# -*- coding: utf-8 -*- """ @author:XuMing(xuming624@qq.com) @description: """ """Natural Language Inference (NLI) Chinese Corpus.(nli_zh)""" import os import json import datasets _DESCRIPTION = """SimCLUE:3000000+中文语义理解与匹配数据集""" GITHUB_HOME = "https://github.com/CLUEbenchmark/SimCLUE" _CITATION = "https://github.com/CLUEbenchmark/SimCLUE" _DATA_URL = "https://storage.googleapis.com/cluebenchmark/tasks/simclue_public.zip" class SimCLUEConfig(datasets.BuilderConfig): def __init__(self, features, data_url, citation, url, label_classes=(0, 1), **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) self.features = features self.label_classes = label_classes self.data_url = data_url self.citation = citation self.url = url class SimCLUE(datasets.GeneratorBasedBuilder): """The Natural Language Inference Chinese(NLI_zh) Corpus.""" part_file = {'train_rank': 'train_rank.json', 'train_pair': 'train_pair.json', 'corpus': 'corpus.txt', 'train_pair_postive': 'train_pair_postive.json', 'dev': 'dev.json', 'test_public': 'test_public.json'} part_split = {'train_rank': datasets.Split.TRAIN, 'train_pair': datasets.Split.TRAIN, 'corpus': datasets.Split.TRAIN, 'train_pair_postive': datasets.Split.TRAIN, 'dev': datasets.Split.VALIDATION, 'test_public': datasets.Split.TEST} BUILDER_CONFIGS = [ SimCLUEConfig( name="train_rank", description=_DESCRIPTION, features=datasets.Features({"query": datasets.Value("string"), "title": datasets.Value("string"), "neg_title": datasets.Value("string")}), data_url=_DATA_URL, citation=_CITATION, url=GITHUB_HOME, ), SimCLUEConfig( name="train_pair", description=_DESCRIPTION, features=datasets.Features({"sentence1": datasets.Value("string"), "sentence2": datasets.Value("string"), "label": datasets.Value("int32")}), data_url=_DATA_URL, citation=_CITATION, url=GITHUB_HOME, ), SimCLUEConfig( name="corpus", description=_DESCRIPTION, features=datasets.Features({"sentence1": datasets.Value("string")}), data_url=_DATA_URL, citation=_CITATION, url=GITHUB_HOME, ), SimCLUEConfig( name="train_pair_postive", description=_DESCRIPTION, features=datasets.Features({"sentence1": datasets.Value("string"), "sentence2": datasets.Value("string"), "label": datasets.Value("int32")}), data_url=_DATA_URL, citation=_CITATION, url=GITHUB_HOME, ), SimCLUEConfig( name="dev", description=_DESCRIPTION, features=datasets.Features({"sentence1": datasets.Value("string"), "sentence2": datasets.Value("string"), "label": datasets.Value("int32")}), data_url=_DATA_URL, citation=_CITATION, url=GITHUB_HOME, ), SimCLUEConfig( name="test_public", description=_DESCRIPTION, features=datasets.Features({"sentence1": datasets.Value("string"), "sentence2": datasets.Value("string"), "label": datasets.Value("int32")}), data_url=_DATA_URL, citation=_CITATION, url=GITHUB_HOME, ), ] def _info(self): return datasets.DatasetInfo( description=self.config.description, features=self.config.features, homepage=self.config.url, citation=self.config.citation, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(self.config.data_url) return [datasets.SplitGenerator( name=self.part_split[self.config.name], gen_kwargs={ "filepath": os.path.join(dl_dir, self.part_file[self.config.name]), })] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" with open(filepath, 'r', encoding="utf-8") as f: for idx, row in enumerate(f): yield idx, json.loads(row)