Create simclue.py
Browse files- simclue.py +124 -0
simclue.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
@author:XuMing([email protected])
|
4 |
+
@description:
|
5 |
+
"""
|
6 |
+
|
7 |
+
"""Natural Language Inference (NLI) Chinese Corpus.(nli_zh)"""
|
8 |
+
|
9 |
+
import os
|
10 |
+
import json
|
11 |
+
import datasets
|
12 |
+
|
13 |
+
_DESCRIPTION = """SimCLUE:3000000+中文语义理解与匹配数据集"""
|
14 |
+
|
15 |
+
GITHUB_HOME = "https://github.com/CLUEbenchmark/SimCLUE"
|
16 |
+
|
17 |
+
_CITATION = "https://github.com/CLUEbenchmark/SimCLUE"
|
18 |
+
|
19 |
+
_DATA_URL = "https://storage.googleapis.com/cluebenchmark/tasks/simclue_public.zip"
|
20 |
+
|
21 |
+
|
22 |
+
class SimCLUEConfig(datasets.BuilderConfig):
|
23 |
+
|
24 |
+
def __init__(self, features, data_url, citation, url, label_classes=(0, 1), **kwargs):
|
25 |
+
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
|
26 |
+
self.features = features
|
27 |
+
self.label_classes = label_classes
|
28 |
+
self.data_url = data_url
|
29 |
+
self.citation = citation
|
30 |
+
self.url = url
|
31 |
+
|
32 |
+
|
33 |
+
class SimCLUE(datasets.GeneratorBasedBuilder):
|
34 |
+
"""The Natural Language Inference Chinese(NLI_zh) Corpus."""
|
35 |
+
|
36 |
+
part_file = {'train_rank': 'train_rank.json',
|
37 |
+
'train_pair': 'train_pair.json',
|
38 |
+
'corpus': 'corpus.txt',
|
39 |
+
'train_pair_postive': 'train_pair_postive.json',
|
40 |
+
'dev': 'dev.json',
|
41 |
+
'test_public': 'test_public.json'}
|
42 |
+
|
43 |
+
BUILDER_CONFIGS = [
|
44 |
+
SimCLUEConfig(
|
45 |
+
name="train_rank",
|
46 |
+
description=_DESCRIPTION,
|
47 |
+
features=datasets.Features({"query": datasets.Value("string"),
|
48 |
+
"title": datasets.Value("string"),
|
49 |
+
"neg_title": datasets.Value("string")}),
|
50 |
+
data_url=_DATA_URL,
|
51 |
+
citation=_CITATION,
|
52 |
+
url=GITHUB_HOME,
|
53 |
+
),
|
54 |
+
SimCLUEConfig(
|
55 |
+
name="train_pair",
|
56 |
+
description=_DESCRIPTION,
|
57 |
+
features=datasets.Features({"sentence1": datasets.Value("string"),
|
58 |
+
"sentence2": datasets.Value("string"),
|
59 |
+
"label": datasets.Value("int32")}),
|
60 |
+
data_url=_DATA_URL,
|
61 |
+
citation=_CITATION,
|
62 |
+
url=GITHUB_HOME,
|
63 |
+
),
|
64 |
+
SimCLUEConfig(
|
65 |
+
name="corpus",
|
66 |
+
description=_DESCRIPTION,
|
67 |
+
features=datasets.Features({"sentence1": datasets.Value("string")}),
|
68 |
+
data_url=_DATA_URL,
|
69 |
+
citation=_CITATION,
|
70 |
+
url=GITHUB_HOME,
|
71 |
+
),
|
72 |
+
SimCLUEConfig(
|
73 |
+
name="train_pair_postive",
|
74 |
+
description=_DESCRIPTION,
|
75 |
+
features=datasets.Features({"sentence1": datasets.Value("string"),
|
76 |
+
"sentence2": datasets.Value("string"),
|
77 |
+
"label": datasets.Value("int32")}),
|
78 |
+
data_url=_DATA_URL,
|
79 |
+
citation=_CITATION,
|
80 |
+
url=GITHUB_HOME,
|
81 |
+
),
|
82 |
+
SimCLUEConfig(
|
83 |
+
name="dev",
|
84 |
+
description=_DESCRIPTION,
|
85 |
+
features=datasets.Features({"sentence1": datasets.Value("string"),
|
86 |
+
"sentence2": datasets.Value("string"),
|
87 |
+
"label": datasets.Value("int32")}),
|
88 |
+
data_url=_DATA_URL,
|
89 |
+
citation=_CITATION,
|
90 |
+
url=GITHUB_HOME,
|
91 |
+
),
|
92 |
+
SimCLUEConfig(
|
93 |
+
name="test_public",
|
94 |
+
description=_DESCRIPTION,
|
95 |
+
features=datasets.Features({"sentence1": datasets.Value("string"),
|
96 |
+
"sentence2": datasets.Value("string"),
|
97 |
+
"label": datasets.Value("int32")}),
|
98 |
+
data_url=_DATA_URL,
|
99 |
+
citation=_CITATION,
|
100 |
+
url=GITHUB_HOME,
|
101 |
+
),
|
102 |
+
]
|
103 |
+
|
104 |
+
def _info(self):
|
105 |
+
return datasets.DatasetInfo(
|
106 |
+
description=self.config.description,
|
107 |
+
features=self.config.features,
|
108 |
+
homepage=self.config.url,
|
109 |
+
citation=self.config.citation,
|
110 |
+
)
|
111 |
+
|
112 |
+
def _split_generators(self, dl_manager):
|
113 |
+
dl_dir = dl_manager.download_and_extract(self.config.data_url)
|
114 |
+
return [datasets.SplitGenerator(
|
115 |
+
name=self.config.name,
|
116 |
+
gen_kwargs={
|
117 |
+
"filepath": os.path.join(dl_dir, self.part_file[self.config.name]),
|
118 |
+
})]
|
119 |
+
|
120 |
+
def _generate_examples(self, filepath):
|
121 |
+
"""This function returns the examples in the raw (text) form."""
|
122 |
+
with open(filepath, 'r', encoding="utf-8") as f:
|
123 |
+
for idx, row in enumerate(f):
|
124 |
+
yield idx, json.loads(row)
|