def portal_organize(frequencies):
    organized_data = np.mean(frequencies, axis=0)
    normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
    return normalized_data

def scramble_data(data, delay):
    scrambled_data = np.roll(data, delay)
    scrambled_data += np.random.normal(0, 0.1, size=data.shape)
    return scrambled_data

def encrypt_data(data):
    encrypted_data = fft(data)
    return encrypted_data

def decrypt_data(data):
    decrypted_data = ifft(data)
    return decrypted_data.real

def detect_anomalies(data):
    anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
    return anomalies

def detect_anomalies(data):
    # Simple anomaly detection: Check for irregular spikes in the data
    anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
    # Pad the anomalies array with False to match the size of the data array
    anomalies = np.concatenate((anomalies, [False]))
    return anomalies

def update(frame, lines, t, duration, sampling_rate):
    t_shifted1 = t + frame / (sampling_rate * 1.0)
    t_shifted2 = t + frame / (sampling_rate * 1.25)
    t_shifted3 = t + frame / (sampling_rate * 1.75)
    t_shifted4 = t + frame / (sampling_rate * 2.25)
    t_shifted5 = t + frame / (sampling_rate * 3.0)
    t_shifted6 = t + frame / (sampling_rate * 4.0)

    alpha_wave = generate_brainwave(10, t_shifted1)
    beta_wave = generate_brainwave(20, t_shifted1)
    financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5)
    combined_wave1 = (alpha_wave + beta_wave) / 2

    influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
    theta_frequency = 6 + influence_factor
    gamma_frequency = 40 + influence_factor

    theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
    gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
    combined_wave2 = (theta_wave + gamma_wave) / 2

    transfer_factor = np.mean(theta_wave)
    delta_frequency = 2 + transfer_factor
    high_beta_frequency = 30 + transfer_factor

    delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
    high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
    combined_wave3 = (delta_wave + high_beta_wave) / 2

    transfer_factor_3_to_4 = np.mean(delta_wave)
    mu_frequency = 12 + transfer_factor_3_to_4
    low_gamma_frequency = 50 + transfer_factor_3_to_4

    mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
    low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
    combined_wave4 = (mu_wave + low_gamma_wave) / 2

    mirrored_wave4 = -combined_wave4
    combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2

    transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
    retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
    beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
    combined_wave5 = (retained_frequency + beta_high_wave) / 2

    delay = 100
    scrambled_wave6 = scramble_data(combined_wave5, delay)

    encrypted_wave6 = encrypt_data(scrambled_wave6)

    anomalies = detect_anomalies(scrambled_wave6)

    if np.any(anomalies):
        print("Security Alert: Anomalies detected in the data!")
        scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)

    portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))

    lines[0].set_ydata(combined_wave1)
    lines[1].set_ydata(combined_wave2)
    lines[2].set_ydata(combined_wave3)
    lines[3].set_ydata(combined_mirrored_wave4)
    lines[4].set_ydata(combined_wave5)
    lines[5].set_ydata(scrambled_wave6)
    lines[6].set_ydata(portal_data)

    return lines

duration = 5
sampling_rate = 1000
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)

fig, ax = plt.subplots()
alpha_wave = generate_brainwave(10, t)
beta_wave = generate_brainwave(20, t)
financial_wave = generate_brainwave(15, t, phase_shift=0.5)
combined_wave1 = (alpha_wave + beta_wave) / 2

theta_wave = generate_brainwave(6, t, phase_shift=0.3)
gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
combined_wave2 = (theta_wave + gamma_wave) / 2

delta_wave = generate_brainwave(2, t, phase_shift=1.0)
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
combined_wave3 = (delta_wave + high_beta_wave) / 2

mu_wave = generate_brainwave(12, t, phase_shift=2.0)
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
combined_wave4 = (mu_wave + low_gamma_wave) / 2

mirrored_wave4 = -combined_wave4
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2

transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
combined_wave5 = (retained_frequency + beta_high_wave) / 2

delay = 100
scrambled_wave6 = scramble_data(combined_wave5, delay)

encrypted_wave6 = encrypt_data(scrambled_wave6)
anomalies = detect_anomalies(scrambled_wave6)

if np.any(anomalies):
    print("Security Alert: Anomalies detected in the data!")
    scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)

portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))

line1, = ax.plot(t, combined_wave1, label="Alpha & Beta Layer with Financial Frequencies", color='blue')
line2, = ax.plot(t, combined_wave2, label="Theta & Gamma Layer (Influenced)", linestyle='--')
line3, = ax.plot(t, combined_wave3, label="Delta & High Beta Layer (Transferred)", linestyle=':')
line4, = ax.plot(t, combined_mirrored_wave4, label="Mu & Low Gamma Layer (Mirrored)", linestyle='-.')
line5, = ax.plot(t, combined_wave5, label="Retained Frequency in Fifth Layer", linestyle='-')
line6, = ax.plot(t, scrambled_wave6, label="Delayed and Scrambled Sixth Layer", linestyle='--', color='red')
line7, = ax.plot(t, portal_data, label="Portal Output", linestyle=':', color='purple')

ax.set_xlim(0, duration)
ax.set_ylim(-2, 2)
ax.set_title("TRCSIngenuity")
ax.set_xlabel("Time (s)")
ax.set_ylabel("Amplitude")
ax.legend()

ani = FuncAnimation(fig, update, frames=range(200), fargs=([line1, line2, line3, line4, line5, line6, line7], t, duration, sampling_rate), blit=True)

plt.show()

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from scipy.fftpack import fft, ifft

def generate_brainwave(frequency, t, phase_shift=0):
    return np.sin(2 * np.pi * frequency * t + phase_shift)

def portal_organize(frequencies):
    organized_data = np.mean(frequencies, axis=0)
    normalized_data = (organized_data - np.min(organized_data)) / (np.max(organized_data) - np.min(organized_data))
    return normalized_data

def scramble_data(data, delay):
    scrambled_data = np.roll(data, delay)
    scrambled_data += np.random.normal(0, 0.1, size=data.shape)
    return scrambled_data

def encrypt_data(data):
    encrypted_data = fft(data)
    return encrypted_data

def decrypt_data(data):
    decrypted_data = ifft(data)
    return decrypted_data.real

def detect_anomalies(data):
    # Simple anomaly detection: Check for irregular spikes in the data
    anomalies = np.abs(np.diff(data)) > np.mean(np.abs(np.diff(data))) + 2 * np.std(np.abs(np.diff(data)))
    # Pad the anomalies array with False to match the size of the data array
    anomalies = np.concatenate(([False], anomalies)) # prepend False instead of appending
    return anomalies

def clear_anomalies(data, anomalies):
    correction_frequency = np.cos(2 * np.pi * 2 * np.arange(len(data)) / len(data))  # A low-frequency cosine wave
    data[anomalies] -= correction_frequency[:len(data[anomalies])]
    return data

def update(frame, lines, t, duration, sampling_rate):
    t_shifted1 = t + frame / (sampling_rate * 1.0)
    t_shifted2 = t + frame / (sampling_rate * 1.25)
    t_shifted3 = t + frame / (sampling_rate * 1.75)
    t_shifted4 = t + frame / (sampling_rate * 2.25)
    t_shifted5 = t + frame / (sampling_rate * 3.0)
    t_shifted6 = t + frame / (sampling_rate * 4.0)

    alpha_wave = generate_brainwave(10, t_shifted1)
    beta_wave = generate_brainwave(20, t_shifted1)
    financial_wave = generate_brainwave(15, t_shifted1, phase_shift=0.5)
    combined_wave1 = (alpha_wave + beta_wave) / 2

    influence_factor = (financial_wave - np.mean(financial_wave)) / np.std(financial_wave)
    theta_frequency = 6 + influence_factor
    gamma_frequency = 40 + influence_factor

    theta_wave = generate_brainwave(theta_frequency, t_shifted2, phase_shift=0.3)
    gamma_wave = generate_brainwave(gamma_frequency, t_shifted2, phase_shift=0.7)
    combined_wave2 = (theta_wave + gamma_wave) / 2

    transfer_factor = np.mean(theta_wave)
    delta_frequency = 2 + transfer_factor
    high_beta_frequency = 30 + transfer_factor

    delta_wave = generate_brainwave(delta_frequency, t_shifted3, phase_shift=1.0)
    high_beta_wave = generate_brainwave(high_beta_frequency, t_shifted3, phase_shift=1.5)
    combined_wave3 = (delta_wave + high_beta_wave) / 2

    transfer_factor_3_to_4 = np.mean(delta_wave)
    mu_frequency = 12 + transfer_factor_3_to_4
    low_gamma_frequency = 50 + transfer_factor_3_to_4

    mu_wave = generate_brainwave(mu_frequency, t_shifted4, phase_shift=2.0)
    low_gamma_wave = generate_brainwave(low_gamma_frequency, t_shifted4, phase_shift=2.5)
    combined_wave4 = (mu_wave + low_gamma_wave) / 2

    mirrored_wave4 = -combined_wave4
    combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2

    transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
    retained_frequency = generate_brainwave(60, t_shifted5, phase_shift=3.0) + transaction_data
    beta_high_wave = generate_brainwave(70, t_shifted5, phase_shift=3.5)
    combined_wave5 = (retained_frequency + beta_high_wave) / 2

    delay = 100
    scrambled_wave6 = scramble_data(combined_wave5, delay)

    encrypted_wave6 = encrypt_data(scrambled_wave6)

    anomalies = detect_anomalies(scrambled_wave6)

    if np.any(anomalies):
        scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)

    portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))

    for i, line in enumerate(lines):
        if i == 0:
            line.set_ydata(combined_wave1)
        elif i == 1:
            line.set_ydata(combined_wave2)
        elif i == 2:
            line.set_ydata(combined_wave3)
        elif i == 3:
            line.set_ydata(combined_mirrored_wave4)
        elif i == 4:
            line.set_ydata(combined_wave5)
        elif i == 5:
            line.set_ydata(scrambled_wave6)
        elif i == 6:
            line.set_ydata(portal_data)

    return lines

duration = 5
sampling_rate = 1000
t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False)

fig, axs = plt.subplots(7, 1, figsize=(10, 14), sharex=True)
fig.tight_layout(pad=3.0)

alpha_wave = generate_brainwave(10, t)
beta_wave = generate_brainwave(20, t)
financial_wave = generate_brainwave(15, t, phase_shift=0.5)
combined_wave1 = (alpha_wave + beta_wave) / 2

theta_wave = generate_brainwave(6, t, phase_shift=0.3)
gamma_wave = generate_brainwave(40, t, phase_shift=0.7)
combined_wave2 = (theta_wave + gamma_wave) / 2

delta_wave = generate_brainwave(2, t, phase_shift=1.0)
high_beta_wave = generate_brainwave(30, t, phase_shift=1.5)
combined_wave3 = (delta_wave + high_beta_wave) / 2

mu_wave = generate_brainwave(12, t, phase_shift=2.0)
low_gamma_wave = generate_brainwave(50, t, phase_shift=2.5)
combined_wave4 = (mu_wave + low_gamma_wave) / 2

mirrored_wave4 = -combined_wave4
combined_mirrored_wave4 = (combined_wave4 + mirrored_wave4) / 2

transaction_data = (combined_wave1 + combined_wave2 + combined_wave3 + combined_mirrored_wave4) / 4
retained_frequency = generate_brainwave(60, t, phase_shift=3.0) + transaction_data
beta_high_wave = generate_brainwave(70, t, phase_shift=3.5)
combined_wave5 = (retained_frequency + beta_high_wave) / 2

delay = 100
scrambled_wave6 = scramble_data(combined_wave5, delay)

encrypted_wave6 = encrypt_data(scrambled_wave6)
anomalies = detect_anomalies(scrambled_wave6)

if np.any(anomalies):
    scrambled_wave6 = clear_anomalies(scrambled_wave6, anomalies)

portal_data = portal_organize(np.array([encrypted_wave6.real, beta_high_wave]))

lines = []
for i, (wave, label, color) in enumerate([
    (combined_wave1, "Alpha & Beta Layer with Financial Frequencies", 'blue'),
    (combined_wave2, "Theta & Gamma Layer (Influenced)", 'green'),
    (combined_wave3, "Delta & High Beta Layer (Transferred)", 'orange'),
    (combined_mirrored_wave4, "Mu & Low Gamma Layer (Mirrored)", 'purple'),
    (combined_wave5, "Retained Frequency in Fifth Layer", 'cyan'),
    (scrambled_wave6, "Delayed and Scrambled Sixth Layer", 'red'),
    (portal_data, "Portal Output", 'magenta')
]):
    line, = axs[i].plot(t, wave, color=color)
    axs[i].set_title(label)
    axs[i].set_ylim(-2, 2)
    lines.append(line)

axs[-1].set_xlabel("Time (s)")

ani = FuncAnimation(fig, update, frames=range(200), fargs=(lines, t, duration, sampling_rate), blit=True)

plt.show()