Gilt_posture_dataset / code /RGBD /yolo_rgbd_model_inference.py
anilbhujel's picture
Save my local changes
a26ae4f
raw
history blame
3.41 kB
import os
import glob
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from tqdm import tqdm
# ---- CONFIGURATION ----
model_path = 'path/to/your/model/weights/best.pt'
test_img_dir = 'path/to/your/rgbd/test/images'
output_rgb_dir = 'outputs/rgb'
output_depth_dir = 'outputs/depth'
class_names = ['Feeding', 'Lateral_lying', 'Sitting', 'Standing', 'Sternal_lying']
confidence_threshold = 0.65
input_size = 640 # Model input size
os.makedirs(output_rgb_dir, exist_ok=True)
os.makedirs(output_depth_dir, exist_ok=True)
# ---- Define consistent colors for each class ----
COLORS = {
'Feeding': (255, 0, 0), # Blue
'Lateral_lying': (0, 255, 0), # Green
'Sitting': (0, 0, 255), # Red
'Standing': (255, 255, 0), # Cyan
'Sternal_lying': (255, 0, 255) # Magenta
}
# ---- LOAD MODEL ----
model = YOLO(model_path).cuda().eval()
# ---- INFERENCE LOOP ----
image_paths = sorted(glob.glob(os.path.join(test_img_dir, '*.png')))
for img_path in tqdm(image_paths, desc="Visualizing Predictions"):
base = os.path.splitext(os.path.basename(img_path))[0]
# Load original 4-channel image
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
if img is None or img.shape[-1] != 4:
print(f"Skipping {img_path}, invalid image format.")
continue
rgb = img[:, :, :3]
depth = img[:, :, 3]
orig_h, orig_w = rgb.shape[:2]
# Resize to model input size for inference
img_resized = cv2.resize(img, (input_size, input_size))
input_tensor = torch.from_numpy(img_resized).permute(2, 0, 1).float() / 255.0
input_tensor = input_tensor.unsqueeze(0).cuda()
# Inference
results = model.predict(input_tensor, imgsz=input_size, conf=confidence_threshold)[0]
boxes = results.boxes
classes = boxes.cls.cpu().numpy()
confidences = boxes.conf.cpu().numpy()
xyxy_resized = boxes.xyxy.cpu().numpy()
# Scale boxes back to original image size
scale_x = orig_w / input_size
scale_y = orig_h / input_size
xyxy_orig = np.copy(xyxy_resized)
xyxy_orig[:, [0, 2]] *= scale_x
xyxy_orig[:, [1, 3]] *= scale_y
# Normalize depth to uint8 for visualization
depth_norm = cv2.normalize(depth, None, 0, 255, cv2.NORM_MINMAX)
depth_uint8 = depth_norm.astype('uint8')
rgb_draw = rgb.copy()
# Apply a colormap for better visualization
depth_rgb = cv2.applyColorMap(depth_uint8, cv2.COLORMAP_VIRIDIS) # Or COLORMAP_VIRIDIS, INFERNO, etc.
depth_draw = cv2.cvtColor(depth_rgb, cv2.COLOR_BGR2RGB) # Convert BGR to RGB for matplotlib
# ---- Draw boxes on original-size RGB and Depth ----
for box, cls, conf in zip(xyxy_orig, classes, confidences):
x1, y1, x2, y2 = map(int, box)
label = f"{class_names[int(cls)]} {conf:.2f}"
color = COLORS.get(class_names[int(cls)], (255, 255, 255)) # Default to white
# RGB
cv2.rectangle(rgb_draw, (x1, y1), (x2, y2), color, 2)
cv2.putText(rgb_draw, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# Depth
cv2.rectangle(depth_draw, (x1, y1), (x2, y2), color, 2)
cv2.putText(depth_draw, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# Save images
cv2.imwrite(os.path.join(output_rgb_dir, f"{base}.png"), rgb_draw)
cv2.imwrite(os.path.join(output_depth_dir, f"{base}.png"), depth_draw)