|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
|
|
import xml.etree.ElementTree as ET |
|
import os |
|
|
|
import datasets |
|
import datasets.features.features |
|
from datasets import ClassLabel |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{pontiki-etal-2016-semeval, |
|
title = "{S}em{E}val-2016 Task 5: Aspect Based Sentiment Analysis", |
|
author = {Pontiki, Maria and Galanis, Dimitris and Papageorgiou, Haris and Androutsopoulos, Ion and Manandhar, Suresh and AL-Smadi, Mohammad and Al-Ayyoub, Mahmoud and Zhao, Yanyan and Qin, Bing and De Clercq, Orphée and Hoste, Véronique and Apidianaki, Marianna and Tannier, Xavier and Loukachevitch, Natalia and Kotelnikov, Evgeniy and Bel, Nuria and Jiménez-Zafra, Salud María and Eryiğit, Gülşen}, |
|
booktitle = "Proceedings of the 10th International Workshop on Semantic Evaluation ({S}em{E}val-2016)", |
|
month = jun, |
|
year = "2016", |
|
address = "San Diego, California", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/S16-1002", |
|
doi = "10.18653/v1/S16-1002", |
|
pages = "19--30", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
These are the datasets for Aspect Based Sentiment Analysis (ABSA), Task 5 of SemEval-2016. |
|
""" |
|
|
|
_HOMEPAGE = "https://alt.qcri.org/semeval2016/task5/index.php?id=data-and-tools" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
|
|
_URLS = { |
|
"restaurants": { |
|
"trial": { |
|
"SB1": "restaurants_trial_english_sl.xml", |
|
"SB2": "restaurants_trial_english_tl.xml" |
|
}, |
|
"train": { |
|
"SB1": "ABSA16_Restaurants_Train_SB1_v2.xml", |
|
"SB2": "ABSA16_Restaurants_Train_English_SB2.xml" |
|
}, |
|
"test": { |
|
"SB1": "EN_REST_SB1_TEST.xml.gold", |
|
"SB2": "EN_REST_SB2_TEST.xml.gold" |
|
} |
|
}, |
|
"laptops": { |
|
"trial": { |
|
"SB1": "laptops_trial_english_sl.xml", |
|
"SB2": "laptops_trial_english_tl.xml" |
|
}, |
|
"train": { |
|
"SB1": "ABSA16_Laptops_Train_SB1_v2.xml", |
|
"SB2": "ABSA16_Laptops_Train_English_SB2.xml" |
|
}, |
|
"test": { |
|
"SB1": "EN_LAPT_SB1_TEST_.xml.gold", |
|
"SB2": "EN_LAPT_SB2_TEST.xml.gold" |
|
} |
|
}, |
|
} |
|
|
|
|
|
class SemEval2016Task5(datasets.GeneratorBasedBuilder): |
|
"""These are the datasets for Aspect Based Sentiment Analysis (ABSA), Task 5 of SemEval-2016.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="restaurants", version=VERSION, description="Restaurant reviews"), |
|
datasets.BuilderConfig(name="laptops", version=VERSION, description="Laptop reviews"), |
|
] |
|
|
|
|
|
|
|
def _info(self): |
|
|
|
categories = { |
|
"restaurants": { |
|
"entities": ["RESTAURANT", "FOOD", "DRINKS", "AMBIENCE", "SERVICE", "LOCATION"], |
|
"attributes": ["GENERAL", "PRICES", "QUALITY", "STYLE_OPTIONS", "MISCELLANEOUS"] |
|
}, |
|
"laptops": { |
|
"entities": ["LAPTOP", "DISPLAY", "KEYBOARD", "MOUSE", "MOTHERBOARD", "CPU", "FANS_COOLING", "PORTS", "MEMORY", "POWER_SUPPLY", "OPTICAL_DRIVES", "BATTERY", "GRAPHICS", "HARD_DISC", "MULTIMEDIA_DEVICES", "HARDWARE", "SOFTWARE", "OS", "WARRANTY", "SHIPPING", "SUPPORT", "COMPANY"], |
|
"attributes": ["GENERAL", "PRICE", "QUALITY", "OPERATION_PERFORMANCE", "USABILITY", "DESIGN_FEATURES", "PORTABILITY", "CONNECTIVITY", "MISCELLANEOUS"] |
|
}, |
|
} |
|
polarities = ["positive", "negative", "neutral"] |
|
if self.config.name == "restaurants": |
|
features = datasets.Features( |
|
{ |
|
"reviewId": datasets.Value(dtype="string"), |
|
"sentences": [ |
|
{ |
|
"sentenceId": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"opinions": [ |
|
{ |
|
"target": datasets.Value("string"), |
|
"category": { |
|
"entity": datasets.Value("string"), |
|
"attribute": datasets.Value("string") |
|
}, |
|
"polarity": datasets.Value("string"), |
|
"from": datasets.Value("string"), |
|
"to": datasets.Value("string"), |
|
} |
|
] |
|
} |
|
], |
|
"opinions": [ |
|
{ |
|
"category": { |
|
"entity": datasets.Value("string"), |
|
"attribute": datasets.Value("string") |
|
}, |
|
"polarity": datasets.Value("string"), |
|
} |
|
] |
|
} |
|
) |
|
elif self.config.name == "laptops": |
|
features = datasets.Features( |
|
{ |
|
"reviewId": datasets.Value(dtype="string"), |
|
"sentences": [ |
|
{ |
|
"sentenceId": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"opinions": [ |
|
{ |
|
"category": { |
|
"entity": datasets.Value("string"), |
|
"attribute": datasets.Value("string") |
|
}, |
|
"polarity": datasets.Value("string"), |
|
} |
|
] |
|
} |
|
], |
|
"opinions": [ |
|
{ |
|
"category": { |
|
"entity": datasets.Value("string"), |
|
"attribute": datasets.Value("string") |
|
}, |
|
"polarity": datasets.Value("string"), |
|
} |
|
] |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
|
|
urls = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split("trial"), |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir['trial'], |
|
"split": "trial", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir['train'], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir['test'], |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
|
|
tree_SB1 = ET.parse(filepath["SB1"]) |
|
tree_SB2 = ET.parse(filepath["SB2"]) |
|
root_SB1 = tree_SB1.getroot() |
|
root_SB2 = tree_SB2.getroot() |
|
for id_, review_SB1 in enumerate(root_SB1.iter("Review")): |
|
reviewId = review_SB1.attrib.get("rid") |
|
sentences = [] |
|
for sentence in review_SB1.iter("sentence"): |
|
sentence_dict = {} |
|
sentence_dict["sentenceId"] = sentence.get("id") |
|
sentence_dict["text"] = sentence.find("text").text |
|
sentence_opinions = [] |
|
for sentence_opinion in sentence.iter("Opinion"): |
|
sentence_opinion_dict = sentence_opinion.attrib |
|
sentence_opinion_dict["category"] = dict(zip(["entity", "attribute"], sentence_opinion_dict["category"].split("#"))) |
|
sentence_opinions.append(sentence_opinion_dict) |
|
sentence_dict["opinions"] = sentence_opinions |
|
sentences.append(sentence_dict) |
|
|
|
review_opinions = [] |
|
for review_SB2 in root_SB2.iter("Review"): |
|
if review_SB2.attrib.get("rid") == reviewId: |
|
for review_opinion in review_SB2.iter("Opinion"): |
|
review_opinion_dict = review_opinion.attrib |
|
review_opinion_dict["category"] = dict(zip(["entity", "attribute"], review_opinion_dict["category"].split("#"))) |
|
review_opinions.append(review_opinion_dict) |
|
break |
|
|
|
yield id_, { |
|
"reviewId": reviewId, |
|
"sentences": sentences, |
|
"opinions": review_opinions, |
|
} |
|
|