ProofWalaDataset / GeoCoq /train /GeoCoq_train.yaml
amitayusht's picture
Added raw dataset
db04d2b
name: GeoCoq_train
num_files: 394
language: COQ
few_shot_data_path_for_retrieval: null
few_shot_metadata_filename_for_retrieval: null
dfs_data_path_for_retrieval: null
dfs_metadata_filename_for_retrieval: local.meta.json
theorem_cnt: 4036
datasets:
- project: <path-to-repo>/GeoCoq
files:
- path: theories/Coinc/Utils/arity.v
theorems:
- minus_n_0
- app_2_n
- nthCircPerm2
- app_n_1_app_eq
- app_app_2_n
- circPermNIdFirst
- app_2_n_app
- app_1_n
- PermOK
- circPermNConsTlOK
- fixLastCPOK
- pred_conj
- app_n_1
- lastTailOK
- app
- allButLastCPTl
- CPToListTl1
- NoDupOK
- tailCP
- headCPbis
- consHeadCPTl
- minus_n1_n2_0
- pcaHdTl
- circPermNCPOK
- app_2_n_app_eq
- nthCP01
- consHeadCPHd
- lastCP
- CPPair
- CPLOK
- nthCircPermNAny
- lengthNilOK
- circPermNId
- nthFirst
- plus_0_n
- tailDefaultCP
- ListToCP
- plus_n_0
- CPLHdTlOK
- fixLastCP
- CP_ind
- CPLHd
- NoDup_dec
- lengthOfCPToList
- consTailOK
- circPermNCP0
- circPermNConsOK
- CPLCP
- allButLastCP
- CPToListTl2
- consHeadCPOK
- consTailCPLast
- PermOKAux
- lastCPTl
- plus_n_1
- headCP
- consTlHdHdTl
- ListToCPTl
- nthCircPerm2Eq
- app_app_n_1
- app_n_1_app
- app_1_n_app_eq
- app_1_n_app
- CPCPL
- app_app_1_n
- nthLast
- nthCPTlOK
- NotNoDupDup
- circPermPerm
- nthCircPerm1
- tailCPbis
- consTailCPTlD
- app_app_2_n_default
- app_2_n_app_default
- consTailCP
- consTailCPTl
- consTailCPAbl
- nthEqOK
- CPToList
- CPToListOK
- consHdTlTlHd
- consTailPerm
- path: theories/Main/Tarski_dev/Ch11_angles.v
theorems:
- l11_50_1
- lea_distincts
- lea_out4__lea
- lta_not_conga
- lta__lea
- acute_not_per
- orth_symmetry
- bet_conga__bet
- l11_49
- ex_suppa
- segment_construction_0
- l11_25
- cop3_orth_at__orth_at
- conga_inangle2_per__acute
- lta_dec
- col_conga__conga
- orth_at_symmetry
- conga__lea
- l11_17
- conga_line
- l11_4_2
- conga_ex_cong3
- l11_31_1
- lta_trans
- col2_orth_at__orth_at
- t18_19
- l11_22
- in_angle_line
- lea_asym
- l11_22a
- col_conga_col
- conga_pseudo_refl
- orth_at2__eq
- lta__nlea
- le2_per2__le
- acute_per__lta
- l11_4_1
- t18_18
- l11_18_2
- conga_right_comm
- l11_44_2bis
- lta_right_comm
- reflectl__conga
- l11_47
- inangle_dec
- suppa2__conga456
- l11_24
- l11_29_b
- col_conga_cop_reflectl__col
- angle_bisector
- triangle_inequality
- inangle__lta
- conga_distinct
- col_in_angle_out
- acute_conga__acute
- cong3_diff
- acute_cop_perp__one_side
- l11_30
- cong2_per2__cong_3
- conga__acute
- in_angle_one_side
- eq_conga_out
- bet_in_angle_bet
- l11_41
- l11_10
- inangle_distincts
- acute_one_side_aux
- acute_distincts
- conga_diff45
- acute_one_side_aux0
- lt2_per2__lt
- obtuse_distincts
- inangle3123
- conga2_suppa__suppa
- out341__inangle
- per2__suppa
- acute_obtuse__lta
- lea_total
- acute_trivial
- conga_os__out
- l11_15
- conga_comm
- ncol_conga_ncol
- lta_os__ts
- conga_inangle_per__acute
- l11_57
- bet_le__lt
- bet_out__suppa
- ex_conga_ts
- acute_suppa__obtuse
- inangle2__lea
- l11_50_2
- bet_suppa__out
- conga_refl
- l11_13
- l11_14
- lea_in_angle
- cong2_per2__cong_conga2
- in_angle_asym
- triangle_inequality_2
- l11_29_a
- nlta__lea
- acute_chara
- conga__lea456123
- suppa_distincts
- cong4_cop2__eq
- angle_construction_1
- nlta
- ts2__inangle
- l11_36
- orth_dec
- tsp_dec
- l11_3_bis
- l11_25_aux
- out_lea__out
- lea_suppa2__lea
- conga_trivial_1
- inangle1123
- lea_refl
- l11_43_aux
- angle_construction_2
- inangle_one_side
- l11_28
- in_angle_trans
- orth_at__ncop
- suppa_comm
- orth_at__ncop1
- conga2_cop2__col_1
- obtuse_out2__obtuse
- col2_orth__orth
- orth_at_distincts
- l11_44_2_b
- l11_44_2
- conga_sym_equiv
- col_inangle2__out
- mid2_orth_at2__cong
- lea_obtuse_obtuse
- conga_diff2
- bet_obtuse__acute
- lea121345
- lea__nlta
- obtuse_suppa__acute
- per_suppa__per
- lta_comm
- l11_44_2_a
- col_in_angle
- conga_diff56
- lea_dec
- osp_dec
- lea_left_comm
- col_lta__out
- inangle__lea
- two_sides_in_angle
- conga_diff1
- cong_le_per2__le
- bet2_lta__lta
- conga_cop__or_out_ts
- conga2_cop2__col
- bet__suppa
- col_lta__bet
- lta_distincts
- cong2_conga_cong
- l11_52
- out__acute
- l11_63_existence
- inangle__lea_1
- conga_left_comm
- not_conga
- os_ts__inangle
- orth_at_chara
- obtuse_per__lta
- acute_lea_acute
- cop_inangle__ex_col_inangle
- in_angle_two_sides
- cong2__ncol
- lea_right_comm
- triangle_strict_inequality
- col_cop_orth__orth_at
- l11_41_aux
- cong3_preserves_out
- lea_trans
- cong3_conga
- l11_44_1
- col_cop_orth_at__eq
- in_angle_trans2
- orth_distincts
- conga_trans
- l11_44_1_b
- l11_51
- l11_43
- l11_22b
- l8_21_3
- lea123456_lta__lta
- out321__inangle
- suppa_left_comm
- lea_comm
- acute_bet__obtuse
- acute_col__out
- lta_left_comm
- triangle_reverse_inequality
- obtuse_sym
- l11_60_aux
- l11_53
- col_obtuse__bet
- l11_21_b
- orth_at2_tsp__ts
- os2__inangle
- not_conga_sym
- suppa_right_comm
- bet_lea__bet
- l11_62_existence
- l11_22_bet
- l11_60
- l11_16
- suppa_dec
- l11_63_aux
- l11_44_1_a
- l11_aux
- acute__not_obtuse
- lea456789_lta__lta
- nlea__lta
- not_lta_and_conga
- os3__lta
- angle_construction_4
- l11_62_unicity_bis
- or_lta2_conga
- conga_cop_out_reflectl__out
- cong3_conga2
- acute_out2__acute
- le_lt_per2__lt
- path: theories/Main/Tarski_dev/Ch13_4_cos.v
theorems:
- lcos_morphism
- perp_acute_out
- lcos_per
- lcos_const0
- lcos_eqa_lcos
- lcos2_eq_lcos3_eq
- lcos_lg_distincts
- acute_not_obtuse
- lcos3_eq_sym
- lcos3_permut2
- lcos_lg
- lcos2_eq_trans
- out_acute
- lcos_const_o
- lcos_lg_anga
- lcos3_eql_lcos3
- lcos_eql_lcos
- perp_out__acute
- acute_comp_not_acute
- perp_acute
- eql_lcos_null
- lcos2_lg_not_null
- lcos2_eq_sym
- lcos_eq_lcos3_eq
- lcos_const_cb
- lcos_eq_lcos2_eq
- lcos_const
- lcos3_lcos_1_2
- lcos2_exists'
- null_lcos_eql
- lcos_lg_not_null
- lcos_const1
- l13_7
- lcos_const_ab
- lcos3_lg_not_null
- lcos3_permut3
- lcos_exists
- lcos2_eq_refl
- flat_not_acute
- perp_obtuse_bet
- lcos2_lg_anga
- lcos3_exists
- lcos_uniqueness
- lcos_const_a
- lcos2_eql_lcos2
- lcos3_uniqueness
- lcos_eq_trans
- lcos3_eq_refl
- lcos3_lcos_2_1
- path: theories/Main/Tarski_dev/Ch06_out_lines.v
theorems:
- l6_2
- l6_7
- diff_col_ex3
- colx
- l6_3_2
- out2_bet_out
- out_diff2
- not_bet_and_out
- out_cong_cong
- l6_21
- out2__bet
- l6_13_1
- segment_reverse
- cong_preserves_bet
- col_transitivity_1
- l6_16_1
- Out_cases
- bet2__out
- out_diff1
- segment_construction_3
- out_distinct
- bet2_out_out
- out_bet_out_1
- out_col
- diff_col_ex
- out_bet_out_2
- l6_3_1
- bet_out_1
- out_dec
- out_to_bet
- out_trivial
- not_bet_out
- not_out_bet
- l6_13_2
- or_bet_out
- l6_11_uniqueness
- bet2_le2__le1245
- bet_out__bet
- l6_6
- bet_out_out_bet
- col_transitivity_2
- col3
- not_col_exists
- col2__eq
- diff_bet_ex3
- col_out2_col
- l6_4_1
- path: theories/Algebraic/POF_to_Tarski.v
theorems:
- dotC'
- markov_betE
- dot2B
- col_2D_aux
- betS_gt0
- b2D_neq0
- col_2D_aux_1
- contraction_betR
- betE_axx
- Rcf_to_GI_PED
- ratio_cp'_aux_1
- Rcf_to_GI_euclidean
- betSP'
- cong_identity
- ratio_inv
- addrDBB
- inner_pasch
- congP_aux
- upper_dim_dgc1
- quad_ge0
- point_equality_decidability
- ratio_eq
- ratiovv
- b_neq0
- upper_dim_dgc_aux0
- ratio_cp
- add2r_eq
- bet_betE
- ab_neq
- bet_inner_transitivity
- betS_neq12
- Rcf_to_T_PED
- betSP
- cong_perp
- bet_neq0
- extension_col
- add_ratio_1
- lower_dim
- bet_cong_ratio_eq
- euclid'
- dotE
- ratio_e0_n1
- ratio_bet''
- cong_perp_aux2
- inner_pasch'
- vector2_eq0
- bet_gt0
- betEP
- congP
- col_2D
- contraction_bet
- inner_pasch_gen
- tcp
- betR_abc
- thing_gt0
- upper_dim_dgc1_aux
- contraction_eq
- bet_lt
- segment_construction
- ratioNr
- bet_sym
- row2_eq_nD
- cong_eq'
- add11_neq0
- bet_opp
- ratio_betS
- all_v_neq0
- ratio_bet
- a2D_eq0
- ratioP
- upper_dim_dgc_aux1
- stuff_gt0
- betE_sym
- dotvN
- dotNv
- cosine_rule
- congP_aux'
- Rcf_to_T2D
- addrBDD
- add_ratio
- five_segment
- stuff_neq0
- ca_neq
- addf_divrr
- ratiorN
- bet_lt1
- dot2N
- betS_neq23
- betS_neq13
- thing_neq0
- ratio0p
- bet_col
- bet_neq0'
- cong_pseudo_reflexivity
- bet_gt0'
- addrBDB
- betS_extension
- upper_dim
- quad_eq0'
- quad_neq0
- proclus
- euclid
- ratio_lt0_v2_neq0
- extension_bet
- cosine_rule'
- dot2_eq0
- upper_dim_dgc2_aux
- betS_id
- dotC
- ratio_lt0_v1_neq0
- Rcf_to_T_euclidean
- row2_eq0_nD
- col_2D'
- Rcf_to_GI2D
- betSP'_aux
- extensionP
- bet_xxa
- funmxN
- betE_xxa
- bet_xax
- Rcf_to_T
- sub_1_ratio
- eq_pick_neq0
- eq_inv_scale
- ratio_e1_n0
- cong_inner_transitivity
- ab_neq_2D
- c_neq0
- ca_neq_2D
- bc_neq_2D
- vector2_eq
- congC
- addrDBD
- col_2D_aux_2
- betR_bca
- upper_dim_dgc2
- col_2D_aux_3
- bet_ratio
- bc_neq
- inner_pasch''
- ratio_cp'
- dot2D
- a_eq0
- ratio_neq0
- row2_eq
- vector2_neq0
- bet_trans
- betR_cab
- path: theories/Main/Tarski_dev/Ch14_sum.v
theorems:
- diff_stable
- pj_left_comm
- sum3_col
- sum_uniquenessB
- sum_to_sum3
- opp_uniqueness
- proj_preserves_sum
- sum_x_axis_unit_change
- proj_col
- sum_cong2
- project_trivial
- sum_ar2
- midpoint_opp
- sum_to_sump
- project_col_project
- sum_assoc
- sum22_comm
- change_grid_sum_0
- sum_A_B_A
- sum_opp
- sum_diff2_diff_sum2_b
- sum_diff_diff_a
- opp_comm
- sum_A_B_B
- sum_O_B_eq
- diff_opp
- sum_plg
- sum_par_strict
- pj_comm
- Pj_exists
- opp_exists
- sum_A_exists
- sum_B_exists
- opp0_uniqueness
- sum_A_null
- diff_uniqueness
- diff_to_plg
- sum_diff_diff
- sum_y_axis_change
- pj_right_comm
- sum_A_O
- sum3_to_sum4
- sum_uniquenessA
- double_null_null
- sum22_col
- sum3_comm_1_2
- diff_A_O
- sum22_permut
- sum_O_B
- sum_abcd
- diff_null_eq
- sum_comm
- pj_uniqueness
- pj_col_project
- sum_iff_cong
- sum_A_O_eq
- sum_assoc_2
- sum_O_O
- sum4_comm
- opp_midpoint
- plg_to_sum
- diff_exists
- diff_null
- not_null_double_not_null
- diff_sum
- sum3_comm_2_3
- sum4_col
- sum3_exists
- sum_B_null
- sum3_permut
- diff_ar2
- sum_diff_diff_b
- sum_assoc_1
- sump_to_sum
- proj_id
- diff_O_A_opp
- sum3_uniqueness
- sum_uniqueness
- diff_uniquenessB
- diff_O_A
- sum4_permut
- sum_diff2_diff_sum2_a
- path: theories/Main/Meta_theory/Continuity/angle_archimedes.v
theorems:
- grada_distincts
- archi__gradaexp_destruction
- grada_out__out
- grada__lea
- gradaexp_destruction_aux
- grada2_sams_suma__grada
- archi__grada_destruction
- acute_archi_aux1
- acute_archi_aux
- conga2_grada__grada
- acute_archi_aux2
- angles_archi_aux1
- archi_in_angles
- gradaexp__grada
- path: theories/Main/Annexes/saccheri.v
theorems:
- per2_os__pars
- acute_sac__aah
- sac__perp3414
- t22_17__oah
- t22_7__per
- lam6534_mid2__sac
- lam__pars1234
- sac__perp1214
- t22_12__rah
- lt_os_per2__lta
- conga_per2_os__cong
- t22_14__rah
- t22_8__lt5612
- t22_7__lt5612
- t22_12__aah
- acute_lam__lt
- t22_9_aux
- mid2_sac__perp_lower
- absolute_exterior_angle_theorem
- t22_7__obtuse
- lam_per__rah
- lam_obtuse__lt
- cong_mid__suma
- t22_20
- cong2_sac2__cong
- t22_8__acute
- t22_14__aah
- t22_14__sams_nbet_aux
- ex_lambert
- cong_sac__per
- lta123234_os_per2__lt
- not_rah
- obtuse_sac__oah
- mid2_sac__lam6534
- lam_obtuse__oah
- lt4321_os_per2__lta
- t22_14__nsams
- t22_9__acute
- mid2_sac__perp_upper
- t22_11__obtuse
- per2_os__ncol234
- lt_sac__obtuse
- lam__par1423
- lam_perm
- per__ex_saccheri
- sac_perm
- t22_14_aux
- t22_17__rah
- t22_12__oah
- t22_8__obtuse
- t22_14__bet
- lta_os_per2__lt
- t22_14__sams_nbet
- lam_acute__aah
- t22_14__nsams_aux
- t22_7__lt1256
- t22_9__per
- not_aah
- t22_8_aux
- sac__cong
- lam__pars1423
- sac__par1423
- not_oah
- t22_11__per
- cong_lam__per
- sac__conga
- t22_11__acute
- per_sac__rah
- lam__os
- t22_8__per
- t22_9__obtuse
- lt_sac__acute
- cong2_lam2__cong_conga
- lam6521_mid2__sac
- sac__pars1423
- saccheri_s_three_hypotheses
- three_hypotheses_aux
- sac_distincts
- lam_lt__obtuse
- lam_per__cong
- t22_8__lt1256
- lam__par1234
- ex_saccheri
- t22_17__aah
- t22_8__cong
- t22_7__acute
- per2_os__ncol123
- lam_lt__acute
- cop_sac2__sac
- path: theories/Main/Tarski_dev/Ch12_parallel_inter_dec.v
theorems:
- par_trans
- not_par_inter
- cop_npar__inter
- l12_19
- col_par_par_col
- l12_21_a
- not_par_inter_exists
- par_not_par
- cop_npars__inter_exists
- not_par_strict_inter_exists
- l12_20
- l12_22_a
- l12_16_2D
- cop2_npar__inter
- cop_par__inter
- cop_npar__inter_exists
- cop_par_perp__perp
- l12_21
- cop4_par_perp2__par
- par_perp__perp
- par_perp2__par
- par_inter
- l12_16
- l12_22
- inter__npar
- path: theories/Main/Tarski_dev/Ch16_coordinates_with_functions.v
theorems:
- centroid_theorem
- twice_signed_area_ABB
- sum_f
- characterization_of_perpendicularity_F_bis
- field_prop
- characterization_of_neq_F
- characterization_of_neq_F_bis
- MulF
- characterization_of_right_triangle_F
- characterization_of_midpoint_F
- triangle_area
- leF_Transitive
- coordinates_of_point_F
- sqrt3_square
- characterization_of_equality_F_bis
- axiom_A2b
- DivF
- ringF
- diff_col
- characterization_of_parallelism_F_bis
- eqF_Equivalence
- field_prop_1
- neq20
- oppF_neq0
- characterization_of_parallelism_F_aux
- signed_area_ABB
- triangles_same_base
- Cd_Cd_EqF
- eqF_Transitive
- prod_col
- twice_signed_area_cyclic
- characterization_of_equality_F_aux
- pythrel_null
- sum_col
- inv_f
- Perp_AM_Perp
- div_uniqueness
- neqO_mul_neqO
- InvF
- diff_f
- AM_Perp_AM_Perp_AM_Par
- neg_and_eqF
- fieldF
- co_side
- FRing
- div_f
- chasles_ratios
- Par_AM_Par
- inv_uniqueness
- Fcri
- AddF
- inv_col
- ratio_zero
- prod_f
- pythrel_not_null
- characterization_of_congruence_F
- field_prop_zero
- eqF_Reflexive
- Per_AM_Per
- eq_dec_F
- Py_triv_ABB
- Cong_AM_Cong
- characterization_of_betweenness_F
- AM_Perp_triv1
- PythF
- signed_area_cyclic
- Pyth_f
- mulF_morphism
- exists_equilateral_triangle
- ncolOEE'
- axiom_A2a
- AM_Perp_triv2
- OneF
- divF_morphism
- addF_morphism
- invF_morphism
- Fintegral
- AM_Par_ratio_AM_Par
- opp_f
- div_exists
- mulF__eq0
- div_col
- leF_Antisymmetric
- subF__eq0
- AM_perp_AM_Par_AM_perp
- subF_morphism
- coordinates_of_point_f
- opp_col
- Ps_One
- eqF_Symmetric
- PythFOk
- pythrelOO
- Fmult_integral
- characterization_of_parallelism_F
- OppF
- perp_triangle_area
- inv_exists_with_notation
- opp_pythrel
- oppF_morphism
- supplement_AM_CongA
- path: theories/Main/Highschool/circumcenter.v
theorems:
- midpoint_thales_reci_circum
- is_circumcenter_uniqueness
- is_circumcenter_coplanar
- is_circumcenter_perm_4
- is_circumcenter_perm_3
- circumcenter_per
- is_circumcenter_perm_5
- is_circumcenter_perm
- circumcenter_cong
- circumcenter_perp_all
- circumcenter_perp
- is_circumcenter_cases
- is_circumcenter_perm_1
- exists_circumcenter
- circumcenter_intersect
- is_circumcenter_perm_2
- path: theories/Algebraic/Counter_models/Planar/counter_model_five_segment.v
theorems:
- euclid
- bet_1D
- five_segment
- all_lines_meet
- col_xxa
- bet'P
- bet'_sym
- segment_construction
- bet_1Di
- nbet_cab
- nbet_bca
- bet_symmetry
- nbetS_bca
- cong_inner_transitivity
- col_213
- neq_mx10
- col_axx
- inner_pasch
- line_intersection_1
- nbetS_abc
- permP
- col_xax
- cong_pseudo_reflexivity
- neq_mx
- point_equality_decidability
- dup_meet
- upper_dim
- nbet_abc
- lower_dim
- line_intersection_2
- line_intersection_3
- path: theories/Main/Elements_statements/Book_3.v
theorems:
- prop_11_12
- prop_3_1
- prop_6
- prop_18
- prop_5
- prop_4
- prop_2
- prop_9
- prop_3_2
- path: theories/Elements/OriginalProofs/lemma_8_3.v
theorems:
- lemma_8_3
- path: theories/Algebraic/Counter_models/nD/bet_identity.v
theorems:
- g2_16
- g2_3
- bet_identity_aux
- g2_14
- g2_13
- g2_7_2
- g2_4
- bet_outer_trans
- g2_6_1
- g2_10
- g2_9
- g2_7_1
- g2_9_aux
- g2_8
- g2_12
- g2_15
- another_point
- path: theories/Main/Tarski_dev/Ch08_orthogonality.v
theorems:
- diff_per_diff
- perp_in_left_comm
- l8_22
- l8_14_2_1a
- perp_in_comm
- perp_col4
- Perp_in_cases
- perp_right_comm
- Per_perm
- perp_in_per_1
- per_cong
- perp_perp_in
- perp_in_right_comm
- perp_not_eq_2
- perp_per_1
- l8_10
- perp_in_per_4
- per_perp
- l8_24
- l8_13_2
- perp_in_perp_bis
- l8_5
- l8_9
- l8_18_uniqueness
- perp_in_id
- perp_in_per
- l8_2
- l8_14_3
- l8_4
- perp_not_eq_1
- l8_20_1
- l8_21_aux
- perp_col2_bis
- midpoint_distinct
- l8_18_existence
- l8_15_2
- perp_per_2
- perp_col1
- col_col_per_per
- perp_in_sym
- l8_15_1
- perp_distinct
- midpoint_existence_aux
- perp_in_per_2
- Perp_in_perm
- perp_not_col2
- Perp_cases
- per_not_colp
- perp_col0
- l8_12
- perp_vector
- perp_left_comm
- col_per2__per
- perp_not_col
- Per_cases
- Perp_perm
- per_distinct
- perp_in_distinct
- per_cong_mid
- l8_14_2_2
- l8_14_2_1b
- cong_perp_or_mid
- l8_6
- perp_in_col
- per_col
- l8_7
- perp_col
- perp_in_dec
- col_per_perp
- l8_22_bis
- per_double_cong
- perp_sym
- perp_in_per_3
- midpoint_existence
- l8_20_2
- l8_21
- l8_14_1
- perp_comm
- per_not_col
- path: theories/Main/Tarski_dev/Ch13_3_angles.v
theorems:
- anga_out_anga
- acute_not_bet
- eqA_equivalence
- ang_not_null_lg
- ang_const_o
- not_conga_is_ang
- ang_cong_ang
- ang_sym
- ex_eqaa
- ang_const
- is_ang_conga
- is_null_all
- null_anga_null_anga'
- null_anga
- ex_eqa
- anga_col_null
- not_flat_ang_def_equiv
- not_null_ang_ang
- flat_ang
- not_null_ang_def_equiv
- is_anga_to_is_ang
- ex_ang
- anga_distincts
- anga_sym
- ang_not_lg_null
- is_anga_conga
- out_out_anga
- out_is_len_eq
- not_cong_is_ang1
- is_null_anga_out
- anga_exists
- out_null_anga
- ang_exists
- anga_not_flat
- not_conga_not_ang
- bet_flat_ang
- is_ang_conga_is_ang
- out_null_ang
- ex_points_ang
- all_eqa
- anga_const
- eqA_preserves_anga
- not_cong_is_anga1
- out_len_eq
- anga_conga
- ang_conga
- ex_anga
- anga_const_o
- ang_distinct
- ex_points_anga
- anga_is_ang
- anga_not_lg_null
- path: theories/Algebraic/Counter_models/nD/counter_model_euclid.v
theorems:
- t'_in_unit_disk
- segment_addition'
- omd_ge0
- point_equality_decidability
- omd_i1i2
- cong_inner_transitivity
- euclid
- dist_neq1
- point_vector_neq
- p_scalar_lt1
- omd_i2i2
- cauchy_schwartz
- E_in_disk
- cong_v_bcaa
- five_segment_holds
- segment_construction_holds_aux4
- cong_aaxx
- omd_ii
- bet_symmetry
- cong_pseudo_reflexivity_vector
- bet_outer_transitivity'
- bet_intersect
- inner_pasch_holds
- segment_construction_holds_aux3
- five_segment_holds_aux
- dist_eq1'
- addcb_eqt
- segment_construction_holds_aux6
- b'_in_unit_disk
- nbet_cab
- i'_in_unit_disk
- bet_b1d1c
- b'c'_neq
- cong_id
- bet_in_disk
- b'nD_in_unit_disk
- cong_cdab
- divf_le1
- omd_oi
- pasch
- five_segment_holds_aux3
- roots_poly2
- cong_v_aabc
- betR_abk
- bet_adt
- bet_abx_x01_lt1
- omd_cb
- one_half_gt0
- cong_identity
- c'_in_unit_disk
- three_non_collinear_points
- cong_pseudo_reflexivity
- sqrt_invf
- b'nD_neq0
- a'_in_unit_disk
- inner_pasch_vector
- scaler_eq
- bet_abx_x01_gt
- inner_pasch
- five_segment_holds_aux4
- omd_eq0
- one_half_neq0
- segment_construction
- quad_kNN
- divf_eq1
- dist_reflexivity
- cong_inner_transitivity'
- one_sub_half
- omd_oi2
- betR_abc
- one_half_ge0
- dist_cong'
- euclid_fails
- norm_sqr
- betR_cab
- omd_reflexivity
- Rcf_to_GI2D
- o'_in_unit_disk
- quad_NN
- cong_inner_transitivity_vector
- invf_eq
- bet_dist_bet'
- betR_akb
- invf_lt_invf
- bet_inner_transitivity
- cong_bacd
- Rcf_to_GI_PED'
- one_quarter_lt_one_half
- lower_dim_holds
- omd_ca
- addr_ge_gt0
- norm_point_lt1
- c'_norm
- five_segment
- dist'_ge0
- segment_construction_holds_aux2
- omd_oo
- one_eighth_lt_one_quarter
- xt_neq
- a'_eq0
- bet_2D_extension_2D
- omd_cc
- b'_neq0
- omd_v_reflexivity
- norm_point_le1
- bet_inner_transitivity_vector
- a'nD_in_unit_disk
- five_segment_holds_aux5
- omd_oi1
- upper_dim_aux
- betR_bca
- add_halfhalf
- nbet_abc
- three_non_collinear_points_vector
- upper_dim_aux_2
- one_half_lt1
- unit_disk_nD_2D
- dist_gt0
- euclid_aux
- point_vector_eq
- congA_axt_ab1d1
- omd_gt0
- euclid_fails_2D
- dist_v_reflexivity
- betR_neq0
- cong'_abab
- one_side_cong_eq
- Col_Col
- bet_outer_transitivity
- quarter
- segment_construction_holds_aux5
- norm_ge0
- omd_ii2
- cong_identity_holds_aux
- dist_le1
- euclid_fails_aux
- segment_construction_holds_aux1
- divf_lt1
- dist_aa_eq1
- x_neq0
- poly_cong
- bet_bdc
- cauchy_schwartz_eq
- segment_construction_holds
- seg_aux8
- X_in_disk
- bet_abx_x00_eq0
- path: theories/Elements/OriginalProofs/lemma_lessthantransitive.v
theorems:
- lemma_lessthantransitive
- path: theories/Main/Tarski_dev/Ch04_cong_bet.v
theorems:
- l4_3
- cong3_bet_eq
- l4_5
- l4_2
- l4_6
- l4_3_1
- path: theories/Main/Tarski_dev/Ch15_lengths.v
theorems:
- pythagoras_obtuse
- not_triangular_equality1
- square_increase_rev
- ltp_to_lep
- inter_circle_per
- pos_neg__prod_neg
- length_uniqueness
- length_sym
- length_id_1
- ltp__ltps
- length_cong
- inter_circle
- square_increase_strict
- prod_pos__signeq
- l15_7_1
- lt_to_ltp
- length_existence
- image_preserves_col
- not_signEq_prod_neg
- l15_3
- length_out
- conga_bet_conga
- ltp__lep_neq
- length_leP_le_2
- triangular_equality_equiv
- sum_preserves_lep_rev
- inter_circle_obtuse
- length_not_neg
- square_increase
- lta_out_lta
- lep_neq__ltp
- leP_bet
- circle_projp_between
- pythagoras
- triangular_equality_bis
- ltp__diff_pos
- length_id
- sum_pos_null
- prod_col
- length_pos_or_null
- sum_preserves_ltp_rev
- length_eq_cong_1
- prod_ng___not_signeq
- lea_out_lea
- ltps__ltp
- inter_tangent_circle
- length_Ps
- root_uniqueness
- not_neg_pos
- length_eq_cong_2
- length_O
- ltp_to_lt
- length_Ar2
- is_length_exists
- length_pos
- pythagoras_acute
- diff_pos__ltp
- project_preserves_out
- triangular_equality
- length_not_col_null
- image_preserves_bet1
- sum_preserves_lep
- l15_7_2
- projp_lt
- sum_preserves_ltp
- length_leP_le_1
- square_not_neg
- path: theories/Main/Highschool/concyclic.v
theorems:
- concyclic_perm_2
- concyclic_perm_9
- concyclic_perm_5
- concyclic_perm_7
- concyclic_perm_3
- concyclic_perm_19
- concyclic_perm_10
- concyclic_trans
- concyclic_perm_8
- concyclic_perm_18
- concyclic_perm_11
- concyclic_perm_4
- concyclic_perm_21
- concyclic_perm_16
- concyclic_aux
- concyclic_perm_15
- concyclic_perm_23
- concyclic_1123
- concyclic_perm_20
- concyclic_perm_6
- concyclic_perm_1
- concyclic_perm_13
- concyclic_perm_14
- concyclic_perm_12
- concyclic_perm_22
- path: theories/Elements/OriginalProofs/lemma_collinear1.v
theorems:
- lemma_collinear1
- path: theories/Main/Annexes/circles.v
theorems:
- bet_cop_onc2__ex_onc_os_out
- inc112
- mid_chord__diam_or_ncol
- outcs_exists1
- circle_cases
- line_circle_two_points
- eqc_chara
- tree_points_onc_cop
- cong2_onc3__eq
- onc2__cong
- concyclic_pseudo_trans
- col_onc2__mid
- onc_not_center
- mid2_onc4__eq
- outcs_exists
- incs_exists
- inc_onc2_out__eq
- tree_points_onc_cop2
- diam_points
- symmetric_oncircle
- onc212
- chord_completion
- chord_lt_diam
- bet_onc_le_a
- onc_exists
- bet_onc_lt_b
- col_onc2_perp__mid
- ninc__outcs
- prop_7_8
- bet_onc_lt_a
- inc__radius
- onc2_mid__incs
- center_onc2_mid__ncol
- mid_onc2__per
- chords_midpoints_col_par
- inc__noutcs
- incs__inc
- inc__outc
- inc_eq
- bet_inc2__incs
- inc2_le_diam
- bet_cong_onc3_cases
- mid_onc2_perp__col
- onc3_mid2__ncol
- eqc_trans
- incs2_lt_diam
- inc_outc__onc
- chord_le_diam
- onc_sym
- diam_cong_incs__outcs
- onc__outc
- bet_onc_le_b
- outc__nincs
- onc2_out__outcs
- chord_intersection
- concyclic_gen_pseudo_trans
- mid_onc__diam
- diam__midpoint
- concyclic_gen_perm_2
- concyclic_gen_trans_1
- onc2_mid_cong_col
- concyclic_perm_2
- cop2_onc6__eqc
- outcs__ninc
- onc4_cong2__eq
- neqc_chara
- concyclic_trans_1
- cop_mid_onc2_perp__col
- col_inc2_outcs__out
- circle_circle_cop
- eqc_refl
- incs_exists1
- diam_end_uniqueness
- cong2_cop2_onc3__eq
- diam_sym
- cong_chord_cong_center1
- incs__outcs
- concyclic_aux
- cong_chord_cong_center
- col_inc_onc2__bet
- concyclic_perm_1
- diam_exists
- cong_onc3_cases
- onc_col_diam__eq
- mid_onc2__perp
- onc3__ncol
- onc_sym__onc
- incs__noutc
- eqc_sym
- incs_onc_diam__lt
- tree_points_onc
- concyclic_gen_perm_1
- center_col__diam
- path: theories/Main/Tarski_dev/Ch09_plane.v
theorems:
- sym_preserve_diff
- col2_cop__cop
- bet_cop__tsp
- tsp__nosp
- two_sides_dec
- l9_41_1
- out_one_side
- tsp_exists
- l9_9
- l9_10
- col_one_side_out
- l9_4_2
- col_preserves_two_sides
- l9_3
- out_two_sides_two_sides
- tsp__ncop2
- cop2_os__osp
- l8_21_bis
- l9_19_3
- cop3_tsp__tsp
- osp__ncop2
- l9_4_2_aux
- l9_18
- l9_9_bis
- tsp_distincts
- sac__coplanar
- one_side_transitivity
- os_ts1324__os
- os__coplanar
- col2_os__os
- cop3_tsp__ts
- l9_30
- bet_ts__os
- one_or_two_sides_aux
- col_one_side
- col123__nos
- ts__ncol
- l9_18_3
- bet__ts
- one_side_dec
- bet_ts__ts
- cop_tsp__ex_cop2
- ex_ncol_cop
- not_two_sides_id
- os_distincts
- cong3_cop2__col
- l9_8_2
- invert_one_side
- cop_nts__os
- l9_31
- per_mid_per
- out_out_one_side
- osp__ncop1
- ts_ts_os
- cop_perp2__col
- osp_bet__osp
- cop3_osp__os
- tsp__ncop1
- one_side_chara
- col_cop__cop
- coplanar_trans_1
- l9_2
- ex_diff_cop
- one_side_not_col124
- col2_cop2__eq
- mid_two_sides
- col_two_sides
- l9_5
- ncop_distincts
- out_out_two_sides
- osp_symmetry
- osp_reflexivity
- out_one_side_1
- ts_distincts
- outer_pasch
- cop_nos__ts
- cop_per2__col
- l9_39
- cop_dec
- l9_41_2
- l9_4_1_aux
- l9_8_1
- one_side_not_col123
- osp__ntsp
- bet_cop__cop
- col124__nos
- cop2_ts__tsp
- col_two_sides_bet
- l9_4_1
- osp_distincts
- path: theories/Main/Annexes/inscribed_angle.v
theorems:
- conga_cop2_onc4__os
- cop_onc4_ts__suppa
- high_school_exterior_angle_theorem
- onc3_ts__obtuse
- inscribed_angle_aux1
- not_obtuse_saccheris
- suma123231__sams
- inscribed_angle_aux
- trisuma__bet
- cop2_onc4__or_conga_suppa
- thales_theorem
- right_saccheris
- onc3_os__acute
- cop2_onc4_suppa__ts
- conga_cop_onc6_os__eqc
- chord_par_diam
- thales_converse_theorem_1
- bet__trisuma
- diam_onc2_ts__suppa
- cop_onc4_os__conga
- conga_cop_onc3_os__onc
- bet_suma__suma
- acute_cop_onc3__os
- suppa_ts2__suppa
- thales_converse_theorem
- inscribed_angle
- triangle_circumscription
- inscribed_angle_1
- conga_os__concyclic
- suppa_ts__concyclic
- path: theories/Elements/OriginalProofs/lemma_parallelcollinear1.v
theorems:
- lemma_parallelcollinear1
- path: theories/Algebraic/Counter_models/nD/dimensional_axioms.v
theorems:
- iP
- nth_new_basis
- eq_nD_2D
- betR_ud_2D
- lower_dim_all1
- lower_dim
- to_nD0
- betR_o_i_basis_nth0
- dist_10_01
- upper_dimS
- i_neq_basis_nth0
- betS_nD_2D
- oP
- to_nD_scale
- lower_dim_all2
- upper_dim
- to_nDB
- pick_to_nD
- bet_nD_2D
- bet_o_i_basis_nth0
- betR_nD_2D
- basis_nth1
- basis_nth0
- path: theories/Main/Annexes/quadrilaterals.v
theorems:
- plg_trivial
- Rectangle_not_triv
- not_col_sym_not_col
- plgf3_mid
- col_not_plgs
- plgs_irreflexive
- plg_existence
- parallelogram_strict_not_col
- plgf_permut
- plgf_trivial1
- Rectangle_triv
- plg_trivial1
- plgf_not_comm
- rhombus_cong_square
- midpoint_par_strict
- cong3_id
- plgs_one_side
- plgf_cong
- plg_col_plgf
- plgf_trivial
- bet_double_bet
- plgs_diff
- cong_identity_inv
- midpoint_preserves_bet
- mid_plgf_aux
- plgf_trivial_trans
- plg_bet1
- bet3_cong3_bet
- symmetry_preserves_two_sides
- symmetry_preserves_one_side
- plg_sym
- symmetry_preseves_bet2
- plgs__pars
- Square_Parallelogram
- plgf_mid
- Parallelogram_strict_Parallelogram
- mid_par_cong2
- Rhombus_Plg
- Rectangle_not_triv_2
- Kite_comm
- Rectangle_Plg
- plgf_irreflexive
- col_cong_mid
- symmetry_preserves_bet
- plgf_not_point
- parallelogram_strict_not_col_3
- plgs_not_col
- parallelogram_strict_not_col_4
- plg_cong_rectangle
- symmetry_preseves_bet1
- plgf_bet
- plgs_sym
- plgf_sym
- mid_par_cong
- plgf_trivial2
- mid_par_cong1
- mid_plgf
- plgf_trivial_neq
- midpoint_midpoint_col
- mid_plgs
- plg_irreflexive
- midpoint_cong_uniqueness
- mid_plg
- plgs_existence
- path: theories/Main/Meta_theory/Models/hilbert_to_tarski.v
theorems:
- outH_sym
- Gupta_inspired_variant_neutral_dimensionless_follows_from_Hilbert
- Hilbert_is_a_Col_theory
- between_one
- not_cut3
- plane_separation
- lower_dim_l
- ncolH_distincts
- ncolH_expand
- cut_morphism
- plane_separation_2D
- cong_distincts
- soustraction_betH
- H_to_T_PED
- col_colh
- betH_congH3_outH_betH
- cut_distinct
- colH_trivial111
- cut2_not_cut
- TS_upper_dim
- cong_transitivity
- tarski_s_euclid
- morph
- inter_uniquenessH
- cong_preserves_bet
- H_to_T
- coplanar_plane1
- betH_distincts
- cut_comm
- outH_expand
- ColH_bets
- IncidL_morphism'
- axiom_five_segmentsH
- congH_sym
- congaH_existence_congH
- IncidL_not_IncidL__not_colH
- five_segment
- cong_identity
- line_on_plane'
- inner_pasch_aux
- TS_upper_dim_bis
- betH_trans1
- segment_construction
- bet_trans
- colH_trivial112
- IncidP_morphism'
- congH_perm
- same_side_refl
- colH_dec
- colH_permut_312
- cong_preserves_col_stronger
- ncolH_exists
- decidability_of_intersectionH
- same_side_trans
- out_same_side
- segment_constructionH
- same_side_morphism
- tarski_upper_dim
- betH_congH2__False
- betH_outH__outH
- th18_aux
- th12
- ColH__Col
- outH_col
- colH_permut_213
- same_side_not_cut
- cut'_comm
- cong_inner_transitivity
- cut_exists
- not_betH121
- out_construction
- th15
- colH_permut_231
- Col__ColH
- other_point_on_line
- out_distinct
- cong_permT
- inter_incid_uniquenessH
- betH_trans0
- col_upper_dim
- betH2_out
- lower_dim_e
- H2D_to_T2D
- upper_dim
- colH_trivial121
- colH_trivial122
- th17
- betH_line
- th19
- IncidLP_morphismr
- coplanar_plane
- par__or_eq_para
- congH_colH_betH
- colH_permut_321
- out_same_side'
- out2_out
- bet__beth
- Tarski_3D_follows_from_Hilbert_3D
- th14
- same_side_prime_refl
- betH_dec
- between_only_one'
- congH_perml
- construction_uniqueness
- coplanar_plane0
- pasch_general_case
- colH_IncidL__IncidL
- EqL_dec
- betH_trans2
- betH_not_congH
- IncidLP_morphisml
- plane_coplanar
- colH_permut_132
- congH_permlr
- cong_sym
- same_side_prime_not_colH
- congaH_sym
- bet_cong3_bet
- cut_same_side_cut
- cong_existence'
- IncidLP_morphism
- same_side__plane
- bet_disjoint
- bet_comm
- cong_preserves_col
- path: theories/Main/Tarski_dev/Ch05_bet_le.v
theorems:
- le_comm
- bet3__bet
- nlt__le
- lt_diff
- le_transitivity
- lt1123
- lt_right_comm
- l5_2
- bet2_le2__le
- Lt_cases
- l5_6
- le1221
- col_dec
- le_trivial
- bet__lt1213
- l5_3
- l5_12_b
- cong3_symmetry
- bet_le_eq
- nle__lt
- le_zero
- bet_cong_eq
- lt_transitivity
- segment_construction_2
- l5_12_a
- le3456_lt__lt
- le_anti_symmetry
- or_lt_cong_gt
- cong2_lt__lt
- fourth_point
- le_bet
- between_cong
- bet__le2313
- third_point
- le_right_comm
- gt_comm
- between_cong_3
- lt_left_comm
- le_diff
- ge_left_comm
- l5_5_1
- le1234_lt__lt
- lt__nle
- bet_dec
- lt__le
- not_and_lt
- cong_dec
- ge_comm
- le_cases
- Le_cases
- l5_5_2
- bet__le1213
- cong__le
- l5_1
- ge_right_comm
- bet__lt2313
- gt_right_comm
- le_left_comm
- gt_left_comm
- path: theories/Algebraic/Counter_models/Planar/counter_model_bet_symmetry.v
theorems:
- col_xxa
- bet_inner_transitivity
- point_equality_decidability
- bet_col'
- coplanarP
- inner_pasch
- cong_pseudo_reflexivity
- euclid
- five_segment
- col_perm_2
- A10_segment_construction
- lower_dim
- col_2D_bet'
- bet_on_abscissa
- col_trans
- colP
- upper_dim
- ncolP
- par_strictP
- cong_identity
- col_perm_1
- bet'_col_2D
- bet_symmetry
- path: theories/Main/Annexes/sums.v
theorems:
- le_lt12_sums2__lt34
- le_lt56_sums2__lt12
- sums__eq12
- le2_sums2__le
- sums112323
- sums_comm
- sums_assoc
- sums2__cong34
- sums_right_comm
- eq_sums__eq
- lt2_sums2__lt12
- le2_sums2__le12
- sums__cong1245
- sums__le3456
- le2_sums2__cong34
- sums2__cong56
- le_lt56_sums2__lt34
- sums123312
- lt2_sums2__lt34
- sums__cong2345
- lt2_sums2__lt
- sums_left_comm
- le_lt34_sums2__lt12
- le2_sums2__cong12
- cong3_sums__sums
- sums_middle_comm
- sums2__cong12
- bet__sums
- sums__le1256
- ex_sums
- le_lt12_sums2__lt
- le_lt34_sums2__lt
- sums_diff_2
- sums_assoc_1
- path: theories/Algebraic/Counter_models/Planar/counter_model_segment_construction.v
theorems:
- point_equality_decidability
- upper_dim
- bet_symmetry
- inner_pasch
- segment_construction
- cong_inner_transitivity
- cong_pseudo_reflexivity
- cong_identity
- lower_dim
- five_segment
- continuity
- euclid
- bet_inner_transitivity
- path: theories/Main/Highschool/gravityCenter.v
theorems:
- intersection_two_medians_exist
- is_gravity_center_perm_4
- is_gravity_center_perm_1
- is_gravity_center_exist_unique
- is_gravity_center_coplanar
- is_gravity_center_diff_2
- three_medians_intersect
- is_gravity_center_third_reci
- is_gravity_center_diff_3
- is_gravity_center_perm_3
- is_gravity_center_col
- is_gravity_center_perm
- is_gravity_center_perm_2
- is_gravity_center_cases
- is_gravity_center_diff_1
- is_gravity_center_perm_5
- path: theories/Main/Annexes/coplanar.v
theorems:
- col__coplanar
- coplanar_perm_15
- coplanar_perm_18
- coplanar_perm_2
- ncoplanar_perm_5
- ncoplanar_perm_7
- coplanar_perm_4
- coplanar_trivial
- inangle__coplanar
- ncoplanar_perm_3
- ncoplanar_perm_19
- ncop__ncol
- pars__coplanar
- plgf__coplanar
- out__coplanar
- square__coplanar
- coplanar_perm_20
- coplanar_perm_1
- ncoplanar_perm_14
- ncoplanar_perm_1
- bet__coplanar
- coplanar_perm_7
- rectangle__coplanar
- ncoplanar_perm_2
- coplanar_perm_23
- ncoplanar_perm_23
- lambert__coplanar
- coplanar_perm_10
- ncoplanar_perm_9
- coplanar_perm_14
- ncoplanar_perm_22
- ncoplanar_perm_18
- ncoplanar_perm_21
- coplanar_perm_5
- coplanar_perm_16
- coplanar_perm_12
- coplanar_perm_13
- coplanar_perm_6
- par__coplanar
- ncoplanar_perm_16
- coplanar_perm_19
- parallelogram__coplanar
- coplanar_perm_8
- ncoplanar_perm_15
- perp__coplanar
- coplanar_perm_21
- rhombus__coplanar
- ncoplanar_perm_6
- ncoplanar_perm_20
- coplanar_perm_22
- coplanar_perm_17
- ncoplanar_perm_8
- plg__coplanar
- plgs__coplanar
- ncoplanar_perm_12
- path: theories/Main/Tarski_dev/Ch10_line_reflexivity.v
theorems:
- l10_6_uniqueness_spec
- l10_15
- is_image_rev
- l10_6_uniqueness
- l10_14
- col_image_spec__eq
- is_image_spec_dec
- image_spec_triv
- image_id
- is_image_col_cong
- l10_2_uniqueness
- l10_6_existence
- col__image_spec
- l10_2_existence
- image_in_col
- col__refl
- image_in_is_image_spec
- l10_2_uniqueness_spec
- l10_7
- l10_8
- image__midpoint
- image_image_in
- ex_sym1
- l10_6_existence_spec
- ex_per_cong
- image_triv
- l10_5
- exists_cong_per
- image_spec__eq
- cong_midpoint__image
- is_image_spec_rev
- path: theories/Main/Annexes/project.v
theorems:
- project_par_project
- projp_idem
- project_not_id
- project_par
- project_col_eq
- project_par_dir
- project_not_col
- project_preserves_bet
- eqv_eq_project
- projp_id
- triangle_par
- project_id
- proj_distinct
- project_idem
- par_col_project
- ker_col
- perp_projp2_eq
- project_par_eqv
- projp_preserves_eqv
- projp_is_project_perp
- project_project_par
- col_2_par_projp2_cong
- col_par_projp2_eq
- eqv_project_eq_eq
- project_uniqueness
- eqv_cong
- perp_projp
- par3_conga3
- projp_projp_perp
- ker_par
- col_projp_eq
- project_col
- project_existence
- projp_to_project
- path: theories/Elements/OriginalProofs/lemma_TTflip.v
theorems:
- lemma_TTflip
- path: theories/Main/Meta_theory/Dimension_axioms/upper_dim_2.v
theorems:
- upper_dim_implies_not_one_side_two_sides
- upper_dim_implies_all_coplanar
- upper_dim_stab
- all_coplanar_implies_upper_dim
- all_coplanar_upper_dim
- upper_dim_implies_one_or_two_sides
- upper_dim_implies_perp2__col
- upper_dim_implies_not_two_sides_one_side
- upper_dim_implies_per2__col
- upper_dim_implies_col_perp2__col
- upper_dim_implies_not_two_sides_one_side_aux
- path: theories/Coinc/CoincR.v
theorems:
- CoappDupPerm
- CPToSSHdTl
- pick_varieties_ok_2
- memCPProper
- memCPAuxProperOK
- proper_0
- consHdInterpOK
- ss_ok_inter_ok1
- memMemCPAuxOK
- pick_variety_aux_memCPAux2
- identify_varieties
- memCPAux
- proper_2
- CPToSS
- CPToSSOK
- interp_CPTlOK
- collect_wds
- pick_variety_aux_memCPAux1
- memCPToSSOK
- pick_variety_auxCP
- memCPAuxTlOK
- pick_variety_auxCP_existsF
- CoappDupAux
- ss_ok_empty
- proper_00
- positive_dec
- pick_varieties_ok_1
- interp_CPOK
- pick_variety_auxCP_forallT
- proper_3
- test_coinc_ok
- PropToTagged
- identify_varieties_ok
- st_ok_empty
- mca_pick_variety_aux_pca
- ss_ok_inter_ok2
- CPToSSOKAux
- exists_witness_ok
- memMemCPOK
- proper_1
- memCPAuxHdTl
- collect_coincs
- memCPConsHd
- path: theories/Main/Utils/all_equiv.v
theorems:
- stronger2__stronger_right
- stronger2__stronger_left
- stronger_transitivity
- all_equiv'_aux
- all_equiv2_impl2__all_equiv
- incl_preserves_stronger
- all_equiv2_impl__stronger
- all_equiv2_stronger2__all_equiv
- all_equiv_under_chara
- all_equiv'
- all_equiv3_stronger3__all_equiv
- all_equiv_chara
- all_equiv'_auxP
- all_equiv_trivial
- all_equiv__equiv
- incl_preserves_all_equiv
- all_equiv3_impl3__all_equiv
- path: theories/Main/Meta_theory/Models/tarski_to_beeson.v
theorems:
- between_identity_B
- T_dec
- NColB_NDiffCol
- cong_stability
- BetH_Bet
- segment_construction_B
- NT_NBet
- T_Bet
- Bet_T
- between_symmetry_B
- Diff_Col_ColB
- NColB_NColOrEq
- bet_stability
- between_inner_transitivity_B
- lower_dim_B
- Beeson_follows_from_Tarski
- path: theories/Main/Highschool/orientation.v
theorems:
- out_preserves_eq_o
- eqo_refl
- proj_comm
- proj_not_col
- per_preserves_bet_aux1
- proj_preserves_bet1
- proj_diff_not_col_inv
- proj_diff_not_col
- proj_eq_col
- proj_preserves_bet
- bet_le_le
- proj_per
- proj_inv_exists
- per_id
- col_proj_proj
- proj_perp_id
- eq_o_one_side
- proj_id
- symmetry_preseves_bet2
- proj_exists
- bet_half_bet
- bet_double_bet
- one_side_eqo
- perp_not_eq_3
- eq_o_eqo
- proj3_id
- proj_col_proj
- eq_o_refl
- per_preserves_bet_aux2
- one_side_eq_o
- eqo_one_side
- midpoint_preserves_bet
- out_preserves_eqo
- le_left_comm
- cong_identity_inv
- proj_uniqueness
- midpoint_par
- proj_col
- le_right_comm
- symmetry_preseves_bet1
- out_preserves_eqo1
- col_proj_col
- eqo_eq_o
- midpoint_par_strict
- per_diff
- proj_one_side
- proj_par_strict
- proj_diff
- proj_not_eq_not_col
- per_one_side
- par_cong_mid
- le_cong_le
- per_proj
- le_comm
- proj_not_eq
- path: theories/Main/Annexes/quadrilaterals_inter_dec.v
theorems:
- par_preserves_conga_os
- plgs_permut
- par_cong_plg
- plg_not_comm
- per_rmb
- plg_per_rect2
- plgf_rect_id
- plgf_plgs_trans
- cop_perp3__perp
- ncol123_plg__pars1234
- pars_par_plg
- ncol124_plg__pars1234
- ts_cong_par_cong_par
- par_cong_mid
- rect_per
- plg_not_comm_2
- plg_conga1
- par_cong3_rect
- col_cong_cong
- plg_uniqueness
- rect_comm2
- Square_Rhombus
- rmb_per
- par_2_plg
- conga_to_par_os
- pars_par_pars
- plgs_two_sides
- ncol234_plg__pars1423
- par_cong_mid_ts
- plgs_comm2
- rect_permut
- plg_mid_2
- os_cong_par_cong_par
- not_par_pars_not_cong
- ncol123_plg__plgs
- plgs_pseudo_trans
- rect_per4
- plgs_cong_1
- plg_per_rect3
- plgs_pars_2
- plgs_trans_trivial
- parallelogram_equiv_plg
- plg_cong
- parallel_2_plg
- square_perp_rectangle
- ncol124_plg__pars1423
- rect_per2
- par_cong_cop
- par_cong_mid_os
- plg_par_2
- sac_plg
- plgs_pars_1
- parallelogram_strict_midpoint
- plg_permut
- plg_per_rect
- rect_2_rect
- perp3__rect
- plg_cong_1
- plgf_plgf_plgf
- rmb_cong
- plg_conga
- plg_comm2
- cong3_par2_par
- ncol134_plg__pars1423
- par_par_cong_cong_parallelogram
- ncol134_plg__pars1234
- plgs_par_strict
- exists_square
- sac_rectangle
- plgs_half_plgs
- plgs_in_angle
- rect_per3
- rect_per1
- plg_par_1
- plg_pseudo_trans
- plg_per_rect1
- par_cong_plg_2
- plgs_not_comm
- plgs_half_plgs_aux
- plgs_cong
- plgs_cong_2
- ncol234_plg__pars1234
- ncol134_plg__plgs
- ncol123_plg__pars1423
- ncol234_plg__plgs
- plgf_comm2
- ncol124_plg__plgs
- par_strict_cong_mid1
- par_cong_cong
- par_strict_trans
- path: theories/Main/Tarski_dev/Ch14_prod.v
theorems:
- prod_to_prodp
- distr_r
- prodp_to_prod
- eq_squares_eq_or_opp
- prod_sym
- change_grid_prod1
- proj_preserves_prod
- prod_O_l_eq
- prod_O_r_eq
- prod_comm
- change_grid_prod
- prod_0_l
- l14_31_2
- diff_of_squares
- prod_1_r
- prod_1_l
- distr_l_diff
- project_pj
- prod_exists
- prod_uniqueness
- inv_exists
- change_grid_prod_l_O
- distr_l
- opp_prod
- prod_1_l_eq
- prod_assoc
- prod_assoc2
- prod_null
- prod_uniquenessB
- diff_2_prod
- prod_uniquenessA
- l14_31_1
- prod_1_r_eq
- path: theories/Elements/OriginalProofs/proposition_10.v
theorems:
- proposition_10
- path: theories/Main/Elements_statements/Book_1.v
theorems:
- prop_29_2
- prop_19
- prop_9
- prop_33
- prop_16
- prop_12
- prop_28_1
- prop_21_1
- prop_17
- prop_22
- prop_25
- prop_7
- prop_14
- prop_26_2
- prop_1_circle_circle
- prop_5_1
- prop_24
- prop_34_1
- prop_47
- prop_32_1
- prop_13
- prop_1_euclidean
- prop_4
- prop_6
- prop_15
- prop_18
- prop_23
- prop_29_3
- prop_11
- prop_10
- prop_26_1
- path: theories/Main/Meta_theory/Models/tarski_to_hilbert.v
theorems:
- axiom_cong_5'
- Hilbert_3D_follows_from_Tarski_3D
- EqP_Equiv
- cop_plane
- axiom_hcong_1_existence
- axiom_two_points_on_line
- lower_dim_3'
- axiom_plane_uniqueness
- out_outH
- axiom_between_one
- lower_dim'
- axiom_hcong_scott
- axiom_between_only_one
- axiom_between_out
- same_side_sym
- axiom_Incidp_morphism
- Bet_Between_H
- same_side_OS
- axiom_conga_comm
- same_side_one_side
- EqL_Equiv
- plane_cop
- axiom_line_existence
- eqp_symmetry
- axiom_line_on_plane
- cut_two_sides
- incident_Proper
- axiom_conga_permlr
- Para_Par
- outH_out
- eq_reflexivity
- ncols_coincide
- eqp_transitivity
- eqp_reflexivity
- axiom_hcong_4_uniqueness
- incident_eq
- axiom_hcong_1_uniqueness
- axiom_hcong_3
- cols_coincide_1
- axiom_line_uniqueness
- axiom_Incid_morphism
- col_disjoint_bet
- axiom_between_diff
- axiom_one_point_on_plane
- exists_not_incident
- axiom_euclid_uniqueness
- axiom_plane_existence
- OS_distinct
- Hilbert_neutral_follows_from_Tarski_neutral
- axiom_Incid_dec
- same_side_trans
- axiom_Incidp_dec
- axiom_conga_refl
- Hilbert_euclidean_follows_from_Tarski_euclidean
- eq_incident
- axiom_congaH_outH_congaH
- Hilbert_euclidean_ID_follows_from_Tarski_euclidean
- eq_symmetry
- axiom_hcong_4_existence
- axiom_between_comm
- cols_coincide_2
- axiom_pasch
- axiom_between_col
- eq_transitivity
- one_side_same_side
- Incid_line
- cols_coincide
- path: theories/Main/Annexes/vectors.v
theorems:
- vector_construction_uniqueness
- null_sum
- plg_out_plg
- same_dir_to_null
- eqv_permut
- same_dir_null
- bet_same_dir1
- eqv_trans
- opp_dir_id
- eqv_sym
- same_dir_refl
- same_dir_dec
- opp_dir_to_null
- mid_eqv
- bet_same_dir2
- par_ts_same_dir
- ise_to_is
- opp_not_same_dir
- eqv_comm
- plgf_out_plgf
- same_dir_ts
- same_or_opp_dir
- same_not_opp_dir
- null_sum_eq
- sum_exists
- sum_uniqueness
- eqv_mid
- same_dir_out
- same_dir_trans
- vector_construction
- same_dir_comm
- plg_opp_dir
- vector_uniqueness
- vector_same_dir_cong
- chasles
- eqv_opp_null
- plgf_plgf_bet
- plgs_out_plgs
- eqv_par
- eqv_trivial
- same_dir_out1
- null_vector
- eqv_sum
- plgs_plgs_bet
- same_dir_sym
- opposite_sum
- path: theories/Main/Tarski_dev/Ch14_order.v
theorems:
- diff_2_le_le
- prod_pos_pos
- pos_null_neg
- ltP_sum_pos
- bet_lt21_le32
- ltP_neg
- l14_36_b
- pos_not_neg
- leP_trans
- not_pos_and_neg
- l14_36_a
- square_pos
- bet_lt12_le13
- bet_lt21_le31
- leP_asym
- compatibility_of_sum_with_order
- opp_pos_neg
- leP_refl
- ltP_ar2
- le_pos_prod_le
- pos_opp_neg
- diff_pos_diff_neg
- ltP_neq
- bet_lt12_le23
- ps_le
- opp_neg_pos
- lt_diff_ps
- opp_2_le_le
- O_not_positive
- col_pos_or_neg
- sum_pos_pos
- compatibility_of_prod_with_order
- leP_sum_leP
- path: theories/Algebraic/Counter_models/Planar/counter_model_euclid.v
theorems:
- five_segment
- cong_inner_transitivity
- euclid
- nbet_abc
- c'_in_unit_disk
- upper_dim_aux
- inner_paschP
- upper_dim
- b'_in_unit_disk
- a'_eq0
- segment_construction
- cong_pseudo_reflexivity
- point_equality_decidability
- nbet_cab
- bet_symmetry
- bet_inner_transitivity
- betR_bca
- upper_dim_aux_2
- a'_in_unit_disk
- Rcf_to_GI_PED'
- betR_cab
- path: theories/Main/Meta_theory/Continuity/dedekind_cantor.v
theorems:
- nested__ex_right
- nested__ex_left
- nested_aux1
- nested_sym
- dedekind__cantor
- nested__diff0
- nested__bet
- nested_aux2
- path: theories/Main/Meta_theory/Models/gupta_inspired_to_tarski.v
theorems:
- g2_15
- inner_paschT
- g2_9
- between_identityT
- col_decG
- g2_7
- g2_4
- g2_2
- g2_10
- bet_decG
- g2_1
- g2_16
- between_trivialT
- g2_3
- GI_to_T_PED
- l2_11T
- GI2D_to_T2D
- construction_uniquenessT
- upper_dimT
- cong_trivial_identityT
- g2_8
- g2_6
- cong_inner_transitivityT
- g2_14
- g2_13
- g2_11
- euclidT
- g2_12
- GI_to_T
- GI_euclidean_to_T_euclidean
- path: theories/Main/Annexes/half_angles.v
theorems:
- conga2_ghalfa__ghalfa
- halfa_not_null
- halfa__ts
- halfa_chara1
- halfa_uniqueness
- ghalfa_out4__ghalfa
- halfa_sym
- halfa1123__out
- halfa__nbet2
- halfa__suma
- ghalfa__suma
- ghalfa2__conga_2
- ghalfa_left_comm
- inangle_halfa2__inangle
- halfa_exists
- halfa2_lta__lta2
- ghalfa_preserves_conga_2
- suma_preserves_ghalfa
- halfa_distincts
- halfa__lea
- halfa3123__out
- halfa__nbet
- halfa2_lea__lea1
- ghalfa2__conga_1
- halfa__coplanar
- acute_ghalfa2_sams_suma2__ghalfa123
- ghalfa_distincts
- ghalfa_comm
- null_halfa__null
- ghalfa__out
- ghalfa_chara
- conga_halfa__conga2
- halfa__ghalfa
- conga_halfa__conga1
- halfa2_lta__lta1
- halfa__acute
- cop_halfa_perp__os2
- ghalfa_preserves_lta
- halfa__sams
- halfa2_lea__lea2
- path: theories/Main/Meta_theory/Parallel_postulates/parallel_postulates.v
theorems:
- aristotle
- equivalent_postulates_assuming_greenberg_s_axiom
- stronger_postulates_ter
- greenberg
- stronger_postulates_bis
- equivalent_postulates_without_any_continuity_bis
- equivalent_postulates_without_decidability_of_intersection_of_lines
- equivalent_postulates_assuming_archimedes_axiom
- postulates_in_euclidean_context
- stronger_postulates
- equivalent_postulates_without_any_continuity
- inter_dec
- path: theories/Elements/OriginalProofs/lemma_rectangleparallelogram.v
theorems:
- lemma_rectangleparallelogram
- path: theories/Main/Highschool/orthocenter.v
theorems:
- is_orthocenter_perm_3
- altitude_intersect
- is_orthocenter_perm_4
- construct_intersection
- is_orthocenter_perm
- orthocenter_per
- diff_not_col_col_par4_mid
- is_orthocenter_cases
- not_col_par_col_diff
- orthocenter_col
- is_orthocenter_perm_5
- is_orthocenter_perm_2
- is_orthocenter_coplanar
- is_orthocenter_perm_1
- altitude_is_perp_bisect
- construct_triangle
- path: theories/Main/Meta_theory/Models/tarski_to_euclid.v
theorems:
- InCircCenter
- InCirc_InCirc
- BetS_BetS
- outside
- bet_cases
- Euclid_neutral_follows_from_Tarski_neutral
- circle_circle'
- 'on'
- Euclid5
- circle_line
- OnCirc_OnCirc
- Col_Col
- eOutCirc_OutCirc
- eOnCirc_OnCirc
- path: theories/Algebraic/Counter_models/counter_model_bet_identity.v
theorems:
- upper_dim
- point_eq_dec
- inner_pasch
- cong_identity
- not_bet_diff
- cong_aux_3
- lower_dim
- five_segment
- cong_pseudo_reflexivity
- cong_aux
- cong_inner_transitivity
- cong_aux_6
- cong_aux_5
- cong_sym
- path: theories/Main/Tarski_dev/Ch13_1.v
theorems:
- is_image_perp_in
- per13_preserves_bet
- perp2_par
- per3_preserves_bet2_aux
- l13_2_1
- per3_preserves_bet2
- cop4_perp_in2__col
- per2_col_eq
- perp2_preserves_bet13
- cong_perp_conga
- perp_in2__col
- perp2_pseudo_trans
- perp2_trans
- perp2_comm
- perp_in_rewrite
- perp2_perp_in
- l13_1_aux
- l13_8
- col_cop_perp2__pars_bis
- perp_out_acute
- perp2_sym
- perp2_left_comm
- perp2_refl
- per_lt
- l13_2
- per23_preserves_bet_inv
- perp_per_bet
- per3_preserves_bet1
- perp_inter_perp_in_n
- perp_bet_obtuse
- per13_preserves_bet_inv
- l13_1
- perp2_right_comm
- ts_per_per_ts
- per2_preserves_diff
- per23_preserves_bet
- path: theories/Main/Tarski_dev/Ch12_parallel.v
theorems:
- par_not_col_strict
- par_col_par
- par_distincts
- l12_22_b
- conga_cop_inangle_per2__inangle
- par_strict_distinct
- par_strict_irreflexivity
- par_col2_par_bis
- l12_9
- par_strict_col2_par_strict
- par_comm
- col_cop2_perp2__col
- par_distinct
- inter_distincts
- l12_18_b
- perp_inter_exists
- l12_6
- par_neq1
- col_par
- par_one_or_two_sides
- l12_9_2D
- not_par_not_col
- inter_uniqueness_not_par
- par_strict_not_col_1
- par_strict_col_par_strict
- perp_inter_perp_in
- par_id
- col_cop_perp2__pars
- par_reflexivity
- par_left_comm
- perp_not_par
- inter_right_comm
- l12_18_d
- parallel_existence1
- Par_strict_perm
- l12_18_a
- cong_conga_perp
- par_col_par_2
- par_strict_comm
- par_right_comm
- par_strict_symmetry
- not_par_inter_uniqueness
- par_strict_not_col_3
- inter_left_comm
- pars__os3412
- par_strict_not_cols
- not_strict_par2
- col2_par__col4
- par_strict_left_comm
- parallel_existence
- par_neq2
- perp_dec
- not_strict_par
- inter_comm
- col_not_col_not_par
- Par_cases
- l12_21_b
- par_strict_one_side
- l12_18_c
- all_one_side_par_strict
- acute_col_perp__out
- par_two_sides_two_sides
- par_strict_not_col_4
- inter_trivial
- par_symmetry
- l12_22_aux
- inter_sym
- l12_18
- not_strict_par1
- acute_col_perp__out_1
- par_strict_col4__par_strict
- path: theories/Algebraic/Counter_models/Planar/counter_model_upper_dim.v
theorems:
- ab_neq
- congP_aux'
- oner_eqm1
- neq
- congP_aux
- betR_bca
- eq3
- de_neq
- upper_dim
- betR_cab
- a_eq0
- row3_eq
- oner_neqm1
- ca_neq
- ac_neq
- cong_bdbe
- cong_adae
- betR_abc
- cong_cdce
- negb_and3
- path: theories/Coinc/ColR.v
theorems:
- CTcol_permutation_4
- collect_diffs
- proper_1
- proper_9
- test_col_ok
- pick_lines_ok_2
- CTcol_trivial_1
- CTcol_permutation_3
- subst_sp_ok
- strong_induction
- proper_8
- exists_witness_ok
- collect_cols
- ss_ok_empty
- proper_4
- identify_lines_ok
- CTcol_permutation_2
- proper_2
- proper_00
- pick_lines_ok_1
- proper_0
- proper_5
- sp_ok_empty
- proper_6
- subst_ss_ok
- eq_eq_tagged
- CTcol_trivial_2
- path: theories/Algebraic/Counter_models/nD/counter_model_upper_dim.v
theorems:
- my_enum_ordSr
- upper_dim
- nth_basis
- betS_nD'_2D
- b2DE
- betR_nD'_2D
- to_nD'B
- lower_dim
- last_new_basis
- to_nD'_scale
- pick_to_nD'
- upper_dim_all2
- lower_dim_all2
- lower_dim_all1
- upper_dim_all1
- eq_nD'_2D
- a2DE
- to_nD'E
- c2DE
- iP
- nth_new_basis
- path: theories/Algebraic/coplanarity.v
theorems:
- InPlane'__Coplanar
- Cop_4321
- Cop_2341
- Cop_2134
- Cop__Coplanar
- Copl_2431
- Cop_3421
- Copl_3412
- Copl_2341
- Copl_4123
- Copl_3421
- Cop_1324
- Copl_1423
- Cop_4132
- Copl_1243
- Copl_3214
- Cop_1342
- Cop_aabc
- Copl_4231
- Cop_2143
- Cop_3241
- Cop_2431
- Copl_2413
- Cop_4231
- InPlane__Coplanar
- Cop_2314
- Copl_2314
- Copl_4321
- Cop_3142
- Copl_3241
- Copl_2143
- Cop_4312
- Cop_1423
- Copl_4213
- Cop_1432
- Copl_4132
- Copl_3124
- Cop_3124
- path: theories/Main/Tarski_dev/Ch07_midpoint.v
theorems:
- col_cong2_bet2
- symmetry_preserves_midpoint
- l7_20_bis
- swap_diff
- is_midpoint_id
- midpoint_not_midpoint
- l7_3_2
- l7_20
- midpoint_distinct_2
- le_mid2__le12
- l7_15
- lt_mid2__lt12
- l7_9_bis
- midpoint_distinct_3
- l7_9
- l7_17_bis
- bet_col1
- col_cong2_bet3
- cong_mid2__cong
- bet2_lt_le__lt
- l7_22
- midpoint_out
- is_midpoint_id_2
- symmetric_point_construction
- l7_2
- midpoint_bet
- midpoint_col
- l7_17
- mid__lt
- col_cong_bet
- col_cong2_bet1
- cong_cong_half_1
- symmetric_point_uniqueness
- Mid_perm
- midpoint_cong
- cong_cong_half_2
- lt_mid2__lt13
- l7_25
- le_mid2__le13
- l7_21
- cong_col_mid
- l7_3
- l7_22_aux
- col_cong2_bet4
- l7_16
- col_bet2_cong1
- midpoint_preserves_out
- midpoint_dec
- l7_13
- path: theories/Elements/OriginalProofs/lemma_9_5.v
theorems:
- lemma_9_5
- path: theories/Algebraic/Counter_models/Planar/counter_model_cong_identity.v
theorems:
- cong_identity
- cong_pseudo_reflexivity
- bet_symmetry
- col_alt_def
- segment_construction
- euclid
- continuity
- bet_inner_transitivity
- point_equality_decidability
- inner_pasch
- cong_inner_transitivity
- lower_dim
- upper_dim
- path: theories/Algebraic/Counter_models/Planar/counter_model_cong_inner_transitivity.v
theorems:
- col_alt_def
- bet_inner_transitivity
- point_equality_decidability
- upper_dim
- continuity
- segment_construction
- lower_dim
- cong_inner_transitivity
- cong_identity
- five_segment
- bet_symmetry
- inner_pasch
- path: theories/Algebraic/tcp_ndc.v
theorems:
- tcp_bet_sa_b_inter_mab_mac_b_sa
- tcp_aligned_inplane
- tcp_ts_mab_mac_a_ssa
- tcp_ts_mmab_mac_a_sa
- tcp_npars_mab_mmac_b_sa
- tcp_os_b_sa_mab_mac
- tcp_pars
- tcp_ncol_inplane_3_3
- tcp_ts_a_ssa_mab_mac
- tcp_ncol_inplane_1_4
- tcp_npars_mab_mac_b_ssa
- tcp_ncol_inplane_3_1
- tcp_ts_mmab_mac_a_mbc
- tcp_ts_a_sa_mab_mac
- tcp_ncol_inplane_3_6
- tcp_os_mmab_mac_b_sa
- tcp_npars_mab_mmac_b_ssa
- tcp_os_mab_mac_b_sa
- tcp_ts_mab_mac_a_sa
- tcp_ts_a_mbc_mab_mac
- tcp_ncol_inplane_3_5
- tcp_ncol_inplane_2_5
- tcp_ncol_midpoints
- tcp_ncol_inplane_1_1
- tcp_os_mmab_mac_b_ssa
- tcp_os_b_ssa_mmab_mac
- tcp_os_b_ssa_mab_mmac
- tcp_npars_mab_mac_b_sa
- tcp_npars_mmab_mac_b_sa
- tcp_ncol_inplane_1_3
- tcp_ncol_inplane
- tcp_ncol_inplane_3_4
- tcp_ncol_inplane_2_6
- tcp_ncol_inplane_1_6
- tcp_ncol_inplane_2_1
- tcp_ncol_inplane_1_2
- tcp_ncol_ndc_choice_col
- tcp_os_mab_mmac_b_sa
- tcp_aligned_plane_exists
- tcp_ncol_ndc_choice
- tcp_os_mab_mac_b_ssa
- tcp_ts_mab_mac_a_mbc
- tcp_ncol_inplane_2_2
- tcp_ncol_inplane_aux
- tcp_ncol_inplane_1_5
- tcp_ncol_inplane_2_3
- tcp_ncols_ndc
- tcp_ts_mab_mmac_a_sa
- tcp_ncol_inplane_4
- tcp_ncol_inplane_3_2
- tcp_os_b_sa_mab_mmac
- tcp_ncol_ndc_ncol
- path: theories/Main/Highschool/triangles.v
theorems:
- equilateral_rot_2
- equilateral_isosceles_3
- equilateral_isosceles_2
- equilateral_strict_swap_4
- conga_isosceles
- equilateral_swap
- equilateral_strict_equilateral
- equilateral_strict_conga_3
- equilateral_strict_conga_2
- equilateral_strict_conga_1
- equilateral_swap_rot
- equilateral_strict_swap_1
- equilateral_rot
- isosceles_conga
- isosceles_foot__midpoint_conga
- equilateral_strict_neq
- equilateral_cong
- conga3_equilateral
- path: theories/Main/Highschool/SegmTrisect.v
theorems:
- SegmTrisectUniqueness
- SegmTrisectExistence
- SegmTrisectExistenceUniqueness
- SegmTrisectFirstThirdUniqueness
- SegmTrisectFirstThirdExistence
- path: theories/Main/Annexes/rhombus.v
theorems:
- PlgLeft
- PlgExABC2
- RhombusExABC1
- PlgEx
- PlgAABB
- RhombusUnicity
- RhombusEx
- PlgEquivDef
- RhombusExABC2
- PlgExABC1
- ColCongMid
- path: theories/Main/Annexes/suma.v
theorems:
- nsams__obtuse
- trisuma_perm_213
- sams_lea_lta789_suma2__lta123
- sams_lta2_suma2__lta456
- sams_suma__lea456789
- bet_per2__suma
- sams_lea_lta123_suma2__lta
- sams_lea123_suma2__lea
- sams_suma__lea123789
- nbet_sams_suma__acute
- sams_lea2_suma2__conga123
- out213__sams
- ex_trisuma
- sams_lea_lta456_suma2__lta123
- sams_lea_lta456_suma2__lta
- sams_lea2_suma2__lea123
- out546_suma__conga
- sams_sym
- sams_lea_lta123_suma2__lta456
- bet_suma2__or_conga
- suma_middle_comm
- sams_assoc_1
- suppa__sams
- trisuma_dec
- trisuma_perm_321
- sams_lta2_suma2__lta
- suma_left_comm
- out546__sams
- acute_suma__nbet
- suma_dec
- trisuma_perm_132
- sams_right_comm
- acute2_suma2__conga
- per2__sams
- suma_right_comm
- sams_assoc
- os_ts__sams
- trisuma2__conga
- conga3_trisuma__trisuma
- sams_assoc_2
- bet_suma__per
- bet_per_suma__per123
- col_suma__col
- sams2_suma2__conga456
- out546__suma
- sams_suma__out213
- bet_suma__suppa
- sams2_suma2__conga
- bet2_suma__suma
- trisuma_perm_312
- ex_suma
- sams_lea2_suma2__conga456
- sams_lea456_suma2__lea
- suma_sym
- inangle__suma
- conga_trisuma__trisuma
- suma2__conga
- sams_lta2_suma2__lta123
- bet_per_suma__per456
- suma2_obtuse2__conga
- bet_suma__sams
- acute_per__sams
- acute2__sams
- obtuse__nsams
- ts__suma
- out6_suma__suma
- sams123231
- sams_left_comm
- sams_comm
- sams_dec
- suma_assoc_1
- out213_suma__conga
- acute2_suma__nbet
- conga_sams_nos__nts
- suma2__or_conga_suppa
- suma_suppa__bet
- ncol_suma__ncol
- per2_suma__bet
- sams_distincts
- sams2_suma2__conga123
- suma_distincts
- suma_comm
- sams_lea2__sams
- bet__suma
- acute__sams
- path: theories/Main/Tarski_dev/Ch02_cong.v
theorems:
- not_cong_4312
- cong_trivial_identity
- cong_diff
- cong_transitivity
- cong_3_sym
- cong_reverse_identity
- construction_uniqueness
- cong_diff_2
- cong3_transitivity
- eq_dec_points
- cong_right_commutativity
- five_segment_with_def
- l2_11
- not_cong_1243
- cong_diff_3
- Cong_cases
- cong_diff_4
- bet_cong3
- cong_commutativity
- cong_left_commutativity
- not_cong_2134
- cong_3_swap
- not_cong_3412
- cong_3421
- Cong_perm
- not_cong_2143
- cong_3_swap_2
- cong_4321
- not_cong_4321
- path: theories/Main/Meta_theory/Models/beeson_to_tarski.v
theorems:
- BetT_symmetry
- IT_chara
- pasch
- another_point
- bet_id
- cong_stability_eq_stability
- pasch_col_case
- IT_to_T
- five_segment
- segment_construction
- path: theories/Elements/OriginalProofs/proposition_09.v
theorems:
- proposition_09
- path: theories/Algebraic/Counter_models/nD/counter_model_five_segment.v
theorems:
- cong_inner_transitivity
- five_segment
- inner_pasch
- col__colI
- bet_bet'
- row2_cong_nD
- cong_pseudo_reflexivity
- row_mx_behead
- to_nD_behead
- Col_Col
- euclid
- cong_identity
- to_nD_head
- bet_inner_transitivity
- bet'_abc
- segment_construction
- eq_head_behead
- path: theories/Algebraic/Counter_models/nD/counter_model_bet_inner_transitivity.v
theorems:
- coplanar_midpoint
- col__Col
- Midpoint_midpoint
- midpointBR
- midpointxx
- cong_midpoint
- onemx_neq0
- bet'_midpoint
- midpointLR
- colI__Col
- ColD
- col__colI
- euclid
- midpointBL
- colI__Col_13
- betR_midpoint
- ncol__ncolI
- bet_midpoint
- inner_pasch
- bet_inner_transitivity
- bet_symmetry
- Col__col
- Col_23
- five_segment
- cong_identity
- cong_pseudo_reflexivity
- segment_construction
- path: theories/Algebraic/Counter_models/nD/independent_version_to_beeson.v
theorems:
- ITbetween_identity
- bet_stability
- ITsegment_construction
- altIT_to_IT
- ITinner_pasch
- ITfive_segment
- weak_Bstability
- cong_stability
- ITbetween_symmetry
- ITlower_dim
- path: theories/Coinc/CongR.v
theorems:
- eq_pseudo_refl
- identify_lengths_ok
- proper_3
- collect_congs
- proper_2_aux
- proper_1
- exists_witness_ok
- pick_lengths_ok_1
- CTcong_right_comm
- ss_ok_empty
- pick_lengths_ok_2
- positive_dec
- identify_lengths
- test_cong_ok
- proper_0
- proper_2
- path: theories/Elements/OriginalProofs/lemma_TTorder.v
theorems:
- lemma_TTorder
- path: theories/Main/Meta_theory/Models/tarski_to_gupta_inspired.v
theorems:
- T_to_GI
- cong_inner_transitivity'
- T2D_to_TG2D
- path: theories/Algebraic/Counter_models/nD/counter_model_cong_identity.v
theorems:
- bet_inner_transitivityP
- inner_pasch
- cong_identity
- segment_construction
- bet_symmetry
- cong_inner_transitivity
- upper_dim
- lower_dim
- path: theories/Elements/OriginalProofs/lemma_crossbar2.v
theorems:
- lemma_crossbar2
- path: theories/Elements/OriginalProofs/lemma_9_5b.v
theorems:
- lemma_9_5b
- path: theories/Main/Meta_theory/Parallel_postulates/TCP_tarski.v
theorems:
- impossible_case_3
- impossible_case_4_1
- impossible_case_4
- triangle_circumscription_implies_tarski_s_euclid
- impossible_case_2
- impossible_case_1
- triangle_circumscription_implies_tarski_s_euclid_aux1
- triangle_circumscription_implies_tarski_s_euclid_aux
- path: theories/Elements/OriginalProofs/euclidean_tactics.v
theorems:
- nCol_not_Col
- not_nCol_Col
- Col_or_nCol
- Col_nCol_False
- eq_or_neq
- nCol_or_Col
- path: theories/Main/Meta_theory/Models/makarios_to_tarski.v
theorems:
- Tarski_follows_from_Makarios_Variant
- LmCoghGrab
- Tarski_follows_from_Makarios_Variant_with_decidable_point_equality'
- Mcong_reflexivity
- five_segment
- Mcong_trivial_identity
- Mcong_symmetry
- cong_pre_pseudo_reflexivity
- cong_pseudo_reflexivity
- between_trivial
- path: theories/Main/Annexes/midpoint_theorems.v
theorems:
- triangle_mid_par_flat
- triangle_mid_par_cong
- col123_124__col234
- col_permut231
- col_permut321
- triangle_mid_par_flat_cong_2
- triangle_mid_par
- col_permut213
- triangle_mid_par_flat_cong_aux
- triangle_mid_par_strict_cong_aux
- triangle_mid_par_strict_cong_simp
- triangle_mid_par_strict_cong_1
- triangle_mid_par_flat_cong
- triangle_mid_par_strict
- triangle_mid_par_strict_cong
- col_permut312
- triangle_mid_par_cong_1
- triangle_mid_par_flat_cong_1
- triangle_par_mid
- triangle_mid_par_strict_cong_2
- path: theories/Elements/OriginalProofs/lemma_3_7a.v
theorems:
- lemma_3_7a
- path: theories/Algebraic/Counter_models/nD/counter_model_cong_inner_transitivity.v
theorems:
- bet_symmetry
- cong_inner_transitivity
- bet_inner_transitivity
- segment_construction
- cong_axay
- continuity
- inner_pasch
- five_segment
- cong_pseudo_reflexivity
- path: theories/Main/Tarski_dev/Ch10_line_reflexivity_2.v
theorems:
- image_preserves_col
- image_spec_preserves_per
- cong_cop_per2_1
- l10_16
- cop_not_par_other_side
- cop__cong_on_bissect
- cong_cop_per2
- image_preserves_bet
- cop_image_in2__col
- all_coplanar
- hilbert_s_version_of_pasch_aux
- intersection_with_image_gen
- image_preserves_per
- l10_10
- perp2__col
- image_gen_preserves_ncol
- cong_cop_per2_gen
- l10_10_spec
- cong_cop_image__col
- cop_not_par_same_side
- l10_12
- two_sides_cases
- per2__col
- not_par_two_sides
- hilbert_s_version_of_pasch
- image_gen_preserves_bet
- image_gen_preserves_col
- path: theories/Main/Tarski_dev/Ch13_2_length.v
theorems:
- ex_points_lg
- ex_eqL
- all_eql
- null_len
- is_len_cong_is_len
- ex_eql
- lg_cong
- lg_null_trivial
- not_cong_is_len1
- lg_cong_lg
- lg_exists
- ex_point_lg
- not_cong_is_len
- ex_point_lg_bet
- eqL_equivalence
- lg_null_dec
- lg_sym
- ex_point_lg_out
- ex_lg
- path: theories/Coinc/Utils/sets.v
theorems:
- compare_spec
- eqListRefl
- eqST_dec
- OCPTlOK
- OCP
- lt_antiref
- lengthOne
- eqb_eq
- OCPALengthOK
- STadd_iff
- lt
- ltListIrrefl
- eq_equiv
- PermSorted
- lt_irrefl
- OCPPerm
- OCPSortedAux
- eqbListEqList
- leb_total
- lt
- eqListSortOCP
- compare_spec
- eqListOK
- ltTrans
- lt_trans
- eqbST_eqST
- CPLOCPTlOK
- lengthAtLeastOne
- eqListSym
- OCPSortedTl
- lt_trans
- ltListTrans
- eqListTrans
- STempty_b
- compareListSpec
- path: theories/Main/Tarski_dev/Ch16_coordinates.v
theorems:
- characterization_of_betweenness
- exists_coord
- point_of_coordinates_on_an_axis
- grid_exchange_axes
- characterization_of_collinearity
- coord_exchange_axes
- l16_9_2
- eq_points_coordinates
- Cs_not_Col
- characterization_of_betweenness_aux
- length_eq_or_opp
- cong_3_3_cong_5
- point_of_coordinates
- point_of_coordinates_origin
- square_distance_formula_aux
- exists_grid_spec
- bet_betCood
- Cd_Col
- exists_projp
- same_abscissa_col
- path: theories/Main/Annexes/Tagged_predicates.v
theorems:
- Par_tagged_Par
- Cong_Cong_tagged
- Perp_in_Perp_in_tagged
- Bet_tagged_Bet
- Diff_perm
- Per_Per_tagged
- Par_strict_Par_strict_tagged
- Plg_Plg_tagged
- Perp_tagged_Perp
- Cong_tagged_Cong
- Diff_Diff_tagged
- Bet_Bet_tagged
- Mid_Mid_tagged
- Perp_in_tagged_Perp_in
- Par_strict_tagged_Par_strict
- Per_tagged_Per
- NCol_NCol_tagged
- Col_Col_tagged
- Col_tagged_Col
- Perp_Perp_tagged
- Plg_tagged_Plg
- path: theories/Elements/OriginalProofs/lemma_supplements2.v
theorems:
- lemma_supplements2
- path: theories/Algebraic/Counter_models/nD/independent_version_to_tarski.v
theorems:
- bet_axx
- Coplanar_dec
- Col_dec
- Col_TCol
- Cop_TCop
- altIT_to_T_PED
- altIT_euclidean_to_T_euclidean
- altIT_to_T
- NCol_TNCol
- path: theories/Algebraic/Counter_models/nD/counter_model_bet_symmetry.v
theorems:
- ColP
- bet_inner_transitivity
- five_segment
- CopP
- cong_pseudo_reflexivity
- cong_identity
- col__colI
- bet_symmetry
- inner_pasch
- euclid
- cong_inner_transitivity
- path: theories/Main/Tarski_dev/Ch13_6_Desargues_Hessenberg.v
theorems:
- l13_15
- l13_19_par_aux
- l13_18
- l13_15_par
- l13_19_par
- l13_19_aux
- l13_15_2
- l13_18_2
- l13_15_1
- l13_15_2_aux
- l13_18_3
- path: theories/Main/Tactics/CoincR_for_concy.v
theorems:
- collect_coincs_for_concy
- collect_wds_for_concy
- test_coinc_ok_for_concy
- path: theories/Elements/OriginalProofs/lemma_parallelflip.v
theorems:
- lemma_parallelflip
- path: theories/Main/Meta_theory/Models/tarski_to_coinc_theory_for_col.v
theorems:
- Tarski_is_a_Coinc_predicates_for_col
- diff_perm_1
- Tarski_is_a_Arity_for_col
- col_3
- col_perm_2
- Tarski_is_a_Coinc_theory_for_col
- diff_perm_2
- col_bd
- path: theories/Elements/OriginalProofs/proposition_44A.v
theorems:
- proposition_44A
- path: theories/Main/Tarski_dev/Ch13_5_Pappus_Pascal.v
theorems:
- cop_par__perp2
- l13_10_aux3
- l13_6_bis
- per13_preserves_bet_inv
- lcos3_lcos2
- cop_per2__perp
- lcos_lcos_cop__col
- l13_10_aux1
- l13_11
- l13_14
- l13_10_aux5
- path: theories/Main/Meta_theory/Parallel_postulates/legendre.v
theorems:
- legendre_s_third_theorem_aux
- legendre_s_fourth_theorem
- legendre_aux
- legendre_s_fourth_theorem_aux
- legendre_s_second_theorem
- stronger_legendre_s_first_theorem
- legendre_aux1
- legendre_s_first_theorem
- path: theories/Algebraic/Counter_models/Planar/counter_model_cong_pseudo_reflexivity.v
theorems:
- bet_inner_transitivity
- lower_dim
- bet_symmetry
- inner_pasch
- euclid
- cong_identity
- upper_dim
- five_segment
- cong_pseudo_reflexivity
- path: theories/Main/Meta_theory/Parallel_postulates/par_trans_NID.v
theorems:
- col2_dec
- playfair__playfair_ter
- not_ex_forall_not_7
- playfair_quater__playfair
- par_trans__par_dec
- par_dec_NID
- playfair_ter__playfair
- path: theories/Algebraic/Counter_models/nD/counter_model_segment_construction.v
theorems:
- Midpoint_midpoint
- bet'__bet
- coplanar_1324
- nCol__ncol
- cong_midpoint
- euclid
- col__ColT
- midpointBR
- five_segment
- Col_aaa
- bet_midpoint
- bet_symmetry
- midpointLR
- midpointBL
- col__colI
- nCol__nCol'
- cong_identity
- segment_construction
- cong_pseudo_reflexivity
- onemx_neq0
- betR_midpoint
- bet_inner_transitivity
- ncol__nCol
- ColT__Col
- coplanar_midpoint
- midpointxx
- cong_inner_transitivity
- coplanar_3214
- Col'__Col
- cong_abab
- inner_pasch
- path: theories/Elements/OriginalProofs/proposition_39.v
theorems:
- proposition_39
- path: theories/Algebraic/Counter_models/nD/independence.v
theorems:
- decidability__stability
- big_andb_and
- tnth_nseq
- nth_nseq
- path: theories/Main/Meta_theory/Continuity/elementary_continuity_props.v
theorems:
- equivalent_variants_of_line_circle
- equivalent_variants_of_circle_circle
- circle_circle_bis__euclid_22
- circle_circle__circle_circle_two
- circle_circle_bis__circle_circle_axiom
- euclid_22__circle_circle
- circle_circle_bis__one_point_line_circle
- circle_circle__circle_circle_bis
- path: theories/Main/Highschool/midpoint_thales.v
theorems:
- midpoint_thales_reci
- midpoint_thales
- path: theories/Elements/OriginalProofs/proposition_14.v
theorems:
- proposition_14
- path: theories/Main/Tarski_dev/Ch03_bet.v
theorems:
- l3_9_4
- bet_neq21__neq
- outer_transitivity_between
- l3_17
- bet_dec_eq_dec_b
- cong_dec_eq_dec_b
- bet_neq12__neq
- between_equality
- not_bet_distincts
- between_exchange2
- between_exchange4
- l2_11_b
- Bet_perm
- between_symmetry
- between_trivial2
- between_exchange3
- outer_transitivity_between2
- between_inner_transitivity
- bet_col
- between_trivial
- between_equality_2
- bet_neq32__neq
- another_point
- BetSEq
- Bet_cases
- point_construction_different
- two_distinct_points
- path: theories/Elements/OriginalProofs/proposition_40.v
theorems:
- proposition_40
- path: theories/Main/Meta_theory/Parallel_postulates/rah_thales_postulate.v
theorems:
- rah__thales_postulate
- path: theories/Main/Meta_theory/Dimension_axioms/upper_dim_3.v
theorems:
- median_planes_implies_upper_dim
- upper_dim_3_equivalent_axioms
- upper_dim_3_stab
- median_planes_aux
- orthonormal_family_axiom_implies_space_separation
- upper_dim_implies_orthonormal_family_axiom
- orthonormal_family_axiom_implies_orth_at2__col
- orthonormal_family_aux
- space_separation_implies_median_planes
- orthonormal_family_axiom_implies_not_two_sides_one_side
- plane_intersection_implies_space_separation
- space_separation_implies_plane_intersection
- path: theories/Main/Annexes/tangency.v
theorems:
- tangentat_perp
- tangency_chara2
- tangent_neq
- intercc__neq
- tangency_chara
- interccat__ncol
- tangent_out
- tangentcc__neq
- onc2__oreq
- tangency_chara3
- cop_onc2__oreq
- diam_not_tangent
- path: theories/Elements/OriginalProofs/proposition_26A.v
theorems:
- proposition_26A
- path: theories/Main/Meta_theory/Parallel_postulates/triangle_playfair_bis.v
theorems:
- legendre_aux1
- triangle__playfair_bis
- legendre_aux2
- legendre_aux
- path: theories/Elements/OriginalProofs/lemma_angledistinct.v
theorems:
- lemma_angledistinct
- path: theories/Elements/OriginalProofs/lemma_squaresequal.v
theorems:
- lemma_squaresequal
- path: theories/Main/Annexes/perp_bisect.v
theorems:
- cong_mid_perp_bisect
- perp_bisect_existence_cop
- perp_bisect_cong
- perp_bisect_equiv_def
- perp_bisect_sym_1
- perp_bisect_cong_1
- perp_bisect_cop2_existence
- cong_cop_perp_bisect
- perp_bisect_sym_2
- cong_cop2_perp_bisect_col
- perp_bisect_cong2
- perp_bisect_sym_3
- perp_mid_perp_bisect
- perp_bisect_cong_2
- path: theories/Main/Meta_theory/Parallel_postulates/rectangle_existence_rah.v
theorems:
- rectangle_existence__rah
- path: theories/Main/Meta_theory/Models/tarski_to_cong_theory.v
theorems:
- Tarski_is_a_Cong_theory
- path: theories/Main/Meta_theory/Continuity/completeness.v
theorems:
- line_completeness_aux
- ncompleteness_for_planes__upper_dim
- nupper_dim_3__completeness_for_3d_spaces
- extension_to_3d__upper_dim_3
- line_completeness__completeness_for_planes
- line_extension_reverse_bet
- line_completeness__completeness_for_3d_spaces
- not_archimedes__line_completeness
- line_extension_stability
- extension_reverse_col
- pres_bet_line__col
- ncompleteness_for_3d_spaces__upper_dim_3
- extension__line_extension
- nupper_dim__completeness_for_planes
- archimedes_aux
- line_extension_symmetry
- path: theories/Elements/OriginalProofs/lemma_parallelsymmetric.v
theorems:
- lemma_parallelsymmetric
- path: theories/Elements/OriginalProofs/proposition_45.v
theorems:
- proposition_45
- path: theories/Main/Highschool/bisector.v
theorems:
- bisector_perp_equality
- not_col_bfoot_not_equality
- perp_equality_bisector
- not_col_efoot_not_equality
- bisector_existence
- equality_foot_out_out
- path: theories/Elements/OriginalProofs/lemma_Euclid4.v
theorems:
- lemma_Euclid4
- path: theories/Main/Annexes/defect.v
theorems:
- defect_distincts
- t22_16_1bis
- ex_defect
- defect_perm_231
- defect_perm_321
- t22_16_1
- defect2__conga
- defect_perm_213
- rah_defect__out
- t22_16_2aux1
- conga_defect__defect
- col_defect__out
- conga3_defect__defect
- defect_ncol_out__rah
- defect_perm_132
- t22_16_2aux
- t22_16_2
- path: theories/Main/Meta_theory/Continuity/grad.v
theorems:
- grad__col
- gradexp_clos_trans
- gradexp2__gradexp123
- gradexp2__gradexp456
- grad112__eq
- grad121__eq
- grad__ex_gradexp_le
- bet_cong2_grad__grad2
- grad_neq__neq13
- gradexp__grad
- grad2__grad123
- gradexpinv_clos_trans
- grad2__grad456
- reach__ex_gradexp_le
- gradexp__gradexpinv
- reach__ex_gradexp_lt
- grad__le
- grad__bet
- reach__grad_min
- path: theories/Elements/OriginalProofs/lemma_lessthancongruence.v
theorems:
- lemma_lessthancongruence
- path: theories/Main/Meta_theory/Parallel_postulates/triangle_existential_triangle.v
theorems:
- triangle__existential_triangle
- path: theories/Main/Tarski_dev/Ch04_col.v
theorems:
- col_permutation_4
- l4_19
- col_permutation_2
- l4_16
- l4_18
- not_col_permutation_1
- l4_14
- not_col_permutation_4
- not_col_permutation_2
- col_permutation_1
- l4_13
- Col_cases
- NCol_cases
- NCol_perm
- col_trivial_1
- not_col_distincts
- not_col_permutation_3
- col_trivial_2
- l4_17
- Col_perm
- not_col_permutation_5
- col_cong_3_cong_3_eq
- col_trivial_3
- col_permutation_3
- path: theories/Elements/euclid_to_tarski.v
theorems:
- nullsegment2
- Tarski_follows_Euclid
- cong_sym
- Tcong_symmetric
- Bet_sym
- nullsegment1
- lemma_congruenceflip
- cong_eq
- Tcong_reflexive
- TCong_neq_Cong
- path: theories/Algebraic/Counter_models/nD/stronger_pasch.v
theorems:
- addition_segments
- stronger_inner_pasch
- bet_outer_connectivity
- g2_24
- path: theories/Elements/OriginalProofs/lemma_10_12.v
theorems:
- lemma_10_12
- path: theories/Elements/OriginalProofs/lemma_angleorderrespectscongruence.v
theorems:
- lemma_angleorderrespectscongruence
- path: theories/Main/Meta_theory/Parallel_postulates/thales_converse_postulate_weak_triangle_circumscription_principle.v
theorems:
- thales_converse_postulate__weak_triangle_circumscription_principle
- path: theories/Elements/OriginalProofs/lemma_supplementsymmetric.v
theorems:
- lemma_supplementsymmetric
- path: theories/Elements/OriginalProofs/lemma_squareparallelogram.v
theorems:
- lemma_squareparallelogram
- path: theories/Main/Tactics/CoincR_for_cop.v
theorems:
- collect_coincs_for_cop
- st_ok_empty_for_cop
- test_coinc_ok_for_cop
- collect_wds_for_cop
- path: theories/Elements/OriginalProofs/lemma_collinear4.v
theorems:
- lemma_collinear4
- path: theories/Elements/OriginalProofs/lemma_droppedperpendicularunique.v
theorems:
- lemma_droppedperpendicularunique
- path: theories/Elements/OriginalProofs/lemma_together.v
theorems:
- lemma_together
- path: theories/Main/Meta_theory/Continuity/aristotle.v
theorems:
- aristotle__obtuse_case_elimination
- greenberg__aristotle
- aristotle__greenberg
- aristotle__acute_or_right
- path: theories/Algebraic/Counter_models/nD/gupta_inspired_to_independent_version.v
theorems:
- GI_to_IT
- GI_euclidean_to_IT_euclidean
- exists_cong_per_f
- bet__col
- basisG
- GI2D_to_T2D
- path: theories/Elements/OriginalProofs/proposition_32.v
theorems:
- proposition_32
- path: theories/Main/Meta_theory/Parallel_postulates/playfair_midpoint.v
theorems:
- playfair_s_postulate_implies_midpoint_converse_postulate
- path: theories/Elements/OriginalProofs/lemma_paralleldef2A.v
theorems:
- lemma_paralleldef2A
- path: theories/Main/Meta_theory/Continuity/dedekind_variant.v
theorems:
- dedekind_equiv
- path: theories/Elements/OriginalProofs/lemma_fiveline.v
theorems:
- lemma_fiveline
- path: theories/Elements/OriginalProofs/lemma_diagonalsbisect.v
theorems:
- lemma_diagonalsbisect
- path: theories/Algebraic/Counter_models/Planar/counter_model_bet_inner_transitivity.v
theorems:
- inner_pasch
- lower_dim
- cong_pseudo_reflexivity
- bet_symmetry
- five_segment
- cong_inner_transitivity
- col_alt_def
- cong_identity
- upper_dim
- bet_inner_transitivity
- path: theories/Elements/OriginalProofs/lemma_congruencesymmetric.v
theorems:
- lemma_congruencesymmetric
- path: theories/Elements/OriginalProofs/lemma_collinearorder.v
theorems:
- lemma_collinearorder
- path: theories/Elements/OriginalProofs/proposition_22.v
theorems:
- lemma_togethera
- proposition_22
- path: theories/Main/Meta_theory/Parallel_postulates/original_spp_inverse_projection_postulate.v
theorems:
- original_spp__inverse_projection_postulate
- path: theories/Elements/OriginalProofs/lemma_paralleldef2B.v
theorems:
- lemma_paralleldef2B
- path: theories/Main/Meta_theory/Parallel_postulates/alternate_interior_angles_proclus.v
theorems:
- alternate_interior__proclus_aux
- alternate_interior__proclus
- path: theories/Elements/OriginalProofs/lemma_parallelNC.v
theorems:
- lemma_parallelNC
- path: theories/Main/Meta_theory/Models/tarski_to_coinc_theory_for_concyclic.v
theorems:
- concy_perm_1
- concy_perm_2
- Tarski_is_a_Arity_for_concy
- concyclic_gen_1123
- concy_bd
- Tarski_is_a_Coinc_theory_for_concy
- not_col_perm_2
- Tarski_is_a_Coinc_predicates_for_concy
- path: theories/Main/Tactics/CoincR_for_col.v
theorems:
- st_ok_empty_for_col
- collect_coincs_for_col
- collect_wds_for_col
- test_coinc_ok_for_col
- path: theories/Elements/OriginalProofs/lemma_angleordertransitive.v
theorems:
- lemma_angleordertransitive
- path: theories/Main/Highschool/Euler_line.v
theorems:
- Euler_line_special_case
- gravity_center_change_triangle
- concyclic_not_col_or_eq_aux
- Euler_line
- concyclic_not_col_or_eq
- path: theories/Main/Meta_theory/Parallel_postulates/par_perp_2_par_par_perp_perp.v
theorems:
- par_perp_2_par_implies_par_perp_perp
- path: theories/Elements/OriginalProofs/lemma_rectanglerotate.v
theorems:
- lemma_rectanglerotate
- path: theories/Main/Meta_theory/Parallel_postulates/SPP_ID.v
theorems:
- strong_parallel_postulate_implies_inter_dec
- path: theories/Elements/OriginalProofs/lemma_26helper.v
theorems:
- lemma_26helper
- path: theories/Elements/OriginalProofs/lemma_supplementofright.v
theorems:
- lemma_supplementofright
- path: theories/Elements/OriginalProofs/lemma_samesidetransitive.v
theorems:
- lemma_samesidetransitive
- path: theories/Elements/OriginalProofs/lemma_lessthanadditive.v
theorems:
- lemma_lessthanadditive
- path: theories/Elements/OriginalProofs/proposition_39A.v
theorems:
- proposition_39A
- path: theories/Main/Meta_theory/Continuity/dedekind_completeness.v
theorems:
- dedekind_variant__completeness
- extension_grad
- extension_gradexp
- path: theories/Elements/OriginalProofs/lemma_partnotequalwhole.v
theorems:
- lemma_partnotequalwhole
- path: theories/Main/Meta_theory/Continuity/archimedes.v
theorems:
- t22_24
- archi__obtuse_case_elimination
- t22_24_aux1
- t22_19
- t22_23
- t22_18
- t22_24_aux
- path: theories/Main/Meta_theory/Parallel_postulates/weak_triangle_circumscription_principle_bachmann_s_lotschnittaxiom.v
theorems:
- weak_triangle_circumscription_principle__bachmann_s_lotschnittaxiom
- path: theories/Elements/OriginalProofs/proposition_36.v
theorems:
- proposition_36
- path: theories/Elements/OriginalProofs/lemma_3_7b.v
theorems:
- lemma_3_7b
- path: theories/Main/Meta_theory/Decidability/equivalence_between_decidability_properties_of_basic_relations.v
theorems:
- equivalence_between_decidability_properties_of_basic_relations
- eq_dec_bet_dec
- cong_dec_eq_dec
- eq_dec_cong_dec
- path: theories/Elements/OriginalProofs/lemma_oppositesidesymmetric.v
theorems:
- lemma_oppositesidesymmetric
- path: theories/Main/Highschool/sesamath_exercises.v
theorems:
- sesamath_4ieme_G2_ex39
- sesamath_4ieme_G2_ex36
- sesamath_4ieme_G2_ex38
- sesamath_4ieme_G2_ex47
- sesamath_4ieme_G2_ex41
- sesamath_4ieme_G2_ex36_aux
- sesamath_4ieme_G2_ex35
- path: theories/Elements/OriginalProofs/lemma_collinearright.v
theorems:
- lemma_collinearright
- path: theories/Elements/OriginalProofs/lemma_equalanglestransitive.v
theorems:
- lemma_equalanglestransitive
- path: theories/Algebraic/Counter_models/nD/counter_model_cong_pseudo_reflexivity.v
theorems:
- bet_symmetry
- inner_pasch
- euclid
- five_segment
- cong_pseudo_reflexivity
- cong_identity
- cong_inner_transitivity
- onemx_neq0
- ColP
- path: theories/Elements/OriginalProofs/lemma_Pasch_outer2.v
theorems:
- lemma_Pasch_outer2
- path: theories/Elements/OriginalProofs/lemma_differenceofparts.v
theorems:
- lemma_differenceofparts
- path: theories/Elements/OriginalProofs/lemma_Playfairhelper2.v
theorems:
- lemma_Playfairhelper2
- path: theories/Elements/OriginalProofs/lemma_ABCequalsCBA.v
theorems:
- lemma_ABCequalsCBA
- path: theories/Algebraic/Counter_models/nD/counter_model_lower_dim.v
theorems:
- upper_dim
- nth_basis
- mulmx11_eq0
- bet_cong__mid
- zeromxE
- path: theories/Elements/OriginalProofs/lemma_altitudebisectsbase.v
theorems:
- lemma_altitudebisectsbase
- path: theories/Main/Meta_theory/Parallel_postulates/midpoint_playfair.v
theorems:
- midpoint_converse_postulate_implies_playfair
- path: theories/Main/Meta_theory/Parallel_postulates/SPP_tarski.v
theorems:
- impossible_case_8
- strong_parallel_postulate_implies_tarski_s_euclid_aux
- impossible_case_6
- impossible_case_5
- path: theories/Elements/OriginalProofs/lemma_angleaddition.v
theorems:
- lemma_angleaddition
- path: theories/Elements/OriginalProofs/proposition_28A.v
theorems:
- proposition_28A
- path: theories/Algebraic/Counter_models/Planar/counter_model_lower_dim.v
theorems:
- segment_construction
- point_equality_decidability
- cong_identity
- five_segment
- cong_pseudo_reflexivity
- inner_pasch
- cong_inner_transitivity
- upper_dim
- lower_dim
- path: theories/Elements/OriginalProofs/lemma_equaltorightisright.v
theorems:
- lemma_equaltorightisright
- path: theories/Elements/OriginalProofs/proposition_01.v
theorems:
- proposition_01
- path: theories/Elements/OriginalProofs/lemma_tworays.v
theorems:
- lemma_tworays
- path: theories/Main/Meta_theory/Parallel_postulates/original_euclid_original_spp.v
theorems:
- original_euclid__original_spp
- path: theories/Main/Meta_theory/Continuity/first_order.v
theorems:
- dedekind__fod
- path: theories/Algebraic/Counter_models/Planar/gupta_inspired_to_independent_tarski.v
theorems:
- GI_euclidean_to_IT_euclidean
- GI2D_to_IT2D
- GI_to_IT
- path: theories/Elements/OriginalProofs/lemma_supplements.v
theorems:
- lemma_supplements
- path: theories/Main/Meta_theory/Parallel_postulates/par_trans_playfair.v
theorems:
- par_trans_implies_playfair
- path: theories/Elements/OriginalProofs/lemma_parallelcollinear2.v
theorems:
- lemma_parallelcollinear2
- path: theories/Elements/OriginalProofs/proposition_03.v
theorems:
- proposition_03
- path: theories/Elements/OriginalProofs/lemma_parallelbetween.v
theorems:
- lemma_parallelbetween
- path: theories/Main/Highschool/incenter.v
theorems:
- incenter_permut132
- incenter_dec
- incenter_permut231
- incenter_permut321
- incenter_exists
- path: theories/Elements/OriginalProofs/lemma_raystrict.v
theorems:
- lemma_raystrict
- path: theories/Elements/OriginalProofs/lemma_NCdistinct.v
theorems:
- lemma_NCdistinct
- path: theories/Elements/OriginalProofs/lemma_tarskiparallelflip.v
theorems:
- lemma_tarskiparallelflip
- path: theories/Main/Meta_theory/Parallel_postulates/szmielew.v
theorems:
- szmielew_s_theorem
- aah__hpp
- path: theories/Coinc/Utils/general_tactics.v
theorems:
- ltac_something_eq
- ltac_something_hide
- path: theories/Main/Meta_theory/Continuity/first_order_dedekind_circle_circle.v
theorems:
- circle_circle_aux
- path: theories/Main/Highschool/exercises.v
theorems:
- Per_mid_rectangle
- path: theories/Elements/OriginalProofs/lemma_doublereverse.v
theorems:
- lemma_doublereverse
- path: theories/Main/Meta_theory/Parallel_postulates/bachmann_s_lotschnittaxiom_legendre_s_parallel_postulate.v
theorems:
- bachmann_s_lotschnittaxiom__legendre_s_parallel_postulate
- path: theories/Main/Meta_theory/Parallel_postulates/weak_tarski_s_parallel_postulate_weak_inverse_projection_postulate.v
theorems:
- weak_tarski_s_parallel_postulate__weak_inverse_projection_postulate_aux
- path: theories/Main/Meta_theory/Parallel_postulates/posidonius_postulate_rah.v
theorems:
- posidonius_postulate__rah
- path: theories/Main/Meta_theory/Models/tarski_to_coinc_theory_for_cop.v
theorems:
- cop_3
- cop_bd
- cop_perm_2
- Tarski_is_a_Arity_for_cop
- cop_perm_1
- not_col_perm_2
- Tarski_is_a_Coinc_theory_for_cop
- path: theories/Elements/OriginalProofs/lemma_subtractequals.v
theorems:
- lemma_subtractequals
- path: theories/Elements/OriginalProofs/proposition_35.v
theorems:
- proposition_35
- path: theories/Elements/OriginalProofs/proposition_33.v
theorems:
- proposition_33
- path: theories/Elements/OriginalProofs/lemma_RTcongruence.v
theorems:
- lemma_RTcongruence
- path: theories/Elements/OriginalProofs/proposition_30A.v
theorems:
- proposition_30A
- path: theories/Main/Meta_theory/Parallel_postulates/proclus_SPP.v
theorems:
- proclus_s_postulate_implies_strong_parallel_postulate
- path: theories/Main/Meta_theory/Parallel_postulates/rectangle_principle_rectangle_existence.v
theorems:
- rectangle_principle__rectangle_existence
- path: theories/Elements/OriginalProofs/proposition_06.v
theorems:
- proposition_06
- path: theories/Main/Meta_theory/Parallel_postulates/proclus_bis_proclus.v
theorems:
- proclus_bis__proclus
- path: theories/Coinc/Permutations.v
theorems:
- PermCoincOK
- PermWdOK
- path: theories/Elements/OriginalProofs/lemma_PGsymmetric.v
theorems:
- lemma_PGsymmetric
- path: theories/Elements/OriginalProofs/lemma_layoffunique.v
theorems:
- lemma_layoffunique
- path: theories/Elements/OriginalProofs/proposition_04.v
theorems:
- proposition_04
- path: theories/Elements/OriginalProofs/proposition_28D.v
theorems:
- proposition_28D
- path: theories/Main/Meta_theory/Models/tarski_continuous_to_trc.v
theorems:
- TC_to_TRC
- path: theories/Elements/OriginalProofs/lemma_TGsymmetric.v
theorems:
- lemma_TGsymmetric
- path: theories/Main/Meta_theory/Parallel_postulates/consecutive_interior_angles_alternate_interior_angles.v
theorems:
- consecutive_interior__alternate_interior
- path: theories/Elements/OriginalProofs/lemma_diagonalsmeet.v
theorems:
- lemma_diagonalsmeet
- path: theories/Elements/OriginalProofs/lemma_samesidesymmetric.v
theorems:
- lemma_samesidesymmetric
- path: theories/Elements/OriginalProofs/lemma_betweennesspreserved.v
theorems:
- lemma_betweennesspreserved
- path: theories/Elements/OriginalProofs/lemma_equalitysymmetric.v
theorems:
- lemma_equalitysymmetric
- path: theories/Elements/OriginalProofs/lemma_ray2.v
theorems:
- lemma_ray2
- path: theories/Elements/OriginalProofs/lemma_oppositesideflip.v
theorems:
- lemma_oppositesideflip
- path: theories/Elements/OriginalProofs/lemma_samesideflip.v
theorems:
- lemma_samesideflip
- path: theories/Elements/OriginalProofs/lemma_8_2.v
theorems:
- lemma_8_2
- path: theories/Main/Meta_theory/Parallel_postulates/playfair_par_trans.v
theorems:
- playfair_implies_par_trans
- path: theories/Main/Meta_theory/Parallel_postulates/alternate_interior_angles_playfair_bis.v
theorems:
- alternate_interior__playfair_aux
- alternate_interior__playfair_bis
- path: theories/Main/Meta_theory/Parallel_postulates/par_perp_perp_par_perp_2_par.v
theorems:
- par_perp_perp_implies_par_perp_2_par
- path: theories/Main/Tarski_dev/Ch15_pyth_rel.v
theorems:
- opp_same_square
- PythRel_uniqueness
- PythOK
- PythRel_exists
- path: theories/Elements/OriginalProofs/lemma_30helper.v
theorems:
- lemma_30helper
- path: theories/Algebraic/Counter_models/Planar/independent_tarski_to_gupta_inspired.v
theorems:
- IT_euclidean_to_GI_euclidean
- IT_to_GI
- IT2D_to_GI2D
- path: theories/Main/Meta_theory/Parallel_postulates/par_perp_perp_TCP.v
theorems:
- inter_dec_plus_par_perp_perp_imply_triangle_circumscription
- path: theories/Main/Meta_theory/Parallel_postulates/weak_inverse_projection_postulate_bachmann_s_lotschnittaxiom.v
theorems:
- weak_inverse_projection_postulate__bachmann_s_lotschnittaxiom_aux
- weak_inverse_projection_postulate__bachmann_s_lotschnittaxiom
- path: theories/Main/Meta_theory/Parallel_postulates/alternate_interior_angles_triangle.v
theorems:
- alternate_interior__triangle
- path: theories/Elements/OriginalProofs/proposition_36A.v
theorems:
- proposition_36A
- path: theories/Elements/OriginalProofs/lemma_equalanglessymmetric.v
theorems:
- lemma_equalanglessymmetric
- path: theories/Main/Meta_theory/Parallel_postulates/thales_postulate_thales_converse_postulate.v
theorems:
- thales_postulate__thales_converse_postulate
- path: theories/Main/Highschool/varignon.v
theorems:
- varignon_aux
- varignon'
- varignon
- path: theories/Main/Meta_theory/Parallel_postulates/tarski_playfair.v
theorems:
- tarski_s_euclid_implies_playfair
- path: theories/Main/Meta_theory/Parallel_postulates/playfair_bis_playfair.v
theorems:
- playfair_bis__playfair
- path: theories/Main/Meta_theory/Models/tarski_to_col_theory.v
theorems:
- Tarski_is_a_Col_theory
- path: theories/Elements/OriginalProofs/proposition_25.v
theorems:
- proposition_25
- path: theories/Main/Meta_theory/Continuity/dedekind_archimedes.v
theorems:
- archimedes_aux
- dedekind_variant__archimedes
- path: theories/Elements/OriginalProofs/lemma_crossbar.v
theorems:
- lemma_crossbar
- path: theories/Elements/OriginalProofs/proposition_11.v
theorems:
- proposition_11
- path: theories/Main/Meta_theory/Parallel_postulates/existential_playfair_rah.v
theorems:
- existential_playfair__rah
- path: theories/Algebraic/Counter_models/nD/stability_properties.v
theorems:
- two_points
- point_equality_stability__betS_stability
- cong_stability__point_equality_stability
- point_equality_stability__cong_stability
- path: theories/Main/Meta_theory/Models/tarski_to_makarios.v
theorems:
- Makarios_Variant_follows_from_Tarski
- lower_dim_ex
- path: theories/Elements/OriginalProofs/lemma_ondiameter.v
theorems:
- lemma_ondiameter
- path: theories/Main/Meta_theory/Parallel_postulates/alternate_interior_angles_consecutive_interior_angles.v
theorems:
- alternate_interior__consecutive_interior
- path: theories/Elements/OriginalProofs/proposition_38.v
theorems:
- proposition_38
- path: theories/Elements/OriginalProofs/proposition_26B.v
theorems:
- proposition_26B
- path: theories/Elements/OriginalProofs/proposition_19.v
theorems:
- proposition_19
- path: theories/Elements/OriginalProofs/lemma_trichotomy1.v
theorems:
- lemma_trichotomy1
- path: theories/Elements/OriginalProofs/lemma_rayimpliescollinear.v
theorems:
- lemma_rayimpliescollinear
- path: theories/Elements/OriginalProofs/lemma_collinearparallel.v
theorems:
- lemma_collinearparallel
- path: theories/Elements/OriginalProofs/lemma_twoperpsparallel.v
theorems:
- lemma_twoperpsparallel
- path: theories/Elements/OriginalProofs/lemma_35helper.v
theorems:
- lemma_35helper
- path: theories/Elements/OriginalProofs/lemma_extensionunique.v
theorems:
- lemma_extensionunique
- path: theories/Elements/OriginalProofs/lemma_9_5a.v
theorems:
- lemma_9_5a
- path: theories/Elements/OriginalProofs/lemma_trichotomy2.v
theorems:
- lemma_trichotomy2
- path: theories/Elements/OriginalProofs/lemma_righttogether.v
theorems:
- lemma_righttogether
- path: theories/Main/Meta_theory/Parallel_postulates/euclid_5_original_euclid.v
theorems:
- euclid_5__original_euclid
- path: theories/Main/Meta_theory/Parallel_postulates/playfair_existential_playfair.v
theorems:
- playfair__existential_playfair
- path: theories/Elements/OriginalProofs/proposition_48A.v
theorems:
- proposition_48A
- path: theories/Elements/OriginalProofs/proposition_28B.v
theorems:
- proposition_28B
- path: theories/Elements/OriginalProofs/proposition_15.v
theorems:
- proposition_15b
- proposition_15a
- proposition_15
- path: theories/Elements/OriginalProofs/proposition_41.v
theorems:
- proposition_41
- path: theories/Elements/OriginalProofs/lemma_EFreflexive.v
theorems:
- lemma_EFreflexive
- path: theories/Elements/OriginalProofs/lemma_equalanglesNC.v
theorems:
- lemma_equalanglesNC
- path: theories/Elements/OriginalProofs/lemma_rectanglereverse.v
theorems:
- lemma_rectanglereverse
- path: theories/Elements/OriginalProofs/lemma_3_6a.v
theorems:
- lemma_3_6a
- path: theories/Elements/OriginalProofs/proposition_16.v
theorems:
- proposition_16
- path: theories/Elements/OriginalProofs/proposition_35A.v
theorems:
- proposition_35A
- path: theories/Elements/OriginalProofs/proposition_43B.v
theorems:
- proposition_43B
- path: theories/Elements/OriginalProofs/lemma_equalanglesflip.v
theorems:
- lemma_equalanglesflip
- path: theories/Elements/OriginalProofs/lemma_rightreverse.v
theorems:
- lemma_rightreverse
- path: theories/Elements/OriginalProofs/lemma_notperp.v
theorems:
- lemma_notperp
- path: theories/Main/Meta_theory/Parallel_postulates/weak_inverse_projection_postulate_weak_tarski_s_parallel_postulate.v
theorems:
- weak_inverse_projection_postulate__weak_tarski_s_parallel_postulate
- path: theories/Elements/OriginalProofs/lemma_squarerectangle.v
theorems:
- lemma_squarerectangle
- path: theories/Elements/OriginalProofs/lemma_paste5.v
theorems:
- lemma_paste5
- path: theories/Elements/OriginalProofs/lemma_angletrichotomy2.v
theorems:
- lemma_angletrichotomy2
- path: theories/Main/Meta_theory/Continuity/cantor_variant.v
theorems:
- nested_bis__nested
- cantor__cantor_variant
- path: theories/Elements/OriginalProofs/lemma_NCorder.v
theorems:
- lemma_NCorder
- path: theories/Elements/OriginalProofs/lemma_PGrotate.v
theorems:
- lemma_PGrotate
- path: theories/Elements/OriginalProofs/lemma_equalangleshelper.v
theorems:
- lemma_equalangleshelper
- path: theories/Elements/OriginalProofs/lemma_triangletoparallelogram.v
theorems:
- lemma_triangletoparallelogram
- path: theories/Elements/OriginalProofs/proposition_06a.v
theorems:
- proposition_06a
- path: theories/Main/Meta_theory/Parallel_postulates/rah_posidonius_postulate.v
theorems:
- rah__posidonius
- path: theories/Elements/OriginalProofs/lemma_outerconnectivity.v
theorems:
- lemma_outerconnectivity
- path: theories/Elements/OriginalProofs/proposition_42.v
theorems:
- proposition_42
- path: theories/Elements/OriginalProofs/lemma_congruenceflip.v
theorems:
- lemma_congruenceflip
- path: theories/Main/Meta_theory/Parallel_postulates/par_perp_perp_playfair.v
theorems:
- par_perp_perp_implies_playfair
- path: theories/Elements/OriginalProofs/lemma_localextension.v
theorems:
- lemma_localextension
- path: theories/Elements/OriginalProofs/lemma_rightangleNC.v
theorems:
- lemma_rightangleNC
- path: theories/Elements/OriginalProofs/lemma_layoff.v
theorems:
- lemma_layoff
- path: theories/Elements/OriginalProofs/lemma_ETreflexive.v
theorems:
- lemma_ETreflexive
- path: theories/Main/Meta_theory/Parallel_postulates/tarski_s_euclid_remove_degenerated_cases.v
theorems:
- tarski_s_euclid_remove_degenerated_cases
- path: theories/Elements/OriginalProofs/lemma_8_7.v
theorems:
- lemma_8_7
- path: theories/Elements/OriginalProofs/lemma_twolines2.v
theorems:
- lemma_twolines2
- path: theories/Elements/OriginalProofs/lemma_TTflip2.v
theorems:
- lemma_TTflip2
- path: theories/Elements/OriginalProofs/lemma_PGflip.v
theorems:
- lemma_PGflip
- path: theories/Elements/OriginalProofs/proposition_05.v
theorems:
- proposition_05
- path: theories/Elements/OriginalProofs/lemma_crossimpliesopposite.v
theorems:
- lemma_crossimpliesopposite
- path: theories/Elements/OriginalProofs/lemma_NChelper.v
theorems:
- lemma_NChelper
- path: theories/Main/Meta_theory/Parallel_postulates/existential_saccheri_rah.v
theorems:
- existential_saccheri__rah
- path: theories/Elements/OriginalProofs/lemma_ray4.v
theorems:
- lemma_ray4
- path: theories/Elements/OriginalProofs/lemma_trapezoiddiagonals.v
theorems:
- lemma_trapezoiddiagonals
- path: theories/Elements/OriginalProofs/lemma_supplementinequality.v
theorems:
- lemma_supplementinequality
- path: theories/Elements/OriginalProofs/proposition_21.v
theorems:
- proposition_21
- path: theories/Elements/OriginalProofs/lemma_collinear2.v
theorems:
- lemma_collinear2
- path: theories/Elements/OriginalProofs/lemma_Playfairhelper.v
theorems:
- lemma_Playfairhelper
- path: theories/Elements/OriginalProofs/proposition_33B.v
theorems:
- proposition_33B
- path: theories/Elements/OriginalProofs/lemma_lessthanbetween.v
theorems:
- lemma_lessthanbetween
- path: theories/Elements/OriginalProofs/lemma_angletrichotomy.v
theorems:
- lemma_angletrichotomy
- path: theories/Elements/OriginalProofs/lemma_collinearparallel2.v
theorems:
- lemma_collinearparallel2
- path: theories/Elements/OriginalProofs/proposition_20.v
theorems:
- proposition_20
- path: theories/Elements/OriginalProofs/lemma_TTtransitive.v
theorems:
- lemma_TTtransitive
- path: theories/Elements/OriginalProofs/proposition_34.v
theorems:
- proposition_34
- path: theories/Elements/OriginalProofs/lemma_equalanglesreflexive.v
theorems:
- lemma_equalanglesreflexive
- path: theories/Elements/OriginalProofs/lemma_midpointunique.v
theorems:
- lemma_midpointunique
- path: theories/Main/Meta_theory/Parallel_postulates/playfair_alternate_interior_angles.v
theorems:
- playfair__alternate_interior
- path: theories/Elements/OriginalProofs/lemma_squareflip.v
theorems:
- lemma_squareflip
- path: theories/Elements/OriginalProofs/lemma_interior5.v
theorems:
- lemma_interior5
- path: theories/Main/Meta_theory/Parallel_postulates/universal_posidonius_postulate_par_perp_perp.v
theorems:
- universal_posidonius_postulate__perpendicular_transversal_postulate_aux
- universal_posidonius_postulate__perpendicular_transversal_postulate
- path: theories/Elements/OriginalProofs/proposition_31.v
theorems:
- proposition_31
- path: theories/Main/Meta_theory/Parallel_postulates/similar_rah.v
theorems:
- similar__rah
- similar__rah_aux
- path: theories/Elements/OriginalProofs/proposition_23B.v
theorems:
- proposition_23B
- path: theories/Elements/OriginalProofs/proposition_27B.v
theorems:
- proposition_27B
- path: theories/Elements/OriginalProofs/lemma_sameside2.v
theorems:
- lemma_sameside2
- path: theories/Elements/OriginalProofs/lemma_parallelcollinear.v
theorems:
- lemma_parallelcollinear
- path: theories/Elements/OriginalProofs/proposition_23.v
theorems:
- proposition_23
- path: theories/Main/Meta_theory/Parallel_postulates/playfair_universal_posidonius_postulate.v
theorems:
- playfair__universal_posidonius_postulate
- path: theories/Elements/OriginalProofs/proposition_29C.v
theorems:
- proposition_29C
- path: theories/Elements/OriginalProofs/lemma_inequalitysymmetric.v
theorems:
- lemma_inequalitysymmetric
- path: theories/Main/Meta_theory/Parallel_postulates/bachmann_s_lotschnittaxiom_weak_triangle_circumscription_principle.v
theorems:
- bachmann_s_lotschnittaxiom__weak_triangle_circumscription_principle
- path: theories/Main/Meta_theory/Parallel_postulates/bachmann_s_lotschnittaxiom_variant.v
theorems:
- bachmann_s_lotschnittaxiom_aux
- path: theories/Elements/OriginalProofs/lemma_betweennotequal.v
theorems:
- lemma_betweennotequal
- path: theories/Elements/OriginalProofs/lemma_parallelPasch.v
theorems:
- lemma_parallelPasch
- path: theories/Elements/OriginalProofs/lemma_Playfair.v
theorems:
- lemma_Playfair
- path: theories/Elements/OriginalProofs/lemma_ray1.v
theorems:
- lemma_ray1
- path: theories/Elements/OriginalProofs/lemma_crisscross.v
theorems:
- lemma_crisscross
- path: theories/Elements/OriginalProofs/proposition_18.v
theorems:
- proposition_18
- path: theories/Elements/OriginalProofs/proposition_17.v
theorems:
- proposition_17
- path: theories/Elements/OriginalProofs/proposition_46.v
theorems:
- proposition_46
- path: theories/Main/Meta_theory/Parallel_postulates/proclus_aristotle.v
theorems:
- proclus__aristotle
- path: theories/Elements/OriginalProofs/proposition_27.v
theorems:
- proposition_27
- path: theories/Main/Meta_theory/Parallel_postulates/existential_triangle_rah.v
theorems:
- existential_triangle__rah
- path: theories/Main/Meta_theory/Continuity/cantor_completeness.v
theorems:
- cantor__completeness
- path: theories/Elements/OriginalProofs/lemma_ray3.v
theorems:
- lemma_ray3
- path: theories/Elements/OriginalProofs/proposition_13.v
theorems:
- proposition_13
- path: theories/Main/Meta_theory/Parallel_postulates/inverse_projection_postulate_proclus_bis.v
theorems:
- inverse_projection_postulate__proclus_bis
- path: theories/Elements/OriginalProofs/lemma_squareunique.v
theorems:
- lemma_squareunique
- path: theories/Elements/OriginalProofs/lemma_3_5b.v
theorems:
- lemma_3_5b
- path: theories/Elements/OriginalProofs/lemma_angleorderrespectscongruence2.v
theorems:
- lemma_angleorderrespectscongruence2
- path: theories/Elements/OriginalProofs/lemma_altitudeofrighttriangle.v
theorems:
- lemma_altitudeofrighttriangle
- path: theories/Elements/OriginalProofs/proposition_42B.v
theorems:
- proposition_42B
- path: theories/Elements/OriginalProofs/proposition_29.v
theorems:
- proposition_29
- path: theories/Elements/OriginalProofs/proposition_47.v
theorems:
- proposition_47
- path: theories/Elements/OriginalProofs/lemma_PGrectangle.v
theorems:
- lemma_PGrectangle
- path: theories/Elements/OriginalProofs/proposition_48.v
theorems:
- proposition_48
- path: theories/Main/Meta_theory/Continuity/archimedes_cantor_dedekind.v
theorems:
- archimedes_cantor__dedekind_variant
- path: theories/Elements/OriginalProofs/proposition_47B.v
theorems:
- proposition_47B
- path: theories/Elements/OriginalProofs/lemma_extension.v
theorems:
- lemma_extension
- path: theories/Main/Meta_theory/Parallel_postulates/rah_triangle.v
theorems:
- rah__triangle
- path: theories/Main/Meta_theory/Parallel_postulates/rah_similar.v
theorems:
- rah__similar
- path: theories/Elements/OriginalProofs/proposition_11B.v
theorems:
- proposition_11B
- path: theories/Elements/OriginalProofs/lemma_lessthannotequal.v
theorems:
- lemma_lessthannotequal
- path: theories/Main/Meta_theory/Parallel_postulates/bachmann_s_lotschnittaxiom_weak_inverse_projection_postulate.v
theorems:
- bachmann_s_lotschnittaxiom__weak_inverse_projection_postulate
- path: theories/Elements/OriginalProofs/lemma_together2.v
theorems:
- lemma_together2