albertvillanova HF staff commited on
Commit
8230ac3
·
1 Parent(s): 1024631

Delete loading script

Browse files
Files changed (1) hide show
  1. openbookqa.py +0 -159
openbookqa.py DELETED
@@ -1,159 +0,0 @@
1
- """OpenBookQA dataset."""
2
-
3
-
4
- import json
5
- import os
6
- import textwrap
7
-
8
- import datasets
9
-
10
-
11
- _HOMEPAGE = "https://allenai.org/data/open-book-qa"
12
-
13
- _DESCRIPTION = """\
14
- OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic
15
- (with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. In
16
- particular, it contains questions that require multi-step reasoning, use of additional common and commonsense knowledge,
17
- and rich text comprehension.
18
- OpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding
19
- of a subject.
20
- """
21
-
22
- _CITATION = """\
23
- @inproceedings{OpenBookQA2018,
24
- title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
25
- author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
26
- booktitle={EMNLP},
27
- year={2018}
28
- }
29
- """
30
-
31
- _URL = "https://s3-us-west-2.amazonaws.com/ai2-website/data/OpenBookQA-V1-Sep2018.zip"
32
-
33
-
34
- class OpenbookqaConfig(datasets.BuilderConfig):
35
- def __init__(self, data_dir=None, filenames=None, version=datasets.Version("1.0.1", ""), **kwargs):
36
- """BuilderConfig for openBookQA dataset
37
-
38
- Args:
39
- data_dir: directory for the given dataset name
40
- **kwargs: keyword arguments forwarded to super.
41
- """
42
- super().__init__(version=version, **kwargs)
43
- self.data_dir = data_dir
44
- self.filenames = filenames
45
-
46
-
47
- class Openbookqa(datasets.GeneratorBasedBuilder):
48
- """OpenBookQA dataset."""
49
-
50
- BUILDER_CONFIGS = [
51
- OpenbookqaConfig(
52
- name="main",
53
- description=textwrap.dedent(
54
- """\
55
- It consists of 5,957 multiple-choice elementary-level science questions (4,957 train, 500 dev, 500 test),
56
- which probe the understanding of a small “book” of 1,326 core science facts and the application of these facts to novel
57
- situations. For training, the dataset includes a mapping from each question to the core science fact it was designed to
58
- probe. Answering OpenBookQA questions requires additional broad common knowledge, not contained in the book. The questions,
59
- by design, are answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm. Strong neural
60
- baselines achieve around 50% on OpenBookQA, leaving a large gap to the 92% accuracy of crowd-workers.
61
- """
62
- ),
63
- data_dir="Main",
64
- filenames={
65
- "train": "train.jsonl",
66
- "validation": "dev.jsonl",
67
- "test": "test.jsonl",
68
- },
69
- ),
70
- OpenbookqaConfig(
71
- name="additional",
72
- description=textwrap.dedent(
73
- """\
74
- Additionally, we provide 5,167 crowd-sourced common knowledge facts, and an expanded version of the train/dev/test questions where
75
- each question is associated with its originating core fact, a human accuracy score, a clarity score, and an anonymized crowd-worker
76
- ID (in the 'Additional' folder).
77
- """
78
- ),
79
- data_dir="Additional",
80
- filenames={
81
- "train": "train_complete.jsonl",
82
- "validation": "dev_complete.jsonl",
83
- "test": "test_complete.jsonl",
84
- },
85
- ),
86
- ]
87
- DEFAULT_CONFIG_NAME = "main"
88
-
89
- def _info(self):
90
- if self.config.name == "main":
91
- features = datasets.Features(
92
- {
93
- "id": datasets.Value("string"),
94
- "question_stem": datasets.Value("string"),
95
- "choices": datasets.features.Sequence(
96
- {
97
- "text": datasets.Value("string"),
98
- "label": datasets.Value("string"),
99
- }
100
- ),
101
- "answerKey": datasets.Value("string"),
102
- }
103
- )
104
- else:
105
- features = datasets.Features(
106
- {
107
- "id": datasets.Value("string"),
108
- "question_stem": datasets.Value("string"),
109
- "choices": datasets.features.Sequence(
110
- {
111
- "text": datasets.Value("string"),
112
- "label": datasets.Value("string"),
113
- }
114
- ),
115
- "answerKey": datasets.Value("string"),
116
- "fact1": datasets.Value("string"),
117
- "humanScore": datasets.Value("float"),
118
- "clarity": datasets.Value("float"),
119
- "turkIdAnonymized": datasets.Value("string"),
120
- }
121
- )
122
- return datasets.DatasetInfo(
123
- description=_DESCRIPTION,
124
- features=features,
125
- homepage=_HOMEPAGE,
126
- citation=_CITATION,
127
- )
128
-
129
- def _split_generators(self, dl_manager):
130
- """Returns SplitGenerators."""
131
- dl_dir = dl_manager.download_and_extract(_URL)
132
- data_dir = os.path.join(dl_dir, "OpenBookQA-V1-Sep2018", "Data", self.config.data_dir)
133
- splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
134
- return [
135
- datasets.SplitGenerator(
136
- name=split,
137
- gen_kwargs={"filepath": os.path.join(data_dir, self.config.filenames[split])},
138
- )
139
- for split in splits
140
- ]
141
-
142
- def _generate_examples(self, filepath):
143
- """Yields examples."""
144
- with open(filepath, encoding="utf-8") as f:
145
- for uid, row in enumerate(f):
146
- data = json.loads(row)
147
- example = {
148
- "id": data["id"],
149
- "question_stem": data["question"]["stem"],
150
- "choices": {
151
- "text": [choice["text"] for choice in data["question"]["choices"]],
152
- "label": [choice["label"] for choice in data["question"]["choices"]],
153
- },
154
- "answerKey": data["answerKey"],
155
- }
156
- if self.config.name == "additional":
157
- for key in ["fact1", "humanScore", "clarity", "turkIdAnonymized"]:
158
- example[key] = data[key]
159
- yield uid, example