|
name: math-comp_test |
|
num_files: 65 |
|
language: COQ |
|
few_shot_data_path_for_retrieval: null |
|
few_shot_metadata_filename_for_retrieval: null |
|
dfs_data_path_for_retrieval: null |
|
dfs_metadata_filename_for_retrieval: local.meta.json |
|
theorem_cnt: 536 |
|
datasets: |
|
- project: <path-to-repo>/math-comp/ |
|
files: |
|
- path: mathcomp/algebra/ssralg.v |
|
theorems: |
|
- telescope_prodf_eq |
|
- opp_fun_is_additive |
|
- scalerK |
|
- iter_mulr_1 |
|
- prodf_seq_eq0 |
|
- invr0 |
|
- exprSr |
|
- mulC_unitP |
|
- invrZ |
|
- mulVKr |
|
- scalerDr |
|
- in_alg_is_rmorphism |
|
- fst_is_multiplicative |
|
- prodrXl |
|
- natrX |
|
- rmorph_sum |
|
- addUC |
|
- opp_fun_is_scalable |
|
- rmorphMNn |
|
- exprDn_comm |
|
- eqr_opp |
|
- expfB_cond |
|
- rmorphN1 |
|
- exprM |
|
- fpredMr |
|
- pair_scaleA |
|
- scalerN |
|
- path: mathcomp/algebra/matrix.v |
|
theorems: |
|
- adj1 |
|
- mxrowEblock |
|
- cormen_lup_detL |
|
- mul_col_mx |
|
- map2_row' |
|
- eq_mx |
|
- thinmxOver |
|
- mxtrace_mxdiag |
|
- invmxK |
|
- map_xrow |
|
- row_dsubmx |
|
- mulmxr_is_linear |
|
- block_mxA |
|
- col_ind |
|
- tr_submxcol |
|
- scalar_mx_is_semi_additive |
|
- row'Ku |
|
- trmx_ursub |
|
- mul_mx_diag |
|
- lift0_mx_is_perm |
|
- row_perm_key |
|
- map_castmx |
|
- mxblockB |
|
- submxcolD |
|
- path: mathcomp/algebra/ssrnum.v |
|
theorems: |
|
- deg2_poly_gt0 |
|
- ltr_pdivrMr |
|
- lt0r |
|
- sqr_norm_eq1 |
|
- lerXn2r |
|
- minr_pMl |
|
- le_total |
|
- Nreal_leF |
|
- real_lteif_distl |
|
- ler_nM2r |
|
- mulr_sign_lt0 |
|
- ler_ndivlMr |
|
- ring_display |
|
- ler_wiXn2l |
|
- lern1 |
|
- sqrtr_sqr |
|
- ltrP |
|
- le_def' |
|
- mulr_ile1 |
|
- aNge0 |
|
- real_exprn_odd_le0 |
|
- gtrDr |
|
- pnatr_eq0 |
|
- ler_pMn2l |
|
- bigmax_real |
|
- sqrtr_eq0 |
|
- real_ltr_normlW |
|
- ltr_nMn2l |
|
- mulr_ilt1 |
|
- psumr_neq0P |
|
- deg2_poly_root2 |
|
- exprn_odd_ge0 |
|
- real_ltr_distl |
|
- real_lteifNE |
|
- ler_rootCl |
|
- real_neqr_lt |
|
- normr_ge0 |
|
- le_def' |
|
- ler01 |
|
- real_ltrNnormlW |
|
- ge0_def |
|
- normrN1 |
|
- sgrN1 |
|
- natr_indexg_gt0 |
|
- sgr_odd |
|
- agt0 |
|
- ieexprIn |
|
- path: mathcomp/ssreflect/ssrnat.v |
|
theorems: |
|
- mul2n |
|
- odd_gt2 |
|
- leqif_geq |
|
- subn2 |
|
- leq_pmulr |
|
- homo_leq_in |
|
- gtn_min |
|
- contra_ltnT |
|
- half_gt0 |
|
- sqrnD |
|
- mulE |
|
- subnA |
|
- doubleMr |
|
- uphalfK |
|
- predn_sub |
|
- iterD |
|
- mul_expE |
|
- mulnSr |
|
- leqif_add |
|
- path: mathcomp/ssreflect/bigop.v |
|
theorems: |
|
- big_tnth |
|
- eq_big_idem |
|
- dvdn_biggcdP |
|
- big_ord1_cond_eq |
|
- addmA |
|
- big_all_cond |
|
- big_uniq |
|
- opm1 |
|
- eq_bigl |
|
- eq_bigmax |
|
- big_rcons |
|
- bigA_distr_bigA |
|
- big_sumType |
|
- eq_big |
|
- big_tuple |
|
- path: mathcomp/fingroup/morphism.v |
|
theorems: |
|
- morphim_normal |
|
- kerE |
|
- morphimEdom |
|
- sgvalmK |
|
- isog_symr |
|
- morphpre_sub |
|
- isogEcard |
|
- path: mathcomp/algebra/polydiv.v |
|
theorems: |
|
- dvdp_XsubCl |
|
- gcd1p |
|
- rdvdpp |
|
- rdvd0p |
|
- divpp |
|
- coprimepP |
|
- dvdp_mull |
|
- polyXsubCP |
|
- leq_trunc_divp |
|
- rmodp_eq0P |
|
- rmodpX |
|
- dvdpp |
|
- dvdpN0 |
|
- gcdp_modr |
|
- coprimepZr |
|
- dvdp_gdco |
|
- rmodp_sum |
|
- coprimep_expr |
|
- rdvdp_eqP |
|
- eqp_scale |
|
- coprimepp |
|
- gcdp_addl_mul |
|
- dvdp_exp |
|
- gcdp_map |
|
- edivpP |
|
- rmodp_id |
|
- edivp_eq |
|
- path: mathcomp/field/galois.v |
|
theorems: |
|
- fixedField_galois |
|
- comp_kHom |
|
- normal_field_splitting |
|
- gal_adjoin_eq |
|
- regular_splittingAxiom |
|
- kAutfE |
|
- galNormM |
|
- splitting_normalField |
|
- comp_AEndA |
|
- kAut_to_gal |
|
- kHomExtend_additive_subproof |
|
- gal_fixedField |
|
- path: mathcomp/character/vcharacter.v |
|
theorems: |
|
- mem_zchar |
|
- vchar_norm2 |
|
- cfnorm_dchi |
|
- zchar_subset |
|
- cfun1_vchar |
|
- path: mathcomp/solvable/cyclic.v |
|
theorems: |
|
- injm_Zp_unitm |
|
- orderXdiv |
|
- path: mathcomp/algebra/ring_quotient.v |
|
theorems: |
|
- mulqA |
|
- equiv_is_equiv |
|
- path: mathcomp/fingroup/quotient.v |
|
theorems: |
|
- cosetpre1 |
|
- index_morphim_ker |
|
- morphpre_quotm |
|
- quotient_normal |
|
- path: mathcomp/solvable/maximal.v |
|
theorems: |
|
- subcent1_extraspecial_maximal |
|
- min_card_extraspecial |
|
- isog_special |
|
- path: mathcomp/algebra/mxalgebra.v |
|
theorems: |
|
- addsmxA |
|
- mxrank_compl |
|
- mulmx_ker |
|
- col_ebase_unit |
|
- rank_leq_col |
|
- LUP_card_GL |
|
- row_leq_rank |
|
- mulmx_base |
|
- pinvmxE |
|
- mxrank_sum_cap |
|
- map_ltmx |
|
- capmxS |
|
- genmx_muls |
|
- mxrank_eq0 |
|
- col_base_full |
|
- path: mathcomp/solvable/extremal.v |
|
theorems: |
|
- extremal_generators_facts |
|
- def2 |
|
- path: mathcomp/fingroup/action.v |
|
theorems: |
|
- actKVin |
|
- astab1R |
|
- afixP |
|
- actperm_Aut |
|
- acts_qact_dom_norm |
|
- astabs_ract |
|
- astab1JG |
|
- afixYin |
|
- gacent1E |
|
- acts_actby |
|
- mem_orbit |
|
- path: mathcomp/algebra/poly.v |
|
theorems: |
|
- prim_order_exists |
|
- size_XaddC |
|
- size_scale |
|
- poly_alg_initial |
|
- map_monic |
|
- coef_comp_poly |
|
- size_addl |
|
- poly_ind |
|
- size_odd_poly_eq |
|
- derivN |
|
- take_poly_is_linear |
|
- map_Poly_id0 |
|
- polyCB |
|
- rootC |
|
- add_poly_key |
|
- polyseq1 |
|
- char_prim_root |
|
- comp_polyCr |
|
- monicMr |
|
- size_comp_poly_leq |
|
- derivX |
|
- horner_evalE |
|
- map_polyXsubC |
|
- coef1 |
|
- scale_polyDl |
|
- size_XnaddC |
|
- path: mathcomp/ssreflect/order.v |
|
theorems: |
|
- comp_is_top_morphism |
|
- lexi_cons |
|
- rcomplPjoin |
|
- meetBI |
|
- joinCA |
|
- comparable_bigr |
|
- meetUr |
|
- enum1 |
|
- incomparable_leF |
|
- ltEsig |
|
- meetEseq |
|
- joinKUC |
|
- complEdiff |
|
- le_refl |
|
- joins_sup |
|
- lteif_orb |
|
- le_refl |
|
- le_enum_rank_in |
|
- contraTlt |
|
- meetCA |
|
- nonincn_inP |
|
- le_nmono_in |
|
- joinC |
|
- lt_path_min |
|
- idfun_is_meet_morphism |
|
- meetC |
|
- comparable_contra_ltn_lt |
|
- minEle |
|
- comparable_gt_max |
|
- lt_le_asym |
|
- ltEprodlexi |
|
- le_def |
|
- opredI |
|
- joinIB |
|
- leBl |
|
- joinACA |
|
- botEseq |
|
- bigmin_mkcondr |
|
- leUidl |
|
- comparable_gt_min |
|
- idfun_is_nondecreasing |
|
- decn_inP |
|
- ltW_homo |
|
- max_idPr |
|
- botEsig |
|
- le_nmono |
|
- meetAC |
|
- ge_max |
|
- anti |
|
- leBx |
|
- neqhead_lexiE |
|
- contraNle |
|
- meetA |
|
- comparable_maxCA |
|
- path: mathcomp/character/mxabelem.v |
|
theorems: |
|
- mx_repr_action_faithful |
|
- astabs_rowg_repr |
|
- path: mathcomp/character/mxrepresentation.v |
|
theorems: |
|
- mx_abs_irr_cent_scalar |
|
- map_reprJ |
|
- bigcapmx_module |
|
- map_gring_row |
|
- component_mx_module |
|
- repr_mxM |
|
- rcenter_normal |
|
- mx_second_rsim |
|
- kquo_repr_coset |
|
- in_factmod_addsK |
|
- mx_Jacobson_density |
|
- card_irr |
|
- genmx_Socle |
|
- gring_opJ |
|
- val_factmodJ |
|
- val_submod_eq0 |
|
- irr_modeV |
|
- gen_is_multiplicative |
|
- mxmodule1 |
|
- mxsimple_isoP |
|
- mxmodule_eigenvector |
|
- mxsemisimpleS |
|
- Wedderburn_ideal |
|
- hom_cyclic_mx |
|
- socle_rsimP |
|
- path: mathcomp/solvable/abelian.v |
|
theorems: |
|
- rank_cycle |
|
- primes_exponent |
|
- exponent_Zgroup |
|
- Ohm1 |
|
- exponent2_abelem |
|
- p_rank_abelem |
|
- TIp1ElemP |
|
- path: mathcomp/field/finfield.v |
|
theorems: |
|
- finRing_nontrivial |
|
- path: mathcomp/ssreflect/prime.v |
|
theorems: |
|
- Euclid_dvd_prod |
|
- trunc_log_ltn |
|
- up_log2_double |
|
- trunc_log_up_log |
|
- totient_prime |
|
- trunc_logP |
|
- lognM |
|
- primesX |
|
- pdiv_id |
|
- pdiv_pfactor |
|
- path: mathcomp/algebra/polyXY.v |
|
theorems: |
|
- sizeYE |
|
- swapXY_is_scalable |
|
- max_size_coefXY |
|
- poly_XaY0 |
|
- path: mathcomp/algebra/vector.v |
|
theorems: |
|
- dimv0 |
|
- lfun_addC |
|
- sumv_sup |
|
- comp_lfun0l |
|
- memvK |
|
- span_basis |
|
- comp_lfunNl |
|
- free_span |
|
- fun_of_lfunK |
|
- memv_capP |
|
- vs2mxP |
|
- capvSl |
|
- hommx1 |
|
- sub_span |
|
- dim_span |
|
- path: mathcomp/fingroup/perm.v |
|
theorems: |
|
- perm_mulP |
|
- out_perm |
|
- cast_perm_inj |
|
- porbit_id |
|
- porbit_perm |
|
- odd_tperm |
|
- tpermKg |
|
- inj_tperm |
|
- path: mathcomp/algebra/ssrint.v |
|
theorems: |
|
- addSz |
|
- ler_pMz2r |
|
- ltr_pMz2l |
|
- ler_wnMz2l |
|
- exprSz |
|
- exprz_out |
|
- sqrn_dist |
|
- mulrN1z |
|
- sgzN1 |
|
- distnEr |
|
- path: mathcomp/algebra/intdiv.v |
|
theorems: |
|
- divzN |
|
- coprimez_dvdr |
|
- gcdzMl |
|
- modzz |
|
- coprimezMl |
|
- path: mathcomp/ssreflect/choice.v |
|
theorems: |
|
- pickle_taggedK |
|
- sig2W |
|
- choose_id |
|
- path: mathcomp/field/fieldext.v |
|
theorems: |
|
- minPoly_dvdp |
|
- vsval_multiplicative |
|
- subfx_inj_is_multiplicative |
|
- dim_refBaseField |
|
- path: mathcomp/ssreflect/fintype.v |
|
theorems: |
|
- val_seq_sub_enum |
|
- predT_subset |
|
- eq_forallb |
|
- nth_enum_ord |
|
- bumpC |
|
- image_pre |
|
- disjointWl |
|
- enum_rank_in_inj |
|
- card_geqP |
|
- forall_inP |
|
- fintype1 |
|
- cardID |
|
- neq_lift |
|
- path: mathcomp/algebra/zmodp.v |
|
theorems: |
|
- unit_Zp_mulgC |
|
- sub_Zp_1 |
|
- Zp_abelian |
|
- Fp_cast |
|
- path: mathcomp/character/character.v |
|
theorems: |
|
- cfRepr_prod |
|
- irr_inj |
|
- xcfunZl |
|
- xcfun_r_is_additive |
|
- cfRepr_muln |
|
- constt_charP |
|
- cfRes_irr_irr |
|
- irr_classK |
|
- cfker_repr |
|
- lin_Res_IirrE |
|
- cfRes_eq0 |
|
- cfAut_char |
|
- lin_charV |
|
- irr_consttE |
|
- char1_gt0 |
|
- path: mathcomp/solvable/sylow.v |
|
theorems: |
|
- Sylow_superset |
|
- ZgroupS |
|
- path: mathcomp/field/falgebra.v |
|
theorems: |
|
- adjoin_cons |
|
- expv0 |
|
- lfun_invE |
|
- expv1n |
|
- agenv_sub_modl |
|
- lfun_mulrRV |
|
- path: mathcomp/field/algC.v |
|
theorems: |
|
- truncC0 |
|
- truncCM |
|
- Cnat_prod_eq1 |
|
- posP |
|
- eqCmod_addl_mul |
|
- eqCmodMl |
|
- eqCmodD |
|
- eqCmod_trans |
|
- CtoL_is_multiplicative |
|
- path: mathcomp/ssreflect/path.v |
|
theorems: |
|
- mem2E |
|
- splitP2r |
|
- rotr_ucycle |
|
- mem_merge |
|
- rotr_cycle |
|
- mem2r_cat |
|
- sorted_eq_in |
|
- cycle_relI |
|
- drop_sorted |
|
- splitPr |
|
- path: mathcomp/algebra/mxpoly.v |
|
theorems: |
|
- map_mx_companion |
|
- map_char_poly |
|
- rVpoly_is_linear |
|
- horner_rVpoly_inj |
|
- path: mathcomp/algebra/fraction.v |
|
theorems: |
|
- tofrac0 |
|
- equivf_trans |
|
- path: mathcomp/ssreflect/div.v |
|
theorems: |
|
- eqn_div |
|
- eqn_modDl |
|
- dvdn_eq |
|
- modnMmr |
|
- dvdn0 |
|
- dvdn_lcmr |
|
- path: mathcomp/solvable/frobenius.v |
|
theorems: |
|
- Frobenius_kerS |
|
- FrobeniusJgroup |
|
- path: mathcomp/solvable/alt.v |
|
theorems: |
|
- simple_Alt_3 |
|
- path: mathcomp/solvable/jordanholder.v |
|
theorems: |
|
- JordanHolderUniqueness |
|
- gactsI |
|
- gastabsP |
|
- gactsP |
|
- path: mathcomp/solvable/burnside_app.v |
|
theorems: |
|
- S23_inv |
|
- S05_inj |
|
- eqperm_map2 |
|
- path: mathcomp/algebra/rat.v |
|
theorems: |
|
- scalqE |
|
- fracq0 |
|
- normqE |
|
- numq_le0 |
|
- natq_div |
|
- addqC |
|
- path: mathcomp/algebra/qpoly.v |
|
theorems: |
|
- size_mk_monic_gt1 |
|
- npolyXE |
|
- qpoly_mulVz |
|
- big_coef_npoly |
|
- path: mathcomp/character/inertia.v |
|
theorems: |
|
- inertia_isom |
|
- im_cfclass_Iirr |
|
- nNG |
|
- path: mathcomp/fingroup/gproduct.v |
|
theorems: |
|
- complP |
|
- bigcprodW |
|
- sdprodg1 |
|
- injm_pairg1 |
|
- cprodP |
|
- perm_bigcprod |
|
- dprodJ |
|
- divgrMid |
|
- astabsEsd |
|
- sdprod_subr |
|
- xsdprodm_dom1 |
|
- bigcprodYP |
|
- cprodWpp |
|
- dprodWC |
|
- path: mathcomp/field/qfpoly.v |
|
theorems: |
|
- plogpD |
|
- path: mathcomp/solvable/gseries.v |
|
theorems: |
|
- morphpre_maximal |
|
- path: mathcomp/ssreflect/generic_quotient.v |
|
theorems: |
|
- right_trans |
|
- path: mathcomp/algebra/archimedean.v |
|
theorems: |
|
- aut_natr |
|
- floor_ge_int |
|
- ceil_def |
|
- path: mathcomp/algebra/interval.v |
|
theorems: |
|
- le_ninfty |
|
- oppr_itvco |
|
- le_bound_trans |
|
- path: mathcomp/solvable/nilpotent.v |
|
theorems: |
|
- solvableS |
|
- ucn1 |
|
- path: mathcomp/ssreflect/fingraph.v |
|
theorems: |
|
- eq_froots |
|
- order_id |
|
- relU_sym |
|
- order_set_finv |
|
- finv_eq_can |
|
- finv_f_cycle |
|
- path: mathcomp/solvable/center.v |
|
theorems: |
|
- center_dprod |
|
- center_sub |
|
- path: mathcomp/field/separable.v |
|
theorems: |
|
- Derivation_mul_poly |
|
- char0_PET |
|
- path: mathcomp/solvable/commutator.v |
|
theorems: |
|
- comm3G1P |
|
- der_subS |
|
- commgX |
|
- isog_der |
|
- path: mathcomp/solvable/gfunctor.v |
|
theorems: |
|
- gFsub |
|
- path: mathcomp/ssreflect/ssrAC.v |
|
theorems: |
|
- count_memE |
|
- path: mathcomp/field/closed_field.v |
|
theorems: |
|
- ex_elim_qf |
|
- path: mathcomp/algebra/finalg.v |
|
theorems: |
|
- zmod_abelian |
|
- path: mathcomp/fingroup/automorphism.v |
|
theorems: |
|
- ker_autm |
|
- path: mathcomp/ssreflect/binomial.v |
|
theorems: |
|
- ffactSS |
|
- path: mathcomp/solvable/hall.v |
|
theorems: |
|
- coprime_quotient_cent |
|
|