ProofWalaDataset / math-comp /test /math-comp_test.yaml
amitayusht's picture
Added raw dataset
db04d2b
name: math-comp_test
num_files: 65
language: COQ
few_shot_data_path_for_retrieval: null
few_shot_metadata_filename_for_retrieval: null
dfs_data_path_for_retrieval: null
dfs_metadata_filename_for_retrieval: local.meta.json
theorem_cnt: 536
datasets:
- project: <path-to-repo>/math-comp/
files:
- path: mathcomp/algebra/ssralg.v
theorems:
- telescope_prodf_eq
- opp_fun_is_additive
- scalerK
- iter_mulr_1
- prodf_seq_eq0
- invr0
- exprSr
- mulC_unitP
- invrZ
- mulVKr
- scalerDr
- in_alg_is_rmorphism
- fst_is_multiplicative
- prodrXl
- natrX
- rmorph_sum
- addUC
- opp_fun_is_scalable
- rmorphMNn
- exprDn_comm
- eqr_opp
- expfB_cond
- rmorphN1
- exprM
- fpredMr
- pair_scaleA
- scalerN
- path: mathcomp/algebra/matrix.v
theorems:
- adj1
- mxrowEblock
- cormen_lup_detL
- mul_col_mx
- map2_row'
- eq_mx
- thinmxOver
- mxtrace_mxdiag
- invmxK
- map_xrow
- row_dsubmx
- mulmxr_is_linear
- block_mxA
- col_ind
- tr_submxcol
- scalar_mx_is_semi_additive
- row'Ku
- trmx_ursub
- mul_mx_diag
- lift0_mx_is_perm
- row_perm_key
- map_castmx
- mxblockB
- submxcolD
- path: mathcomp/algebra/ssrnum.v
theorems:
- deg2_poly_gt0
- ltr_pdivrMr
- lt0r
- sqr_norm_eq1
- lerXn2r
- minr_pMl
- le_total
- Nreal_leF
- real_lteif_distl
- ler_nM2r
- mulr_sign_lt0
- ler_ndivlMr
- ring_display
- ler_wiXn2l
- lern1
- sqrtr_sqr
- ltrP
- le_def'
- mulr_ile1
- aNge0
- real_exprn_odd_le0
- gtrDr
- pnatr_eq0
- ler_pMn2l
- bigmax_real
- sqrtr_eq0
- real_ltr_normlW
- ltr_nMn2l
- mulr_ilt1
- psumr_neq0P
- deg2_poly_root2
- exprn_odd_ge0
- real_ltr_distl
- real_lteifNE
- ler_rootCl
- real_neqr_lt
- normr_ge0
- le_def'
- ler01
- real_ltrNnormlW
- ge0_def
- normrN1
- sgrN1
- natr_indexg_gt0
- sgr_odd
- agt0
- ieexprIn
- path: mathcomp/ssreflect/ssrnat.v
theorems:
- mul2n
- odd_gt2
- leqif_geq
- subn2
- leq_pmulr
- homo_leq_in
- gtn_min
- contra_ltnT
- half_gt0
- sqrnD
- mulE
- subnA
- doubleMr
- uphalfK
- predn_sub
- iterD
- mul_expE
- mulnSr
- leqif_add
- path: mathcomp/ssreflect/bigop.v
theorems:
- big_tnth
- eq_big_idem
- dvdn_biggcdP
- big_ord1_cond_eq
- addmA
- big_all_cond
- big_uniq
- opm1
- eq_bigl
- eq_bigmax
- big_rcons
- bigA_distr_bigA
- big_sumType
- eq_big
- big_tuple
- path: mathcomp/fingroup/morphism.v
theorems:
- morphim_normal
- kerE
- morphimEdom
- sgvalmK
- isog_symr
- morphpre_sub
- isogEcard
- path: mathcomp/algebra/polydiv.v
theorems:
- dvdp_XsubCl
- gcd1p
- rdvdpp
- rdvd0p
- divpp
- coprimepP
- dvdp_mull
- polyXsubCP
- leq_trunc_divp
- rmodp_eq0P
- rmodpX
- dvdpp
- dvdpN0
- gcdp_modr
- coprimepZr
- dvdp_gdco
- rmodp_sum
- coprimep_expr
- rdvdp_eqP
- eqp_scale
- coprimepp
- gcdp_addl_mul
- dvdp_exp
- gcdp_map
- edivpP
- rmodp_id
- edivp_eq
- path: mathcomp/field/galois.v
theorems:
- fixedField_galois
- comp_kHom
- normal_field_splitting
- gal_adjoin_eq
- regular_splittingAxiom
- kAutfE
- galNormM
- splitting_normalField
- comp_AEndA
- kAut_to_gal
- kHomExtend_additive_subproof
- gal_fixedField
- path: mathcomp/character/vcharacter.v
theorems:
- mem_zchar
- vchar_norm2
- cfnorm_dchi
- zchar_subset
- cfun1_vchar
- path: mathcomp/solvable/cyclic.v
theorems:
- injm_Zp_unitm
- orderXdiv
- path: mathcomp/algebra/ring_quotient.v
theorems:
- mulqA
- equiv_is_equiv
- path: mathcomp/fingroup/quotient.v
theorems:
- cosetpre1
- index_morphim_ker
- morphpre_quotm
- quotient_normal
- path: mathcomp/solvable/maximal.v
theorems:
- subcent1_extraspecial_maximal
- min_card_extraspecial
- isog_special
- path: mathcomp/algebra/mxalgebra.v
theorems:
- addsmxA
- mxrank_compl
- mulmx_ker
- col_ebase_unit
- rank_leq_col
- LUP_card_GL
- row_leq_rank
- mulmx_base
- pinvmxE
- mxrank_sum_cap
- map_ltmx
- capmxS
- genmx_muls
- mxrank_eq0
- col_base_full
- path: mathcomp/solvable/extremal.v
theorems:
- extremal_generators_facts
- def2
- path: mathcomp/fingroup/action.v
theorems:
- actKVin
- astab1R
- afixP
- actperm_Aut
- acts_qact_dom_norm
- astabs_ract
- astab1JG
- afixYin
- gacent1E
- acts_actby
- mem_orbit
- path: mathcomp/algebra/poly.v
theorems:
- prim_order_exists
- size_XaddC
- size_scale
- poly_alg_initial
- map_monic
- coef_comp_poly
- size_addl
- poly_ind
- size_odd_poly_eq
- derivN
- take_poly_is_linear
- map_Poly_id0
- polyCB
- rootC
- add_poly_key
- polyseq1
- char_prim_root
- comp_polyCr
- monicMr
- size_comp_poly_leq
- derivX
- horner_evalE
- map_polyXsubC
- coef1
- scale_polyDl
- size_XnaddC
- path: mathcomp/ssreflect/order.v
theorems:
- comp_is_top_morphism
- lexi_cons
- rcomplPjoin
- meetBI
- joinCA
- comparable_bigr
- meetUr
- enum1
- incomparable_leF
- ltEsig
- meetEseq
- joinKUC
- complEdiff
- le_refl
- joins_sup
- lteif_orb
- le_refl
- le_enum_rank_in
- contraTlt
- meetCA
- nonincn_inP
- le_nmono_in
- joinC
- lt_path_min
- idfun_is_meet_morphism
- meetC
- comparable_contra_ltn_lt
- minEle
- comparable_gt_max
- lt_le_asym
- ltEprodlexi
- le_def
- opredI
- joinIB
- leBl
- joinACA
- botEseq
- bigmin_mkcondr
- leUidl
- comparable_gt_min
- idfun_is_nondecreasing
- decn_inP
- ltW_homo
- max_idPr
- botEsig
- le_nmono
- meetAC
- ge_max
- anti
- leBx
- neqhead_lexiE
- contraNle
- meetA
- comparable_maxCA
- path: mathcomp/character/mxabelem.v
theorems:
- mx_repr_action_faithful
- astabs_rowg_repr
- path: mathcomp/character/mxrepresentation.v
theorems:
- mx_abs_irr_cent_scalar
- map_reprJ
- bigcapmx_module
- map_gring_row
- component_mx_module
- repr_mxM
- rcenter_normal
- mx_second_rsim
- kquo_repr_coset
- in_factmod_addsK
- mx_Jacobson_density
- card_irr
- genmx_Socle
- gring_opJ
- val_factmodJ
- val_submod_eq0
- irr_modeV
- gen_is_multiplicative
- mxmodule1
- mxsimple_isoP
- mxmodule_eigenvector
- mxsemisimpleS
- Wedderburn_ideal
- hom_cyclic_mx
- socle_rsimP
- path: mathcomp/solvable/abelian.v
theorems:
- rank_cycle
- primes_exponent
- exponent_Zgroup
- Ohm1
- exponent2_abelem
- p_rank_abelem
- TIp1ElemP
- path: mathcomp/field/finfield.v
theorems:
- finRing_nontrivial
- path: mathcomp/ssreflect/prime.v
theorems:
- Euclid_dvd_prod
- trunc_log_ltn
- up_log2_double
- trunc_log_up_log
- totient_prime
- trunc_logP
- lognM
- primesX
- pdiv_id
- pdiv_pfactor
- path: mathcomp/algebra/polyXY.v
theorems:
- sizeYE
- swapXY_is_scalable
- max_size_coefXY
- poly_XaY0
- path: mathcomp/algebra/vector.v
theorems:
- dimv0
- lfun_addC
- sumv_sup
- comp_lfun0l
- memvK
- span_basis
- comp_lfunNl
- free_span
- fun_of_lfunK
- memv_capP
- vs2mxP
- capvSl
- hommx1
- sub_span
- dim_span
- path: mathcomp/fingroup/perm.v
theorems:
- perm_mulP
- out_perm
- cast_perm_inj
- porbit_id
- porbit_perm
- odd_tperm
- tpermKg
- inj_tperm
- path: mathcomp/algebra/ssrint.v
theorems:
- addSz
- ler_pMz2r
- ltr_pMz2l
- ler_wnMz2l
- exprSz
- exprz_out
- sqrn_dist
- mulrN1z
- sgzN1
- distnEr
- path: mathcomp/algebra/intdiv.v
theorems:
- divzN
- coprimez_dvdr
- gcdzMl
- modzz
- coprimezMl
- path: mathcomp/ssreflect/choice.v
theorems:
- pickle_taggedK
- sig2W
- choose_id
- path: mathcomp/field/fieldext.v
theorems:
- minPoly_dvdp
- vsval_multiplicative
- subfx_inj_is_multiplicative
- dim_refBaseField
- path: mathcomp/ssreflect/fintype.v
theorems:
- val_seq_sub_enum
- predT_subset
- eq_forallb
- nth_enum_ord
- bumpC
- image_pre
- disjointWl
- enum_rank_in_inj
- card_geqP
- forall_inP
- fintype1
- cardID
- neq_lift
- path: mathcomp/algebra/zmodp.v
theorems:
- unit_Zp_mulgC
- sub_Zp_1
- Zp_abelian
- Fp_cast
- path: mathcomp/character/character.v
theorems:
- cfRepr_prod
- irr_inj
- xcfunZl
- xcfun_r_is_additive
- cfRepr_muln
- constt_charP
- cfRes_irr_irr
- irr_classK
- cfker_repr
- lin_Res_IirrE
- cfRes_eq0
- cfAut_char
- lin_charV
- irr_consttE
- char1_gt0
- path: mathcomp/solvable/sylow.v
theorems:
- Sylow_superset
- ZgroupS
- path: mathcomp/field/falgebra.v
theorems:
- adjoin_cons
- expv0
- lfun_invE
- expv1n
- agenv_sub_modl
- lfun_mulrRV
- path: mathcomp/field/algC.v
theorems:
- truncC0
- truncCM
- Cnat_prod_eq1
- posP
- eqCmod_addl_mul
- eqCmodMl
- eqCmodD
- eqCmod_trans
- CtoL_is_multiplicative
- path: mathcomp/ssreflect/path.v
theorems:
- mem2E
- splitP2r
- rotr_ucycle
- mem_merge
- rotr_cycle
- mem2r_cat
- sorted_eq_in
- cycle_relI
- drop_sorted
- splitPr
- path: mathcomp/algebra/mxpoly.v
theorems:
- map_mx_companion
- map_char_poly
- rVpoly_is_linear
- horner_rVpoly_inj
- path: mathcomp/algebra/fraction.v
theorems:
- tofrac0
- equivf_trans
- path: mathcomp/ssreflect/div.v
theorems:
- eqn_div
- eqn_modDl
- dvdn_eq
- modnMmr
- dvdn0
- dvdn_lcmr
- path: mathcomp/solvable/frobenius.v
theorems:
- Frobenius_kerS
- FrobeniusJgroup
- path: mathcomp/solvable/alt.v
theorems:
- simple_Alt_3
- path: mathcomp/solvable/jordanholder.v
theorems:
- JordanHolderUniqueness
- gactsI
- gastabsP
- gactsP
- path: mathcomp/solvable/burnside_app.v
theorems:
- S23_inv
- S05_inj
- eqperm_map2
- path: mathcomp/algebra/rat.v
theorems:
- scalqE
- fracq0
- normqE
- numq_le0
- natq_div
- addqC
- path: mathcomp/algebra/qpoly.v
theorems:
- size_mk_monic_gt1
- npolyXE
- qpoly_mulVz
- big_coef_npoly
- path: mathcomp/character/inertia.v
theorems:
- inertia_isom
- im_cfclass_Iirr
- nNG
- path: mathcomp/fingroup/gproduct.v
theorems:
- complP
- bigcprodW
- sdprodg1
- injm_pairg1
- cprodP
- perm_bigcprod
- dprodJ
- divgrMid
- astabsEsd
- sdprod_subr
- xsdprodm_dom1
- bigcprodYP
- cprodWpp
- dprodWC
- path: mathcomp/field/qfpoly.v
theorems:
- plogpD
- path: mathcomp/solvable/gseries.v
theorems:
- morphpre_maximal
- path: mathcomp/ssreflect/generic_quotient.v
theorems:
- right_trans
- path: mathcomp/algebra/archimedean.v
theorems:
- aut_natr
- floor_ge_int
- ceil_def
- path: mathcomp/algebra/interval.v
theorems:
- le_ninfty
- oppr_itvco
- le_bound_trans
- path: mathcomp/solvable/nilpotent.v
theorems:
- solvableS
- ucn1
- path: mathcomp/ssreflect/fingraph.v
theorems:
- eq_froots
- order_id
- relU_sym
- order_set_finv
- finv_eq_can
- finv_f_cycle
- path: mathcomp/solvable/center.v
theorems:
- center_dprod
- center_sub
- path: mathcomp/field/separable.v
theorems:
- Derivation_mul_poly
- char0_PET
- path: mathcomp/solvable/commutator.v
theorems:
- comm3G1P
- der_subS
- commgX
- isog_der
- path: mathcomp/solvable/gfunctor.v
theorems:
- gFsub
- path: mathcomp/ssreflect/ssrAC.v
theorems:
- count_memE
- path: mathcomp/field/closed_field.v
theorems:
- ex_elim_qf
- path: mathcomp/algebra/finalg.v
theorems:
- zmod_abelian
- path: mathcomp/fingroup/automorphism.v
theorems:
- ker_autm
- path: mathcomp/ssreflect/binomial.v
theorems:
- ffactSS
- path: mathcomp/solvable/hall.v
theorems:
- coprime_quotient_cent