import os import glob import cv2 import numpy as np import torch from ultralytics import YOLO from tqdm import tqdm # ---- CONFIGURATION ---- model_path = 'path/to/your/model/weights/best.pt' test_img_dir = 'path/to/your/rgbd/test/images' output_rgb_dir = 'outputs/rgb' output_depth_dir = 'outputs/depth' class_names = ['Feeding', 'Lateral_lying', 'Sitting', 'Standing', 'Sternal_lying'] confidence_threshold = 0.65 input_size = 640 # Model input size os.makedirs(output_rgb_dir, exist_ok=True) os.makedirs(output_depth_dir, exist_ok=True) # ---- Define consistent colors for each class ---- COLORS = { 'Feeding': (255, 0, 0), # Blue 'Lateral_lying': (0, 255, 0), # Green 'Sitting': (0, 0, 255), # Red 'Standing': (255, 255, 0), # Cyan 'Sternal_lying': (255, 0, 255) # Magenta } # ---- LOAD MODEL ---- model = YOLO(model_path).cuda().eval() # ---- INFERENCE LOOP ---- image_paths = sorted(glob.glob(os.path.join(test_img_dir, '*.png'))) for img_path in tqdm(image_paths, desc="Visualizing Predictions"): base = os.path.splitext(os.path.basename(img_path))[0] # Load original 4-channel image img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) if img is None or img.shape[-1] != 4: print(f"Skipping {img_path}, invalid image format.") continue rgb = img[:, :, :3] depth = img[:, :, 3] orig_h, orig_w = rgb.shape[:2] # Resize to model input size for inference img_resized = cv2.resize(img, (input_size, input_size)) input_tensor = torch.from_numpy(img_resized).permute(2, 0, 1).float() / 255.0 input_tensor = input_tensor.unsqueeze(0).cuda() # Inference results = model.predict(input_tensor, imgsz=input_size, conf=confidence_threshold)[0] boxes = results.boxes classes = boxes.cls.cpu().numpy() confidences = boxes.conf.cpu().numpy() xyxy_resized = boxes.xyxy.cpu().numpy() # Scale boxes back to original image size scale_x = orig_w / input_size scale_y = orig_h / input_size xyxy_orig = np.copy(xyxy_resized) xyxy_orig[:, [0, 2]] *= scale_x xyxy_orig[:, [1, 3]] *= scale_y # Normalize depth to uint8 for visualization depth_norm = cv2.normalize(depth, None, 0, 255, cv2.NORM_MINMAX) depth_uint8 = depth_norm.astype('uint8') rgb_draw = rgb.copy() # Apply a colormap for better visualization depth_rgb = cv2.applyColorMap(depth_uint8, cv2.COLORMAP_VIRIDIS) # Or COLORMAP_VIRIDIS, INFERNO, etc. depth_draw = cv2.cvtColor(depth_rgb, cv2.COLOR_BGR2RGB) # Convert BGR to RGB for matplotlib # ---- Draw boxes on original-size RGB and Depth ---- for box, cls, conf in zip(xyxy_orig, classes, confidences): x1, y1, x2, y2 = map(int, box) label = f"{class_names[int(cls)]} {conf:.2f}" color = COLORS.get(class_names[int(cls)], (255, 255, 255)) # Default to white # RGB cv2.rectangle(rgb_draw, (x1, y1), (x2, y2), color, 2) cv2.putText(rgb_draw, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) # Depth cv2.rectangle(depth_draw, (x1, y1), (x2, y2), color, 2) cv2.putText(depth_draw, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) # Save images cv2.imwrite(os.path.join(output_rgb_dir, f"{base}.png"), rgb_draw) cv2.imwrite(os.path.join(output_depth_dir, f"{base}.png"), depth_draw)