anilbhujel commited on
Commit
52d6f05
·
1 Parent(s): b3fd29d

Updated code

Browse files
Files changed (2) hide show
  1. code/tracker.py +389 -0
  2. code/yolo_detection.py +145 -0
code/tracker.py ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import numpy as np
4
+ from scipy.optimize import linear_sum_assignment
5
+ import logging
6
+ from collections import defaultdict
7
+
8
+ class PixelBBoxTracker:
9
+ def __init__(self, max_disappeared=50, max_distance=100, max_pigs=9):
10
+ self.tracks = {} # Active tracks: {id: {'centroid', 'disappeared', 'bbox'}}
11
+ self.next_id = 1
12
+ self.max_disappeared = max_disappeared
13
+ self.max_distance = max_distance
14
+ self.max_pigs = max_pigs
15
+ self.disappeared_tracks = {} # Temporarily lost tracks
16
+ self.track_history = defaultdict(list) # Store recent positions
17
+ self.ambiguous_threshold = 0.1 # Cost difference threshold for ambiguity
18
+ self.iou_weight = 0.4 # Weight for IoU in cost calculation
19
+ self.centroid_weight = 0.4 # Weight for centroid distance
20
+ self.area_weight = 0.2 # Weight for area similarity
21
+
22
+ def _get_centroid(self, bbox):
23
+ x, y, w, h = bbox
24
+ return np.array([x + w/2, y + h/2])
25
+
26
+ def _calculate_area(self, bbox):
27
+ _, _, w, h = bbox
28
+ return w * h
29
+
30
+ def _area_similarity(self, area1, area2):
31
+ """Calculate normalized area similarity (1.0 = identical areas)"""
32
+ if area1 == 0 or area2 == 0:
33
+ return 0.0
34
+ min_area = min(area1, area2)
35
+ max_area = max(area1, area2)
36
+ return min_area / max_area
37
+
38
+ def _bbox_iou(self, box1, box2):
39
+ """Calculate Intersection over Union (IoU) of two bounding boxes"""
40
+ # Box format: [x, y, w, h]
41
+ x1, y1, w1, h1 = box1
42
+ x2, y2, w2, h2 = box2
43
+
44
+ # Calculate intersection coordinates
45
+ xi1 = max(x1, x2)
46
+ yi1 = max(y1, y2)
47
+ xi2 = min(x1 + w1, x2 + w2)
48
+ yi2 = min(y1 + h1, y2 + h2)
49
+
50
+ # Calculate intersection area
51
+ inter_width = max(0, xi2 - xi1)
52
+ inter_height = max(0, yi2 - yi1)
53
+ inter_area = inter_width * inter_height
54
+
55
+ # Calculate union area
56
+ box1_area = w1 * h1
57
+ box2_area = w2 * h2
58
+ union_area = box1_area + box2_area - inter_area
59
+
60
+ return inter_area / union_area if union_area > 0 else 0.0
61
+
62
+ def _calculate_cost(self, track, detection_bbox):
63
+ """Calculate combined cost using centroid distance, IoU, and area similarity"""
64
+ # Get track information
65
+ last_centroid = track["centroid"]
66
+ last_bbox = track["bbox"]
67
+ track_area = self._calculate_area(last_bbox)
68
+
69
+ # Detection information
70
+ detection_centroid = self._get_centroid(detection_bbox)
71
+ detection_area = self._calculate_area(detection_bbox)
72
+
73
+ # Calculate components
74
+ centroid_distance = np.linalg.norm(detection_centroid - last_centroid)
75
+ normalized_distance = min(centroid_distance / self.max_distance, 1.0)
76
+
77
+ iou = self._bbox_iou(last_bbox, detection_bbox)
78
+ iou_term = 1.0 - iou
79
+
80
+ area_sim = self._area_similarity(track_area, detection_area)
81
+ area_term = 1.0 - area_sim
82
+
83
+ # Combine with weights
84
+ cost = (self.centroid_weight * normalized_distance +
85
+ self.iou_weight * iou_term +
86
+ self.area_weight * area_term)
87
+
88
+ return cost
89
+
90
+ def update(self, detections):
91
+ # Filter out small bounding boxes
92
+ detections = [d for d in detections if self._calculate_area(d['bbox']) >= 100]
93
+
94
+ # Get current frame information
95
+ current_centroids = [self._get_centroid(d['bbox']) for d in detections]
96
+ detection_bboxes = [d['bbox'] for d in detections]
97
+ track_ids = [-1] * len(detections) # Initialize all as unmatched
98
+
99
+ # Stage 1: Match existing tracks to detections
100
+ if self.tracks and detections:
101
+ track_ids_list = list(self.tracks.keys())
102
+ cost_matrix = np.full((len(track_ids_list), len(detections)), 10.0) # High default cost
103
+
104
+ # Calculate cost matrix
105
+ for t_idx, track_id in enumerate(track_ids_list):
106
+ track = self.tracks[track_id]
107
+ for d_idx, bbox in enumerate(detection_bboxes):
108
+ cost = self._calculate_cost(track, bbox)
109
+ centroid_distance = np.linalg.norm(current_centroids[d_idx] - track["centroid"])
110
+
111
+ # Only consider if within max distance
112
+ if centroid_distance <= self.max_distance:
113
+ cost_matrix[t_idx, d_idx] = cost
114
+
115
+ # Apply Hungarian algorithm for optimal matching
116
+ try:
117
+ row_ind, col_ind = linear_sum_assignment(cost_matrix)
118
+
119
+ # Process matches
120
+ for t_idx, d_idx in zip(row_ind, col_ind):
121
+ if cost_matrix[t_idx, d_idx] < 0.8: # Only accept good matches
122
+ track_id = track_ids_list[t_idx]
123
+ track = self.tracks[track_id]
124
+ bbox = detection_bboxes[d_idx]
125
+
126
+ # Update track information
127
+ track["centroid"] = current_centroids[d_idx]
128
+ track["bbox"] = bbox
129
+ track["disappeared"] = 0
130
+ self.track_history[track_id].append(current_centroids[d_idx])
131
+
132
+ # Assign track ID to detection
133
+ track_ids[d_idx] = track_id
134
+ except Exception as e:
135
+ pass
136
+
137
+ # Stage 2: Handle unmatched detections
138
+ unmatched_detections = [d_idx for d_idx, tid in enumerate(track_ids) if tid == -1]
139
+ regained_ids = []
140
+ new_track_ids = []
141
+
142
+ for d_idx in unmatched_detections:
143
+ centroid = current_centroids[d_idx]
144
+ bbox = detection_bboxes[d_idx]
145
+
146
+ # Try to regain from disappeared tracks
147
+ best_match_id = None
148
+ min_cost = float('inf')
149
+
150
+ for track_id, track in self.disappeared_tracks.items():
151
+ cost = self._calculate_cost(track, bbox)
152
+ centroid_distance = np.linalg.norm(centroid - track["centroid"])
153
+
154
+ if cost < min_cost and centroid_distance <= self.max_distance:
155
+ min_cost = cost
156
+ best_match_id = track_id
157
+
158
+ # Regain track if found
159
+ if best_match_id and len(self.tracks) < self.max_pigs:
160
+ # Update track information
161
+ self.tracks[best_match_id] = {
162
+ "centroid": centroid,
163
+ "bbox": bbox,
164
+ "disappeared": 0
165
+ }
166
+ self.track_history[best_match_id].append(centroid)
167
+ track_ids[d_idx] = best_match_id
168
+ regained_ids.append(best_match_id)
169
+ del self.disappeared_tracks[best_match_id]
170
+
171
+ # Create new track if no match and under capacity
172
+ elif len(self.tracks) < self.max_pigs:
173
+ new_id = self.next_id
174
+ self.tracks[new_id] = {
175
+ "centroid": centroid,
176
+ "bbox": bbox,
177
+ "disappeared": 0
178
+ }
179
+ self.track_history[new_id].append(centroid)
180
+ track_ids[d_idx] = new_id
181
+ new_track_ids.append(new_id)
182
+ self.next_id += 1
183
+
184
+ # Stage 3: Update disappeared tracks
185
+ lost_track_ids = []
186
+
187
+ # Check all active tracks
188
+ for track_id in list(self.tracks.keys()):
189
+ # If track wasn't matched
190
+ if track_id not in track_ids:
191
+ self.tracks[track_id]["disappeared"] += 1
192
+
193
+ # Move to disappeared if disappeared too long
194
+ if self.tracks[track_id]["disappeared"] > self.max_disappeared:
195
+ self.disappeared_tracks[track_id] = self.tracks[track_id]
196
+ del self.tracks[track_id]
197
+ lost_track_ids.append(track_id)
198
+ # Keep history for potential regain
199
+
200
+ # Stage 4: Cap at max pigs
201
+ if len(self.tracks) > self.max_pigs:
202
+ # Remove oldest lost track (highest disappeared count)
203
+ oldest_id = None
204
+ max_disappeared = -1
205
+ for track_id, track in self.tracks.items():
206
+ if track["disappeared"] > max_disappeared:
207
+ max_disappeared = track["disappeared"]
208
+ oldest_id = track_id
209
+
210
+ if oldest_id:
211
+ self.disappeared_tracks[oldest_id] = self.tracks[oldest_id]
212
+ del self.tracks[oldest_id]
213
+ lost_track_ids.append(oldest_id)
214
+
215
+ # Return only current detections with track IDs
216
+ all_track_ids = []
217
+ all_bboxes = []
218
+
219
+ for i, tid in enumerate(track_ids):
220
+ if tid != -1:
221
+ all_track_ids.append(tid)
222
+ all_bboxes.append(detection_bboxes[i])
223
+
224
+ return all_track_ids, all_bboxes, regained_ids, lost_track_ids
225
+
226
+
227
+ # The rest of your code remains the same (read_json_file, save_json_file, setup_logger, and main)
228
+
229
+ def read_json_file(json_path):
230
+ with open(json_path, 'r') as f:
231
+ data = json.load(f)
232
+
233
+ frame_data = {}
234
+ for item in data:
235
+ frame_id = item['frame_id']
236
+ det = {
237
+ "bbox": item["bbox"],
238
+ "area": item.get("area", 0)
239
+ }
240
+
241
+ if frame_id not in frame_data:
242
+ frame_data[frame_id] = {
243
+ "frame_width": item.get("frame_width", 1280),
244
+ "frame_height": item.get("frame_height", 720),
245
+ "detections": []
246
+ }
247
+
248
+ frame_data[frame_id]["detections"].append(det)
249
+
250
+ return frame_data
251
+
252
+
253
+ def save_json_file(output_path, results):
254
+ coco_output = {
255
+ "images": [],
256
+ "annotations": [],
257
+ "categories": [{"id": 1, "name": "pig"}]
258
+ }
259
+
260
+ annotation_id = 1
261
+ for frame_id in sorted(results.keys()):
262
+ frame = results[frame_id]
263
+ width = frame["frame_width"]
264
+ height = frame["frame_height"]
265
+ file_name = f"{frame_id:08d}.jpg"
266
+
267
+ coco_output["images"].append({
268
+ "id": frame_id,
269
+ "file_name": file_name,
270
+ "width": width,
271
+ "height": height
272
+ })
273
+
274
+ for det in frame["detections"]:
275
+ x, y, w, h = det["bbox"]
276
+ area = det.get("area", w * h)
277
+ coco_output["annotations"].append({
278
+ "id": annotation_id,
279
+ "image_id": frame_id,
280
+ "category_id": 1,
281
+ "bbox": [x, y, w, h],
282
+ "track_id": det["track_id"],
283
+ "area": area,
284
+ "iscrowd": 0
285
+ })
286
+ annotation_id += 1
287
+
288
+ with open(output_path, 'w') as f:
289
+ json.dump(coco_output, f, indent=2)
290
+
291
+
292
+ def setup_logger(log_path):
293
+ logger = logging.getLogger('tracking_logger')
294
+ logger.setLevel(logging.INFO)
295
+
296
+ for handler in logger.handlers[:]:
297
+ logger.removeHandler(handler)
298
+
299
+ file_handler = logging.FileHandler(log_path)
300
+ file_handler.setLevel(logging.INFO)
301
+
302
+ console_handler = logging.StreamHandler()
303
+ console_handler.setLevel(logging.INFO)
304
+
305
+ formatter = logging.Formatter('%(asctime)s - %(message)s')
306
+ file_handler.setFormatter(formatter)
307
+ console_handler.setFormatter(formatter)
308
+
309
+ logger.addHandler(file_handler)
310
+ logger.addHandler(console_handler)
311
+
312
+ return logger
313
+
314
+
315
+ if __name__ == "__main__":
316
+ input_dir = "path/to/your/detected_json"
317
+ output_dir = "path/to/your/tracked_json"
318
+ log_dir = "path/to/your/tracking_log"
319
+ os.makedirs(output_dir, exist_ok=True)
320
+ os.makedirs(log_dir, exist_ok=True)
321
+
322
+ for file_name in os.listdir(input_dir):
323
+ if not file_name.endswith(".json"):
324
+ continue
325
+
326
+ input_path = os.path.join(input_dir, file_name)
327
+ output_path = os.path.join(output_dir, file_name.replace("detection.json", "tracked.json"))
328
+ log_path = os.path.join(log_dir, file_name.replace(".json", ".log"))
329
+
330
+ logger = setup_logger(log_path)
331
+ logger.info(f"Starting processing for {file_name}")
332
+
333
+ frames = read_json_file(input_path)
334
+ tracker = PixelBBoxTracker(max_disappeared=180, max_distance=125, max_pigs=9)
335
+ results = {}
336
+ detection_counts = defaultdict(list)
337
+
338
+ for frame_id in sorted(frames.keys()):
339
+ frame = frames[frame_id]
340
+ detections = frame["detections"]
341
+
342
+ # Remove original track ID
343
+ for det in detections:
344
+ det.pop("track_id", None)
345
+
346
+ # Process tracking
347
+ track_ids, bboxes, regained_ids, lost_track_ids = tracker.update(detections)
348
+
349
+ # Prepare detections for this frame
350
+ frame_detections = []
351
+ for track_id, bbox in zip(track_ids, bboxes):
352
+ frame_detections.append({
353
+ "bbox": bbox,
354
+ "track_id": track_id,
355
+ "area": bbox[2] * bbox[3] # w * h
356
+ })
357
+
358
+ # Store results
359
+ results[frame_id] = {
360
+ "frame_width": frame["frame_width"],
361
+ "frame_height": frame["frame_height"],
362
+ "detections": frame_detections
363
+ }
364
+
365
+ # Logging
366
+ detection_count = len(frame_detections)
367
+ detection_counts[detection_count].append(frame_id)
368
+
369
+ if detection_count > 9:
370
+ logger.warning(f"Frame {frame_id}: Too many detections ({detection_count}) - capped to 9")
371
+ elif detection_count < 9:
372
+ logger.info(f"Frame {frame_id}: Only {detection_count} detections")
373
+
374
+ if lost_track_ids:
375
+ logger.info(f"Frame {frame_id}: Lost tracks - {', '.join(map(str, lost_track_ids))}")
376
+
377
+ if regained_ids:
378
+ logger.info(f"Frame {frame_id}: Regained tracks - {', '.join(map(str, regained_ids))}")
379
+
380
+ # Save detection count statistics
381
+ logger.info("\nDetection Count Statistics:")
382
+ for count, frames in sorted(detection_counts.items()):
383
+ logger.info(f"{count} detections: {len(frames)} frames")
384
+
385
+ # Save results
386
+ save_json_file(output_path, results)
387
+ logger.info(f"Tracking complete. Output saved to {output_path}\n")
388
+
389
+ print("All files processed successfully.")
code/yolo_detection.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ import cv2
4
+ import numpy as np
5
+ from pathlib import Path
6
+ from ultralytics import YOLO
7
+ from collections import defaultdict
8
+ import time
9
+ import json
10
+
11
+
12
+ # Configuration
13
+ INPUT_VIDEOS_DIR = "datasets/usplf/tracking/pen2_cam2" # Directory containing input videos
14
+ OUTPUT_DIR = "datasets/usplf/tracking/detected_json/pen2_cam2"
15
+ # POLYGON_VERTICES = np.array([[89,139], [325,57], [594, 6], [1128, 29], [1129, 364], [1031, 717],[509, 653],[287, 583], [100, 506],[74, 321]]) # Pen2 Cam1 polygon coordinates
16
+ POLYGON_VERTICES = np.array([[179, 3], [844, 8], [1151, 137], [1151, 316], [1135, 486], [995, 531],[801, 592],[278, 711], [167, 325]]) # Pen2 Cam2 polygon coordinates
17
+ CONF_THRESH = 0.55 # Confidence threshold
18
+ # TRACKER_CONFIG = "custom_bytetrack.yaml" # Built-in tracker config
19
+
20
+ # Visualization settings
21
+ SHOW_MASK_OVERLAY = True
22
+ MASK_ALPHA = 0.3 # Transparency for polygon mask
23
+ BOX_COLOR = (0, 255, 0) # Green
24
+ TEXT_COLOR = (255, 255, 255) # White
25
+ FONT_SCALE = 0.8
26
+ THICKNESS = 2
27
+
28
+ def create_mask(frame_shape):
29
+ mask = np.zeros(frame_shape[:2], dtype=np.uint8)
30
+ cv2.fillPoly(mask, [POLYGON_VERTICES], 255)
31
+ return mask
32
+
33
+ def draw_visuals_detection(frame, mask, detections, frame_count, fps):
34
+ if SHOW_MASK_OVERLAY:
35
+ overlay = frame.copy()
36
+ cv2.fillPoly(overlay, [POLYGON_VERTICES], (0, 100, 0))
37
+ cv2.addWeighted(overlay, MASK_ALPHA, frame, 1 - MASK_ALPHA, 0, frame)
38
+
39
+ for det in detections:
40
+ x, y, w, h = det['bbox']
41
+ conf = det['confidence']
42
+
43
+ # Draw bounding box
44
+ cv2.rectangle(
45
+ frame,
46
+ (int(x - w / 2), int(y - h / 2)),
47
+ (int(x + w / 2), int(y + h / 2)),
48
+ BOX_COLOR, THICKNESS
49
+ )
50
+
51
+ # Display confidence
52
+ cv2.putText(frame, f"{conf:.2f}",
53
+ (int(x - w / 2), int(y - h / 2) - 10),
54
+ cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS)
55
+
56
+ # Overlay info
57
+ cv2.putText(frame, f"Frame: {frame_count}", (10, 30),
58
+ cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS)
59
+ cv2.putText(frame, f"FPS: {fps:.1f}", (10, 60),
60
+ cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS)
61
+ cv2.putText(frame, f"Pigs: {len(detections)}", (10, 90),
62
+ cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, TEXT_COLOR, THICKNESS)
63
+
64
+ return frame
65
+
66
+
67
+ def process_video(video_path, output_path):
68
+ model = YOLO("trained_model_weight/pig_detect/yolo/pig_detect_pen2_best.pt")
69
+ cap = cv2.VideoCapture(str(video_path))
70
+ frame_count = 0
71
+ results_list = []
72
+ fps_history = []
73
+
74
+ # Video properties
75
+ frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
76
+ frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
77
+ mask = create_mask((frame_height, frame_width))
78
+
79
+ win_name = f"Pig Detection - {video_path.name}"
80
+ cv2.namedWindow(win_name, cv2.WINDOW_NORMAL)
81
+
82
+ while cap.isOpened():
83
+ start_time = time.time()
84
+ success, frame = cap.read()
85
+ if not success:
86
+ break
87
+
88
+ masked_frame = cv2.bitwise_and(frame, frame, mask=mask)
89
+
90
+ # Detection instead of tracking
91
+ results = model.predict(
92
+ masked_frame,
93
+ conf=CONF_THRESH,
94
+ verbose=False
95
+ )
96
+
97
+ detections = []
98
+ if results[0].boxes is not None:
99
+ boxes = results[0].boxes.xywh.cpu().numpy()
100
+ scores = results[0].boxes.conf.cpu().numpy()
101
+
102
+ for box, score in zip(boxes, scores):
103
+ x, y, w, h = box
104
+ detections.append({"confidence": float(score), "bbox": [x, y, w, h]})
105
+ results_list.append({
106
+ "frame_id": frame_count,
107
+ "frame_width": frame_width,
108
+ "frame_height": frame_height,
109
+ "confidence": float(score),
110
+ "bbox": [float(x), float(y), float(w), float(h)],
111
+ "area": float(w * h)
112
+ })
113
+
114
+ # FPS calculation
115
+ processing_time = time.time() - start_time
116
+ fps = 1 / processing_time
117
+ fps_history.append(fps)
118
+ if len(fps_history) > 10:
119
+ fps = np.mean(fps_history[-10:])
120
+
121
+ # Draw visuals
122
+ display_frame = draw_visuals_detection(frame.copy(), mask, detections, frame_count, fps)
123
+ cv2.imshow(win_name, display_frame)
124
+ if cv2.waitKey(1) & 0xFF == ord('q'):
125
+ break
126
+
127
+ frame_count += 1
128
+
129
+ cap.release()
130
+ cv2.destroyWindow(win_name)
131
+
132
+ # Save JSON
133
+ output_file = output_path / f"{video_path.stem}_detection.json"
134
+ with open(output_file, 'w') as f:
135
+ json.dump(results_list, f, indent=2)
136
+
137
+ if __name__ == "__main__":
138
+ input_dir = Path(INPUT_VIDEOS_DIR)
139
+ output_dir = Path(OUTPUT_DIR)
140
+ output_dir.mkdir(exist_ok=True)
141
+
142
+ for video_file in input_dir.glob("*.mp4"):
143
+ print(f"Processing {video_file.name}...")
144
+ process_video(video_file, output_dir)
145
+ cv2.destroyAllWindows()