from ultralytics import YOLO from ultralytics.data import build_dataloader from ultralytics.data.dataset import YOLODataset import torch import cv2 class CustomYOLODataset(YOLODataset): def __init__(self, *args, **kwargs): kwargs["data"] = dict(kwargs.get("data", {}), channels=4) super().__init__(*args, **kwargs) def __getitem__(self, index): img_path = self.im_files[index] img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) assert img.shape[-1] == 4, f"Image {img_path} has {img.shape[-1]} channels" return super().__getitem__(index) def build_dataloader_override(cfg, batch, img_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0, rect=False, rank=-1, workers=8, shuffle=False, data_info=None): dataset = CustomYOLODataset( data=data_info, img_size=img_size, batch_size=batch, augment=augment, hyp=hyp, rect=rect, cache=cache, single_cls=single_cls, stride=int(stride), pad=pad, rank=rank, ) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=batch, shuffle=shuffle, num_workers=workers, sampler=None, pin_memory=True, collate_fn=getattr(dataset, "collate_fn", None), ) return loader build_dataloader.build_dataloader = build_dataloader_override # Initialize model model = YOLO("yolo11_rgbd.yaml") # Ensure YAML has ch=4 # ---- Load Pretrained Weights ---- # pretrained = YOLO("yolo11l.pt").model.state_dict() pretrained = YOLO("yolo11n.pt").model.state_dict() model_state = model.model.state_dict() filtered_pretrained = {k: v for k, v in pretrained.items() if not k.startswith(("model.23", "model.0.conv"))} model_state.update(filtered_pretrained) with torch.no_grad(): rgb_weights = pretrained["model.0.conv.weight"][:, :3] depth_weights = torch.randn(64, 1, 3, 3) * 0.1 # FOr Yolov11l model # depth_weights = torch.randn(16, 1, 3, 3) * 0.1 # For Yolov11n model model_state["model.0.conv.weight"] = torch.cat([rgb_weights, depth_weights], dim=1) model.model.load_state_dict(model_state, strict=False) # ---- Critical Warmup Fix ---- def custom_warmup(self, imgsz=(1, 4, 640, 640)): # Force 4-channel input self.forward(torch.zeros(imgsz).to(self.device)) model.model.warmup = custom_warmup.__get__(model.model) # Train model.train( data="usplf_rgbd_dataset.yaml", epochs=200, imgsz=640, batch=10, device="0", name="yolov11_rgbd_pretrained" )