|
name: math-comp_eval |
|
num_files: 70 |
|
language: COQ |
|
few_shot_data_path_for_retrieval: null |
|
few_shot_metadata_filename_for_retrieval: null |
|
dfs_data_path_for_retrieval: null |
|
dfs_metadata_filename_for_retrieval: local.meta.json |
|
theorem_cnt: 729 |
|
datasets: |
|
- project: <path-to-repo>/math-comp/ |
|
files: |
|
- path: mathcomp/solvable/frobenius.v |
|
theorems: |
|
- Frobenius_semiregularP |
|
- Frobenius_cent1_ker |
|
- prime_FrobeniusP |
|
- Frobenius_coprime_quotient |
|
- stab_semiprime |
|
- card_support_normedTI |
|
- injm_Frobenius |
|
- path: mathcomp/solvable/abelian.v |
|
theorems: |
|
- pnElemS |
|
- abelemS |
|
- pdiv_p_elt |
|
- exponent_morphim |
|
- rank_witness |
|
- Ohm_cont |
|
- quotient_rank_abelian |
|
- morphim_Mho |
|
- pnElem_prime |
|
- Mho_p_cycle |
|
- abelem_abelian |
|
- Mho0 |
|
- injm_Ohm |
|
- extend_cyclic_Mho |
|
- path: mathcomp/ssreflect/order.v |
|
theorems: |
|
- max_idPl |
|
- max_minr |
|
- eq_meetl |
|
- lexx |
|
- idfun_is_bottom_morphism |
|
- diff_eq0 |
|
- complI |
|
- le_sorted_leq_nth |
|
- anti |
|
- leUr |
|
- joins_sup_seq |
|
- comparable_ltP |
|
- subset_display |
|
- joinIBC |
|
- le_wval |
|
- sort_le_id |
|
- bigminIl |
|
- diffErcompl |
|
- lex1 |
|
- le_path_pairwise |
|
- contra_leN |
|
- enum_rankK |
|
- bigmaxUr |
|
- lt_path_mask |
|
- diffIK |
|
- leUx |
|
- eq_ltLR |
|
- lt_sorted_ltn_nth |
|
- le0x |
|
- le_refl |
|
- compl1 |
|
- lteif_andb |
|
- le_Rank |
|
- comparable_maxC |
|
- opred0 |
|
- incomparable_ltF |
|
- ge_min_id |
|
- ltNge |
|
- enum_set1 |
|
- lt_def |
|
- leBKU |
|
- lteifxx |
|
- lcmnn |
|
- bigmax_sup |
|
- contraTle |
|
- tnth_rcompl |
|
- minAC |
|
- maxxK |
|
- path: mathcomp/algebra/ssralg.v |
|
theorems: |
|
- subrI |
|
- mulIr |
|
- valM |
|
- mulVf |
|
- mulf_div |
|
- and_dnfP |
|
- natr_div |
|
- invr_neq0 |
|
- pair_mul0r |
|
- rpredBr |
|
- ffun_mul_addr |
|
- commrV |
|
- mulrb |
|
- exprAC |
|
- opB |
|
- rpredN |
|
- divIf |
|
- eval_If |
|
- prodr_const_nat |
|
- holds_fsubst |
|
- divfI |
|
- can2_rmorphism |
|
- fieldP |
|
- rmorphMsign |
|
- Frobenius_aut_is_multiplicative |
|
- prodf_div |
|
- Frobenius_aut1 |
|
- mulrBr |
|
- mulr_sumr |
|
- subrKA |
|
- path: mathcomp/algebra/finalg.v |
|
theorems: |
|
- unit_inv_proof |
|
- path: mathcomp/field/algC.v |
|
theorems: |
|
- floorC_itv |
|
- floorCpK |
|
- aut_Cint |
|
- CintEge0 |
|
- algC_invaut_is_rmorphism |
|
- Cint1 |
|
- conjL_K |
|
- rpred_Cint |
|
- mulVf |
|
- aut_Crat |
|
- mul1 |
|
- eqCmodMr |
|
- path: mathcomp/ssreflect/prime.v |
|
theorems: |
|
- partn_part |
|
- logn_div |
|
- max_pdiv_leq |
|
- totient_count_coprime |
|
- divn_count_dvd |
|
- pnatM |
|
- partnX |
|
- eq_in_partn |
|
- dvdn_prime2 |
|
- path: mathcomp/algebra/ssrnum.v |
|
theorems: |
|
- sgr_ge0 |
|
- ger_real |
|
- nneg_addr_closed |
|
- leif_mean_square |
|
- normrX |
|
- pmulrn_rle0 |
|
- ge0_cp |
|
- ltrDr |
|
- a1 |
|
- real_ltr_distlBl |
|
- ReM |
|
- subr_ge0 |
|
- ltrNl |
|
- leN_total |
|
- psumr_eq0 |
|
- ltrn1 |
|
- ler0P |
|
- comparabler0 |
|
- negrE |
|
- sub_ge0 |
|
- divC_Crect |
|
- ltr_nwDr |
|
- realBC |
|
- deg_le2_poly_le0 |
|
- normC_Re_Im |
|
- unitf_gt0 |
|
- ler_norm_sum |
|
- ltr_distlCBl |
|
- ltr_distlC |
|
- monic_Cauchy_bound |
|
- leif_AGM |
|
- invf_nle |
|
- ler_sum_nat |
|
- gerB_real |
|
- lerB_normD |
|
- ltr_pdivrMl |
|
- real_normK |
|
- Im_rootC_ge0 |
|
- ReMil |
|
- realn_mono |
|
- addr_minr |
|
- subr_ge0 |
|
- lt0N |
|
- ltr_sqrt |
|
- ltr_pwDl |
|
- real_oppr_closed |
|
- oppr_max |
|
- poly_ivt |
|
- normfV |
|
- root0C |
|
- mulr_sg_norm |
|
- real_arg_maxP |
|
- oppr_ge0 |
|
- lt_trans |
|
- exprn_odd_lt0 |
|
- Im_i |
|
- real_eqr_norm2 |
|
- deg2_poly_min |
|
- psumr_neq0 |
|
- conjCK |
|
- comparablerE |
|
- realE |
|
- nmulr_rle0 |
|
- path: mathcomp/ssreflect/fintype.v |
|
theorems: |
|
- negb_exists |
|
- eq_liftF |
|
- ordS_inj |
|
- injF_onto |
|
- extremum_inP |
|
- card_bool |
|
- pickP |
|
- eq_proper_r |
|
- subset_catr |
|
- split_subproof |
|
- ltn_unsplit |
|
- proper_sub |
|
- cast_ord_comp |
|
- eq_proper |
|
- canF_eq |
|
- fintype_le1P |
|
- lshift_subproof |
|
- unsplitK |
|
- exists_eqP |
|
- arg_maxnP |
|
- forall_inPn |
|
- exists_inPP |
|
- proper_irrefl |
|
- cardUI |
|
- path: mathcomp/algebra/matrix.v |
|
theorems: |
|
- tr_submxrow |
|
- mxtrace_block |
|
- mul_mxrow_mxdiag |
|
- mxOver_mul_subproof |
|
- map_col' |
|
- block_mxEur |
|
- diag_mx_is_diag |
|
- comm_mx1 |
|
- perm_mxEsub |
|
- drsubmxEsub |
|
- mulmx_rsub |
|
- diag_mx_is_semi_additive |
|
- col_mxEd |
|
- mxcolP |
|
- const_mx_is_semi_additive |
|
- det_scalar |
|
- is_scalar_mxP |
|
- map2_xrow |
|
- submxcolK |
|
- mul_mxblock_mxdiag |
|
- mul_delta_mx_0 |
|
- tr_diag_mx |
|
- scalemx_eq0 |
|
- mulmx1_min |
|
- col_mxrow |
|
- invmx1 |
|
- tr_tperm_mx |
|
- mxrow_recl |
|
- path: mathcomp/ssreflect/ssrnat.v |
|
theorems: |
|
- leq_pmul2r |
|
- ltnS |
|
- ltn_half_double |
|
- ltnW_nhomo |
|
- addBnAC |
|
- subSn |
|
- uphalf_half |
|
- minnE |
|
- double_pred |
|
- leq_mono |
|
- leq_add2r |
|
- eqn_exp2l |
|
- multE |
|
- leqW_nmono |
|
- ex_maxn_subproof |
|
- ltn_ind |
|
- leqW_mono |
|
- leq_psubRL |
|
- addnBC |
|
- addnCB |
|
- halfK |
|
- geq_uphalf_double |
|
- odd_halfK |
|
- maxn_idPl |
|
- contra_not_ltn |
|
- nat_irrelevance |
|
- leqn0 |
|
- ubnPgeq |
|
- leq_subCr |
|
- ltn_sub2lE |
|
- leq_sub2l |
|
- leq_add |
|
- addSn |
|
- path: mathcomp/character/mxrepresentation.v |
|
theorems: |
|
- card_linear_irr |
|
- rfix_mxP |
|
- mx_rsim_refl |
|
- mxtrace_sub_fact_mod |
|
- sum_mxsimple_direct_compl |
|
- irr_mx_sum |
|
- rstabs_group_set |
|
- val_genJmx |
|
- rstab_map |
|
- Clifford_simple |
|
- mx_iso_simple |
|
- gen_satP |
|
- in_submod_eq0 |
|
- rcent_sub |
|
- in_gen0 |
|
- subSocle_semisimple |
|
- rfix_morphim |
|
- morphpre_mx_irr |
|
- mxmodule_quo |
|
- principal_comp_key |
|
- irr_reprK |
|
- dom_hom_invmx |
|
- submod_mx_faithful |
|
- eqg_mx_irr |
|
- gen_mulDr |
|
- val_factmod_module |
|
- mxval_sub |
|
- section_module |
|
- rker_linear |
|
- gen_mx_faithful |
|
- rconj_mxE |
|
- gen_mulA |
|
- mx_rsim_in_submod |
|
- simple_Socle |
|
- path: mathcomp/algebra/poly.v |
|
theorems: |
|
- lreg_size |
|
- map_poly_eq0 |
|
- deg2_poly_factor |
|
- leq_sizeP |
|
- derivnN |
|
- scale_polyE |
|
- size_poly_leq0P |
|
- comm_poly0 |
|
- coef_prod_XsubC |
|
- coefN |
|
- root1 |
|
- size_poly_eq0 |
|
- coefMX |
|
- drop_poly_eq0 |
|
- add_polyC |
|
- map_poly_eq0_id0 |
|
- hornerM |
|
- map_comp_poly |
|
- size_poly_leq0 |
|
- comp_polyA |
|
- deriv_is_linear |
|
- drop_polyD |
|
- coef_sumMXn |
|
- horner_coef |
|
- lead_coefXaddC |
|
- closed_nonrootP |
|
- coef_add_poly |
|
- size_Msign |
|
- closed_field_poly_normal |
|
- polyC_exp |
|
- take_polyMXn |
|
- derivZ |
|
- lead_coef_map_id0 |
|
- polyOverP |
|
- rreg_lead0 |
|
- deg2_poly_root2 |
|
- size_mulX |
|
- path: mathcomp/solvable/gseries.v |
|
theorems: |
|
- quotient_maximal |
|
- subnormalEr |
|
- maximal_eqJ |
|
- minnormal_maxnormal |
|
- simpleP |
|
- sub_setIgr |
|
- minnormal_exists |
|
- morphpre_maximal_eq |
|
- path: mathcomp/character/mxabelem.v |
|
theorems: |
|
- sub_rowg_mx |
|
- rowg_group_set |
|
- rowg1 |
|
- rVabelemJmx |
|
- path: mathcomp/solvable/sylow.v |
|
theorems: |
|
- card_Syl_mod |
|
- nilpotent_pcore_Hall |
|
- Sylow_Jsub |
|
- path: mathcomp/character/character.v |
|
theorems: |
|
- cfMod_lin_char |
|
- cfRepr_map |
|
- cfDprodl_irr |
|
- xcfun_rE |
|
- Cnat_cfdot_char |
|
- eq_sum_nth_irr |
|
- cfker_Ind_irr |
|
- dprod_IirrC |
|
- cfun_irr_sum |
|
- dprodl_Iirr_eq0 |
|
- inv_dprod_IirrK |
|
- cfdotC_char |
|
- max_cfRepr_norm_scalar |
|
- tprod1 |
|
- sdprod_Iirr_inj |
|
- constt_Ind_Res |
|
- cfdot_aut_irr |
|
- irr_repr_lin_char |
|
- xcfun_annihilate |
|
- sum_norm_irr_quo |
|
- pgroup_cyclic_faithful |
|
- path: mathcomp/algebra/polydiv.v |
|
theorems: |
|
- reducible_cubic_root |
|
- dvd0pP |
|
- mup_geq |
|
- eqpW |
|
- lc_expn_scalp_neq0 |
|
- gdcop_recP |
|
- gcd0p |
|
- divp_addl_mul_small |
|
- divp_eq0 |
|
- gdcop_rec_map |
|
- eqp_rtrans |
|
- modp_eq0P |
|
- ltn_rmodp |
|
- eq_rdvdp |
|
- eqp_sym |
|
- gcdp_mulr |
|
- eqp_root |
|
- dvdpNr |
|
- size_gcd1p |
|
- cubic_irreducible |
|
- path: mathcomp/character/inertia.v |
|
theorems: |
|
- constt_Inertia_bijection |
|
- cfConjg_irr |
|
- inertia_mod_pre |
|
- inertia_quo |
|
- cfConjgMod_norm |
|
- prime_invariant_irr_extendible |
|
- inertia_bigdprod |
|
- path: mathcomp/algebra/intdiv.v |
|
theorems: |
|
- eqz_div |
|
- coprimez_pexpr |
|
- gcdzz |
|
- modz0 |
|
- gcdz0 |
|
- zprimitive_eq0 |
|
- eqz_modDl |
|
- dvdz_exp2l |
|
- dvdz_zmod_closed |
|
- dvdz_lcml |
|
- modzMr |
|
- lcmz0 |
|
- ltz_mod |
|
- coprimezXl |
|
- dvdz_contents |
|
- gcd1z |
|
- mulz_divCA_gcd |
|
- path: mathcomp/fingroup/morphism.v |
|
theorems: |
|
- morphpreK |
|
- isog_sym |
|
- morphpreT |
|
- trivial_isog |
|
- morphim0 |
|
- morphicP |
|
- factmE |
|
- morphpre_subcent |
|
- ker_trivg_morphim |
|
- misom_isog |
|
- ker_trivm |
|
- morphimK |
|
- morphpre_gen |
|
- injm_ifactm |
|
- sub_morphpre_im |
|
- eq_homgl |
|
- morphimGI |
|
- path: mathcomp/solvable/burnside_app.v |
|
theorems: |
|
- F_s23 |
|
- Sd1_inj |
|
- r05_inv |
|
- S3_inv |
|
- sh_inv |
|
- S1_inv |
|
- rot_r1 |
|
- path: mathcomp/algebra/ssrint.v |
|
theorems: |
|
- pmulrz_rlt0 |
|
- nexpIrz |
|
- PoszD |
|
- exp0rz |
|
- mulrz_eq0 |
|
- coefMrz |
|
- intP |
|
- leqifD_dist |
|
- mulzS |
|
- mulz2 |
|
- addSnz |
|
- scaler_int |
|
- distnDr |
|
- expN1r |
|
- mulrzBl_nat |
|
- rpredXsign |
|
- path: mathcomp/field/fieldext.v |
|
theorems: |
|
- module_baseVspace |
|
- divp_polyOver |
|
- subfx_scaler1r |
|
- mem_vspaceOver |
|
- path: mathcomp/solvable/commutator.v |
|
theorems: |
|
- derg0 |
|
- der_char |
|
- commMG |
|
- quotient_cents2r |
|
- path: mathcomp/algebra/rat.v |
|
theorems: |
|
- mul1q |
|
- mul_subdefA |
|
- rat_field_theory |
|
- ltrq0 |
|
- QintP |
|
- path: mathcomp/solvable/maximal.v |
|
theorems: |
|
- nilpotent_Fitting |
|
- card_p3group_extraspecial |
|
- Fitting_max |
|
- FittingJ |
|
- Aut_extraspecial_full |
|
- path: mathcomp/field/galois.v |
|
theorems: |
|
- dim_fixed_galois |
|
- kHomP |
|
- normalFieldP |
|
- kHom_inv |
|
- kHom1 |
|
- normalFieldf |
|
- kAHomP |
|
- path: mathcomp/ssreflect/div.v |
|
theorems: |
|
- coprime_sym |
|
- edivnP |
|
- modnXm |
|
- modn_dvdm |
|
- dvdn_sub |
|
- leq_trunc_div |
|
- eqn_mod_dvd |
|
- divnBr |
|
- dvdn_subr |
|
- coprime_pexpl |
|
- modnB |
|
- leq_divRL |
|
- dvdn_lcml |
|
- lcmnC |
|
- path: mathcomp/solvable/primitive_action.v |
|
theorems: |
|
- n_act_is_action |
|
- path: mathcomp/fingroup/automorphism.v |
|
theorems: |
|
- char1 |
|
- autE |
|
- charY |
|
- injm_Aut |
|
- injm_conj |
|
- Aut_group_set |
|
- morphic_aut |
|
- path: mathcomp/algebra/mxpoly.v |
|
theorems: |
|
- integral_horner |
|
- horner_mx_diag |
|
- char_poly_trace |
|
- map_horner_mx |
|
- diagonalizable_forPex |
|
- map_char_poly_mx |
|
- algebraic_inv |
|
- algebraic_add |
|
- comm_horner_mx2 |
|
- conjmxM |
|
- eval_mxvec |
|
- conjumx |
|
- horner_mx_uconjC |
|
- mx_inv_horner0 |
|
- simmxW |
|
- conj0mx |
|
- coef_rVpoly |
|
- split_diagA |
|
- path: mathcomp/field/falgebra.v |
|
theorems: |
|
- sub1_agenv |
|
- cent_centerv |
|
- subX_agenv |
|
- prodvDr |
|
- amull_is_linear |
|
- lfun_mulRVr |
|
- algidr |
|
- centerv_sub |
|
- path: mathcomp/ssreflect/path.v |
|
theorems: |
|
- subseq_path |
|
- iota_sorted |
|
- sorted_ltn_index_in |
|
- rot_to_arc |
|
- eq_fpath |
|
- trajectS |
|
- path_min_sorted |
|
- shortenP |
|
- sort_stable |
|
- perm_merge |
|
- mem2lr_splice |
|
- sorted_map |
|
- homo_sort_map |
|
- cycle_prev |
|
- map_path |
|
- take_path |
|
- sorted_sort |
|
- prev_rotr |
|
- mem2rf |
|
- allrel_merge |
|
- arc_rot |
|
- sorted_subseq_sort_in |
|
- path: mathcomp/ssreflect/bigop.v |
|
theorems: |
|
- big_rec2 |
|
- big_nseq_cond |
|
- big_distrr |
|
- big_nat_recl |
|
- big_orE |
|
- big_nat1_eq |
|
- big_ord1_eq |
|
- sig_big_dep_idem |
|
- big_ord_narrow_cond_leq |
|
- big_enum_rank_cond |
|
- le_big_ord_cond |
|
- reindex_omap |
|
- big_nat |
|
- big_cat |
|
- addm0 |
|
- path: mathcomp/ssreflect/choice.v |
|
theorems: |
|
- tagged_hasChoice |
|
- seq_hasChoice |
|
- path: mathcomp/algebra/mxalgebra.v |
|
theorems: |
|
- mulmx_max_rank |
|
- row_base0 |
|
- rowV0Pn |
|
- row_freePn |
|
- qidmx_eq1 |
|
- addmx_sub |
|
- summx_sub_sums |
|
- proj_mx_proj |
|
- eqmx_rowsub_comp |
|
- genmxE |
|
- genmxP |
|
- binary_mxsum_proof |
|
- kermx_eq0 |
|
- rV_eqP |
|
- stableNmx |
|
- mulmx_sub |
|
- path: mathcomp/ssreflect/fingraph.v |
|
theorems: |
|
- finv_inj_in |
|
- fcycle_undup |
|
- sym_connect_sym |
|
- roots_root |
|
- findex0 |
|
- orbit_rot_cycle |
|
- cycle_orbit_in |
|
- adjunction_n_comp |
|
- connect0 |
|
- eq_froot |
|
- path: mathcomp/solvable/hall.v |
|
theorems: |
|
- coprime_comm_pcore |
|
- Hall_Jsub |
|
- path: mathcomp/solvable/extraspecial.v |
|
theorems: |
|
- card_isog8_extraspecial |
|
- pX1p2_pgroup |
|
- path: mathcomp/solvable/extremal.v |
|
theorems: |
|
- def_q |
|
- generators_2dihedral |
|
- normal_rank1_structure |
|
- odd_not_extremal2 |
|
- path: mathcomp/algebra/vector.v |
|
theorems: |
|
- memv_add |
|
- span_bigcat |
|
- zero_lfunE |
|
- mul_mxof |
|
- comp_lfunDl |
|
- seq1_free |
|
- lker0_compfV |
|
- cat_free |
|
- lfunP |
|
- seq1_basis |
|
- lfun_addN |
|
- vspace_modr |
|
- capvA |
|
- path: mathcomp/algebra/ring_quotient.v |
|
theorems: |
|
- prime_idealrM |
|
- path: mathcomp/solvable/cyclic.v |
|
theorems: |
|
- quotient_generator |
|
- ker_eltm |
|
- prime_cyclic |
|
- path: mathcomp/fingroup/gproduct.v |
|
theorems: |
|
- extprod_mul1g |
|
- cprod_card_dprod |
|
- injm_cprodm |
|
- bigcprod_card_dprod |
|
- pprodmEl |
|
- morphim_coprime_sdprod |
|
- dprodW |
|
- sdprodmEr |
|
- subcent_dprod |
|
- divgr_id |
|
- morphim_bigcprod |
|
- injm_dprodm |
|
- pprod1g |
|
- im_sdprodm1 |
|
- path: mathcomp/field/separable.v |
|
theorems: |
|
- base_separable |
|
- separable_prod_XsubC |
|
- base_inseparable |
|
- separable_inseparable_element |
|
- separable_generator_maximal |
|
- separable_add |
|
- dvdp_separable |
|
- path: mathcomp/ssreflect/generic_quotient.v |
|
theorems: |
|
- enc_mod_rel_is_equiv |
|
- pi_morph2 |
|
- pi_mono1 |
|
- path: mathcomp/fingroup/action.v |
|
theorems: |
|
- dvdn_orbit |
|
- actbyE |
|
- actby_is_groupAction |
|
- morph_astabs |
|
- perm_faithful |
|
- astabsD |
|
- actpermK |
|
- ract_is_groupAction |
|
- actK |
|
- modact_coset_astab |
|
- actsP |
|
- orbit_inv_in |
|
- gacentE |
|
- act1 |
|
- atransR |
|
- reindex_acts |
|
- gactM |
|
- subgacent1E |
|
- card_orbit_in_stab |
|
- gactJ |
|
- atrans_acts_card |
|
- path: mathcomp/character/integral_char.v |
|
theorems: |
|
- irr_gring_center |
|
- path: mathcomp/solvable/alt.v |
|
theorems: |
|
- rfd_morph |
|
- simple_Alt5 |
|
- card_Alt |
|
- path: mathcomp/algebra/fraction.v |
|
theorems: |
|
- equivf_sym |
|
- path: mathcomp/solvable/center.v |
|
theorems: |
|
- center_ncprod |
|
- center_prod |
|
- path: mathcomp/algebra/interval.v |
|
theorems: |
|
- leBSide |
|
- itv_joinKI |
|
- itv_leEmeet |
|
- itv_split1U |
|
- path: mathcomp/ssreflect/binomial.v |
|
theorems: |
|
- fact_split |
|
- ffact_gt0 |
|
- ffactnSr |
|
- bin_factd |
|
- path: mathcomp/algebra/qpoly.v |
|
theorems: |
|
- poly_of_size_mod |
|
- qpoly_scale1l |
|
- qpoly_scaleDl |
|
- irreducibleP |
|
- path: mathcomp/field/algnum.v |
|
theorems: |
|
- Aint_subring_exists |
|
- Qn_aut_exists |
|
- path: mathcomp/solvable/nilpotent.v |
|
theorems: |
|
- lcn_subS |
|
- ucn_id |
|
- TI_center_nil |
|
- meet_center_nil |
|
- injm_nil |
|
- quotient_nil |
|
- path: mathcomp/algebra/zmodp.v |
|
theorems: |
|
- Zp_mulVz |
|
- Zp_group_set |
|
- Fp_Zcast |
|
- path: mathcomp/field/closed_field.v |
|
theorems: |
|
- rmulpT |
|
- path: mathcomp/algebra/polyXY.v |
|
theorems: |
|
- swapXY_X |
|
- path: mathcomp/field/qfpoly.v |
|
theorems: |
|
- qlogp_lt |
|
- path: mathcomp/solvable/finmodule.v |
|
theorems: |
|
- fmodM |
|
- fmod_addrC |
|
- fmvalK |
|
- mulg_exp_card_rcosets |
|
- path: mathcomp/character/vcharacter.v |
|
theorems: |
|
- vcharP |
|
- zcharD1E |
|
- orthogonal_span |
|
- dirr_inj |
|
- path: mathcomp/solvable/jordanholder.v |
|
theorems: |
|
- acompsP |
|
- maxainv_proper |
|
- maxainv_asimple_quo |
|
- path: mathcomp/algebra/archimedean.v |
|
theorems: |
|
- lt_succ_floor |
|
- natr_norm_int |
|
- trunc1 |
|
- ceil_floor |
|
- norm_natr |
|
- floorN |
|
- prod_truncK |
|
- int_num0 |
|
- path: mathcomp/field/finfield.v |
|
theorems: |
|
- primeChar_abelem |
|
- primeChar_scale1 |
|
- primeChar_scaleAl |
|
- path: mathcomp/fingroup/perm.v |
|
theorems: |
|
- porbitP |
|
- porbit_setP |
|
- preim_permV |
|
- path: mathcomp/fingroup/quotient.v |
|
theorems: |
|
- rcoset_kercosetP |
|
- path: mathcomp/ssreflect/ssrbool.v |
|
theorems: |
|
- if_implyb |
|
- path: mathcomp/ssreflect/finfun.v |
|
theorems: |
|
- supportE |
|
|