ProofWalaDataset / math-comp /eval /math-comp_eval.yaml
amitayusht's picture
Added raw dataset
db04d2b
name: math-comp_eval
num_files: 70
language: COQ
few_shot_data_path_for_retrieval: null
few_shot_metadata_filename_for_retrieval: null
dfs_data_path_for_retrieval: null
dfs_metadata_filename_for_retrieval: local.meta.json
theorem_cnt: 729
datasets:
- project: <path-to-repo>/math-comp/
files:
- path: mathcomp/solvable/frobenius.v
theorems:
- Frobenius_semiregularP
- Frobenius_cent1_ker
- prime_FrobeniusP
- Frobenius_coprime_quotient
- stab_semiprime
- card_support_normedTI
- injm_Frobenius
- path: mathcomp/solvable/abelian.v
theorems:
- pnElemS
- abelemS
- pdiv_p_elt
- exponent_morphim
- rank_witness
- Ohm_cont
- quotient_rank_abelian
- morphim_Mho
- pnElem_prime
- Mho_p_cycle
- abelem_abelian
- Mho0
- injm_Ohm
- extend_cyclic_Mho
- path: mathcomp/ssreflect/order.v
theorems:
- max_idPl
- max_minr
- eq_meetl
- lexx
- idfun_is_bottom_morphism
- diff_eq0
- complI
- le_sorted_leq_nth
- anti
- leUr
- joins_sup_seq
- comparable_ltP
- subset_display
- joinIBC
- le_wval
- sort_le_id
- bigminIl
- diffErcompl
- lex1
- le_path_pairwise
- contra_leN
- enum_rankK
- bigmaxUr
- lt_path_mask
- diffIK
- leUx
- eq_ltLR
- lt_sorted_ltn_nth
- le0x
- le_refl
- compl1
- lteif_andb
- le_Rank
- comparable_maxC
- opred0
- incomparable_ltF
- ge_min_id
- ltNge
- enum_set1
- lt_def
- leBKU
- lteifxx
- lcmnn
- bigmax_sup
- contraTle
- tnth_rcompl
- minAC
- maxxK
- path: mathcomp/algebra/ssralg.v
theorems:
- subrI
- mulIr
- valM
- mulVf
- mulf_div
- and_dnfP
- natr_div
- invr_neq0
- pair_mul0r
- rpredBr
- ffun_mul_addr
- commrV
- mulrb
- exprAC
- opB
- rpredN
- divIf
- eval_If
- prodr_const_nat
- holds_fsubst
- divfI
- can2_rmorphism
- fieldP
- rmorphMsign
- Frobenius_aut_is_multiplicative
- prodf_div
- Frobenius_aut1
- mulrBr
- mulr_sumr
- subrKA
- path: mathcomp/algebra/finalg.v
theorems:
- unit_inv_proof
- path: mathcomp/field/algC.v
theorems:
- floorC_itv
- floorCpK
- aut_Cint
- CintEge0
- algC_invaut_is_rmorphism
- Cint1
- conjL_K
- rpred_Cint
- mulVf
- aut_Crat
- mul1
- eqCmodMr
- path: mathcomp/ssreflect/prime.v
theorems:
- partn_part
- logn_div
- max_pdiv_leq
- totient_count_coprime
- divn_count_dvd
- pnatM
- partnX
- eq_in_partn
- dvdn_prime2
- path: mathcomp/algebra/ssrnum.v
theorems:
- sgr_ge0
- ger_real
- nneg_addr_closed
- leif_mean_square
- normrX
- pmulrn_rle0
- ge0_cp
- ltrDr
- a1
- real_ltr_distlBl
- ReM
- subr_ge0
- ltrNl
- leN_total
- psumr_eq0
- ltrn1
- ler0P
- comparabler0
- negrE
- sub_ge0
- divC_Crect
- ltr_nwDr
- realBC
- deg_le2_poly_le0
- normC_Re_Im
- unitf_gt0
- ler_norm_sum
- ltr_distlCBl
- ltr_distlC
- monic_Cauchy_bound
- leif_AGM
- invf_nle
- ler_sum_nat
- gerB_real
- lerB_normD
- ltr_pdivrMl
- real_normK
- Im_rootC_ge0
- ReMil
- realn_mono
- addr_minr
- subr_ge0
- lt0N
- ltr_sqrt
- ltr_pwDl
- real_oppr_closed
- oppr_max
- poly_ivt
- normfV
- root0C
- mulr_sg_norm
- real_arg_maxP
- oppr_ge0
- lt_trans
- exprn_odd_lt0
- Im_i
- real_eqr_norm2
- deg2_poly_min
- psumr_neq0
- conjCK
- comparablerE
- realE
- nmulr_rle0
- path: mathcomp/ssreflect/fintype.v
theorems:
- negb_exists
- eq_liftF
- ordS_inj
- injF_onto
- extremum_inP
- card_bool
- pickP
- eq_proper_r
- subset_catr
- split_subproof
- ltn_unsplit
- proper_sub
- cast_ord_comp
- eq_proper
- canF_eq
- fintype_le1P
- lshift_subproof
- unsplitK
- exists_eqP
- arg_maxnP
- forall_inPn
- exists_inPP
- proper_irrefl
- cardUI
- path: mathcomp/algebra/matrix.v
theorems:
- tr_submxrow
- mxtrace_block
- mul_mxrow_mxdiag
- mxOver_mul_subproof
- map_col'
- block_mxEur
- diag_mx_is_diag
- comm_mx1
- perm_mxEsub
- drsubmxEsub
- mulmx_rsub
- diag_mx_is_semi_additive
- col_mxEd
- mxcolP
- const_mx_is_semi_additive
- det_scalar
- is_scalar_mxP
- map2_xrow
- submxcolK
- mul_mxblock_mxdiag
- mul_delta_mx_0
- tr_diag_mx
- scalemx_eq0
- mulmx1_min
- col_mxrow
- invmx1
- tr_tperm_mx
- mxrow_recl
- path: mathcomp/ssreflect/ssrnat.v
theorems:
- leq_pmul2r
- ltnS
- ltn_half_double
- ltnW_nhomo
- addBnAC
- subSn
- uphalf_half
- minnE
- double_pred
- leq_mono
- leq_add2r
- eqn_exp2l
- multE
- leqW_nmono
- ex_maxn_subproof
- ltn_ind
- leqW_mono
- leq_psubRL
- addnBC
- addnCB
- halfK
- geq_uphalf_double
- odd_halfK
- maxn_idPl
- contra_not_ltn
- nat_irrelevance
- leqn0
- ubnPgeq
- leq_subCr
- ltn_sub2lE
- leq_sub2l
- leq_add
- addSn
- path: mathcomp/character/mxrepresentation.v
theorems:
- card_linear_irr
- rfix_mxP
- mx_rsim_refl
- mxtrace_sub_fact_mod
- sum_mxsimple_direct_compl
- irr_mx_sum
- rstabs_group_set
- val_genJmx
- rstab_map
- Clifford_simple
- mx_iso_simple
- gen_satP
- in_submod_eq0
- rcent_sub
- in_gen0
- subSocle_semisimple
- rfix_morphim
- morphpre_mx_irr
- mxmodule_quo
- principal_comp_key
- irr_reprK
- dom_hom_invmx
- submod_mx_faithful
- eqg_mx_irr
- gen_mulDr
- val_factmod_module
- mxval_sub
- section_module
- rker_linear
- gen_mx_faithful
- rconj_mxE
- gen_mulA
- mx_rsim_in_submod
- simple_Socle
- path: mathcomp/algebra/poly.v
theorems:
- lreg_size
- map_poly_eq0
- deg2_poly_factor
- leq_sizeP
- derivnN
- scale_polyE
- size_poly_leq0P
- comm_poly0
- coef_prod_XsubC
- coefN
- root1
- size_poly_eq0
- coefMX
- drop_poly_eq0
- add_polyC
- map_poly_eq0_id0
- hornerM
- map_comp_poly
- size_poly_leq0
- comp_polyA
- deriv_is_linear
- drop_polyD
- coef_sumMXn
- horner_coef
- lead_coefXaddC
- closed_nonrootP
- coef_add_poly
- size_Msign
- closed_field_poly_normal
- polyC_exp
- take_polyMXn
- derivZ
- lead_coef_map_id0
- polyOverP
- rreg_lead0
- deg2_poly_root2
- size_mulX
- path: mathcomp/solvable/gseries.v
theorems:
- quotient_maximal
- subnormalEr
- maximal_eqJ
- minnormal_maxnormal
- simpleP
- sub_setIgr
- minnormal_exists
- morphpre_maximal_eq
- path: mathcomp/character/mxabelem.v
theorems:
- sub_rowg_mx
- rowg_group_set
- rowg1
- rVabelemJmx
- path: mathcomp/solvable/sylow.v
theorems:
- card_Syl_mod
- nilpotent_pcore_Hall
- Sylow_Jsub
- path: mathcomp/character/character.v
theorems:
- cfMod_lin_char
- cfRepr_map
- cfDprodl_irr
- xcfun_rE
- Cnat_cfdot_char
- eq_sum_nth_irr
- cfker_Ind_irr
- dprod_IirrC
- cfun_irr_sum
- dprodl_Iirr_eq0
- inv_dprod_IirrK
- cfdotC_char
- max_cfRepr_norm_scalar
- tprod1
- sdprod_Iirr_inj
- constt_Ind_Res
- cfdot_aut_irr
- irr_repr_lin_char
- xcfun_annihilate
- sum_norm_irr_quo
- pgroup_cyclic_faithful
- path: mathcomp/algebra/polydiv.v
theorems:
- reducible_cubic_root
- dvd0pP
- mup_geq
- eqpW
- lc_expn_scalp_neq0
- gdcop_recP
- gcd0p
- divp_addl_mul_small
- divp_eq0
- gdcop_rec_map
- eqp_rtrans
- modp_eq0P
- ltn_rmodp
- eq_rdvdp
- eqp_sym
- gcdp_mulr
- eqp_root
- dvdpNr
- size_gcd1p
- cubic_irreducible
- path: mathcomp/character/inertia.v
theorems:
- constt_Inertia_bijection
- cfConjg_irr
- inertia_mod_pre
- inertia_quo
- cfConjgMod_norm
- prime_invariant_irr_extendible
- inertia_bigdprod
- path: mathcomp/algebra/intdiv.v
theorems:
- eqz_div
- coprimez_pexpr
- gcdzz
- modz0
- gcdz0
- zprimitive_eq0
- eqz_modDl
- dvdz_exp2l
- dvdz_zmod_closed
- dvdz_lcml
- modzMr
- lcmz0
- ltz_mod
- coprimezXl
- dvdz_contents
- gcd1z
- mulz_divCA_gcd
- path: mathcomp/fingroup/morphism.v
theorems:
- morphpreK
- isog_sym
- morphpreT
- trivial_isog
- morphim0
- morphicP
- factmE
- morphpre_subcent
- ker_trivg_morphim
- misom_isog
- ker_trivm
- morphimK
- morphpre_gen
- injm_ifactm
- sub_morphpre_im
- eq_homgl
- morphimGI
- path: mathcomp/solvable/burnside_app.v
theorems:
- F_s23
- Sd1_inj
- r05_inv
- S3_inv
- sh_inv
- S1_inv
- rot_r1
- path: mathcomp/algebra/ssrint.v
theorems:
- pmulrz_rlt0
- nexpIrz
- PoszD
- exp0rz
- mulrz_eq0
- coefMrz
- intP
- leqifD_dist
- mulzS
- mulz2
- addSnz
- scaler_int
- distnDr
- expN1r
- mulrzBl_nat
- rpredXsign
- path: mathcomp/field/fieldext.v
theorems:
- module_baseVspace
- divp_polyOver
- subfx_scaler1r
- mem_vspaceOver
- path: mathcomp/solvable/commutator.v
theorems:
- derg0
- der_char
- commMG
- quotient_cents2r
- path: mathcomp/algebra/rat.v
theorems:
- mul1q
- mul_subdefA
- rat_field_theory
- ltrq0
- QintP
- path: mathcomp/solvable/maximal.v
theorems:
- nilpotent_Fitting
- card_p3group_extraspecial
- Fitting_max
- FittingJ
- Aut_extraspecial_full
- path: mathcomp/field/galois.v
theorems:
- dim_fixed_galois
- kHomP
- normalFieldP
- kHom_inv
- kHom1
- normalFieldf
- kAHomP
- path: mathcomp/ssreflect/div.v
theorems:
- coprime_sym
- edivnP
- modnXm
- modn_dvdm
- dvdn_sub
- leq_trunc_div
- eqn_mod_dvd
- divnBr
- dvdn_subr
- coprime_pexpl
- modnB
- leq_divRL
- dvdn_lcml
- lcmnC
- path: mathcomp/solvable/primitive_action.v
theorems:
- n_act_is_action
- path: mathcomp/fingroup/automorphism.v
theorems:
- char1
- autE
- charY
- injm_Aut
- injm_conj
- Aut_group_set
- morphic_aut
- path: mathcomp/algebra/mxpoly.v
theorems:
- integral_horner
- horner_mx_diag
- char_poly_trace
- map_horner_mx
- diagonalizable_forPex
- map_char_poly_mx
- algebraic_inv
- algebraic_add
- comm_horner_mx2
- conjmxM
- eval_mxvec
- conjumx
- horner_mx_uconjC
- mx_inv_horner0
- simmxW
- conj0mx
- coef_rVpoly
- split_diagA
- path: mathcomp/field/falgebra.v
theorems:
- sub1_agenv
- cent_centerv
- subX_agenv
- prodvDr
- amull_is_linear
- lfun_mulRVr
- algidr
- centerv_sub
- path: mathcomp/ssreflect/path.v
theorems:
- subseq_path
- iota_sorted
- sorted_ltn_index_in
- rot_to_arc
- eq_fpath
- trajectS
- path_min_sorted
- shortenP
- sort_stable
- perm_merge
- mem2lr_splice
- sorted_map
- homo_sort_map
- cycle_prev
- map_path
- take_path
- sorted_sort
- prev_rotr
- mem2rf
- allrel_merge
- arc_rot
- sorted_subseq_sort_in
- path: mathcomp/ssreflect/bigop.v
theorems:
- big_rec2
- big_nseq_cond
- big_distrr
- big_nat_recl
- big_orE
- big_nat1_eq
- big_ord1_eq
- sig_big_dep_idem
- big_ord_narrow_cond_leq
- big_enum_rank_cond
- le_big_ord_cond
- reindex_omap
- big_nat
- big_cat
- addm0
- path: mathcomp/ssreflect/choice.v
theorems:
- tagged_hasChoice
- seq_hasChoice
- path: mathcomp/algebra/mxalgebra.v
theorems:
- mulmx_max_rank
- row_base0
- rowV0Pn
- row_freePn
- qidmx_eq1
- addmx_sub
- summx_sub_sums
- proj_mx_proj
- eqmx_rowsub_comp
- genmxE
- genmxP
- binary_mxsum_proof
- kermx_eq0
- rV_eqP
- stableNmx
- mulmx_sub
- path: mathcomp/ssreflect/fingraph.v
theorems:
- finv_inj_in
- fcycle_undup
- sym_connect_sym
- roots_root
- findex0
- orbit_rot_cycle
- cycle_orbit_in
- adjunction_n_comp
- connect0
- eq_froot
- path: mathcomp/solvable/hall.v
theorems:
- coprime_comm_pcore
- Hall_Jsub
- path: mathcomp/solvable/extraspecial.v
theorems:
- card_isog8_extraspecial
- pX1p2_pgroup
- path: mathcomp/solvable/extremal.v
theorems:
- def_q
- generators_2dihedral
- normal_rank1_structure
- odd_not_extremal2
- path: mathcomp/algebra/vector.v
theorems:
- memv_add
- span_bigcat
- zero_lfunE
- mul_mxof
- comp_lfunDl
- seq1_free
- lker0_compfV
- cat_free
- lfunP
- seq1_basis
- lfun_addN
- vspace_modr
- capvA
- path: mathcomp/algebra/ring_quotient.v
theorems:
- prime_idealrM
- path: mathcomp/solvable/cyclic.v
theorems:
- quotient_generator
- ker_eltm
- prime_cyclic
- path: mathcomp/fingroup/gproduct.v
theorems:
- extprod_mul1g
- cprod_card_dprod
- injm_cprodm
- bigcprod_card_dprod
- pprodmEl
- morphim_coprime_sdprod
- dprodW
- sdprodmEr
- subcent_dprod
- divgr_id
- morphim_bigcprod
- injm_dprodm
- pprod1g
- im_sdprodm1
- path: mathcomp/field/separable.v
theorems:
- base_separable
- separable_prod_XsubC
- base_inseparable
- separable_inseparable_element
- separable_generator_maximal
- separable_add
- dvdp_separable
- path: mathcomp/ssreflect/generic_quotient.v
theorems:
- enc_mod_rel_is_equiv
- pi_morph2
- pi_mono1
- path: mathcomp/fingroup/action.v
theorems:
- dvdn_orbit
- actbyE
- actby_is_groupAction
- morph_astabs
- perm_faithful
- astabsD
- actpermK
- ract_is_groupAction
- actK
- modact_coset_astab
- actsP
- orbit_inv_in
- gacentE
- act1
- atransR
- reindex_acts
- gactM
- subgacent1E
- card_orbit_in_stab
- gactJ
- atrans_acts_card
- path: mathcomp/character/integral_char.v
theorems:
- irr_gring_center
- path: mathcomp/solvable/alt.v
theorems:
- rfd_morph
- simple_Alt5
- card_Alt
- path: mathcomp/algebra/fraction.v
theorems:
- equivf_sym
- path: mathcomp/solvable/center.v
theorems:
- center_ncprod
- center_prod
- path: mathcomp/algebra/interval.v
theorems:
- leBSide
- itv_joinKI
- itv_leEmeet
- itv_split1U
- path: mathcomp/ssreflect/binomial.v
theorems:
- fact_split
- ffact_gt0
- ffactnSr
- bin_factd
- path: mathcomp/algebra/qpoly.v
theorems:
- poly_of_size_mod
- qpoly_scale1l
- qpoly_scaleDl
- irreducibleP
- path: mathcomp/field/algnum.v
theorems:
- Aint_subring_exists
- Qn_aut_exists
- path: mathcomp/solvable/nilpotent.v
theorems:
- lcn_subS
- ucn_id
- TI_center_nil
- meet_center_nil
- injm_nil
- quotient_nil
- path: mathcomp/algebra/zmodp.v
theorems:
- Zp_mulVz
- Zp_group_set
- Fp_Zcast
- path: mathcomp/field/closed_field.v
theorems:
- rmulpT
- path: mathcomp/algebra/polyXY.v
theorems:
- swapXY_X
- path: mathcomp/field/qfpoly.v
theorems:
- qlogp_lt
- path: mathcomp/solvable/finmodule.v
theorems:
- fmodM
- fmod_addrC
- fmvalK
- mulg_exp_card_rcosets
- path: mathcomp/character/vcharacter.v
theorems:
- vcharP
- zcharD1E
- orthogonal_span
- dirr_inj
- path: mathcomp/solvable/jordanholder.v
theorems:
- acompsP
- maxainv_proper
- maxainv_asimple_quo
- path: mathcomp/algebra/archimedean.v
theorems:
- lt_succ_floor
- natr_norm_int
- trunc1
- ceil_floor
- norm_natr
- floorN
- prod_truncK
- int_num0
- path: mathcomp/field/finfield.v
theorems:
- primeChar_abelem
- primeChar_scale1
- primeChar_scaleAl
- path: mathcomp/fingroup/perm.v
theorems:
- porbitP
- porbit_setP
- preim_permV
- path: mathcomp/fingroup/quotient.v
theorems:
- rcoset_kercosetP
- path: mathcomp/ssreflect/ssrbool.v
theorems:
- if_implyb
- path: mathcomp/ssreflect/finfun.v
theorems:
- supportE